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Identifying the microscopic mechanism for superconductivity in magic-angle twisted bilayer graphene
(MATBG) is an outstanding open problem. While MATBG exhibits a rich phase-diagram, driven partly by the
strong interactions relative to the electronic bandwidth, its single-particle properties are unique and likely play an
important role in some of the phenomenological complexity. Some of the salient features include an electronic
bandwidth smaller than the characteristic phonon bandwidth and a nontrivial structure of the underlying Bloch
wave functions. We perform a theoretical study of the cooperative effects due to phonons and plasmons on pairing
in order to disentangle the distinct role played by these modes on superconductivity. We consider a variant of
MATBG with an enlarged number of fermion flavors, N � 1, where the study of pairing instabilities reduces to
the conventional (weak-coupling) Eliashberg framework. In particular, we show that certain umklapp processes
involving minioptical phonon modes, which arise physically as a result of the folding of the original acoustic
branch of graphene due to the moiré superlattice structure, contribute significantly towards enhancing pairing.
We also investigate the role played by the dynamics of the screened Coulomb interaction on pairing, which leads
to an enhancement in a narrow window of fillings, and study the effect of external screening due to a metallic
gate on superconductivity. At strong coupling, the dynamical pairing interaction leaves a spectral mark in the
single-particle tunneling density of states. We thus predict such features will appear at specific frequencies of
the umklapp phonons corresponding to the sound velocity of graphene times an integer multiple of the Brillouin
zone size.
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I. INTRODUCTION

Since the discovery of superconductivity (SC) [1] near an
interaction-induced insulator [2] in magic-angle twisted bi-
layer graphene (MATBG), the field has evolved dramatically
[3–5]. One of the defining characteristic features of MATBG
is the emergence of isolated, (nearly) flat bands separated
by a large energy gap to higher dispersive bands [6–8]. A
variety of symmetry broken states and phase transitions have
been observed experimentally [4,9–14] as a function of elec-
tron filling (ν ∈ [−4, 4]) measured in units of electrons per
moiré unit cell [15]. In spite of some similarities between the
phenomenology in MATBG and copper-oxide based materials
[16], MATBG bears its own set of unique properties, which
likely play a central role in the underlying microscopic origins
of superconductivity and other experimentally observed fea-
tures. For example, MATBG has spatially extended Wannier
wave functions [17], a nontrivial band topology [18–21], a
complex phonon band structure [22,23] that may extend be-
yond the electronic bandwidth, and plasmons that decouple

from the particle-hole continuum associated with the narrow
bands [24].

These unique features call for a detailed analysis of their
influence on the low-energy electronic properties in MATBG.
For example, while the enhancement of Coulomb interactions
relative to the narrow bandwidth undoubtedly plays an impor-
tant role in stabilizing the insulators at various commensurate
fillings [2–4], the extent to which they are crucial for super-
conductivity remains unclear. A number of recent experiments
have attempted to study the role of Coulomb interactions,
either by varying the distance between the MATBG layer
and a nearby metallic screening gate across different devices
[25,26],1 by independently varying the density of carriers in a
layer of Bernal-stacked bilayer graphene [28], situated a fixed
distance away from MATBG in the same device, or by sta-
bilizing superconductivity at angles far away from the magic

1The devices are nominally at different twist angles and have vary-
ing levels of disorder; see Ref. [27] for a further discussion.
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angle where electronic correlations are suppressed [29]. Not
surprisingly, the enhanced screening suppresses the various
insulating phases, that develop originally at a sequence of
commensurate fillings. On the other hand, SC is affected only
weakly, if at all, by the gate. A number of recent theoreti-
cal studies of superconductivity in MATBG have relied on
a variety of BCS mean-field and other weak-coupling based
approaches [30–38], while other works extend the treatment
to an Eliashberg framework [39–41]. In particular, Ref. [41]
applied Eliashberg theory to study pairing mediated by a
single Einstein Einstein phonon, where the electron-phonon
coupling strength was chosen phenomenologically. Reference
[40] considered plasmon-mediated pairing in a hexagonal lat-
tice model for MATBG. See also two recent studies [42,43]
focusing on the interplay of insulating and superconduct-
ing states, where the underlying band topology plays a
crucial role.

Inspired by the growing number of such interesting exper-
iments, we focus on a possible microscopic mechanism for
the superconducting instabilities in MATBG due to an inter-
play of attraction generated by phonons and purely electronic
collective modes, such as plasmons. Importantly, we take
into account the retarded interaction mediated by the acous-
tic phonons and incorporate the dynamics of the screened
Coulomb interaction within Eliashberg theory [44]. In the
experimental regime of interest, MATBG is likely defined
by an “intermediate-coupling” problem with no natural small
parameter. In order to make theoretical progress, we intro-
duce a large-N expansion, such that our results correspond
to the weak-coupling limit (obtained by taking N � 1). We
argue that in spite of this approximation, the results shed light
on the interplay of different sources of attraction on SC in
MATBG. Our theoretical approach is not suited to discuss the
insulating states observed in MATBG at the integer fillings
[4,12,13]. However, it is entirely possible that the interactions
responsible for SC are distinct from those responsible for the
insulating phases [45]. This work addresses only the possible
role played by the interplay of phonons and screened Coulomb
interactions on SC in MATBG in a systematic fashion. It
is entirely conceivable that the strong-interaction induced
insulating states, that develop at commensurate fillings, sim-
ply punctuate the SC phase-diagram that we discuss and
present in this study.

One of the unique features of MATBG is the large size
of the unit cell, compared to the inter atomic distance.
Consequently, higher order umklapp processes involve mo-
menta which are still small compared to the original Brillouin
zone (BZ) and thus, play an important role in phonon-
mediated SC.2 Below, we show that the SC transition
temperature, Tc, due to acoustic phonons of graphene is
enhanced significantly upon including the effects of these
umklapp processes for a wide range of dopings. On the other
hand, pairing due to plasmons is dominant only in a narrow
range of fillings ν ≈ 2–3 and is much less sensitive to the
inclusion of umklapp processes.

2A detailed study of these umklapp processes and on their
role in superconductivity has not been clarified in earlier studies
[32,36,46]—we relate to these works when discussing our results.

To verify our predictions, we propose a tunneling ex-
periment. As is well known when the coupling is strong
enough “dip-hump” features in the tunneling spectra appear
at energies that can be associated with the frequency of the
bosonic modes that contribute most to pairing [47]. In the
present case, the umklapp phonons have a very distinct fre-
quency scale associated with the speed of sound in graphene
and an integer multiple of the MBZ size. Thus, this al-
lows us to make a rather sharp prediction for the energy
at which such features will appear. Note that this predic-
tion does not depend on the model for the electronic band
structure.

Finally, we also study the effect of a screening layer, cou-
pled to MATBG by Coulomb interactions, on the density
dependence of Tc. The distinct effect of screening on the
plasmonic modes in graphene is discussed and proposed as
a method to distinguish their contribution to pairing.

The remainder of this paper is organized as follows. In
Sec. II, we review the continuum model for MATBG and
introduce the Coulomb and electron-phonon interactions, pro-
jected to the nearly flat bands. We also highlight some of the
technical aspects associated with umklapp scattering and the
large-N formulation in this section. In Sec. III, we focus on
setting up the (linearized) Eliashberg equations for an interval-
ley, spin-singlet s-wave pairing gap and highlight some salient
features associated with the pairing kernel. Section IV is de-
voted to our results, which includes a comprehensive study
of the filling dependence of Tc due to the different sources of
attraction, the role of external screening and a discussion of
our proposed experimental setup for investigating the finger-
print of umklapp phonon processes. Section V concludes with
a discussion and future outlook for interesting directions. We
describe some of the technical aspects of our work in Appen-
dices A–D.

II. MODEL

The noninteracting part of our model, H0, leads to
the action,

S0 =
N∑

i=1

∑
k,ω,{γ }

(−iω + Ek{γ })c†
ωk{γ };icωk{γ };i, (1)

where cωk{γ };i is the electron annihilation operator in the eight-
dimensional space of {γ } ≡ {ξ, σ, n}, with ξ being the valley
index of the original graphene layers, σ labeling the electron
spin and n tracking the electronic band index of MATBG. We
have introduced a fictitious index i = 1, . . . , N , which labels
N identical copies of the noninteracting MATBG Hamilto-
nian, with an eye for carrying out a 1/N expansion.3 We
denote k as the crystal momentum in the original graphene
layer, such that the two mini-Brillouin zones (MBZ) are lo-
cated near K and K ′ points of the original graphene layers,
and the k summation ranges over the MBZ, see schematic
in Fig. 1(a).

