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Single-tone pulse sequences and robust two-tone shaped pulses for three
silicon spin qubits with always-on exchange
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Quantum computation requires high-fidelity single-qubit and two-qubit gates on a scalable platform. Silicon
spin qubits are a promising platform toward realization of this goal. In this paper we show how to perform
single-qubit and controlled-Z (CZ) gates in a linear chain of three spin qubits with always-on exchange coupling,
which is relevant for certain dot- and donor-based silicon devices. We also show how to make the CZ gate
robust against both charge noise and pulse length error using a two-tone pulse shaping method. The robust pulse
maintains a fidelity of 99.99% at 3.5% fluctuations in exchange or pulse amplitude, which is an improvement
over the uncorrected pulses where this fidelity can only be maintained for fluctuations in exchange up to 2% or
up to 0.2% in amplitude.
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I. INTRODUCTION

Computational devices with quantum bits as their basis
are predicted to have a wide range of applications such
as breaking the widely deployed Rivest-Shamir-Adleman
(RSA) encryption scheme [1,2], molecular modeling [3–5],
finance [6–8], etc., although the practical extent of the desired
quantum advantage remains to be seen. The main current
challenge to exploring applications lies in making a quantum
device which does not decohere before the desired com-
putation is finished. Some current quantum devices contain
sufficient number of qubits for specialized computations at
the limits of what is presently achievable with classical com-
puting [9], but not enough to make use of fault-tolerant error
correcting codes, and they are too noisy to go beyond very
shallow circuit depths without error correction. One possi-
bility to enable greater circuit depths is to use dynamically
corrected gates [10–13], i.e., control schemes designed such
that the effects of coherent errors destructively interfere at the
end of the evolution.

One promising candidate system for these quantum de-
vices is spin qubits in silicon. Average fidelities for one-qubit
gates in silicon have exceeded 99.9% in Si/SiO2 [14] and
Si/SiGe [15] quantum dot devices with isotopically purified
Si. However, more than one-qubit gates are required for com-
putation; a universal set of quantum gates is necessary, which
can be obtained by adding an entangling two-qubit gate to the
set of one-qubit rotations. Furthermore, in order to compose
multiqubit unitaries from this universal set, one must know
how to do these one- and two-qubit gates without disturbing
the other qubits. This is not a trivial task when the interaction
between qubits cannot easily be turned off, as is the case for
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silicon spin qubits in some dot [16–19] and donor [20,21]
systems.

In this paper we show how to perform a universal gate set
in a three-qubit system in silicon with always-on exchange
coupling.

Piecewise constant pulses have been implemented
in two-qubit device experiments to perform entangling
gates [16–18,22,23]. The reported two-qubit gate fidelities
were between 78% and 98%, where many of the lower
fidelities are limited mainly by charge noise. Theoretical
high-fidelity two-qubit pulses have previously been proposed
for an isolated pair of qubits [24,25], and it has also been
shown how to dynamically correct against charge noise [26].
Uncorrected pulses have also been considered for a linear
chain of three spin qubits [19,27,28]. In this paper we show
how quasistatic charge noise can be corrected in a three-qubit
system using a pulse shaping method from Refs. [26,29].

II. MODEL

In this paper we consider a three-qubit system comprising
three quantum dots occupied by three electrons as shown in
Fig. 1, though our results also apply to exchange-coupled
donor-based qubits. The occupation energies of each dot εi

differ due to the different applied voltages Vi on the cor-
responding top gates. There is a time-dependent magnetic
control field Bx(t ) in the x direction and a constant magnetic
field Bz in the z direction. The tunneling energy t j between
quantum dots j and j + 1 is tunable over a wide range via
a barrier gate voltage in some setups [22,30–33] but not in
others [16–18].

The low energy states of the system have one electron in
each dot (in either the up or down spin state), and those states
are coupled via virtual tunneling transitions. This means that,
to second order in the tunneling, the effective Hamiltonian
contains only coupling processes involving nearest neighbors
of opposite spin virtually combining into either of the neigh-
boring dots to form a singlet state. Higher order processes
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FIG. 1. Illustration of a triple quantum dot within the two-
dimensional electron gas at the interface of Si/SiO2 with metal gates
on top. The gate voltages are tunable such that each dot is populated
by one electron, and in some devices they can also be used to tune
the effective g factor of the electrons and the strength of the exchange
couplings. The constant magnetic field in the z direction, Bz, and the
tunable magnetic field in the x direction, Bx (t ), are shown as well.

are negligible because the tunneling rate is typically small
compared to the on-site Coulomb energy. The Hamiltonian
can then be expressed in a Hubbard-style model as [34]

H =
3∑

i=1

(
E (i)

z

2
σ

(i)
Z + E (i)

⊥
2

σ
(i)
X

)

+
2∑

i=1

∑
s=↑,↓

ti(c
†
i,sci+1,s + c†

i+1,sci,s)

