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In this work the above-band-gap absorption spectrum in two-dimensional Dirac materials is calculated with
account for the interaction between the photocarriers. Both the screened Rytova-Keldysh and pure Coulomb
attraction potentials between the electron and hole are used in the study. We find that in the materials under
consideration, the interaction enhances the absorbance in the narrow interband edge region, in sharp contrast
to the band model with the parabolic free-carrier energy dispersion. We develop an approximation of the weak
interaction, which allows us to reproduce the main features of the exactly calculated Sommerfeld factor. We show
a substantial reduction of this factor at higher frequencies due to the single-particle energy renormalization.
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I. INTRODUCTION

Effects of interaction between the electrons and holes cre-
ated by the absorption of photons in semiconductors have
been under study starting in the 1950s until now [1–7]. In an
undoped semiconductor crystal, the interband light absorption
spectrum consists of a series of discrete levels of bound-
exciton states below the band-gap edge Eg and a continuum
due to unbound electron-hole pairs above the band edge. How-
ever, a residual effect of the Coulomb mutual attraction of an
electron and a hole gives rise to a correlation of their relative
position in space and an enhanced wave-function overlap.
This influences the optical transition matrix and affects the
spectral shape of the continuum absorption at h̄ω > Eg, where
ω is the frequency of light. The ratio of the absorption coef-
ficients above the band edge, with and without the Coulomb
interaction, is called the Sommerfeld factor or the Coulomb
enhancement factor. In a three-dimensional (3D) semiconduc-
tor, due to this factor the absorption coefficient changes the
square-root dependence (h̄ω − Eg)1/2 to a constant absorption
closely above the band gap, as shown in the seminal paper
of Elliott [8]. In a two-dimensional (2D) system, the bare
band-to-band step absorption spectrum is multiplied by the
2D Sommerfeld factor, which equals 2 at the gap edge and
unity far above the gap [9,10]. In both 3D materials and 2D
semiconductors, III-V and II-VI–based quantum wells, the
changes in the absorption spectrum are seen in the range of
several exciton Rydberg energies [11,12].

The classical theories of the exciton oscillator strength
[7–12] are valid, provided the exciton Rydberg is small com-
pared to the band gap and the exciton wave function is just a
linear combination of products of free-electron states in the
conduction band and free hole states in the valence band.
Nowadays, the research interest is focused on excitons in the
2D Dirac materials, with the charge carriers being well de-
scribed by the 2D Dirac equation and the electron-hole inter-
action energy being less but comparable to the energy gap Eg

[13,14]. In this case, the exciton wave function is described by

four components ψλe,λh (λe = ±, λh = ±), with the electron
and the hole having both signs of energy, including the case
when they both are in the conduction band (λe =+, λh =−)
or in the valence band (λe =−, λh =+) [15–21].

In Ref. [21], a theory of the bound-exciton oscillator
strength has been developed accounting for the conduction-
valence band coupling in the 2D Dirac model and the
four-component structure of the exciton wave function. In
the present work, we extend the theory [21] and study how the
interaction affects the optical matrix elements and absorption
above the band edge of the 2D Dirac materials. Earlier, the
study of the effect of nonparabolicity on the absorption spectra
was carried out in Refs. [22–24]. However, in Ref. [22], the
band-nonparabolicity effect in a lead-sulfide quantum well
is taken into account merely by using energy-dependent ef-
fective masses of an electron in the conduction band and
a hole in the valence band. In Refs. [23,24], the exciton is
unjustifiably described by a single variable equivalent to the
component ψ++ of the exciton wave function and thereby the
four-component structure of the latter is lost.

The paper is organized as follows. In Sec. II we de-
rive the working equations and present numerical calculation
of the absorbance in the 2D Dirac materials. In Sec. III a
perturbation theory is developed, assuming the electron-hole
interaction to be small; a first-order correction to the ab-
sorbance is found and the results are compared with the exact
calculation. In Sec. IV we summarize the results.

II. SOMMERFELD FACTOR CALCULATION

As well as in Ref. [21], we consider a two-valley 2D Dirac
semiconductor with the valleys K and K ′, which are a time
reversal of each other. The components ψ++, ψ+−, ψ−+, ψ−−
of the electron-hole-pair wave functions are conveniently pre-
sented as a four-component vector �exc. For the direct-gap
excitations with the electron lying in the K valley and the hole
lying in the K ′ valley, the vector �exc satisfies the two-particle
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Schrödinger equation [21],

Hexc�exc(ρe, ρh) = E�exc(ρe, ρh), (1)

with the 4 × 4 matrix Hamiltonian

Hexc = HK (k̂e) ⊗ 1 + 1 ⊗ Hh,K ′
(k̂h) + V (ρ) . (2)

Here 1 is the 2 × 2 unit matrix, ρe, ρh are the electron and hole
2D space coordinates, ρ = ρe − ρh, k̂e = −i∇e, k̂h = −i∇h,
V (ρ) is the electron-hole attraction potential [V (ρ) < 0], and
the electron effective Hamiltonian reads

HK (k) = h̄v0σ · k + Eg

2
σz , (3)

where k is the electron wave vector measured from the Dirac
point, v0 is the Dirac velocity, σ is the 2D vector consisting
of the pseudospin Pauli matrices σx, σy, and the hole effective
Hamiltonian is related to HK by