The energy bands, Ek{γ }, are computed from the effective
continuum Hamiltonian introduced in Ref. [48] for MATBG

3N = 1 corresponds to the physical limit of MATBG.
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FIG. 1. (a) A small twist-angle between two graphene layers
leads to formation of mini-Brillouin zones located in the vicinity
of the K and K ′ points. We focus on intervalley (ξ �= ξ ′) pairing
(dashed line) to form Cooper pairs at zero center of mass momentum.
(b) The moiré interlayer coupling gives rise to formation of two (spin
degenerate) nearly-flat bands for each valley ξ . K̄, �̄, M̄, and K̄ ′

correspond to high symmetry points of the MBZ. Positive (ν > 0)
and negative (ν < 0) fillings correspond to the electron and hole
band, respectively. (c) The energy landscape of an electron band for
ξ = 1. The red arrows depict the umklapp processes (0G, 1G, 2G)
between states originating from different MBZs (one shown as white
hexagon) in the extended zone scheme. Here, K = |K̄ − �̄|.

at a twist angle θ = 1.05◦.4 The band structure of the two
narrow bands, which are relevant for superconductivity are
shown in Fig. 1(b). In the analysis that follows, we intro-
duce a chemical potential (μ) in the usual way by shifting
the single-particle energies, Ek{γ } → Ek{γ } − μ, and control
the electron filling. Additional details associated with the band
structure appears in Appendix A.

4We note that the eigenstates and eigenvalues of the two val-
leys ξ = ± are time-reversed partners and accompanied by a
simultaneous complex conjugation and k → −k transformation.

Let us now turn our attention to the interaction terms in our
model. As a result of the large momentum separation between
K and K ′ in the original BZ [see Fig. 1(a)], the states near
ξ = ± valleys in the two MBZs are effectively decoupled. The
interaction is then given by

Sint = 1

2

∑
q, ω

ξ, ξ ′, i

V int
ξ,ξ ′ (q, iω)ρξ ;i(q, iω)

× ρξ ′;i(−q,−iω),

ρξ ;i(q, iω) =
∑
k,ν


γγ ′ (k + q, k) c†
ν+ωk+q{γ };icνk{γ ′};i , (2)

where the density operators, ρξ ;i(q, iω), include the form
factors, 
γγ ′ (p, k) = δξξ ′δσσ ′ 〈p, {γ }|ei(p−k)·r|k, {γ ′}〉, which
necessarily involve states located near the same valley ξ as
the Hamiltonian is block-diagonal in the valley space. Here
|k, {γ ′}〉 denotes a Bloch wavefunction of the noninteracting
Hamiltonian (see Appendix A). Note that we have assumed
explicitly that the interaction term is diagonal in the fictitious
i = 1, . . . , N index. The interaction vertex above is a sum of
two contributions—the dynamically screened Coulomb inter-
action (VC

ξ,ξ ′ ) and the phonon mediated interaction (Vph
ξ,ξ ′ ):

V int
ξ,ξ ′ (q, iω) = VC

ξ,ξ ′ (q, iω) + Vph
ξ,ξ ′ (q, iω) . (3)

To stress the intervalley nature of the pairing in what follows,
we make the labels ξ and ξ ′ explicit in both the Coulomb
and phonon interactions as well as make the Coulomb and
phonon interaction manifestly intervalley only through the
δξ,−ξ ′ (see below). The microscopic form of the interaction
however is the same for both inter/intravalley interactions
with the dependence on valley indices ξ, ξ ′ contained only in
the density operators ρξ (q, iω) introduced in Eq. (2).

The first term in Eq. (3) is the dynamically screened
Coulomb interaction, which is given by

VC
ξ,ξ ′ (q, iω) = 1

N

2πe2

εRPA(q, iω)q
δξ,−ξ ′ , (4)

where the RPA dielectric function is given by εRPA(q, iω) =
κ − 2πe2�ee(q, iω)/q. Here �ee(q, iω) is the electronic po-
larization of MATBG [24] and κ is the background dielectric
constant, which can in principle be frequency and momentum
dependent as well.

The second term, the phonon-mediated interaction, arises
from the electron-phonon coupling Hamiltonian,

Hel-ph = −i

√
gcs

2N

∑
ξ,q

√
q ρξ ;i(q)(aq + a†

−q), (5)

where aq, a†
q represent the phonon annihilation and creation

operators, respectively.5 The phonon coupling constant, g =
D2/ρmc2

s , is related to the deformation potential, which we
set as D (= 25 eV), and we also use cs (= 12000 m/s) for
the speed of sound in graphene and ρm (= 7.6 × 10−8 g/cm2)
for the atomic mass density [49,50]. After integrating out the

5Here we use the notation that ρξ ;i(q) ≡ ρξ ;i(q, iω = 0) as per the
definition in Eq. (2)
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phonons, we obtain the density-density interaction term of the
form Eq. (2), where

Vph
ξ,ξ ′ (q, iω) = − g

N

ω2
ph(q)

ω2 + ω2
ph(q)

δξ,−ξ ′ (6)

and ωph(q) = csq is the acoustic phonon dispersion for
graphene. Note that we have chosen the individual
N-dependent normalizations such that both Vc

ξ,ξ ′ and Vph
ξ,ξ ′

have the same 1/N prefactor and can therefore, be compared
in a meaningful fashion in the large-N limit.

Let us now clarify an important aspect of the underlying
scattering processes, that play a crucial role in our subsequent
analysis. The summation over the crystal momenta, k, in
Eq. (2) is limited to the first MBZ. However, the momentum
transfer, q ≡ G + q̃, can scatter to Bloch states belonging to
different MBZs, where q̃ is now restricted to lie in the first
MBZ. The lattice vector, G = m1GM

1 + m2GM
2 (m1, m2 ∈ Z),

accounts for scattering by the multiplicity of reciprocal moiré
lattice vectors, GM

1 , GM
2 . In order to evaluate the importance

of the umklapp processes described above, from now on we
restrict our analysis to the mth MBZ, such that m1, m2 ∈
[−m, m]. We refer to such an analysis as including mG pro-
cesses, see Fig. 1(c). Varying m allows us to assess the relative
importance of the successive umklapp processes. As we shall
highlight later on, while including a few umklapp processes
beyond the simplest 0G process leads to qualitatively new
features, there is also rapid convergence with increasing m,
such that we do not need to include processes with arbitrarily
large values of m.

It is worth noting that these umklapp processes can be
equivalently viewed as processes where minioptical phonons
are exchanged. These optical-like modes are a natural conse-
quence of folding of the original acoustic phonon branch of
graphene due to the moiré potential [22], and have no relation
to the optical phonons of the original (decoupled) graphene
layers. In what follows we will also relate our findings to pre-
vious works that focused on pairing mechanisms mediated by
optical phonons [32,34,36,41,46] irrespective of their micro-
scopic origins or frequency, i.e., whether they are minioptical
phonons arising from folding of the acoustic dispersion, ac-
tual optical phonons of graphene or just phenomenological
Einstein modes. We also clarify that the phonons we consider
correspond to symmetric motion of atoms in both graphene
layers, but as Ref. [22] points out, there are also in-plane
phonon modes, which we ignore in our study corresponding
to asymmetric motion of atoms in both layers that can develop
small “gaps” as a result of the moiré potential.

III. ELIASHBERG EQUATIONS

We are interested in the linearized gap equation in the
pairing channel, ignoring the self-energy corrections to the
electron dispersion and quasiparticle weight (for details on
how to include them we refer the reader to Ref. [51]). The
gap function in the spin-singlet, s-wave pairing channel with
zero center of mass momentum is defined as

�(iω, k) ≡ 〈εσσ ′cω,k{γ }c−ω,−k{γ ′}〉, (7)

where εαβ is the fully antisymmetric tensor in the indices
α, β and we have further assumed that the gap function has
no explicit dependence on the angle of k. The latter assump-
tion is consistent with our assumption of intervalley Cooper
pairing from valleys that are time-reversed partners, as ex-
plained before. Note that the above requires an intervalley
scattering, Fig. 1(a), which imposes the condition ξ �= ξ ′ in
the interaction Eq. (2). The gap equation thereby reduces to
an eigenvalue problem

�(iω, k) = −T
∑

ν

∑
p

K (iω, k; iν, p)�(iν, p), (8)

where the kernel K (. . . ) is given by

K (iω, k; iν, p)

≡ 1

(2π )2

∫
d�pV int

−ξ,ξ (k − p, iω − iν)

(p, k)
(−p, k)

ν2 + E2
ξ,p

(9)

and where
∫

d�p denotes integration over the angle between
vector k and p for a fixed direction of k.6 In the above ex-
pression, as we are focusing on an intervalley pairing, we
have suppressed the indices γ , γ ′ on each of the two form
factors for clarity, but the two 
(. . . ) terms carry oppo-
site time-reversed labels. Accordingly the valley indices are
omitted henceforth.

The Eliashberg equation for the pairing gap in Eq. (8)
ignores a number of possibly important contributions.
We ignore an interaction induced momentum-dependent
(“Hartree”) renormalization of the MATBG dispersion, which
has been argued to lead to qualitative changes in the band
structure [52,53]. We have (artificially) introduced a control
parameter that selects a subset of the relevant processes and
weakens the strength of the pairing mechanism. This places
our analysis in the weak-coupling regime allowing us to focus
on solving one equation only for the superconducting order
parameter. Namely, we have neglected the mass and disper-
sion renormalizations, Z and χ (as these are subleading in
1/N). For more details on their inclusion we refer the readers
to Ref. [51]. We also note that the mass renormalization Z
tends to reduce Tc by a factor [54], while the χ becomes most
important when Tc is of the order of the Fermi energy εF

[54,55] (i.e., at strong coupling).
With the possible qualitative changes in mind, in the analy-

sis that follows we clearly identify and distinguish the features
that follow from generic properties associated with moiré
narrow-band systems and the ones that are tied to the specific
aspects of the model and approximations used. This allows
us to shed interesting light on the importance of different
interactions on the origin of pairing and various qualitative
aspects thereof in the limit where the Eliashberg framework
is applicable. On the other hand, it is important to recall
that the large-N model we consider here is somewhat dif-
ferent from the experimental situation. Therefore the actual
value of Tc takes meaning only by comparison and not by its
absolute value.