+
3∑

i=1

∑
s=↑,↓

εini,s +
3∑

i=1

Uini,↑ni,↓, (1)

where E (i)
z,⊥ = μbgiB

(i)
z,⊥ is the Zeeman energy of the electron

in the ith quantum dot due to the magnetic field in the z(x)
direction, ti is the tunneling energies to between opposite
spin states of electrons in the ith and (i + 1)th quantum dot,
εi is the on-site single electron occupancy energy of the ith
quantum dot, Ui is the on-site Coulomb energy associated
with double occupation of the ith quantum dot, σ

(i)
j is Pauli

operator σ j on the electron in the ith dot, ci,s is the fermionic
annihilation operator of an electron on the ith dot with spin
s, and ni,s = c†

i,sci,s is the corresponding number operator.
When using one electron spin resonance (ESR) driving field to
drive all qubits, the ratios between the various E (i)

⊥ are fixed,
depending only on the g-factor differences and perhaps any
difference in distances from each dot to the common ESR
line, and the various E (i)

z need to differ from each other for
single-qubit addressability. This is experimentally achievable
by either having a magnetic field gradient or by manipulating
the effective g factors of the electrons [35]. Alternatively, in
the case of electric dipole spin resonance (EDSR) driving, the
various E (i)

⊥ can be completely independent, naturally allow-
ing single-qubit addressability. In the remainder of this work
we will focus on the more restrictive ESR case, although our
results are certainly applicable to the EDSR case as well.

In the experimentally relevant regime of ti, |E (i)
z −

E (i+1)
z | � U ± (εi − εi+1) for i = 1, 2, we can apply a

Schrieffer-Wolff transformation to obtain the following ef-
fective spin Hamiltonian corresponding to low lying energy

states:

H =
3∑

i=1

E (i)
z

2
σ

(i)
Z + E (i)

⊥
2

σ
(i)
X +

∑
i=1,2

Ji �σ (i) · �σ (i+1), (2)

up to O(t2/U 2), where Ji = 2t2
i

Ui+εi+1−εi
+ 2t2

i
Ui+1+εi+1−εi

is the ex-
change coupling term between the ith and (i + 1)th qubit. The
exchange coupling can be controlled either via the detuning
terms ε or, in devices equipped with a suitable barrier gate,
via the tunneling rate. To reduce sensitivity to charge noise, it
is preferable to operate at the symmetric operating point εi =
0 [30], but then one is left with a fixed, always-on residual
exchange ∼t2/U in the absence of tunnel barrier control. (In
fact, even when barrier control is possible and tunneling can
be turned off completely, the magnetic dipole-dipole coupling
should not be forgotten [36] and provides a lower bound on
J of order 10 kHz for 30 nm qubit spacing. While small
compared to MHz exchange coupling, this is not negligible
when attempting to reach fidelities of 99.99% and above.) Our
focus below is on the case of always-on exchange coupling.

We also note that, although for specificity our focus is
on the case of dot-based systems, the same situation is quite
relevant for weakly exchange-coupled electronic donor spins.
In that case, one once again one has local ESR driving,
single-qubit addressability through different Zeeman ener-
gies (either from initializing different nuclear spin states of
the donors [20] or through electrically adjusting the g fac-
tors [37,38]), and an exchange coupling that is advantageous
to leave fixed [20,21].

To further simplify Eq. (2) we move to the rotating frame
that eliminates the E (i)

z terms, which are typically several
orders of magnitude larger than the other terms [18]. In order
to allow more than one qubit to be resonantly driven at the
same time, we assume the possibility of using a two-tone
driving field. The rotating frame Hamiltonian HR = RHR† +
ih̄(∂t R)R†, with two-tone driving, can be written in terms of
Pauli matrices as ignoring the identity terms which contribute
an unimportant global phase

HR = J1

4
σ

(1)
Z σ

(2)
Z + J2

4
σ

(2)
Z σ

(3)
Z

+
2∑

j=1

3∑
i=1

�
(i)
j

2

(
cos

[(
E (i)

z − ω j
)
t + φ j

]
σ

(i)
X

+ sin
[(

E (i)
z − ω j

)
t + φ j

]
σ

(i)
Y

)
, (3)

where E (i)
⊥ has been replaced with

∑2
j=1 �

(i)
j ei(ω j t+φ j ) as they

are effectively equivalent using the rotating wave approxi-
mation, with �

(i)
j being the real time-dependent envelope of

the jth tone of the oscillating driving field at the location of
the ith qubit and φ j the (generally, time-dependent) phase. In
the experimental settings we are considering, E (i)

z ∼ 10 GHz
and |E (i)

z − E (i+1)
z | ∼ 10 MHz [18], much larger than any

other energy scale in the Hamiltonian. So we use the rotating
wave approximation and ignore any �

(i)
j term for which the

frequency ω j of the driving tone is not resonant with the
corresponding 2E (i)

z . The phase φ j of the driving field is also
accurately controllable experimentally, so one can control the
two single-qubit axes in Eq. (3) independently.
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There are also sources of noise in the Hamiltonian, and
in general the largest source is charge noise, which causes
stochastic shifts to the electrostatic triple-well potential of
Fig. 1. The main effect of charge noise is on the coupling term
Ji −→ Ji + δJi. Charge noise can also cause fluctuations in the
g factor leading to Zeeman noise, however these fluctuations
are on the order 10−9 so they will be neglected [15,39–41].
Noise in the control electronics can also result in driving
amplitude noise such that �

(i)
j −→ �

(i)
j (1 + δαi ) [42].

