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Spin-orbit enabled quantum transport channels in a two-hole double quantum dot
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We analyze experimentally and theoretically the transport spectra of a gated lateral GaAs double quantum dot
containing two holes. The strong spin-orbit interaction present in the hole subband lifts the Pauli spin blockade
and allows to map out the complete spectra of the two-hole system. By performing measurements in both source-
drain voltage directions, at different detunings and magnetic fields, we carry out quantitative fitting to a Hubbard
two-site model accounting for the tunnel coupling to the leads and the spin-flip relaxation process. We extract
the singlet-triplet gap and the magnetic field corresponding to the singlet-triplet transition in the double-hole
ground state. Additionally, at the singlet-triplet transition we find a resonant enhancement (in the blockaded
direction) and suppression of current (in the conduction direction). The current enhancement stems from the
multiple resonance of two-hole levels, opening several conduction channels at once. The current suppression
arises from the quantum interference of spin-conserving and spin-flipping tunneling processes.
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I. INTRODUCTION

Recently, there has been great interest in utilizing hole
spins as qubits for solid-state quantum information applica-
tions [1]. This qubit choice is motivated by the expected
suppression of hyperfine interactions between the spin of
the hole and those of the crystal lattice nuclei, promis-
ing a low-decoherence platform without isotopic purification
[2,3]. The second aspect of the hole subband is the strong
spin-orbit interaction (SOI) compared to that of electron
solid-state devices. The SOI can be harnessed to manipu-
late the hole spin coherently in a local fashion, obviating
the need for local pulsed magnetic fields [4–9]. Presently,
the main technological effort towards implementation of the
hole spin-based qubits is concentrated in several material
platforms: complementary metal-oxide-semiconductor silicon
devices [6,7], silicon gated devices [10], the Ge/Si hut quan-
tum wires [8,11–13], Ge/Si core-shell nanowires [14,15] and
nanocrystals [16], Ge/SiGe planar heterostructures [17,18],
and GaAs/AlGaAs gated devices [9,19–24].

Since the Si and Ge crystal lattices possess inversion sym-
metry, these systems exhibit only the Rashba SOI, which can
be tuned, and in principle even switched off, by appropriate
choices of gate voltages [4,25]. In GaAs/AlGaAs planar het-
erostructures, on the other hand, both Dresselhaus and Rashba
SOIs are present, with the former determining the spin relax-
ation time [21]. In gated dots in which electrons are confined,
the effects of the SOI can be eliminated by appropriate choice
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of the direction of the magnetic field, which determines the
direction of spin quantization [26,27]. In contrast, the spin of
the confined hole is pinned in the direction of the strongest
confinement, i.e., the heterostructure growth direction. Such
pinning results in zero in-plane effective g∗ factor [23], and
leads to a nontrivial and unavoidable contribution of the Dres-
selhaus SOI to the physics of hole-based devices. The chief
consequence of this interaction is the appearance of spin-
nonconserving processes in single-hole tunneling [23] and in
coherent control protocols [9,24].

Our previous work [21–24] charted only some aspects of
the complex physics of holes confined in the lateral gated
GaAs/AlGaAs double dot under strong SOIs. This paper is
aimed at presenting a comprehensive experimental and the-
oretical description of this system, focusing on the two-hole
spin physics. In the equivalent device confining two electrons,
the measurement of the spin state is carried out electrically
via spin-to-charge conversion [28,29]. This protocol relies on
the Pauli spin blockade, i.e., the spin-selective tunneling of an
electron from one dot to another conditional on the spin state
of another electron. This spin-to-charge conversion is rou-
tinely used as a readout step in electron spin coherent control
algorithms [27,29–34], and has also been demonstrated in Si-
and Ge-based hole devices, as well as in the GaAs/AlGaAs
double quantum dot confining many holes [19,20]. In our
system, however, the spin-flip tunneling lifts the spin blockade
[23]. As a result, we are able to map out the complete energy
spectrum of the confined two-hole system as a function of the
detuning between the two dots and the external magnetic field
by performing transport spectroscopy measurements in the
large source-drain bias regime. Moreover, the spin-flip tun-
neling is a coherent process, which, combined with the usual
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spin-conserving tunneling, can produce quantum interference
between transport channels, leading to resonant enhancement
or suppression of tunneling current. These unexpected effects
are detected experimentally and explained quantitatively by
a two-site Hubbard model, accounting for coherent interdot
tunneling as well as incoherent coupling to the leads and
relaxation processes. By fitting to the measured transport
spectra, we extract the dependencies of the system param-
eters on the magnetic field and gate voltages. A systematic
discussion of the relevant methodological aspects of fitting is
presented to demonstrate that the model provides a precise,
quantitative description of the two-hole double-dot system. It
allows for estimation of key system parameters (such as, e.g.,
the spin-flip relaxation time or the effective g factors), and
therefore can serve as a basis for design of future generations
of these devices. In this discussion we aim to highlight both
the strong and the less robust aspects of performing such
detailed fitting.