6Note that here we have neglected the extended s-wave of the D3

symmetry group.
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FIG. 2. Solution to the gap equation in Eq. (8) due to (a) phonon
and (b) plasmon for ν ≈ 1. In both cases, we consider only 0G
processes giving TC = 0.0118 meV and TC = 0.0072 meV, respec-
tively. The phonon-induced solution is always positive, indicative of
a purely attractive pairing, while the plasmon-induced solution has a
sign-change associated with the gap—a characteristic behavior for
an overall repulsive interaction (see main text). The solutions are
normalized such that max{�(iπT, k)} = 1. We intentionally show
two different Matsubara grids: linearly spaced in (a), and, variably
spaced (exact Matsubara at low frequencies and then approximate)
in (b); see Appendix C. A wide range of Matsubara frequencies is
required to capture the plasmonic-gorge (black arrow) in (b). Note
that momenta, k, are measured with respect to the center of the MBZ,
see Fig. 1(b).

To solve for Tc we seek the temperature, at which the
kernel has an eigenvector with corresponding eigenvalue
−1/Tc. To perform the analysis numerically, we must first
perform the angular average Eq. (9). We then need to per-
form two additional approximations: The first is to introduce
frequency and momentum cutoffs and choose an appropriate
mesh discretization. Furthermore, we select only a subset of
momentum and frequency points under the sum. For more
details on the numerical procedure, we refer the reader to
Appendix C.

Before proceeding with our analysis of the results, let us
pause to discuss some of the properties of the eigenvector
in Eq. (8). The optimal solution has a large negative weight
where the interaction is most repulsive. Therefore the optimal
solution for a phonon versus plasmon mechanism is qualita-
tively different; see Figs. 2(a) and 2(b) for the solutions to
Eq. (8) due to a phonon and plasmon solution, respectively.
While the phonon solution is almost featureless at frequencies
below the characteristic pairing energy (see later), it has a
suppression of the solution at small k. As discussed later,
this is connected to a suppression of the superconducting
dome at large values of the filling. On the other hand, the
plasmon solution presents a sharp resonancelike feature at a
characteristic pairing momentum (denoted the plasmon gorge)
[56] as well as an eigenstate solution that changes sign—a
necessary requirement to satisfy the gap equation (8) when
the Coulomb interaction is repulsive at all frequencies. The
observed frequency dependencies, of the phonon solution in
particular, leaves behind a resonant feature in the real-time

Green’s function of single-fermion excitations, which can be
detected in the single-particle density of states.

IV. RESULTS

Let us now present our results for the superconducting
transition temperature, obtained by solving the eigenvalue
problem in Eq. (8) numerically. In order to disentangle the ef-
fects of a purely phonon mediated attraction, including the
effects of umklapp scattering (highlighted above), versus the
combination of phonon and plasmon mediated superconduc-
tivity, we study their effects individually in the next two
sections. We also investigate various spectral features asso-
ciated with the electron-phonon coupling and the effect of a
metallic screening gate in subsequent sections. In the follow-
ing analysis, we set the parameter N = 20 to ensure that we
are firmly in the weak-coupling regime.7

A. Phonon mediated superconductivity

We start our discussion by focusing exclusively on the
effects of the phonon mediated interaction, Eq. (6). In order to
investigate the importance of phonons in a controlled fashion,
we first set the Coulomb interaction (VC

ξ,ξ ′ ) in Eq. (4) to zero

and compute Tc due to the phonon mediated interaction (Vph
ξ,ξ ′ )

in Eq. (5). Moreover, we include a sequence of umklapp
processes, mG, with m = 0, 1, 2, and 3; the results for
the transition temperature (Tc) as a function of ν are shown
in Fig. 3(a).

As is evident from our results, umklapp scattering pro-
cesses up to m = 2 have a dramatic effect on Tc, which
saturates for m � 3. These umklapp phonons are essentially
the lowest optical modes resulting from the folding of the
original acoustic phonon branch into the MBZ. Thus, we find
that the interaction with these lowest optical modes are crucial
for understanding the electronic properties of MATBG. In
order to clearly demonstrate the effect of umklapp processes
on the pairing interaction, it is useful to study the phonon
spectral function as a function of energy, defined as

α2F (ω) = N0(0)g

2N

×
〈∑

q

ωph(q)|
(k + q, k)|2δ(ω − ωph(q))

〉
FS

,

(10)

where q = q̃ + G, as defined previously [see paragraph fol-
lowing Eq. (6)]. In the above, N0(0) is the density of states at
the Fermi surface (FS) and 〈. . . 〉FS denotes averaging k over
the FS. We stress the presence of the form factors, 
(p, k),
which encode the unusual dependence of the superconducting

7We stress that if the resulting TC for a given filling becomes of
order of the chemical potential, εF , then it is necessary to determine
the chemical potential self-consistently [54]. In our results, however,
this limit is never reached, but the theory at very low fillings |ν| �
0.2 for higher-order (m � 2) umklapp processes starts to approach,
TC ≈ 0.5εF .
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FIG. 3. (a) Superconducting dome due to a phonon-only
mechanism (N = 20). Colored lines correspond to a different num-
ber of umklapp processes (mG with m = 0, 1, 2, 3) involved in the
pairing interaction. The TC values for ν > 0 are higher than those for
ν < 0 as the conduction band, Fig. 1(b), of the model in Ref. [48] is
flatter than the valence band. The 0G dome peaks near the van-Hove
singularities of the bands. Saturation of the TC increase with 3G
umklapp processes can be traced back to the nature of the Bloch wave
functions (see main text and details of the band structure discussed in
Appendix A). (b) Electron-phonon spectral function for ν ≈ 1 show-
ing the importance of umklapp processes. (c) A plot of TC obtained
from a BCS-type formula, Eq. (12), with parameters obtained from
the MATBG spectral function, Eq. (11). As expected, the BCS dome
peaks in the vicinity of the van-Hove singularity, which by virtue of
the specific details of the model in Ref. [48], occurs at ν ≈ 0.63. Note
the similar trend of TC enhancement between panels (a) and (c) with
umklapp processes.

kernel on the large momentum umklapp processes. As can be
seen in Fig. 3(b), the inclusion of umklapp processes have a
clear effect on the spectral function, most prominent of which
include a significant enhancement in the electron-phonon cou-
pling strength, combined with a drastic rearrangement of the
spectral weight to higher energies. These same umklapp pro-
cesses are responsible for increasing Tc.

The enhancement of TC with umklapp processes can be
anticipated by looking at the form of Eq. (6).8 The effective

8We thank an anonymous referee for sharing this interesting
observation.

electron-electron interaction at the lowest frequency, ω = 0,
is a constant independent of q. Momentum dependence enters
in Eq. (6) only for finite frequency. For the first such frequency
(n = 1, ω = 2πT ), the interaction has a reversed Lorentzian
shape in q space where it is zero for q → 0 and saturates
to the (ω = 0) value as momentum becomes large. With the
above observations, one can predict that as q increases, the
coupling strength and therefore the pairing tendency will be
enhanced until some value where the effect of taking higher
umklapp contributions into account will lead to a saturation.
We highlight, however, that this behavior alone is not behind
the sharp saturation seen in Fig. 3(a), but rather occurs in
combination with the presence of form factors that rapidly
vanish past some critical mG (here 3G).

The characteristic energy scale associated with the peak of
the above spectral function, provided that the form factors
do not lead to a suppression, is set by the graphene sound
velocity (cs) and the length scales stemming from the moiré
period. Using the magnitude of the moiré reciprocal vector
G = 4π/(

√
3LM ) as the characteristic size of the MBZ [LM =

a
2 sin( θ

2 )], we find the typical frequencies as

1

2
cs(m + 1)G = cs(m + 1)

2π√
3LM

≈ 2.1, 4.3, and 6.4 meV

(11)

for the first three mG umklapp processes: 0G, 1G, 2G. These
estimates are in reasonably good agreement with the location
of the peaks in Fig. 3(b). In MATBG, as mentioned in the in-
troduction, the precise values of these characteristic frequency
scales can be affected by the details of the phonon dispersion
(including, for example, the presence of a gap [22,23]). It is
worthwhile to comment that similar multi-peak features in
el-ph spectral functions were seen also in previous ab initio
calculations [34], however, the precise connection to umklapp
processes was not emphasized.