III. PIECEWISE CONSTANT PULSE SEQUENCES

In this section we will show how to straightforwardly per-
form exact one- and two-qubit gates in the three-qubit system
in the absence of noise. We also outline how this idea can be
extended to noise-suppressing composite sequences as well.

An arbitrary local rotation can be Euler decomposed as

R = e−i α
2 σZ e−i β

2 σX e−i γ

2 σZ , (4)

or in terms of only z rotations and a ±π/2 rotation about x,

R = e−i α
2 σZ e−i π

4 σX e−i β

2 σZ e−i −π
4 σX e−i γ

2 σZ . (5)

In fact, one only needs either a +π/2 or a −π/2 x rotation,
since

R = e−i α
2 σZ e−i π

4 σX e−i β+π

2 σZ e−i π
4 σX e−i γ+π

2 σZ (6)

= e−i α+π
2 σZ e−i −π

4 σX e−i β+π

2 σZ e−i −π
4 σX e−i γ

2 σZ . (7)

Thus, the ability to do a ±π/2 x rotation along with virtual
z rotations [43] (which are instantaneous and error free) suf-
fices to generate an arbitrary single-qubit rotation. Adding a
CZ gate between nearest neighbors completes a universal gate
set.

The main idea below is to decompose the Hamiltonian (3),
which lies in su(8), into su(2) and u(1) subalgebras, and then
use Euler angle decomposition within each su(2) such that the
overall effect is to perform a desired operation on the intended
qubit while returning the idle qubits to their original state
despite an always-on interaction. In Sec. IV B we will use a
similar su(2) approach to accomplish the same goal while also
dynamically correcting errors by substituting pulse shaping
theory for Euler angle decomposition.

A. − π
2 x rotation on an outer qubit

Suppose we wish to rotate qubit 1. With single-tone driv-
ing at the resonant frequency of qubit 1, i.e., ω1 = E (1)

z and
�

(i)
2 = 0, and taking �

(1)
1 = � for simplicity of notation, the

Hamiltonian (3) simplifies to one that lives in an su(2) ⊕ u(1)
subalgebra,

H = J1

4
σ

(1)
Z σ

(2)
Z + �

2
σ

(1)
X + J2

4
σ

(2)
Z σ

(3)
Z (8)

= Hu(1) + Hsu(2), (9)

where

Hu(1) = J2

4
σ

(2)
Z σ

(3)
Z , (10)

Hsu(2) = J1

4
σ

(1)
Z σ

(2)
Z + �

2
σ

(1)
X . (11)

The two generators in Hsu(2) have the same commutation
properties as two Pauli operators while the Hu(1) term com-
mutes with both. So regardless of the driving, the evolution
always contains a factor of e(−i J2t

4 σ
(2)
Z σ

(3)
Z ) and to avoid un-

wanted entanglement of qubits 2 and 3 during the rotation of
qubit 1 the total pulse time must be an integer multiple of
2π/J2.

Consider first the evolution due to Hsu(2). Note that the
choices � = ±J1/2 result in rotations about orthogonal axes
σ

(1)
Z σ

(2)
Z ± σ

(1)
X . Thus we can generate any rotation within

the SU(2) subgroup by a piecewise constant pulse of three
segments, again making use of Euler decomposition. In par-
ticular, to produce a ±π

2 rotation of qubit 1 about x, we simply
need to find the ti such that

e−i J1t1
4

(
σ

(1)
Z σ

(2)
Z +σ

(1)
X

)
e−i J1t2

4

(
σ

(1)
Z σ

(2)
Z −σ

(1)
X

)
e−i J1t3

4

(
σ

(1)
Z σ

(2)
Z +σ

(1)
X

)
= e−i ±π

4 σ
(1)
X . (12)

There are multiple solutions, but the one with the minimum
total elapsed time corresponds to a π/2 rotation, with time
steps

t1 = t3 =
√

2 arccot
√

2

J1
; t2 = 5

√
2π

3J1
. (13)

Unless one of the Ji is somewhat tunable, the total elapsed
time t1 + t2 + t3 will generally not be an integer multiple of
2π/J2. Because of this we must add a fourth segment to the
evolution to avoid entangling qubits 2 and 3, but the effect of
the fourth stage must be an identity in the SU(2) subgroup so
as not to ruin the π/2 rotation. This can be accomplished by
setting the driving amplitude to

� = 2

√(mπ

t4

)2
−

(J1

4

)2

(14)

for a time

t4 = 2nπ

J2
− t1 − t2 − t3, (15)

where m and n are integers to be chosen so that t4 is as small
as possible while still being positive (and also respecting any
bounds on the maximum amplitude of �). Combining the four
evolution segments above produces a π/2 rotation about X
on qubit 1 and an nπ rotation about Z on qubits 2 and 3.
For odd n, those extra z rotations on qubits 2 and 3 can be
instantaneously compensated by virtual z rotations.