Hh,K ′
(k) = HK (−k) . (4)

The eigenenergies of the HK (k) are equal to ±εk , with
εk being

√
(Eg/2)2 + (h̄v0k)2, and the corresponding eigen-

columns u±,k are

u+,k =
[

T+e−iϕk/2

T−eiϕk/2

]
, u−,k =

[−T−e−iϕk/2

T+eiϕk/2

]
, (5)

where T± = √
[1 ± Eg/(2εk )]/2, and ϕk is the azimuthal angle

of the vector k.
An explicit equation for the matrix element of the exci-

tation of the unbound (but correlated) electron-hole pair can
be readily written in terms of the coefficients of the wave-
function expansion in the states of noninteracting particles as
follows:

�exc =
∑
λeλh

∑
k

λhCλeλh (k)|e, λe, k; h, λh,−k〉 , (6)

where λe = ± and λh = ± indicate the one-particle states
with positive and negative energies. Note that we assume the
normal incidence of the exciting light, in which case kh = −ke

and the pair momentum h̄(ke + kh) is zero. In the representa-
tion (6), the optical absorption matrix element is given by [21]

M(e) = ev0

∑
k

(eiϕk e−R+ − e−iϕk e+R−), (7)

where e is the light polarization vector, e± = ex ± iey, and

R±(k) = T 2
±C∗

++ + T 2
∓C∗

−− ∓ T+T−(C∗
+− + C∗

−+). (8)

The expansion coefficients in Eq. (6) satisfy the following
equation:∑

λ′
e,λ

′
h,k

′
Hλe,λh;λ′

e,λ
′
h
(k, k′)Cλ′

eλ
′
h
(k′) = ECλeλh (k) , (9)

with the effective Bethe-Salpeter two-particle Hamiltonian
being

Hλe,λh;λ′
e,λ

′
h
(k, k′) = (λe + λh)εkδλe,λ′

e
δλh,λ

′
h
δk,k′

+ Jλe,λh;λ′
eλ

′
h
(k ← k′). (10)

Here E = h̄ω, and the kernel is given by

Jλe,λh;λ′
eλ

′
h
(k ← k′)

= V (|k − k′|)(u†
λe,k

uλ′
e,k

′
)(

u†
λh,k

uλ′
h,k

′
)
, (11)

with V (|q|) being the Fourier image of the electron-hole at-
traction potential and both uλe,k and uλh,k (λe, λh = ±1) given
by Eq. (5).

We compare the results of rigorous calculations with the
wide-band-gap limit. In this simplified model, only one com-
ponent of the exciton wave function, C++, is taken into
account. The three other components are assumed to be zero,
and only one equation (9) (with λe = λh = λ′

e = λ′
h = +)

is solved in this case, where the approximation 2εk ≈ Eg +
h̄2k2/(2μ) with the exciton reduced mass μ = Eg/(4v2

0 ) is
made. This approach is relevant for systems with Eg much
larger than the exciton binding energy EB and for the range
h̄ω − Eg 	 Eg.

Due to the time-inversion symmetry, the optical matrix
element for transitions in the K ′ valley equals M∗(e∗). As
a result, we obtain for the absorption in the right-handed
circular polarization (e− = √

2, e+ = 0),∑
i=K,K ′

|Mi(σ
+)|2 = 2(ev0)2	, (12)

where

	 =
∣∣∣∣∣
∑

k

eiϕk R+(k)

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

k

e−iϕk R−(k)

∣∣∣∣∣
2

. (13)

Note that since the studied system is nonmagnetic, the absorp-
tion is independent of the light polarization, and here we use
the particular case of circular polarization in order to obtain
the result faster.

The absorbance η(ω) is defined as a ratio of the absorption
rate to the photon flux. According to the definition of the
Sommerfeld factor S(ω), η(ω) is written as a product

η(ω) = η0(ω)S(ω), (14)

where η0(ω) is the absorbance calculated neglecting the
electron-hole interaction. For the Dirac materials under con-
sideration, one has [25–29]

η0(ω) = f
πe2

2h̄c

[
1 +

( Eg

h̄ω

)2]
. (15)

For a 2D flake lying on the substrate with the refractive index
ns, the factor f is equal to

f = 4

(ns + 1)2
.

Note that in the following, for the sake of brevity, we
set f to unity.

At Eg = 0, Eq. (15) yields a half of graphene ab-
sorbance because graphene has double spin degeneracy.
Unlike graphene, the absorbance (15) of the 2D Dirac ma-
terial is dependent on the frequency, resulting in a factor
of 2 variation as the photon energy h̄ω increases from the band
gap Eg to the values h̄ω � Eg.