The microscopic mechanism responsible for the significant
contribution of umklapp processes to the spectral function,
which leads to the enhancement of superconducting TC , is
intimately tied to the origins of the flat moiré bands. To
obtain the electronic dispersion, Ek, of carriers in these nar-
row bands [see Fig. 1(b)] due to the slowly varying moiré
interlayer potential, it is not sufficient to consider only plane
wave Bloch states with crystal momentum k, but also those
of nearby states that are coupled by multiple of the moiré re-
ciprocal vectors, G (see Appendix A). As a result, the spectral
weight of the resulting Bloch wave function is extended across
several plane wave states. This results in a slowly vanishing
Bloch wave-function overlap, on the scale of the moiré recip-
rocal momentum scale G, that enters into the form factors,

γγ ′ (p, k). We stress that this property of narrow-band wave
functions is independent of the finer details of the band struc-
ture and is intimately tied to many of the unusual properties
of MATBG (e.g., it is partly responsible for the extended
Wannier functions [48,57]).

Let us now briefly comment on the overall similarity of the
dome shape to that of other phonon-pairing based approaches.
This is best seen by a comparison with, for example Ref. [41],
where an Eliashberg treatment together with a pairing
mechanism relying on an optical-like phonon is considered.
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FIG. 4. Comparison of phonon and plasmon mediated pairing
mechanisms as a function of an increasing number of umklapp
processes. (a) 0G (no umklapp), (b) 1G, and (c) 2G. Blue curves
correspond to a phonon only mechanism (Sec. IV A), red curves
correspond to a plasmon only mechanism (Sec. IV B), and, yellow
curves include effects of both phonon and plasmon on pairing (see
Sec. IV B). The phonon-driven attraction is strongly enhanced with
the inclusion of umklapp scatterings; the plasmon mechanism is
largely insensitive to umklapp. We choose N = 20.

This similarity simply stems from the fact that in a phonon-
only mechanism that produces an attractive interaction over
all frequency range, the overall shape of the dome is largely
dictated by the electron band structure rather than the details
of the pairing. As such, any analysis based on a band-structure
model, either tight-binding/continuum/ab initio in nature,
will produce similar-looking domes if the underlying band
structures are qualitatively similar.

Let us now place the essence of the phonon umklapp-
driven enhancement of the critical temperature, TC in the
context of BCS theory. We note upfront, however, that al-
though it captures some of the trends seen in Fig. 4(a), it is by
no means a replacement for the full Eliashberg approach (see
later). Within standard BCS theory with a coupling constant,
g, the expected transition temperature is given by [58]

TC ≈ 1.14〈ω〉 e−1/λ̃ (12)

where 〈ω〉 corresponds to a pairing energy range (usually
the Debye frequency) and λ̃ = gN0(0). We can now use the

spectral function defined in Eq. (11) to recast the effective
coupling constant as [59]

λ̃ = 2
∫

dω
α2F (ω)

ω
, (13)

and similarly denote the characteristic pairing frequency 〈ω〉
in terms of the moment of the same distribution as

〈ω〉 = 2

λ̃

∫
dω α2F (ω) . (14)

For the MATBG phonon spectral function plotted in Fig. 3(b),
corresponding to an electron filling near ν ≈ 1, we list each
of the two parameters, λ̃ and 〈ω〉, in the legend for all of the
umklapp processes (mG, with m = 0–3). A simple application
of the BCS formula in Eq. (12) in terms of the two filling
dependent parameters, λ̃ and 〈ω〉, captures many of the inter-
esting trends that we saw previously, as shown in Fig. 3(c),
including the relevance of umklapp processes. The simple
BCS formula, parametrized by λ̃ = gN0(0), predicts the TC

dome to peak at the location of the van Hove singularity. To a
large extent, this is also reproduced in the domes of Fig. 3(a);
we note, however, that the peak of the dome shifts towards
higher fillings upon including successive umklapp processes.9

The simple BCS formula, where the characteristic pair-
ing energy is naively given by 〈ω〉, was used here only
for a rough estimate and comparison with the results
of the Eliashberg theory. It should be mentioned that in
this case, where 〈ω〉 � εF , the frequency cutoff is some-
times substituted by εF [60–62]. However, given that this
substitution is also nonrigorous [54], we do not perform
it here.

Finally, we note that the umklapp-driven enhancement of
phonon-mediated superconductivity is not model specific and
is a generic property of any moiré narrow-band system with
a Bloch wave-function overlap that is vanishing slowly, on
a moiré momentum scale, as a function of the momentum
exchange, q. In Sec. IV D, we shall return to a discussion of
the electron-phonon spectral function and consider the exper-
imental fingerprints of these modes in the tunneling density
of states.

B. Plasmon mediated superconductivity

We are now in a position to include the effects of Coulomb
interactions on pairing. To that end, we begin by evaluat-
ing the dielectric function εRPA(iω, q) numerically [24] (see
also Appendix B) and reinstating VC

ξ,ξ ′ to the pairing kernel
in Eq. (9).

Let us begin by studying the problem in the absence of
the phonon mediated interaction, i.e., set Vph

ξ,ξ ′ = 0, and in-
clude only the effects of the Coulomb interaction. In this
case, the origin of pairing lies in the frequency dependence of
the dielectric function close to the plasma resonance [56,63].
Moreover, just as in the case of phonons, we include a
sequence of mG umklapp processes for the plasmons (we

9The exact location of the van-Hove singularity at ν ≈ 0.63 is
a consequence of the underlying details of the band structure
in Ref. [48].
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choose N = 20). The result for Tc, due purely to the plas-
monic mechanism, is shown in red in Figs. 4(a)–4(c) as a
function of filling. This analysis leads us to conclude that (i)
the plasmonic mechanism of pairing leads to an enhancement
of Tc for a narrow range of fillings near ν ≈ 2 − 3, and,
(ii) successive m > 0 umklapp processes have no appreciable
effect on Tc.

We now explain the microscopic origin for both of these
observations. In contrast to a purely attractive phonon-
mediated interaction, the dynamically screened Coulomb
interaction is always repulsive. However, as argued in Sec. III,
the frequency dependent dynamically screened interaction
becomes weak enough at certain momenta, such that the
sign-changing gap function can minimize the overall effect of
repulsive Coulomb interaction [64], giving rise to an effective
attractive part.

In order to understand the structure of the frequency-
momentum regions where the screened interaction becomes
weak, it is helpful to plot VC

ξ,ξ ′ (q, iω) in Eq. (4), as shown in
Fig. 5(a) at a fixed filling (ν ≈ 1). The behavior differs from
the one in a conventional 2D Fermi gas [65]. Most crucially,
in the latter, given the form of the polarization function, one
would expect the interaction to be most repulsive as q → 0
and then weaken with increasing q. On the other hand, in
MATBG, there is a local minimum of the interaction at a finite
momentum q. We can understand this behavior by focusing
on the limit of ω → 0, as discussed in Refs. [66,67]. At the
magic angle and at low fillings ν ≈ 0, the static polariza-
tion function behaves as �ee(q, ω → 0) ∝ q/vF . This form
is reminiscent of the polarization function in a Dirac-like
system [68,69]. At momenta smaller than the moiré reciprocal
momentum (G), vF corresponds to the renormalized MATBG
Fermi velocity near ν ≈ 0 with vF ∼ 104 m/s. The polariza-
tion function is dominated by the inter flat-band transitions.
On the other hand, at momenta comparable to and larger
than the moiré scale (and at a similar filling), vF ∼ 106 m/s,
the bare graphene velocity. The polarization function is now
dominated by the interband transitions between the flat and
dispersive bands as the effect of the moiré interlayer potential
becomes less relevant. As a result, the plasmons in MATBG
[24] have interesting properties. As long as plasmons rise
above the particle-hole continuum, its dispersion is controlled
by the energy scale associated with interband transitions be-
tween flat bands, and between the flat and the dispersive
bands. As such, it therefore becomes weakly sensitive to the
filling value.

The aforementioned local minimum of the pairing inter-
action occurs at momenta smaller that the moiré reciprocal
lattice scale, G. At momenta larger than G, the interaction
in Eq. (4) reduces to the simple unscreened form, 2πe2/q,
suppressing any dynamical contribution to the superconduct-
ing gap. As a result, any contribution due to higher umklapp
processes involving plasmons does not enhance TC drastically;
see Figs. 4(a) and 4(b). In fact even at large enough momenta,
on the scale of 2G, as the form factors are still nonvanishing it
can suppress it slightly; see Fig. 4(c).

While the specific form of the screened interaction,
Fig. 5(a), affects the shape of the plasmon-induced super-
conducting dome, it is useful to disentangle it from the role
played by other elements that appear in the pairing kernel,

FIG. 5. (a) Plot of − ln[N0(0)VC
ξ,ξ ′ (q, iω)] for ν ≈ 1. Note that a

local minimum (black arrow) of the interaction occurs at a finite mo-
mentum (see discussion in the main text). (b) Fermi-surface averaged
dependence of form factors, Eq. (16), with the same vertical axis as
in (a). Note how small momentum (q < K) processes dominate over
the large momentum terms (q > K). Near a filling, ν ≈ 2.45, the
form factors are slightly larger for a wider range of momenta than at
lower fillings. This behavior lies behind the narrow plasmon peak of
the TC dome, Fig. 4, which is exponentially sensitive to the coupling
strength, cf. Eq. (12). (c) Plasmon-mediated SC under different ap-
proximation schemes. For the plasmon-pole approximations (iii) and
(iv), we use ωpl ≈ 6 meV. There is hardly any difference between
(i) and the original result. (d) Superconducting temperature in the
plasmon pole approximation as a function of plasma frequency ωpl.
Pairing occurs from frequencies close to ωpl, and leads to an increase
in TC as ωpl approaches the chemical potential.