The total gate time is thus 2mπ/J2 and the largest driving
amplitude used is

�max = max

⎛
⎝J1

2
, 2

√√√√ n2π2(
2mπ

J2
− η

J1

)2 −
(J1

4

)2
⎞
⎠, (16)

where η = 2
√

2 arccot
√

2 + 5
√

2π/3 ≈ 9.14. In the realistic
case where the gate time is constrained by the available ESR
power rather than the exchange coupling and J1 ≈ J2 ≈ J , if
one maximizes the speed by fixing the exchange to be J =
2�max, the shortest gate that respects the ESR constraint is ob-
tained with m = 3, n = 1, yielding total gate time 3π/�max.
However, in the next subsection, in order to efficiently rotate
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the middle qubit, we will assume that � can be as large as J ,
so to keep a fixed value of exchange for all rotation types it is
better to choose J = �max, in which case the total gate time
doubles to 6π/�max.

A rotation about σ
(3)
X can obviously be produced by driv-

ing resonantly with qubit 3 following the same procedure as
above.

B. π
2 x rotation of center qubit

It is also possible to do a local rotation of qubit 2 by
single-tone driving at its resonant frequency ω1 = E (2)

z , such
that �

(2)
1 = � and �

(i)
2 = 0. Here we rewrite the Hamiltonian

as a sum of four mutually commuting terms, each belonging
to a separate su(2) subalgebra as previously noted [27],

H = H++ + H+− + H−+ + H−−, (17)

where

H++ = J1 + J2

8
Z++ + �

4
X++, (18)

H+− = J1 − J2

8
Z+− − �

4
X+−, (19)

H−+ = −J1 + J2

8
Z−+ − �

4
X−+, (20)

H−− = −J1 + J2

8
Z−− + �

4
X−−, (21)

and

Zs1s2 = 1

2

(
σ

(1)
Z + s1I

)
σ

(2)
Z

(
σ

(3)
Z + s2I

)
, (22)

Xs1s2 = 1

2

(
σ

(1)
Z + s1I

)
σ

(2)
X

(
σ

(3)
Z + s2I

)
, (23)

where si ∈ {+,−}. The Overhauser fields for the first and
third qubits can be written in terms of the u(1) generators
Qs1s2 = 1

2 (σ (1)
Z + s1I )I (σ (3)

Z + s2I ), which commute with H
and thus cannot be corrected. For simplicity we consider the
case where the couplings are essentially equal, J1 = J2 = J .
This may occur naturally under precise fabrication, but small
deviations can also be tuned to zero by a small adjustment of
the detuning or barrier voltages. The +− and −+ subalge-
bras then reduce to u(1)s and the evolution in them is easily
accounted for.

The σ
(2)
X generator in terms of the above generators is

σ
(2)
X = 1

2 (X++ − X+− − X−+ + X−−), (24)

so the total desired evolution can be decomposed as

e−i π
4 σ

(2)
X = e−i π

8 X++e−i(− π
8 )X+−e−i(− π

8 )X−+e−i π
8 X−− . (25)

We begin by finding a pulse sequence that creates the desired
π/4 X++ rotation, toggling � between ±J and using the same
type of Euler decomposition as in the previous subsection,

e−i Jt1
4 (Z+++X++ )e−i Jt2

4 (Z++−X++ )e−i Jt3
4 (Z+++X++ ) = e−i π

8 X++ .

(26)

The solution with the minimum elapsed time is

t1 = t3 =
√

2 arctan (1 − 1/
√

2)

J
, (27)

t2 =
2
√

2
(
π − arctan

√
7−4

√
2

17

)
J

. (28)

Of course this pulse sequence also produces a evolution
in each of the other three subspaces at the same time. Fortu-
nately, the evolution in the −− subspace produced is also the
desired π/4 rotation due to the similarity of the Hamiltonians
in the −− and ++ subalgebras. The accompanying evolution
in the +− and −+ subspaces though is not generally equiv-
alent to a −π/4 rotation. So, as in the previous subsection,
we add one final step to the sequence such that the pulse
area under �(t ) for the entire sequence is π

4 . Of course this
final step must also produce an identity in the ++ and −−
subspaces, so as not to ruin the π/4 rotations already produced
there. These two conditions can be written as

J

4
(t1 − t2 + t3) + �

4
t4 = π

8
, (29)

t4

√(J

4

)2

+
(

�

4

)2

= π. (30)

The solution then for the length and drive amplitude of the
final time step is

� = J (π − 2Jτ )√
(9π − 2Jτ )(7π + 2Jτ )

≈ 0.998J, (31)

t4 =
√

(9π − 2Jτ )(7π + 2Jτ )

2J
≈ 8.896/J, (32)

where τ = t1 − t2 + t3. Combining these four segments pro-
duces a π/2 rotation about σ

(2)
X in a total time of about 18/J .