The interaction between the photocarriers in an extremely
thin layer embedded between two thick materials (one of them
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FIG. 1. Sommerfeld factor frequency dependence for various
strengths of the interaction g and the Rytova-Keldysh screening radii
r̃0. The dash-dotted line represents the Sommerfeld factor calcu-
lated in the wide-band-gap limit, with g = 1.6 and r̃0 = 5. The inset
demonstrates the broader range of photon energies.

may be vacuum) occurs via the Rytova-Keldysh potential
whose the Fourier transform is

V (q) = − 2πe2

qκ(1 + qr0)
. (16)

Here κ is a half sum of the dielectric constants of the top
and bottom media, and r0 is the screening radius representing
the 2D layer polarizability [14]. In the case of the interaction
(16), the frequency dependence of the absorbance is governed
by two dimensionless parameters, namely,

g = e2

κh̄v0
, r̃0 = Egr0

2h̄v0
. (17)

We have solved the system of integral equations (9)
for given g and r̃0 numerically by using the quadra-
ture method [30]. In Ref. [21] we used the dimensionless
wave vector Q = aBk, where aB = 2h̄v0/(gEg) is the ef-
fective 2D Bohr radius. As opposed to Ref. [21], here
we choose for the continuous spectrum the dimensionless
variable Q = 2h̄v0k/Eg, independent of the interaction
strength g. This choice allows us to find the Sommerfeld factor
for a given g via the following working equation:

S = 	(g)

	(0)
, (18)

i.e., as a ratio of 	’s, Eq. (13), in the presence and in the
absence of interaction. This ratio does not depend on the
normalization procedure, and therefore we normalized
the wave function in the Q space for any value of g similarly
to the wide-band-gap model [31]. The results are presented in
Fig. 1. In order to find the absorbance one should multiply the
found Sommerfeld factor by η0(ω), given by Eq. (15).

Figure 1 demonstrates the following characteristic fea-
tures of the Sommerfeld factor in the 2D Dirac systems. The
effect of interaction is significant, yielding an enhancement
near the continuous absorbance threshold h̄ω = Eg. However,
the effect sharply falls and becomes negligible already at

FIG. 2. Optical transitions contributing to the absorption in the
absence of interaction (a) and the first-order corrections. The correc-
tion due to the optical transition at k′ followed by the simultaneous
scattering of the photoelectron k′ → kω and valence-band electron
kω → k′ (dashed arrows) caused by the interaction (wavy line)
(b) and due to changes of energy dispersion in the conduction and
valence bands (c). The value of kω is defined by Eq. (24).

h̄ω/Eg ≈ 1.6. These are the main qualitative results of the
present work.

The dash-dotted line allows us to compare the results of
rigorous calculations with the wide-band-gap limit, which
is also treated numerically for the Rytova-Keldysh potential
(16). One can see a remarkable difference of the exact results
with this approximation. In the wide-band-gap limit, the Som-
merfeld factor is underestimated at the threshold, and it tends
to unity at much higher photon energies, see inset to Fig. 1.

III. PERTURBATION THEORY FOR WEAK INTERACTION

To get physical insight into the results of numerical calcu-
lation, we derive here the approximated absorbance spectrum,
taking into account the zeroth and first orders in the interaction
strength g. It turns out that the main features of the interband
continuum-states absorption are already present in the lowest
orders. In the perturbation approach, the Sommerfeld factor is
presented in the form

S(ω) = 1 + gF (ω, Eg, r0) , (19)

where F is a function independent of g.
In wide-band-gap systems, the g-linear term in Eq. (19)

is obtained as a correction to the optical transition matrix
element. The first-order scattering process is illustrated in
Fig. 2(b). However, the single-particle energy spectrum renor-
malization can also yield a contribution to the Sommerfeld
factor of the same order of magnitude. This has been demon-
strated for zero-gap materials, graphene [32–38] and 3D Weyl
semimetals [39]. This contribution is illustrated in Fig. 2(c)
for a Dirac material with nonzero band gap Eg.

The linear correction in Eq. (19) is conveniently calculated
by the diagram technique, allowing for determination of the
optical conductivity σ (ω), which is related to the absorbance
via η = 4πσ/c. The following diagrams and general equa-
tions relating the absorbance η with the free-carrier Green’s
functions are similar to those derived previously for zero-gap
materials, but the final equations for η, Eqs. (23) and (25),
depend explicitly on the band gap Eg and are original.

Thus the correction to the optical conductivity is given
by a sum of the vertex and self-energy contributions shown
by the three diagrams in Fig. 3. The vertex renormalization,
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FIG. 3. The diagrams yielding the linear in g correction to the
optical conductivity and Sommerfeld factor (19). Both the vertex
(a) and the self-energy (b, c) renormalizations contribute to the
Sommerfeld factor.

Fig. 3(a), corresponds to the process depicted in Fig. 2(b), and
the self-energy contributions, Figs. 3(b) and 3(c), correspond
to the renormalization of the energy dispersion in the valence
and conduction bands illustrated in Fig. 2(c). Needless to say,
the interaction-free absorption process shown in Fig. 2(a) is
described by the pure bubble diagram. The energy-gap renor-
malization has been calculated earlier [25], but its effect on
the optical conductivity has not been analyzed.