Eq.(9): the form factors 
γγ ′ (. . . ) and the energy denomina-
tor, 1/(ν2 + E2

ξ,p). To that end, we focus on the 0G processes
and selectively modify the different elements that enter into
the kernel, Eq. (9). In particular, we consider the following
modifications: (i) we compute the dielectric function at one
specific filling, ν, and use it for all fillings (thereby ignoring
the ν dependence of the dielectric function), (ii) we ignore
the momentum dependence of the form factors and replace
them with unity, except for restricting the interaction to inter-
valley pairing, (iii) we use the “plasmon-pole” approximation
instead of using the full RPA dielectric function, and (iv)
we invoke the same approximation as in (iii) above, but
make the substitution for the form factors as in (ii). A figure
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demonstrating all of these cases is shown in Fig. 5(c). No-
tably, the results under the approximation in (i) above do not
affect the results at all (not shown), thereby indicating that the
density dependence of the dielectric function does not play a
significant role.

Let us begin with a discussion of points (iii) and (iv) above,
that rely on the plasmon-pole approximation. As described
previously, the Coulomb interaction is always repulsive; the
dynamical screening can, however, lead to a possible super-
conducting solution that overcomes the effect of the repulsion.
To investigate this matter further, we explore here an idealized
limit—the so-called “plasmon-pole” approximation— where
the Coulomb interaction in Eq. (4) is replaced by

VC
ξ,ξ ′ (q, iω) ≈ 1

N

2πe2

κq

(
1 − ω2

pl

ω2
pl + ω2

)
δξ,−ξ ′ . (15)

Here, ωpl is the plasmon frequency. We note that the
“plasmon-pole” approximation is strictly valid only in the
ω � vF q limit, which will be of interest to us below. For
ω � vF q, the interaction can be approximated by its purely
repulsive and static Thomas-Fermi screened form. For a wide
range of momenta, the plasmons of interest to us originate
primarily from interband transitions between the nearly-flat
and dispersive bands. As argued above, the resulting plasma
frequency is independent of the filling and is instead set by
the bandwidth W of the nearly-flat band and the gap �band,
between flat and dispersive bands as ωpl ≈ √

W �band (see
Ref. [24] and Appendix B for details). We therefore choose
a constant ωpl in our calculation. As is evident from Fig. 5(c),
the plasmon-pole result exceeds the RPA result. With in-
creasing filling, TC rises almost linearly as the Fermi energy
approaches the plasma frequency, thereby enhancing the
effect of the plasmon in driving pairing. However, for ν � 3,
TC starts to drop rapidly—a behavior we attribute to the bands
being more dispersive at these fillings, cf. Fig. 1(b).

We can verify our understanding of the interplay of these
two results by varying ωpl as an external phenomenological
parameter, as done in Fig. 5(d). We notice immediately that
the closer ωpl is to the relevant chemical potential, the higher
is the TC . This is however not sufficient at large fillings, ν > 3.
We note that the sharp fall-off at ν > 3 is a property of the
continuum model used. This fact is precisely the reason for
the form of the gap solutions obtained in Fig. 2, where for
k � 0.25K the solution due to phonons vanishes [Fig. 2(a)],
while it is positive in Fig. 2(b), implying an overall repul-
sive contribution to the plasmon-induced gap equation. This
analysis also suggests an interesting possible route towards
enhancing TC due to plasmons. If ωpl can be brought closer to
the chemical potential, while maintaining the same strength
of Coulomb interactions in a system, then it is possible to
raise TC .

We conclude the analysis of the plasmon-pole approxima-
tion and its effect on pairing by pointing out that suppressing
the momentum dependence of the form factors leads to an
enhancement of TC ; see curves labeled (ii) and (iv) in Fig. 5(c).
This can be understood by realizing that the Bloch wave-
function overlap depends on the underlying “fidget-spinner”
structure of the energy contours, cf. Fig. 1(c), which can
suppress certain scattering processes and thereby lower TC .

The plasmon-pole approximation captures most of the
features we obtain within the full Eliashberg calculation
(Fig. 4). However, it does not immediately lead to a simple
explanation for the sharp peak associated with the (plasmon-
)dome near ν ≈ 2–3. It is natural to ask if this feature arises
solely due to a change in the dielectric function as a function
of ν. To explore this possibility, we compute TC by fixing the
dielectric function corresponding to ν ≈ 2.45 [associated with
the peak of the plasmon-dome in Fig. 4(a)] and not varying
it as a function of ν; this corresponds to the approximation
denoted as (i) above. We find that the overall shape of the
resulting dome is completely identical to the full computation
(result not shown). As explained previously, this behavior
stems from the dielectric function of MATBG being domi-
nated by interband transitions, which are largely insensitive to
the filling.

Taking all of these observations into account, the peak of
the dome at a filling of ν ≈ 2–3 comes from an interplay
of the form factors along with the dielectric function. This
conclusion stems from the analysis leading to Fig. 5(d), which
demonstrates that the plasmon-pole approximation, even with
the appropriate form factors, can not reproduce the sharp peak
at ν ≈ 2–3.

To assess this further, we now focus on the q dependence of
the form factors. To that end we plot in Fig. 5(b), the following
quantity:

F (q, μ) =
∫

MBZ
d2k

∫
dθk′ k′|
(k′, k)|2δ(Eξ,k)δ(Eξ,k′ ) ,

(16)

where q = |k − k′| and δ(Eξ,k), δ(Eξ,k′ ) constrain the two
states to lie on the Fermi-surface (within mesh resolution); θk′

denotes angle of k′. The decrease in F (q, μ) with q reflects
the density dependence of the orbital hybridization of the
Bloch wave-functions in the relevant bands. For comparison,
F (q, μ) would be momentum independent and equal to unity,
when there is no orbital hybridization (i.e., when the band and
orbital basis are identical). In contrast, it is known to diminish
rapidly with the momentum exchange, q, in a Dirac system
[63]. Therefore F (q, μ) extends to higher momentum close to
ν ≈ 2–3, where orbital hybridization is minimized, taking a
maximum at ν ≈ 2.45. In turn, this maximizes the product
with the screened interaction from, Fig. 5(a), leading to a
higher TC . According to our analysis the strong nonmonotonic
dependence of TC on filling, when resulting from a plasmon
mechanism, is a consequence of the form factors. This should
be compared with the earlier work relying on a plasmon
mechanism [40], where these form factors are not included.

Finally, we analyze the cooperative effect of both phonons
and plasmons on pairing; the resulting TC versus ν is shown
for the combined (as well as individual) effect of phonons and
plasmons in Figs. 4(a)–4(c). As before, we include the effects
of mG umklapp processes with m = 0–2, which has a strong
effect on the phonon-mediated contribution but barely affects
the plasmonic mechanism. We find that with the inclusion
of up to 2G processes, the umklapp-driven phonon-mediated
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mechanism clearly dominates over the plasmon mechanism.10

However, both mechanisms work in a cooperative fashion to
give rise to pairing.

C. Role of external screening

Our analysis thus far has shed light on the distinct features
associated with a purely electronic versus a purely phonon-
based mechanism, as well as their combined effect, on the
emergence of SC in MATBG. In light of the recent exper-
iments [25,26,28] that have studied the role of an external
screening layer on the filling dependence of Tc, let us explore
the effect of similar screening within our setup.

We begin by studying the effects of a metallic gate, coupled
to MATBG via Coulomb interactions, on pairing. The only
role played by the gate is in a further renormalization of the
Coulomb interaction, Eq. (4), via the dielectric constant, εRPA.
In the limit where the density of states associated with the
metallic gate is higher than that of the screened substrate, the
effect of the gate can be incorporated by modifying the bare
Coulomb interaction as:

2πe2

q
→ 2πe2

q
(1 − e−2qd ), (17)

where d is the distance between MATBG and the gate. As
a result, the dynamically screened interaction [Eq. (4)] now
changes to

VC
ξ,ξ ′ (q, iω) = 1

N

2πe2

εRPA(q, iω)q
(1 − e−2qd )δξ,−ξ ′ ,

εRPA(q, iω) = κ − 2πe2

q
�ee(q, iω)(1 − e−2qd ). (18)

The presence of the metallic gate results in an overall suppres-
sion of the Coulomb interaction, that scales exponentially with
d . Thus, processes involving q � 1/2d are not responsible for
mediating SC.