The paper is organized as follows. In Sec. II we describe
in detail the lateral gated GaAs/AlGaAs double quantum dot
used in this work. Section III contains the description of the
theoretical model. In Sec. IV we present a detailed experi-
mental and theoretical analysis of the spectra recorded in the
blockaded direction, while in Sec. V we present a similar anal-
ysis in the nonblockaded direction. In Sec. VI we summarize
the results of this work.

II. DOUBLE-DOT GATED HOLE DEVICE

Figure 1(a) shows the scanning electron microscope im-
age of our lateral double-dot device (DQD) [21–24]. The
Ti/Au gates are deposited atop the undoped wafer with
the GaAs/AlxGa1−xAs (x = 50%) heterointerface positioned
65 nm below the surface. The two-dimensional hole gas
(2DHG) is accumulated at this heterointerface by a global
top gate (not shown), separated from the surface gates by a
110-nm-thick Al2O3 dielectric layer grown by atomic layer
deposition. The device is cooled down in a dilution refrigera-
tor with the lattice temperature below 60 mK. The measured
hole temperature was about 100 mK.

The DQD lateral confinement is created by applying
suitable voltages to the surface gates. Figure 1(b) shows a cal-
culated electrostatic potential resulting from one such choice,
leading to the formation of a double-dot potential [35]. The
energy detuning between dots is manipulated by the gate
voltages VL and VR, applied to the plunger gates L and R,
respectively, while the height of the interdot barrier is tuned
by adjusting the voltage on the gate C. Figure 1(c) shows the
addition diagram mapped out as a function of the two plunger
gate voltages by means of the quantum point contact formed
by the gate CS. We discuss this charge detection spectroscopy
in detail elsewhere [22,23]. The charging diagram shows clear
charge addition lines, indicating that we are able to empty
the system completely, generating the charge configuration
(nl , nR) = (00), where nK is the number of holes in dot K =
L, R. Further, we add holes one by one to achieve the total
occupation of two holes, realized as charge configurations
(20), (11), or (02), as labeled in the diagram.

We probe the energy levels of the two-hole system utilizing
the transport spectroscopy technique in the regime of high

source-drain voltage VSD, applied to the 2DHG leads as shown
in Fig. 1(a). We measure the resulting tunneling current as a
function of the interdot detuning, the interdot barrier height,
and the external magnetic field applied in the direction normal
to the plane of the 2DHG. We focus on tunneling of a hole
through the system already confining one “spectator” particle.
This process can occur in two scenarios, i.e., when the charge
configurations (10), (11), and (20) [Fig. 1(c), red rectangle], or
configurations (01), (11), and (02) [Fig. 1(c), green rectangle]
are close in energy. It involves one hole tunneling from the
source lead, through each of the dots in sequence, and out into
the drain. In high-VSD spectroscopy, such tunneling occurs for
voltages (VL,VR) lying within a transport triangle, shown in
Figs. 1(d) and 1(e) for the first scenario, but with a positive-
and negative-bias voltage, respectively.