In Fig. 3, the electric current component operator ĵμ in
each vertex equals to ev0σ̂μ (μ = x, y), and the single-particle
Green functions are the second-rank matrices [32],

Ĝε(k) = P̂+(k)

ε − εk + i0
+ P̂−(k)

ε + εk − i0
, (20)

where the projection operators onto the conduction- and
valence-band states for the gapped system are given by

P̂± = εk ± HK (k)

2εk
=

[
T 2

± ±T+T−e−iϕk

±T−T+eiϕk T 2
∓

]
, (21)

with T± from Eq. (5). The sum of the three diagrams is
reduced to

η − η0 = (ev0)2

iπcω

∑
k,k′

∫∫
dεdε′V (k − k′)(�vert + �self ),

(22)
where [37]

�vert =
∑

μ=x,y

Tr[σ̂μĜε′ (k′)Ĝε(k)σ̂μĜε+h̄ω(k)Ĝε′+h̄ω(k′)],

�self = 2
∑

μ=x,y

Tr[σ̂μĜε+h̄ω(k)σ̂μĜε(k)Ĝε′ (k′)Ĝε(k)].

Here we introduced half-sums of the optical conductivities
for two linear polarizations along the axes μ = x, y using
an independence of the absorbance on the polarization. The
factor of 2 in �self accounts for equal contributions of two
self-energy diagrams in Figs. 3(b) and 3(c), i.e., the energy
spectrum renormalization in both the conduction and valence
bands. At the end the total result was multiplied by 2 for the
account of the K ′-valley contribution.

Calculation shows that the vertex correction has the form

ηvert(ω) = −πe2

h̄c
P

∑
k′

V (|kω − k′|)E2
g

[
E2

g + 3(h̄ω)2 + 4(h̄k′v0)2
] + (2h̄v0)2kωk′ cos θ

[
E2

g + (h̄ω)2 + (2h̄v0)2kωk′ cos θ
]

(h̄ω)2
√

E2
g + 4(h̄k′v0)2(2h̄v0)2

(
k′2 − k2

ω

) ,

(23)
where P stands for the Cauchy principle value and we introduced kω as a vector of arbitrary direction and the absolute value
fixed by the energy conservation law

kω =
√

(h̄ω)2 − E2
g

2h̄v0
, (24)

and θ is the angle between the vectors k′ and kω. The contribution of two self-energy diagrams can be written in the form

ηself(ω) = − πe2

2h̄2cω

∂

∂ h̄ω

{[
1 +

( Eg

h̄ω

)2][
(2h̄kω )2v0δv(kω ) + EgδEg(kω )

]} − πe2

h̄c
δEg(0)δ(h̄ω − Eg). (25)

Deriving Eq. (25), we used the relation

1

(2εk − h̄ω − i0)2
= ∂

∂ h̄ω

[
P 1

2εk − h̄ω
+ iπδ(2εk − h̄ω)

]
,

and the interaction-induced renormalization of the velocity
and the energy gap given by [25,35]

δv(k) = −v0

k

∑
k′

k′ cos θV (|k − k′|)√
E2

g + (2h̄v0k′)2
, (26)

δEg(k) = −Eg

∑
k′

V (|k − k′|)√
E2

g + (2h̄v0k′)2
. (27)

The term in Eq. (25) proportional to the δ function represents
a blueshift of the absorption threshold due to the energy-gap

renormalization. Below we consider only the range h̄ω > Eg

and neglect this term.
The obtained equations (23) and (25) are valid for any

weak interaction potential V (q). Below we consider first the
general case of the Rytova-Keldysh potential and then the pure
Coulomb potential (r0 = 0).

We have calculated the absorbance η(ω) by numerical
evaluation of Eqs. (23) and (25), which converge for the
Rytova-Keldysh interaction (16) with r0 = 0. The results are
shown in Fig. 4, where they are compared with the exact
calculation. The photon energy where the perturbative and
exact results start to match is well described by the relation
h̄ω − Eg ≈ EB, where EB is the binding energy of the 2D
exciton obtained in the Dirac model for the Rytova-Keldysh
potential [21]. In particular, for higher values of g the match
border shifts to higher photon energies, see Fig. 4.

235311-4



SOMMERFELD ENHANCEMENT FACTOR IN … PHYSICAL REVIEW B 103, 235311 (2021)
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g = 1

g = 0.3

FIG. 4. Comparison of the absorbance calculated exactly (solid
lines) and perturbatively (dashed lines) for the Rytova-Keldysh in-
teraction potential (16) with r̃0 = 10. The black solid line shows the
free-carrier absorbance η0(ω), Eq. (15). The absorbance is given in
units of πe2/(2h̄c).

One can see from Fig. 4 that the two main features of the
absorption spectrum, namely, a strong enhancement of the
near-band-gap absorbance and rapid decay of the interaction
effect with the increasing light frequency, are captured by the
perturbative approach.

A. Graphene with the Rytova-Keldysh interaction

The first-order correction to the optical conductivity of
graphene has been studied for various electron-hole attractive
potentials, including unscreened and screened Coulomb inter-
action as well as the short-range interaction [32–38]. In order
to obtain finite results, the cutoff of the potential is needed in
all these cases. Here we consider the Rytova-Keldysh poten-
tial (16), in which case the q−2 decrease of the potential at
large q ensures the convergence of the sums in Eqs. (23) and
(25), and the regularization is not required.