C. CZ gate on nearest neighbors

Performing a CZ gate on neighboring qubits, e.g., qubits 2
and 3, is considerably simpler, only requiring resonant single-
tone driving of qubit 1, ω1 = E (1)

z , such that �
(1)
1 = � and

�
(i)
2 = 0. Then the Hamiltonian is the same as Eqs. (8)–(11).

The terms in the su(2) part can be chosen so as to produce
an identity operation while the u(1) part produces the desired
entanglement. To be specific,

e−i
(

J1
4 σ

(1)
Z σ

(2)
Z + J2

4 σ
(2)
Z σ

(3)
Z + �

2 σ
(1)
X

)
t = e−i(2m+1) π

4 σ
(2)
Z σ

(3)
Z (33)

when

t = (2m + 1)π

J2
(34)

and

� = 2

√( nJ2

2m + 1

)2

−
(J1

4

)2

(35)

for integer m and n. Note that for J1 ≈ J2, the ESR strength
required can be kept less than J/2 by choosing m = 1, n = 1.
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D. Composite pulses for dynamical correction

We briefly remark that the above are all uncorrected se-
quences that accomplish gates by taking advantage of time
evolution in commuting subspaces without worrying about
noise effects. If we include some error in exchange, J →
J + δJ , this will clearly produce some error in the previous
results. This error can be corrected for, to some arbitrary
order in δJ , with the direct application of SUPCODE pulse
sequences [44–47] by individually replacing each piece of
our pulse sequence with a corresponding corrected SUPCODE

pulse. While straightforward, that would produce inefficiently
long sequences, as SUPCODE is designed to do more than is
actually necessary in this case, correcting for errors on both
the coupling and the driving field simultaneously. Besides
that, instead of correcting each piece of our Euler decomposi-
tions separately, we should instead correct the entire rotation
with a single optimal application of SUPCODE. In a future
investigation we will explore the degree to which the pro-
tocol can be optimized for this particular case, resulting in
more efficient correction. However, for the particular case
of a CZ gate we explicitly show below how pulse shaping
can be used to perform dynamical error correction by using
the SU(2) dynamics generated by Eq. (11) rather than the
simpler U (1) dynamics generated by Eq. (10) that we used
above.

IV. PULSE SHAPING FOR ERROR CORRECTION

In this section we will describe the procedure for creating
a CZ gate that is robust against errors using two-tone driving.
Both exchange noise δJ and multiplicative pulse amplitude
error δ�(t ) = �(t )δα can be corrected via a formalism intro-
duced by Barnes et al. [29]. We briefly summarize the relevant
results for completeness below, following the presentation of
Ref. [26], before moving to the specific application of a CZ in
a three-qubit system.

A. Background

The formalism of Ref. [29] applies to any su(2) Hamilto-
nian with a constant term on one generator and a controllable
term on another, including a noisy analog of Eq. (11)
with multiplicative driving amplitude noise and exchange
noise,

H = �(t )

2
[1 + δα]σX + J + δJ

4
σZ . (36)

The time dependence of the system is then reparametrized in
terms of a new variable χ which is related to time via

J

4
t = h̄

∫ χ f

0
dχ

√
1 + [�′(χ ) sin(2χ )]2. (37)

Here �(χ ) is a function which is free to choose within some
constraints which follow from Ref. [29]. Choosing �(χ ) de-
termines the Hamiltonian and therefore the evolution operator
U . One constraint on �(χ ) is that �(0) = �′(0) = 0, which
ensures that U is an identity for zero elapsed time. The pulse
shape �(t ) can be recovered from the chosen function �(χ )

in terms of �(t ) = �̃(χ (t )) using Eq. (37) and

�̃(χ ) = −J

2
sin(2χ )

× �′′(χ ) + 4�′(χ ) cot(2χ ) + 2[�′(χ )]3 sin(4χ )

2{1 + [�′(χ ) sin(2χ )]2}3/2
.

(38)

The conditions for canceling the exchange noise δJ to first
order are

sin(4χ f ) + 8e−2i�(χ f )
∫ χ f

0
dχ sin2(2χ )e2i�(χ ) = 0,

∫ χ f

0
dχ sin2(2χ )�′(χ ) = 0, (39)

and the conditions for canceling the driving noise δα to first
order are∫ χ f

0
dχ sin(2χ )�̃(χ )e2i�(χ )

√
1 + [�′(χ ) sin(2χ )]2 = 0,

∫ χ f

0
dχ cos(2χ )�̃(χ )

√
1 + [�′(χ ) sin(2χ )]2 = 0.