In Fig. 6(a), we plot TC as a function of filling (ν > 0)
for a few different values of d (with the 2G umklapp pro-
cesses included). As discussed previously in the context of
Fig. 4, the dynamically screened Coulomb interaction assists
the phonon-driven mechanism in a cooperative fashion, es-
pecially for momenta smaller than the characteristic scale of
the MBZ [see Fig. 5(a)]. A screening of the form in Eq. (17)
is expected to result in a strong suppression of TC for a wide
range of fillings, but especially so in the range of fillings where
the plasmon contributes the most to pairing. This behavior
is indeed observed in Fig. 6(a), where the gate leads to a
suppression of superconductivity over the entire range of fill-
ings, with perhaps a slightly more pronounced effect near
fillings ν ≈ 2–3.

In addition to the direct experimental relevance [25,26] for
understanding the effect of screening from a metallic gate on
the strength of Coulomb interaction in Eq. (17), the above
setup also helps elucidate the length scales that participate in

10The bare coupling constants for the Coulomb and electron-
phonon interactions are chosen to be close to the experimentally
reported values relevant for MATBG; we choose N = 20.

FIG. 6. (a) Effect of screening by a metallic gate for four
different values of d (nm) on TC with the inclusion of 2G umk-
lapp processes (N = 20). Due to the cooperative interplay of
phonons and plasmons (see main text) we find that the gate sup-
presses TC for a range of fillings. (b) Effect of screening for few
fillings over a wide range of gate distance. The dashed-dotted
lines correspond to a purely phonon-driven mechanism, while the
dashed lines include the cooperative effects due to both plas-
mons and phonons [see also Fig. 4(c)]. Note the nonmonotonic
dependence of TC on d as well as the wide range of d values
over which TC varies; see discussion in the main text for impli-
cations on plasmon-mediated pairing. (c) Normalized differential
conductance from Eq. (19) computed at T = TC/10 for each curve
for phonon-mediated superconductivity. All umklapp processes re-
sult in conventional BCS gap behavior and exhibit resonances
corresponding to relevant mG umklapp processes (indicated with
arrows), cf. Fig. 3(b). This modulation of G̃(ω − μ) allows to recon-
struct the form of the superconducting pairing. Dashed line indicates
the electronic bandwidth, which by virtue of the model, gives rise to
a signal due to 2G, 3G phonons inside the gap between the flat and
nonflat band, respectively (shaded area). As a result of mesh induced
broadening, N0(ω − μ) has a small finite value, and so does G̃, inside
the gap region.

plasmon mediated pairing. Specifically, a metallic gate located
a distance d away suppresses the interaction over length scales
of O(2d ). Depending on how this length scale compares
with the other characteristic length scales in the problem,
which include, e.g., the scale associated with twist-angle in-
homogeneities, etc., will determine whether electron-electron
interactions contribute towards pairing. This requires a careful
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analysis of the necessary length scales associated with the
plasmons that are required for plasmon-mediated pairing to
be observable experimentally.

To address the question raised above, we study the effect
of varying d over many orders of magnitude in Fig. 6(b).
For d → ∞ (i.e., significantly larger than any other relevant
length scale in the problem), we expect to reproduce the
previously obtained values for TC in Fig. 4(c) for both the
phonon and plasmon mediated interaction. On the other hand
as d → 0, we expect the contribution due to the plasmon to be
suppressed significantly, such that TC will almost entirely be
determined by only the phonon-mediated interaction. We ob-
serve that while low-momentum processes corresponding to
distances 2d ≈ 200 nm ≈ 14.5LM are necessary for the plas-
mons to maximally assist in pairing, the plasmon substantially
assists the phonon-driven mechanism already at lengthscales
starting 2d ≈ 50 nm ≈ 3.5LM .

Interestingly, we also observe that TC depends nonmono-
tonically on the gate-distance, d , as shown in Fig. 6(b). As
noted above, bringing the screening layer closer to MATBG
starting from a very large separation, leads to a drop in
the value of TC as a result of the suppression of plasmon-
induced pairing. However, once d ≈ 10 nm, the value for TC

starts to drop beyond what is expected even from a purely
phonon-mediated mechanism (i.e., d → 0), eventually reach-
ing a minimum value at d ≈ 1 nm. The additional reduction
of TC arises as a result of the metallic gate suppressing the
attractive contribution to the pairing coming from momenta
q � K ∼ G/2, cf. Fig. 5, leaving only the purely repulsive
part. The minimum value for TC is attained approximately
at the same value of d at all fillings; this can be understood
from the filling independence of the dielectric function for
MATBG, which is dominated by the interband transitions (see
Sec. IV B). Beyond this value of d , decreasing it further leads
to an increase in TC , in agreement with the expectations in a
purely phonon-mediated attraction [59].

As mentioned in the introduction, experimental setups that
include a gate to control the strength of the Coulomb repul-
sion have already been realized in several groups. Namely,
Refs. [25,26,28] find that the gate tends to suppress the cor-
related state significantly, while superconductivity remains
largely unaffected. As such these results are broadly consis-
tent with our conclusions regarding superconductivity within
our model. In these experiments, and in fact in majority
of MATBG experiments to date, the gate (or the screen-
ing substrate) is closer to MATBG than 30 nm and thus
our model would predict superconductivity to be primarily
phonon-driven. As such therefore if the thickness of the sub-
strate is increased, our analysis predicts an increase in critical
temperature if plasmons participate strongly in mediating the
pairing. We note however that the precise onset of the non-
monotonic gate dependence seen in Fig. 6(b) is dependent
on the finer details of the screening mechanism. For example,
the extent to which the density of states for the metallic gate
compares with that of MATBG, or, whether further modifica-
tions to the RPA dielectric function (such as local field effects)
can become pronounced for q greater than moiré momentum
lengthscale can affect these details. Finally, we also note that
this filling independent onset of the nonmonotonic mechanism
is indicative of a geometric scale dictating properties of a

dielectric function—this corresponds to the interband transi-
tions that are set by the flat-band bandwidth, W . To that end,
if flat-bands were to become broader, e.g., due to the presence
of Hartree corrections, we would then expect a dependence on
filling to appear.

D. Spectroscopic signature of umklapp phonons

Let us finally discuss an experimental fingerprint associ-
ated with the phonon umklapp processes and their role in
pairing. In Sec. IV A, we have demonstrated how the scatter-
ing of umklapp phonons contributes significantly to pairing.
Consequently, we anticipate these modes to appear as resonant
features in the single-particle density of states at the energies
where the spectral weight of the phonons is pronounced [47]
[see Fig. 3(b)]. Consider the normalized differential conduc-
tance, defined as

G̃(ω − μ) = NSC(ω − μ)

N0(ω − μ)
, (19)

where NSC(ω − μ) is the density of states in the superconduct-
ing state and N0(ω − μ) is the corresponding density of states
in the normal state; the result is shown in Fig. 6(c). To obtain
the superconducting density of states, we extended the gap
equation, Eq. (8), to its complete nonlinear form. This allows
us to calculate not only the critical temperature TC , but also the
actual superconducting gap. For more details on the specific
computational aspects associated with solving the nonlinear
gap equation as well as the details of the analytic continuation
to real frequencies necessary for calculation of the spectral
function, see Appendices C and D. For all mG processes,
we see a well-defined s-wave superconducting behavior with
the usual coherence-peak at the onset of the pairing gap; the
higher the TC , the larger is the gap and hence the onset of
the peak. Therefore we observe the coherence peak shifting in
agreement with umklapp processes enhancing the TC . Away
from the peak, G̃(ω − μ) exhibits the classic square root
singularity until it reaches the 0G and 1G phonon-resonance
features (indicated with the first two, left-most arrows).
We discuss now the final signature seen in the differential
conductance.

We observe sharp “dip-hump” resonance-like features at
frequencies of the order of 5 meV, which corresponds pre-
cisely to the energy where the density of states deduced from
α2F (ω) for the 2G and 3G umklapp phonon processes is
the largest, as seen earlier in Fig. 3(b). These features are
spectral fingerprints of the phonon modes [47,70–72], which
are most visible for modes that are strongly coupled. There-
fore our conclusion that the exchange of umklapp phonons
is the strongest contributor to pairing in MATBG leads to
the experimental prediction of such “dip-hump” features at
these specific frequencies. This frequency of the “dip-hump”
features does not rely on the specific choice of electronic
band structure model, as it is only related to the sound ve-
locity in graphene and the MBZ size. However, the visibility
of the features depends strongly on the electronic density
of states background, which is here much enhanced due
to the band gap. We caution however that similar-looking
resonances, refereed in the literature as replica bands, can
also be present in the spectroscopic signal and bear little
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relation to superconductivity—for a detailed analysis we refer
to Refs. [73,74].

V. DISCUSSION AND OUTLOOK

In this work, we have focused on the pairing instabilities in
MATBG within the framework of Eliashberg approximation.
We have focused on two sources of interaction, mediated by
acoustic phonons of the original graphene layers, and the
dynamically screened Coulomb repulsion, respectively. Inter-
estingly, we find that both sources contribute to pairing in a
cooperative fashion with a relatively similar strength, Fig. 4.
However, the screened Coulomb repulsion plays a role in
a narrow range of density, while the phonons contribute to
pairing over a wide range of fillings that nearly extends over
the entire narrow band. One of the key findings of our work
is the prominent role played by the umklapp processes in
the phonon mediated interaction in enhancing the transition
temperature, Tc. Umklapp processes that scatter states up to
the third MBZ (“mG” with m = 3) have a marked effect
on the enhancement of Tc and eventually saturate for any
higher order processes (m > 3), cf. Fig. 3(a). On the other
hand, the dynamics associated with the screened Coulomb
repulsion, while being relatively insensitive to the umklapp
processes, plays a cooperative role in pairing for a wide range
of fillings (i.e., by aiding the phonon-mediated mechanism),
but in particular in the vicinity of ν ≈ ±2–3. As a result, the
superconducting TC exhibits a nonmonotonic dependence as a
function of the distance to a nearby metallic (screening) gate.
The last observation is dependent on both the properties of the
screening material and the extent to which long-wavelength
plasmons can participate in SC pairing.