For graphene with Eg = 0, Eqs. (23) and (25) are
simplified to

ηself = −g
e2

8h̄c

1

w

∂

∂w

[
w2

∫ 2π

0
dθ

∫ ∞

0
dx

1 − x cos θ

(1 + wx)u

]
,

(28)

ηvert = g
e2

4h̄c

∫ 2π

0
dθ P

∫ ∞

0
dx

x cos θ (1 + x cos θ )

u(1 + wu)(x2 − 1)
, (29)

where u = √
x2 − 2x cos θ + 1, and

w = r0ω

2v0
. (30)

The dimensionless first-order correction F (ω, Eg, r0) =
(η/η0 − 1)/g depends at Eg = 0 on the single dimensionless
parameter (30), which can be constructed from ω, v0, and r0.

The dependence of F on w calculated by Eqs. (28) and (29)
is plotted in Fig. 5. The contributions ηvert (w) and ηself (w)
are very close to each other by absolute value and almost

0 1 2 3 4 5

Screening radius r0ω/(2v0)

−4

−2

0

2

4

F
ir

st
-o

rd
er

co
rr

ec
ti

on
F Graphene

Vertex correction

Self-energy correction

Total correction

0 1 2 3 4 5

10−2

10−3

10−4

FIG. 5. The w dependence of contributions to F due to the vertex
diagrams and self-energy (dashed lines) and their sum (black line) in
graphene with the Rytova-Keldysh interaction potential. The inset
shows the sum in a larger scale.

completely compensate each other. As a result, the sum is
smaller by 2–4 orders compared to each separate term.

The Sommerfeld factor in graphene demonstrates a spe-
cific property of the linear energy spectrum: the absorbance
enhancement is almost absent. For the pure Coulomb potential
it follows from the fact that only one energy scale, h̄ω, is
present in the problem. Therefore the dimensionless Sommer-
feld factor should be constant in the whole frequency range,
and since at high frequencies the Coulomb-induced electron-
hole correlation almost vanishes, this constant is close to
unity [32,33,36]. This means that the correction F (Eg = 0) is
very small. For the Rytova-Keldysh potential, a new energy
scale, h̄v0/r0, emerges and thereby, the Sommerfeld factor
gets dependent on the relation between frequency ω and the
ratio r0/v0, Eq. (30). This dependence is shown in the inset
in Fig. 5. However, as compared to the pure Coulomb po-
tential, the screened potential (16) should result in a smaller
Sommerfeld factor. Therefore F (w) is a decreasing function
going from ≈0.013 at w → 0 to zero at large w. We thus
conclude that in graphene the Sommerfeld factor is close to
unity at any degree of screening. Our calculation shows that
the self-energy correction is important in all materials under
consideration. This point was missed in Ref. [40], where only
the vertex correction was taken into account.

B. Wide-band-gap limit

In the wide-band-gap limit EB 	 Eg � h̄ω and for the
long-range Rytova-Keldysh potential,

r0 � h̄v0/Eg , (31)

one can check that the main contribution to ηvert(ω) comes
from k′ ∼ kω 	 Eg/(h̄v0). In Fig. 2(b) it corresponds to the
situation where both kω and k′ are close to the valence band
top. In this case, neglecting the small values of h̄v0k′/Eg and
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FIG. 6. First-order correction to the Sommerfeld factor F =
(S − 1)/g, Eq. (19), calculated for r̃0 = 10 (solid line). Dashed lines
are the vertex and self-energy contributions (33). The dash-dotted
curve is the correction in the wide-band-gap limit, Eq. (32).

h̄v0kω/Eg in Eq. (23), we obtain an analytical result,

η
(wbg)
vert

η0
= g

π

2
√

2

√
Eg

h̄ω − Eg

[
1 − 2z arccos(z−1)

π
√

z2 − 1

]
, (32)

where η0 =η0(Eg/h̄)=πe2/(h̄c) and z = 2
√

2r̃0√
h̄ω/Eg − 1. For z < 1 the expression in brackets can

be conveniently rewritten as

1 − 2z

π
√

1 − z2
ln

(
1 + √

1 − z2

z

)
.

The self-energy correction to the Sommerfeld factor in the
wide-band-gap limit is negligible as compared to η

(wbg)
vert given

by Eq. (32). This can be demonstrated taking into account that
in Eqs. (26) and (27) the upper limit in the summation over k′

can be set to k′ = Eg/h̄v0.

C. Gapped Dirac material

Now we turn to the gapped Dirac materials and introduce
the vertex and self-energy contributions to the first-order cor-
rection F (ω, Eg, r0) according to

Fvert = ηvert

gη0
, Fself = ηself

gη0
. (33)

In Fig. 6 we compare the contributions Fvert, Fself and
their sum Fvert + Fself, calculated by Eqs. (23) and (25) for an
arbitrary ratio h̄ω/Eg > 1, with the result of a wide-band-gap
approximation. The latter exceeds the exact result at high pho-
ton energies but works well near the absorption threshold at
h̄ω − Eg � 0.15 Eg. This is expected because the range of ap-
plicability of the wide-band-gap approximation is h̄ω − Eg 	
Eg. A bit smaller value of the correction at the absorption
threshold obtained in the wide-band-gap approximation is
caused by the assumption of small k′ in Eq. (23), which leads
to underestimation of the result. This difference is caused by
the short-range nature of the screened interaction (16) even
at r̃0 = 10.
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FIG. 7. Decomposition of the total self-energy correction Fself

into two contributions due to the velocity and energy-gap renormal-
izations δv(kω ) and δEg(kω ) in Eq. (25), respectively. The lines are
calculated for r̃0 = r0Eg/(2h̄v0 ) = 10. Dash-dotted line shows the
self-energy correction in graphene.