(40)

The second condition in Eqs. (39) and (40) can be satisfied
by simply choosing an odd function for �(χ ), which implies
�(−t ) = −�(t ), and extending the pulse duration to be from
−t f to t f . In this case the evolution from −t f to t f becomes

U (t f ; −t f ) = e−i θ
2 [cos(φ)σZ +sin(φ)σY ], (41)

where

φ = sgn[�′(χ f )] arcsec{
√

1 + [�′(χ f ) sin(2χ f )]2}, (42)

θ = 4χ f . (43)

Following Ref. [26], in this paper we will choose the ansatz

�(χ ) = a1χ
2 + sgn(χ )

[
a2χ

3 +
8∑

n=1

bn sin

(
nπχ

χ f

)]
. (44)

This ansatz automatically satisfies the initial condition
�(0) = �′(0) = 0. To ensure that �(t ) vanishes at t = 0 and
t = ±t f , a1 and a2 must be

a1 = tan φ

2 sin(2χ f )
[1 + χ f cot(2χ f )(1 + sec2 φ)], (45)

a2 = − tan φ

3χ2
f sin(2χ f )

[1 + 2χ f cot(2χ f )(1 + sec2 φ)], (46)

except for the case θ = 2nπ , i.e., χ f = nπ/2, where n ∈ Z,
which requires a1 = a2 = 0 for any φ. The robustness condi-
tions Eqs. (39) and (40) are then satisfied by optimizing the
free parameters bn in Eq. (44).

B. Corrected CZ gate on nearest neighbors

Although the formalism summarized above could directly
be used to correct noise within the su(2) part of the Hamil-
tonian (11), there is also the u(1) part (10) in which no
dynamical correction of the exchange noise δJ2 is possible.
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Thus, to create a truly robust CZ gate requires two-tone driv-
ing such that both of the outer qubits are addressed such
that ω1 = E (1)

z , �
(1)
1 = �1, ω2 = E (3)

z , and �
(3)
2 = �2. The

Hamiltonian then contains two commuting su(2) parts, H =
H1
su(2) + H2

su(2), where

H1
su(2) = J1 + δJ1

4
σ

(1)
Z σ

(2)
Z + �1

2
(1 + δα1)σ (1)

X , (47)

H2
su(2) = J2 + δJ2

4
σ

(2)
Z σ

(3)
Z + �2

2
(1 + δα2)σ (3)

X . (48)

Then the formalism described in Sec. IV A must be adjusted
to ensure that the two copies of SU(2) are simultaneously
corrected with the same pulse time 2t f .

The final evolution in both SU (2)s is like that given in
Eq. (41). To create a CZ gate between the first and second qubit
the angles for H1

su(2) are required to be

θ1 = (k1 + 1/2)π, φ1 = 0, (49)

while the angles for H2
su(2) are required to be

θ2 = k2π, φ2 = 0, (50)

where ki is any positive integer. The angle φ2 = 0 is chosen
in this case since, by Eq. (41), if k2 is even, φ2 is arbitrary,
and if k2 is odd, then φ2 = 0 corresponds to an extra local
ei π

2 σ
(2)
Z σ

(3)
Z = σ

(2)
Z σ

(3)
Z rotation which can be compensated with

virtual z rotations. Finally, note that one could similarly target
x rotations on the outer qubits within this formalism, but not
rotations of the middle qubit. For that reason, we restrict our
attention to the CZ gate in this work, and leave generic robust
local gates as a topic for future investigation.

Dynamical correction of all error terms in Eqs. (47)
and (48) means that pulse shapes for �1(t ) and �2(t ) must
both satisfy (or at least nearly satisfy) the conditions in
Eqs. (39) and (40). The optimizations of the two sets of
free parameters {b(1)

n , b(2)
n } must respect the constraint that

the pulses need to be of the same time length. Equation (37)
determines the time length, which depends on the optimized
pulse shape as well as J1 and J2. So to be able to match
length we must know the ratio of J1 and J2. For the results
we present we have assumed J1/J2 ≈ 1, though this value is
not necessary, and by construction our results will be robust
against slight variations in the ratio. Also note that since the
pulse times are parametrized in units of 1/Ji in Eq. (37), a
slight difference in the pulse lengths of �1 and �2 acts in the
same way as δJi, and the pulse is again robust by construction
to such perturbations, so the pulse lengths do not need to be
exactly the same, only close.

The optimized coefficients for this pulse are

b(1) ≈ {1.3,−0.71,−0.6,−0.18,−0.13,−0.07,−0.06, 0.03},
(51)

b(2) ≈ {3.0,−0.26, 0.6, 0.34,−0.07,−0.13,−0.02,−0.07},
(52)

where b(1) are the coefficients for �1(t ) and b(2) for are the
coefficients for �2(t ). These coefficients were found by using
the randomly seeded nonlinear gradient-free global optimizer
ISRES from the NLopt package in Julia. We enforced con-
straints �i/Ji < 1 and 2t f Ji < 15. Manually adjusting these

FIG. 2. Pulse shapes �(t )/J versus time in units of h/J . Top:
Amplitude of tone resonant with qubit 1, resulting in a π/4 rotation
around σ

(1)
Z σ

(2)
Z . Bottom: Amplitude of tone resonant with qubit 3,

which results in an identity in the σ
(2)
Z σ

(3)
Z + σ

(3)
X SU(2).

constraints as optimization hyperparameters, we have found
that these constraints produce the fastest pulses in the case
where the pulse length is limited by the physically attainable
ESR strength. For instance, if one doubles the maximum
allowed value of �i/Ji to 2, one can find a solution with
somewhat smaller values of 2t f Ji, but if one cannot increase
�i beyond its prior value, that doubling of the ratio must come
from by halving Ji, resulting in a net increase of the pulse time
2t f . Conversely, reducing the maximum value of the �i/Ji

allows larger Ji but requires much larger values of 2t f Ji. We
have empirically determined that the numerical choices in the
constraints above give roughly optimal results.