It is natural to ask if there are sharp experimental signatures
associated with any of the scattering processes considered
above in MATBG. We have demonstrated that the electron-
phonon interaction leaves behind an imprint in a spectroscopic
tunneling experiment. As was predicted by Ref. [47] pro-
cesses where phonons are emitted in the tunneling process
lead to these fingerprints, which thus appear at a frequency
�(0) + ω0, where ω0 is the frequency of the bosonic mode
contributing to pairing. Thus, specifically for the umklapp
phonon processes (which correspond to optical-like modes
arising from a folding of the original acoustic branch in the
MBZ), the resonant features are present at frequencies that are
independent of the details associated with the electronic band
structure. The “dip-hump” features in the tunneling density
of states are most visible when they appear inside the band
gap between the nearly flat and dispersive electronic bands
associated with MATBG.

Whenever possible, we have explicitly pointed out the
universal, model-independent aspects of our predictions, in
contrast to the features that rely on the nonuniversal aspects
of the model. We stress that the importance of phonon-
umklapp processes in enhancing the pairing temperature is a
model-independent feature. It relies solely on the geometric
properties of the MBZ as well as on the presence of a slowly
varying moiré interlayer potential that gives rise to slowly
vanishing form factors (Bloch wave-function overlaps). As
such, we therefore expect to see features in the differen-
tial conductance at the phonon resonance frequencies, which

may or may not lie inside the band gap—the latter property
being model specific. Likewise, for the plasmon-mediated
mechanism for superconductivity, we can identify various
universal features. Firstly, plasmons that originate from the
flat bands necessary have a characteristic frequency that is of
scale similar to the flat-band bandwidth (or chemical poten-
tial). Therefore the dynamical Coulomb screening is bound to
play an important role in describing superconductivity, i.e., the
effect of Coulomb interaction cannot be simply reduced to a
static repulsion. Secondly, as a result of the microscopic origin
of the behavior of the polarization function (i.e., interband
transitions between flat bands at small momenta and between
flat/dispersive bands at large momenta), it is evident that the
plasmon-mediated mechanism is weakly affected by umklapp
processes. The extent to which the plasmon dome however
exhibits a narrow peak at high fillings ν ≈ 2–3 is dependent
on the extent to which the continuum model [48] accurately
captures behavior of the form factors in MATBG.

There are a number of interesting directions that remain
to be explored, based on the formalism developed here. A
natural extension would be to include the filling-dependent
band-structure renormalization arising from the interaction
itself [52,53] and then study the pairing instabilities as a
result of the same interactions. While we have considered the
effects of a single acoustic phonon mode on pairing in this
study, MATBG hosts multiple in-plane as well as out-of-plane
phonon modes [22,23]; some of these modes also develop
small gaps as a result of folding due to the moiré potential.
Studying the combined effects of these modes in the presence
of umklapp scattering on pairing and on the resonant tunneling
spectra is clearly an interesting problem.

Recent theoretical works have indicated the possibility of
low-energy goldstone modes associated with spontaneously
broken continuous symmetries near some of the correlated in-
sulating phases at commensurate fillings [17,42,75]. It would
be interesting to explore and clarify to what extent the
umklapp processes considered in this work in the context
of phonons are also important for these goldstone modes of
electronic origin in general—the recent analysis in Ref. [75]
includes some such (“2G”) processes for one specific exam-
ple. It would also be interesting to study the effect of screening
gates on the associated phenomenology. With regard to the
relevance of the umklapp processes considered here on other
aspects of the phenomenology, it is likely that they also
play an important role in electrical charge transport. To what
extent these might be relevant for some of the recent uncon-
ventional results reported in Refs. [76,77] is an interesting
open question.

Another interesting question concerns the unavoidable
role of disorder, on the superconducting phenomenology in
MATBG [12,78,79]. Disorder can significantly affect the abil-
ity of the flat band to screen the Coulomb interaction, which
will modify the dynamics of the Coulomb interaction and the
results we have obtained here. Disorder in MATBG comes
in many avatars and includes long-ranged impurities which
are poorly screened at low energy, as well as various forms
of correlated disorder and perhaps, the most dominant source
being the unconventional “twist-angle” disorder [12,78].

Within our weak-coupling approach, we have focused on
s-wave superconductivity with a uniform phase over the entire
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Fermi surface. While disorder might prompt such a state,
recent experiments suggest that the superconducting state near
ν = −2 breaks the rotational symmetry [14]. This implies that
there is a strong indication that the SC order parameter is not
purely s-wave and, moreover, belongs to a multi-component
representation. Thus, it is important to understand under what
conditions such a state is preferred and whether the mixture
of Coulomb repulsion and umklapp phonons may favor such
a state. Nonetheless, it should also be mentioned that the same
umklapp enhancement mechanism for pairing considered here
can also play a role in unconventional pairing states and
we only considered the effect of these sources of attraction
on the s-wave channel for simplicity.

We end by noting that in two spatial dimensions, the
true SC transition is described by the Berezinskii-Kosterlitz-
Thouless (BKT) transition, with Tc = πD−

s /2, where D−
s is

the superfluid stiffness at T → T −
c . In this paper, we identify

Tc with the scale associated with the formation of Cooper
pairs, instead of the phase-ordering scale, which serves as
an upper bound on the transition temperature. The geometric
properties associated with the nonexponentially localizable
Wannier functions for nearly flat bands [80–84] leads to an
additional contribution to Ds. We leave a detailed study of
such effects within our present framework for future work.
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APPENDIX A: CONTINUUM MODEL

In this Appendix, we provide additional details of the band-
structure model used in the calculations presented in the main
text. We use the continuum model introduced in Ref. [48] and
restated here for completeness. The Hamiltonian for a valley
ξ = −1, 1 and spin σ =↓,↑= −1, 1 takes the form

H (ξ,σ ) =
(

H1 U †

U H2

)
(A1)

in the basis of (A1, B1, A2, B2) sites of the original two
layers (l = 1, 2). The matrices Hl correspond to the intralayer
Hamiltonian of the layer l and are explicitly given as

H1 = − h̄v

a

(
0 e−iξθ/2k−a + 4π

3
eiξθ/2k+a + 4π

3 0

)
,

H2 = − h̄v

a

(
0 eiξθ/2k−a + 4π

3
e−iξθ/2k+a + 4π

3 0

)
, (A2)

where k± = ξkx ± iky and kx, ky are crystal lattice momenta
measured with respect to the original � points of the graphene
layers. The 4π/3 terms in the matrix are remnants of the
low-energy expansion of the graphene monolayer Hamiltoni-
ans around the K and K ′ points of the original layers. The
MBZ of MATBG is defined as in the inset of Fig. 1(a) with

the two reciprocal lattice vectors being

GM
1 = − 2π√

3LM

(
1√
3

)
, GM

2 = 4π√
3LM

(
1
0

)
. (A3)

Here, we use the moiré real space lattice constant, LM =
a/2 sin(θ/2), and θ = 1.05◦. The matrix, U , is the effective
moiré interlayer coupling given by

U =
(

u u′
u′ u

)
+

(
u u′ν−ξ

u′νξ u

)
eiξGM

1 ·r

+
(

u u′νξ

u′ν−ξ u

)
eiξ (GM

1 +GM
2 )·r,

where ν = ei2π/3. We take the energy scale as h̄v/a =
2.1354 eV and the lattice constant a = 0.246 nm. The inter-
layer coupling terms u and u′ are taken as u = 0.0797 eV and
u′ = 0.0975 eV. For a detailed analysis of the origins of the
Hamiltonian and discussion of the significance and numerical
value of the coefficients, we refer the reader to Ref. [48] and
references therein. In practice, the integers m1 and m2 in total
cover at most only around ∼60 combinations, which stems
from using the cutoff procedure explained in Ref. [48]. We
stress that no qualitative change to the band structure would
be observed if the cutoff were to be increased. This is because
majority of the spectral weight is in fact present only in the
m1, m2 ∈ [−3, 3] range covering 49 possible combinations—
that fact lies also behind the saturation of the phonon TC

domes with the inclusion of 3G umklapp processes, Fig. 3(a).
The band structure for the two flat bands for valley ξ = 1 is
shown in Fig. 1(b). We refer to the bands Fig. 1(b) as the flat
bands each with a bandwidth W ≈ 4 meV. Accordingly, all
other bands are called nonflat bands and are separated from
the flat bands by a band gap, �band ≈ 12 meV.