Both major features of the Sommerfeld factor in 2D Dirac
systems revealed in Fig. 1 are also demonstrated in Fig. 6. One
can see that each of the two contributions, the vertex and self-
energy ones, are substantial. The contributions have opposite
signs and compensate each other to some extent in the range
h̄ω/Eg < 1.3, to a large degree for 1.7 > h̄ω/Eg > 1.5, and
strongly at h̄ω/Eg > 2. Thus the effect of interaction on the
absorbance is weak far from the threshold. This is expected
because, at h̄ω � Eg, the presence of the gap is not signifi-
cant, and gapped systems behave as graphene, where the two
contributions almost completely compensate each other and
the Sommerfeld factor is very close to unity, see Fig. 5.

The difference of the gapped materials from graphene in
the frequency range near Eg is especially clear from Fig. 7.
In fact, the self-energy correction consists of two terms in
Eq. (25) determined by the renormalizations δv(kω ) and
δEg(kω ). In graphene, the energy gap and hence its renor-
malization are absent, and only the velocity renormalization
contributes to the absorbance, with the net contribution being
negative [32]. In Fig. 7 the frequency dependence of the total
correction is shown by a dashed line. In a gapped material
the interaction widens the gap Eg and, according to Eq. (15),
leads to an enhancement of the absorbance. This affects the
correction near the band gap, almost compensating the correc-
tion from the velocity renormalization. However, the latter is
stronger; therefore the total self-energy correction is negative
at any frequency, see Figs. 6 and 7. At high frequencies the
presence of the gap becomes unimportant, and the self-energy
correction coincides with that in graphene.

D. Coulomb interaction potential

For the 2D Coulomb potential (16) with r0 = 0, both the
vertex and self-energy corrections diverge logarithmically.
The situation is similar to the case of graphene (Eg = 0),
where these divergences have been investigated in detail
[32–36]. The correct way to regularize the problem preserving
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the Ward identity is to use the cut-off Coulomb potential

Vc(q) = −2πe2

κq
�(� − q), (34)

where �(x) is the Heaviside function and � is the cut-
off wave vector. Note that the tight-binding approach [41],
which is free from divergences, could be used to derive the
value of � for perturbative calculations. With logarithmic
accuracy we get

ηvert, Coul = η0(ω)
g

2
ln

⎛
⎝ 8h̄v0�√

(h̄ω)2 − E2
g

⎞
⎠, (35)

ηself, Coul =
[( Eg

h̄ω

)2

− 1

]
ηvert, Coul. (36)

As a result, the correction to the Sommerfeld factor (19) takes
the form

S(ω) − 1 = η − η0

η0
= gF (ω, Eg, 0)

= g

2

( Eg

h̄ω

)2

ln

⎛
⎝ 8h̄v0�√

(h̄ω)2 − E2
g

⎞
⎠ + gD

( Eg

h̄ω

)
,

(37)

where D(x) is a smooth function. While deriving
Eqs. (35)–(37) we assumed (h̄ω − Eg)/Eg � g, and within
this assumption the factor S(ω) is finite.

For the case of graphene, i.e., at Eg = 0, the logarith-
mic contribution cancels while the function D reduces to a
constant D(0) = (19 − 6π )/12 ≈ 0.0125 [32,33,36]. In the
gapped Dirac materials, the energy h̄v0� exceeds the band
gap by far, and the logarithmic term in Eq. (37) prevails over
the smooth term. However, this large value decreases sharply
with increasing the photon energy due to the square-root de-
nominator and the inverse quadratic dependence, ω−2, of the
prefactor.

In the opposite limit of a wide-band-gap 2D semicon-
ductor, for the pure Coulomb potential we get the following
setting z → 0 in Eq. (32):

η
(wbg)
Coul

η0
= g

π

2
√

2

√
Eg

h̄ω − Eg
. (38)

Since Eq. (32) is derived under the condition (31), the small
values of z presuppose the frequency range close to the
band edge, h̄ω − Eg 	 Eg. Beyond this range the Sommerfeld
factor can be better described by Eq. (37).

The correction (38) can be also obtained by the expansion
up to the linear order in g of the well-known analytical result
for the 2D Sommerfeld factor in the band model with the
parabolic free-carrier dispersion and the Coulomb potential
[9–12],

S(wbg)
Coul (ω) = 2

1 + exp
(
−π

√
EB

h̄ω−Eg

) , (39)

where the exciton binding energy in the parabolic model is
given by EB = g2Eg/2 [21]. It is worth noting that the en-
hancement of the absorbance at the threshold for the Coulomb

FIG. 8. The first-order correction F for the cut-off Coulomb
potential (34). Calculations are performed by Eqs. (23) and (25)
(solid lines), and in the wide-band-gap limit by Eq. (38) (dash-
dotted line). In the chosen scale the graphene value F = 0.0125
shown by the dashed line lies within the linewidth. Inset: The
same curves with the logarithmic term (37) shown by a dashed line
for 2h̄v0�/Eg = 40.

interaction in Eq. (39) is just a factor of 2. Thus it is usually not
observed in experiments [42]. Our calculation shows that the
enhancement of η in the 2D Dirac materials is stronger even
for the screened Rytova-Keldysh potential, see Figs. 1 and 4.
The Sommerfeld factor was clearly seen in two-dimensional
layered systems [6].