We now focus on the transport triangle shown in Fig. 1(e).
In this segment of the charging diagram there is one hole con-
fined in the left dot, as presented schematically in Figs. 2(a)
and 2(b). These diagrams show the relative alignment of
single-particle levels in each dot, with the blue (red) color
denoting the hole spin-down (-up) level. The source-drain
voltage VSD = −2 mV in diagram Fig. 2(a) and VSD = +2
mV in Fig. 2(b) are applied, resulting in the second hole
tunneling from right to left in the first case, and from left to
right in the second. The transport triangles corresponding to
the two choices of VSD, recorded at a finite magnetic field, are
presented as insets to Figs. 2(c) and 2(d), respectively. Both
these triangles are found within the red rectangle in Fig. 1(c)
and differ only by a choice of interdot detuning which is small
on the scale of the full charging diagram. Close to the base of
each triangle we find several bright lines, corresponding to
the resonant peaks of the tunneling current. In Figs. 2(c) and
2(d) we plot the tunneling current revealing positions of these
peaks as a function of the gate voltage VL and the magnetic
field, recorded by following the trajectory marked in each
inset by the white arrow. The complex set of intersecting lines
is visible more clearly in the plots of the differential current
dI/dVL, shown respectively in Figs. 2(e) and 2(f). This is the
central experimental result of this work.

In the “forward” or “conduction” direction, corresponding
to the source-drain bias direction as in Fig. 2(b), the existence
of current resonances is expected. Indeed, a single hole with
spin up can tunnel from the source onto the left-dot spin-up
energy level, whereupon either of the holes can tunnel to the
right dot, and then out into the drain. On the other hand, in
the “blockaded” direction, shown in Fig. 2(a), one expects
the Pauli spin blockade, occurring where a spin-down hole
tunnels from the source into the right dot. The resulting triplet
(11) configuration cannot convert into a (20) singlet configura-
tion without a spin flip. In our sample, the spin-flip tunneling,
leading to the appearance of the clear tunneling maxima in
Fig. 2(e) (all diagonal features), occurs as a consequence
of the strong spin-orbit interaction. We stress that the Pauli
blockade prevents the current flow only in the case of a small
interdot detuning, at which only the singlet-triplet resonance
is possible. For larger detunings, the triplet (11) may become
resonant with a triplet (20) state, enabling tunneling of car-
riers without spin flip. Such a tunneling resonance is seen
in Fig. 2(e) as the horizontal line, and is a transport feature
shared between hole and electron systems. Below we provide
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FIG. 1. (a) Scanning electron micrograph of the gate layout of the lateral double-dot confining holes. The transport spectra are recorded
by applying the source-drain voltage VSD between the hole reservoirs denoted by gray boxes and measuring the resulting current. (b) A
simulated example of the electrostatic potential generated by gate voltages at the heterointerface confining holes. (c) Charge stability diagram
of the system measured by the charge sensor created by the gate CS. The diagram shows addition lines of individual holes admitted into the
double-dot potential, with the resulting charge configurations indicated in the panel. (d) The high-bias transport diagram measured in the high
source-drain voltage regime (VSD = 2 mV) close to the resonance of (11) and (20) charge configurations denoted in (c) by the red rectangle.
(e) A similar transport diagram for the opposite source-drain bias voltage VSD = −2 mV, in the same stability region.

a systematic, quantitative discussion of all tunneling maxima
appearing in the traces in Fig. 2 and their dependence on the
magnetic field.

III. THEORETICAL MODEL

A. Effective Hamiltonian for holes

The real-space Hamiltonian for a single heavy hole con-
fined in a quasi-two-dimensional heterostructure can be

written as [4,25,36,37]

Ĥ2D = 1

2m‖

(
π2

x + π2
y

) + VDDOT(x, y) + β(π−π+π−σ+

+π+π−π+σ−) + 1

2
g∗μBBzσz. (1)