APPENDIX B: DIELECTRIC FUNCTION OF TBG

In this Appendix, we detail the procedure used to obtain
the dielectric function ε(q, iω). We also discuss key properties
of the dynamical dielectric function and its connection to
plasmon properties in TBG.

To find the dielectric function, we start from its conven-
tional definition as explained in the main text:

εRPA(q, ω) = κ − 2πe2�ee(q, ω)/q (B1)

and approximate the polarization function within the random
phase approximation [85]:

�ee(q, ω) =
∑

k,γ ,γ ′

( fγ ,k+q − fγ ′,k)
γγ ′ (k + q, k)

Ek+q{γ } − Ek{γ ′} − ω − i0
, (B2)

where
∑

k denotes integration over the Brillouin zone
and the composite indices γ , γ ′ run over electron bands,
valley and spins. Here, fγ ,k is the Fermi-Dirac distri-
bution for a state with energy Ek{γ }, and 
γγ ′ (p, k) =
δξξ ′δσσ ′ 〈p, {γ }|ei(p−k)·r|k, {γ ′}〉 describes the overlap between
the Bloch eigenstates as introduced in the main text.

A plot of a dielectric function for few fillings is shown
in Fig. 7. As in Ref. [24], we find a plasmon mode that
pierces through the p-h continuum and rises above it. At low
momenta, q � kF (here kF is Fermi momentum), plasmon
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FIG. 7. [(a)–(e)] Logarithm of electron loss function ln[Im [−1/εRPA(q, ω)]] for a range of fillings. Blue regions correspond to the
particle-hole continuum, while the bright yellow region is the plasmon mode.

disperses as ωpl (q) ∝ √
q as expected of a 2D plasmon. At

large momenta comparable to a moiré reciprocal lattice vector,
q ≈ G/2, as mentioned in the text and explained in Ref.[24],
dispersion of the plasmon is set by the bandwidth W of the
nearly-flat band, and the gap �band between flat and dispersive
bands as ωpl ≈ √

W �band.
To compute the dielectric function εRPA(q, iω) we calculate

first corresponding dielectric function at real frequencies and
then employ Kramers-Kronig relations. This approach yields
precisely the same dielectric function as that of Eq. (B2)
upon replacement ω + i0 → iω. We resorted to using this
procedure as in a typical pairing calculation εRPA(q, iω) has
to be evaluated multiple times for different Matsubara fre-
quencies. Given that evaluation of the dielectric function is
the most demanding step of the TC calculation this approach
proved to be most efficient as it involved computing dielectric
function once for a given filling.

APPENDIX C: NUMERICAL SOLUTION OF THE
(NON-)LINEAR GAP EQUATIONS

Here we detail the procedure used to solve the linearized
gap equation introduced in the main text. In the second half
of this section, we extend this calculation to the full nonlinear
gap problem, which is then employed in the process of ana-
lytic continuation, necessary for computation of the tunneling
density of states.

As explained in the main text, the linearized gap equation
is posed as an eigenvalue problem, Eq. (8):

�(iω, k) = −T
∑

ν

∑
p

K (iω, k; iν, p)�(iν, p), (C1)

where the kernel K (. . . ) is given by

K (iω, k; iν, p) ≡ 1

(2π )2

∫
d�pV int

−ξ,ξ (k − p, iω − iν)

× 
(p, k)
(−p, k)

ν2 + E2
ξ,p

(C2)

and where
∫

d�p denotes integration over the angle between
vectors k and p for a fixed direction of k. To proceed with the
analysis, we first make a simplifying assumption that the su-
perconducting order parameter is a function of Matsubara fre-
quency, iω, and magnitude of the momentum, k, but not on the
angle, respectively. This allows us to solve the resulting inte-
gral equation on a two-dimensional grid of k × ω points. With
this assumption, the eigenvalue problem simplifies then to

�(iω, k) = −T
∑

ν

∑
k

K (iω, k; iν, p)�(iν, p) (C3)

with the momentum direction-averaged kernel, described in
detail below, is given by

K (iω, k; iν, p) ≡ 1

(2π )2

∫
d�pV int

−ξ,ξ (|k − p|, iω − iν)

× 
(p, k)
(−p, k)

ν2 + E2
ξ,p

. (C4)

In the above kernel we have made the assumption that
the interaction V int(. . . ) has no explicit dependence on the
angle associated with the momentum, and only depends
on its magnitude. This simplification allows us to compute
the dynamical dielectric function along just one momentum
direction and then estimate it along the other directions by
simply comparing magnitudes of |k − p|.

We start the calculation by precomputing a 2D MBZ
mesh of points, with their associated Bloch wave func-
tions and energies. In the calculations, we use a mesh
of ∼8000 MBZ points. To carry out an angle average of
the kernel from Eq. (C4), we first fix a particular direc-
tion of vector k (upon verifying that the conclusions are
not dependent on the specific direction) and then identify
all p points that are of magnitude p (within a resolution
admitted by the mesh). We then estimate the angular aver-
age Eq. (C4) by averaging over these p points—in practice
∼50–100 points are used for each pair of k and p momentum
values.

To determine the critical temperature, we seek the
temperature T for which Eq. (C3) has an eigenvalue of unity.
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FIG. 8. (a) Superconducting gap as a function of temperature obtained from the self-consistent calculation. Plotted quantity (blue)
corresponds to an average of the superconducting gap �(iν, p) over the Fermi surface. Orange line corresponds to the BCS interpolating
solution (accurate within few percent). (b) Analytically continued superconducting gap �(ω) as a function of real frequency obtained from the
self-consistent calculation. As in (a) the gap was averaged over the Fermi surface. In (a) and (b), we consider phonon mediated superconducting
with only 0G processes at a characteristic filling of ν = 1. Note how Im[�(ω)] is zero until gap opens, followed by a peak at the characteristic
frequency for 0G processes, as expected from Fig. 3(b).

In practice, we carry out a bisection method search for a T
giving an eigenvalue within ±0.001 of the unity. In the calcu-
lations, we use a linearly spaced grid of 30 k points ranging
from the center of the MBZ �̄ to the K̄ point. For the Mat-
subara grid, we employed both an exact Matsubara frequency
summation as well as an approximate scheme, upon verifying
that the approximate Matsubara grid agrees (in determining
the value of the critical temperature) with the exact summa-
tion to three significant figures. The approximate Matsubara
grid was chosen to consist of 10 first Matsubara frequencies
followed by 20 linearly spaced frequencies starting from the
11th Matsubara frequency to the UV cutoff. Several UV cut-
offs were tested: multiples of plasma frequency, multiples of
the Debye frequency or multiples of the system bandwidth.
All cutoffs were found consistent with each other provided
that the UV cutoff exceeds, roughly, 30 meV for the band
structure used.

To determine a self-consistent gap, we extend the cal-
culation by modifying the kernel in the integral equation
Eq. (C3) as

K (iω, k; iν, p) → KSC(iω, k; iν, p)

≡ 1

(2π )2

∫
d�pV int

−ξ,ξ (|k − p|, iω − iν)

× 
(p, k)
(−p, k)

ν2 + E2
ξ,p + �2(iν, p)

(C5)

where �(iν, p) is now the self-consistent gap. Starting with
the eigenvector of the linearized gap equation as an in-
put, we then self-consistently solve the gap equation. For
temperatures, T � TC , as used in Fig. 6(c), the gap con-
verges within 10–20 iterations to below 0.1% total relative
error (difference between successive self-consistent steps).
The resulting gap function follows the BCS result; see
Fig. 8(a). We note that in the above procedure for obtaining
the self-consistent gap we neglect other Eliashberg equations,

specifically the interaction correction to quasiparticle weight,
Z . This procedure is justified in the large-N limit as explained
in the main text as these corrections would be subleading in N .

APPENDIX D: ANALYTIC CONTINUATION AND
SINGLE-PARTICLE DENSITY OF STATES

To determine the tunneling density of states it is necessary
to obtain the self-consistent gap as a function of real frequency
[70,86]. To avoid this complex procedure, few schemes of
carrying out an analytic continuation from the Matsubara
frequency to real frequencies have been introduced in lit-
erature with the two most common relying on either Padé
approximants [87,88], or, an iterative solution to the Eliash-
berg equations [89]. Due to the ease of its implementation
we employ a Padé approximation scheme, in particular, the
approach detailed in Ref. [90]. We stress however that the
qualitative features, the “dip humps,” of Fig. 6(c) will remain
unaffected as they stem from the additional peaks of the el-ph
spectral function.

As an input, we start with the self-consistent gap obtained
following the procedure detailed in the previous section. This
gap is then approximated with the help of Padé approximant
and analytically continued to real frequencies. An example of
real frequency dependence of a gap is shown in Fig. 8(b). This
self-consistent gap defined at real-frequencies is then used to
compute the spectral function [64]

A{γ }(ω, k) = − 1

π
Im

[
(ω + i0) + Ek,{γ }

(ω + i0)2 − E2
k,{γ } − �2(ω)

]
(D1)

and the tunneling density of states NSC(ω − μ)

NSC (ω − μ) =
∑
{γ }

∫
MBZ

d2kA{γ }(ω, k), (D2)

shown in Fig. 6(c).
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