For �2 no solutions were found for values of k2 < 12 when
requiring the integrals in Eqs. (39) and (40) to sum to less
than 10−3 after about 80 million iterations of the optimization
algorithm. Since the pulse length generally scales with ki in
Eqs. (49) and (50), we chose the smallest values for which
a good solution could be found, k1 = k2 = 12. The times of
these two pulse shapes are not exactly equal, but the dif-
ference is small; they would match exactly for J1 = 1.01J2,
and the error introduced by the mismatch is negligible. The
corresponding pulse shapes are shown in Fig. 2. Note that
it requires ESR amplitudes as large as the exchange, so if
we limit the exchange to J = h × 2 MHz so that we do not
require more than h × 2 MHz on either ESR tone, the total
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FIG. 3. Filter function of the corrected pulse and uncorrected
pulse vs the frequency ω in units of J .

pulse time is about 7 μs. This is about 28 times longer than the
uncorrected pulse time of h/(2J ) = 0.25 μs, and so one may
worry about the prolonged interaction with the environment.
However, with observed T1 decoherence times in silicon spin
qubits of, e.g., 3 s [48], relaxation is not a limiting factor and
the corrected pulse is expected to offer orders of magnitude
reduction in infidelity. We can show this rigorously by doing
a master equation analysis which describes the dynamics of
the density matrix ρ as

dρ

dt
= −i[H, ρ] +

3∑
j

1

T1
D[Lj]ρ, (53)

where Lj is the lowering operator for the jth qubit and D is the
damping superoperator D[A]ρ = 2AρA† − 1

2 A†Aρ − 1
2ρA†A.

The average fidelity can then be calculated using the method
from Ref. [49]. Doing this analysis shows that the corrected
pulse maintains a 10−4 average infidelity for T1 as low as 500
ms, well below experimentally achievable T1 times.

The decoherence from T2 processes is harder to capture
since the noise is non-Markovian and the master equation
approach cannot be used. Therefore the filter function of the
pulse F (ω), as defined in Ref. [50], was calculated and plotted
in Fig. 3 in order to take into account the typical 1/ f power
spectral density (PSD) of charge noise. The average infidelity
over noise realizations Fav was calculated by integrating the
filter function multiplied by a noise PSD of A2

0/ω with an
infrared frequency cutoff ωir ,

Fav ≈ 1 − 1

2π

∫ ∞

ωir

A2
0

ω

F (ω)

ω2
dω. (54)

The strength of the noise PSD A0 was determined by using
its relation to the Carr-Purcell-Meiboom-Gill (CPMG) deco-
herence time 0.85(A0 )2

2πn ≈ 1
(T CPMG

2 )2 where n is the number of π

pulses used to measure T CPMG
2 [51]. The resulting infidelity is

5 × 10−4 choosing A0 such that T CPMG
2 = 28 ms for a CPMG

series of 500 π pulses as measured in Ref. [40] and an infrared
frequency cutoff of 10−5 Hz corresponding to daily calibra-
tion. (As quantum devices get larger and more complicated,
calibrations become more time consuming and less likely to
be done frequently.) This is an improvement over an uncor-
rected pulse which has an infidelity of 1.2 × 10−3 for this T2

FIG. 4. Infidelity of the error corrected CZ and the uncorrected CZ

vs quasistatic exchange noise δJ (top) and driving noise δα (bottom).

and infrared cutoff. Thus, despite the much longer duration of
the corrected pulse, it is still worth doing. Furthermore, the
performance of the corrected pulse is also significantly better
than the estimate above if the noise is more heavily weighted
at low frequencies than 1/ f , as observed, e.g., in Ref. [52],
or if the calibration is imperfect, effectively resulting in addi-
tional quasistatic noise.

We have also plotted infidelity vs a quasistatic noise
strength in Fig. 4. The infidelity plotted in Fig. 4 is defined

as 1 − |Tr(UU †
t )|

Tr(UtU
†
t )

where U is the actual noisy gate and Ut is

the desired target gate. The infidelity depends on the values
of δJ1, δJ2, δα1, and δα2, but we have simplified the display
by plotting for δJ1 = δJ2 = δJ and δα1 = δα2 = δα. It is
clear that this error-corrected pulse performs better than the
uncorrected CZ pulse from Sec. III C where m = 0 and n = 1
is chosen in Eq. (35) and J1 = J2 = h × 2 MHz. Increasing
the Ji in the uncorrected pulse does not significantly change
the infidelity as long as � is still limited to h × 4 MHz for
single-tone driving.