In Fig. 8 we compare the numerical calculation of the
first-order correction F with the gapless graphene value
F = 0.0125 and the opposite, wide-band-gap limit given by
Eq. (38). The exact result interpolates between these two lim-
iting cases, which take place at h̄ω/Eg � 1 and h̄ω/Eg � 1,
respectively. The inset to Fig. 8 demonstrates that the pure
logarithmic contribution, the first term in Eq. (37), matches
well with the exact result already at h̄ω � 1.3 Eg. We see
that the wide-band-gap expression (38) and the logarithmic
dependence (37) jointly describe the first-order correction to
the Sommerfeld factor on the whole frequency range.

IV. CONCLUSION

In this paper we have studied the frequency dependence
of the Sommerfeld factor in 2D Dirac materials where the
electron-hole interaction energy is not too small as com-
pared to the energy gap. In this case the two-particle wave
function is described by four components, with allowance
for each particle, an electron and a hole, to occupy both
the conduction and valence band states. Both the Rytova-
Keldysh and pure Coulomb interaction potentials have been
used in the derived theory. The theory takes into account not
only the electron-hole scattering but also single-particle self-
energy renormalization. We have found that in the materials
under consideration, in great contrast with the wide-band-
gap nanosystems, the interaction-induced enhancement of the
above-edge light absorption is very strong near the edge
and falls sharply with the increasing light frequency. These
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two features of the Sommerfeld factor behavior are well
captured by the first-order approximation of weak electron-
hole interaction. The analysis shows that an absence of the
interaction-induced enhancement of the absorbance at high
frequencies is caused by a compensation of the vertex and
self-energy contributions.

Interaction effects in the absorption spectra in the Dirac
materials could be seen in photoluminescence excitation
experiments where the above-band-edge optical excitation re-
sults in creation of correlated electron-hole pairs followed by
their energy relaxation by phonons and formation of bound

excitons. According to our calculations, the probability of
this process should have a maximum near the absorption
threshold.

ACKNOWLEDGMENTS

N.V.L. and E.L.I. acknowledge the financial support of
the Russian Science Foundation (Project No. 19-12-00051).
The work of N.V.L. and L.E.G. was supported by the Foun-
dation for the Advancement of Theoretical Physics and
Mathematics “BASIS.”

[1] E. F. Gross and N. A. Karryev, Light absorption by cuprous
oxide crystal in infrared and visible spectrum, Dokl. Akad.
Nauk SSSR 84, 261 (1952) (in Russian).

[2] E. F. Gross, Optical spectrum of excitons in the crystal lattice,
Nuovo Cimento Suppl. 3, 672 (1956).

[3] Excitons, edited by E. I. Rashba and M. D. Sturge (North-
Holland, Amsterdam, 1982).

[4] S. Glutsch, Excitons in Low-Dimensional Semiconductors.
Theory, Numerical Methods, Applications (Springer-Verlag
Berlin Heidelberg, 2004).

[5] T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M.
Bayer, Giant Rydberg excitons in the copper oxide Cu2O,
Nature (London) 514, 343 (2014).

[6] T. V. Shubina, W. Desrat, M. Moret, A. Tiberj, O. Briot, V. Yu.
Davydov, A. V. Platonov, M. A. Semina, and B. Gil, InSe as
a case between 3D and 2D layered crystals for excitons, Nat.
Commun. 10, 3479 (2019).

[7] M. F. C. Martins Quintela and N. M. R. Peres, A colloquium on
the variational method applied to excitons in 2D materials, Eur.
Phys. J. B 93, 222 (2020).

[8] R. J. Elliott, Intensity of optical absorption by excitons, Phys.
Rev. 108, 1384 (1957).

[9] M. Shinada and S. Sugano, Interband optical transitions in
extremely anisotropic semiconductors, I. Bound and unbound
exciton absorption, J. Phys. Soc. Jpn. 21, 1936 (1966).

[10] D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard,
and W. Wiegmann, Room temperature excitonic nonlinear ab-
sorption and refraction in GaAs/AIGaAs multiple quantum well
structures, J. Quantum Electron. QE-20, 265 (1984).

[11] E. L. Ivchenko and G. E. Pikus, Superlattices and Other Het-
erostructures. Symmetry and Optical Phenomena (Springer,
Berlin, 1997).

[12] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors (World Scientific,
Singapore, 2004).

[13] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie,
T. Amand, and B. Urbaszek, Colloquium: Excitons in atomi-
cally thin transition metal dichalcogenides, Rev. Mod. Phys. 90,
021001 (2018).

[14] M. V. Durnev and M. M. Glazov, Excitons and trions in
two-dimensional semiconductors based on transition metal
dichalcogenides, Phys. Usp. 61, 825 (2018).

[15] J. Sabio, F. Sols, and F. Guinea, Two-body problem in graphene,
Phys. Rev. B 81, 045428 (2010).