We also looked at alternative optimization objectives. For
instance, one can correct the CZ gate against only exchange
coupling noise, enforcing only Eq. (39). This yields similar
performance for exchange coupling noise however becomes
highly sensitive to amplitude error. But, if the amplitude error
is negligible, correcting only exchange noise requires less
bandwidth and a slightly shorter pulse length of ≈6 μs. An-
other approach for correcting just exchange noise is to note
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that the evolution produced by H2
su(2) is supposed to be an

identity. A simple pulse of strength �2 = 2
√

( 2πk
T/h )2 − J2

2 /16

for any time T and k ∈ Z results in an uncorrected identity
with an infidelity that scales as c2δJ2

2 compared to ∼δJ4
2 of

a robust shaped pulse, but with the very small coefficient

c2 = J2
2 T 4

2048h4k2π2 . Taking J2 = h × 2 MHz and T = 6.1 μs,
k = 2 is the maximum value for which the ESR strength �

remains below h × 2 MHz, and leads to c2 being about 1/100
of the value one would get in the absence of driving letting
(J2 + δJ2)/4 σ

(1)
Z σ

(2)
Z evolve on its own.

This means that one may be able to get away with not
doing any correction in that subspace, shaping only the H1

su(2)
pulse without worrying about making pulse lengths match.
This has the benefit of allowing for slightly shorter pulse
lengths since searching for matching pulse length results in
longer pulses. As shown in Fig. 4, this approach works fairly
well against exchange noise, though there is substantial per-
formance degradation if amplitude error is appreciable.

A direct comparison of our corrected pulse to methods
other than that of Sec. III C is not possible simply because of
the lack of other robust CZ methods for always-on exchange
in a silicon three-qubit system. Furthermore, it is not known
what the fundamental speed limit is in this case or how close
we are to it given the control constraints and the robustness
requirement. Quantum speed limits are usually considered for
nonrobust gates, though some recent work has also found
the minimum times for robust gates in a certain single-qubit
scenario [53], in which case the minimal time was about
twice as long as the corresponding nonrobust rotation. It is not
unreasonable that our pulse is longer than the nonrobust one
by a factor of 28 considering the complexity of the three-qubit
control landscape and the more complicated form of errors
that are being corrected, but we certainly do not rule out the
possibility of a faster solution.

However, for the sake of context, note that an uncorrected
three-qubit i-Toffoli gate has been considered in such a sys-
tem [27] with a gate time of about 2h/J , i.e., roughly 7 times
faster than our corrected three-qubit CZ pulse, but even in
the absence of noise it is already an approximation (albeit
quite a good approximation, with an average error of either
0.6% or 0.03%, depending on the specific parameters) and it
is not robust to amplitude or exchange noise/miscalibrations.
Alternatively, comparing to a robust CZ gate in a two-qubit
system from the same method we have generalized here [26],

the pulse length in the two-qubit case is only slightly less at
13h/J , and the infidelity scales the same vs quasistatic error as
our three-qubit pulse but is better by a constant factor of about
2. This is because two independent exchange errors δJi and
amplitude errors δαi have to be corrected at once in our three-
qubit pulse while only one of each error exist for the two-qubit
pulse. Another robust CNOT gate in an exchange-coupled two-
qubit system is the SUPCODE implementation for amplitude
error and exchange error [45] which achieves an improvement
of infidelity of more than two orders of magnitude over an un-
corrected gate, similar to the present improvements in Fig. 4.
However, the CNOT gate in that method was much longer,
taking about 300 times longer than the uncorrected gate, so
our current method is much more efficient. Experimentally,
robust pulses for a single qubit device using GRAPE have been
implemented and achieved infidelities as low as 4 × 10−4 [14]
with a pulse time of 8 μs compared to an uncorrected 2 μs
square pulse. In comparison, our pulse incurs a higher time
cost relative to the uncorrected pulse, but performs a much
more complicated gate compared to the single-qubit case.
Also note that our pulse time estimate of 7 μs with current
ESR strengths is not experimentally forbidding, and is com-
parable to the pulse times already used with the more limited
ESR Rabi frequency available in the device of Ref. [14].

V. SUMMARY AND CONCLUSIONS

We have shown how to perform a full set of local gates
and CZ gates in a linear array of three spin qubits with
always-on exchange coupling. The CZ gate was dynamically
corrected using shaped two-tone ESR. In principle all local
gates can also be corrected via existing SUPCODE pulse se-
quences, though that approach may be unwieldy in practice
without further optimization. Single-qubit pulse shaping is
expected to exhibit improvement similar to that of the CZ gate
presented above, although the more complicated requirements
of correcting four different copies of SU(2) simultane-
ously when local rotations of the middle qubit are needed
poses a formidable challenge that will be a topic for future
investigation.
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