[16] O. L. Berman, R. Y. Kezerashvili, and K. Ziegler, Coupling of
two Dirac particles, Phys. Rev. A 87, 042513 (2013).

[17] O. L. Berman and R. Y. Kezerashvili, High-temperature
superfluidity of the two-component Bose gas in a transi-
tion metal dichalcogenide bilayer, Phys. Rev. B 93, 245410
(2016).

[18] M. Van der Donck, M. Zarenia, and F. M. Peeters, Excitons and
trions in monolayer transition metal dichalcogenides: A com-
parative study between the multiband model and the quadratic
single-band model, Phys. Rev. B 96, 035131 (2017).

[19] M. Van der Donck and F. M. Peeters, Spectrum of exciton
states in monolayer transition metal dichalcogenides: Angular
momentum and Landau levels, Phys. Rev. B 99, 115439 (2019).

[20] M. Trushin, M. O. Goerbig, and W. Belzig, Optical absorption
by Dirac excitons in single-layer transition-metal dichalco-
genides, Phys. Rev. B 94, 041301 (2016).

[21] N. V. Leppenen, L. E. Golub, and E. L. Ivchenko, Exciton
oscillator strength in two-dimensional Dirac materials, Phys.
Rev. B 102, 155305 (2020).

[22] K. H. Aharonyan and E. M. Kazaryan, The effect of screened
Coulomb interaction on the optical properties of EuS/PbS/EuS
finite confining potential quantum well, Int. J. Mod. Phys. Conf.
Ser. 15, 224 (2012).

[23] I. Garate and M. Franz, Excitons and optical absorption on the
surface of a strong topological insulator with a magnetic energy
gap, Phys. Rev. B 84, 045403 (2011).

[24] L. D. M. Villari, I. Galbraith, and F. Biancalana, Coulomb
effects in the absorbance spectra of two-dimensional Dirac
materials, Phys. Rev. B 98, 205402 (2018).

[25] V. N. Kotov, V. M. Pereira, and B. Uchoa, Polarization charge
distribution in gapped graphene: Perturbation theory and exact
diagonalization analysis, Phys. Rev. B 78, 075433 (2008).

[26] L. Matthes, P. Gori, O. Pulci, and F. Bechstedt, Universal
infrared absorbance of two-dimensional honeycomb group-IV
crystals, Phys. Rev. B 87, 035438 (2013).

[27] R. Huang, J. Li, Z. Wu, W. Yang, W. Huang, C. Li, and S. Chen,
Universal absorption of two-dimensional materials within
k · p method, Phys. Lett. A 382, 3035 (2018).

[28] T. Stauber, N. M. R. Peres, and A. K. Geim, Optical conductiv-
ity of graphene in the visible region of the spectrum, Phys. Rev.
B 78, 085432 (2008).

[29] T. Stauber, D. Noriega-Pérez, and J. Schliemann, Universal ab-
sorption of two-dimensional systems, Phys. Rev. B 91, 115407
(2015).

235311-8

https://doi.org/10.1007/BF02746069
https://doi.org/10.1038/nature13832
https://doi.org/10.1038/s41467-019-11487-0
https://doi.org/10.1140/epjb/e2020-10490-9
https://doi.org/10.1103/PhysRev.108.1384
https://doi.org/10.1143/JPSJ.21.1936
https://doi.org/10.1109/JQE.1984.1072393
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.3367/UFNe.2017.07.038172
https://doi.org/10.1103/PhysRevB.81.045428
https://doi.org/10.1103/PhysRevA.87.042513
https://doi.org/10.1103/PhysRevB.93.245410
https://doi.org/10.1103/PhysRevB.96.035131
https://doi.org/10.1103/PhysRevB.99.115439
https://doi.org/10.1103/PhysRevB.94.041301
https://doi.org/10.1103/PhysRevB.102.155305
https://doi.org/10.1142/S201019451200935X
https://doi.org/10.1103/PhysRevB.84.045403
https://doi.org/10.1103/PhysRevB.98.205402
https://doi.org/10.1103/PhysRevB.78.075433
https://doi.org/10.1103/PhysRevB.87.035438
https://doi.org/10.1016/j.physleta.2018.07.025
https://doi.org/10.1103/PhysRevB.78.085432
https://doi.org/10.1103/PhysRevB.91.115407


SOMMERFELD ENHANCEMENT FACTOR IN … PHYSICAL REVIEW B 103, 235311 (2021)

[30] C. Y.-P. Chao and S. L. Chuang, Analytical and numerical
solutions for a two-dimensional exciton in momentum space,
Phys. Rev. B 43, 6530 (1991).

[31] S. L. Chuang, S. Schmitt-Rink, D. A. B. Miller, and D. S.
Chemla, Exciton Green’s-function approach to optical absorp-
tion in a quantum well with an applied electric field, Phys. Rev.
B 43, 1500 (1991).

[32] E. G. Mishchenko, Minimal conductivity in graphene: Interac-
tion corrections and ultraviolet anomaly, Europhys. Lett. 83,
17005 (2008).

[33] D. E. Sheehy and J. Schmalian, Optical transparency of
graphene as determined by fine-structure constant, Phys. Rev.
B 80, 193411 (2009).
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