Here, m‖ is the in-plane effective hole mass, the general-
ized momentum operator π = p + e

c A, where p = −ih̄∇, A
is the magnetic vector potential, e is the electron charge, and
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FIG. 2. Schematic diagrams of the alignment of single-particle levels of each dot of the system in the “blockade” (a) and “conduction”
(b) directions. The spin-down (-up) single-particle levels are denoted in blue (red). The solid arrow denotes the “spectator” hole confined in the
left dot. EF denotes the Fermi energies in the leads. (c), (d) The tunneling current I resulting from the two alignments, respectively, recorded
as a function of the left gate voltage VL and the magnetic field, with the tunnel barrier defined by the voltage VC = −0.16 V . Insets show the
corresponding high-bias transport triangles as a function of the voltages (VL,VR ) for one value of the magnetic field, with arrows showing
the voltage sweep trajectory followed in the main panels. (e), (f) The current derivative dI/dVL corresponding to the traces in (c) and (d),
respectively, revealing the details of tunneling channels in both directions.

c is the speed of light. The operator π± = πx ± iπy. The
potential VDDOT(x, y) describes the lateral confinement cre-
ated by gates, as seen in Fig. 1(b). Also, g∗ is the effective
Landé factor, μB is the (electronic) Bohr magneton, Bz is
the out-of plane magnetic field, and β is the Dresselhaus SO

parameter [4,25]. Lastly, σ is the spin operator such that the
projections σz = ±1 for the two heavy-hole subbands, respec-
tively, and σ+ and σ− are, respectively, the spin raising and
lowering operators. Ĥ2D can be derived perturbatively from
the Luttinger-Kohn Hamiltonian [38,39] accounting for the
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FIG. 3. (a) Schematic diagram of the double-dot potential with
several single-hole states in the left (L) and right (R) dots. A detuning
of �ε is applied. Red (blue) bars represent spin-up (-down) states.
The two-dimensional hole gas in the leads is shown with striped rect-
angles, with their upper edge denoting the respective Fermi energy
of the source (right) and drain (left), separated by the source-drain
voltage VSD. Tunneling of the hole between the leads and the confined
levels is denoted by the curved arrows. (b), (c) Two out of four
two-hole spin configurations in the charge configuration (20), the
singlet S(20) and the polarized triplet T−(20). Curved arrows denote
tunneling channels into the drain considered in this work. (d), (e) Two
out of four two-hole spin configurations in the charge configuration
(11), the unpolarized configuration being a part of S(11) and T0(11)
and the polarized triplet T−(11), respectively. Arrows denote the
tunneling channels from the source into the right dot.

Dresselhaus SOI [4,25,36,37,40,41]. It can be used to model
our gated double-dot device, for example, within the Heitler-
London [42,43] or Hund-Mülliken [44–46] approach. In these
models, quantum molecular energies and molecular orbitals
can be computed based on a realistic double-dot potential pro-
file. However, the utilization of Ĥ2D in modeling the transport
spectra such as shown in Fig. 2 is prohibitively expensive
computationally owing to costly recomputation of VDDOT as
gate voltages are adjusted. Instead, we map the general form
(1) onto an effective Hubbard Hamiltonian, whose matrix
elements will be fitted to the experimental data [47]. In such
approach we lose access to the real-space shape of molecular
orbitals, but are still capable of mapping out the structure
of energy levels and level resonances in a computationally
efficient manner. A detailed comparison of the three models,
performed with a double-dot system confining two electrons,
is given in Ref. [48].

We begin by selecting a minimal basis of the single-particle
orbitals relevant for our system. Figure 3(a) shows a schematic
view of the double-dot potential with several dot-resolved or-
bitals represented by horizontal bars. Here, the arrow labeled

as �ε is the interdot detuning, while that marked by VSD rep-
resents the source-drain voltage, chosen to induce the current
flow from right to left. We enumerate the relevant orbitals in
the occupation-number representation, with h+

Kσ (hKσ ) denot-
ing the creation (annihilation) operator of a hole on orbital
K with spin σ =⇑,⇓. In the left dot we consider the levels
|L1 ⇑〉 = h+

L1⇑|0〉 and |L1 ⇓〉 = h+
L1⇓|0〉, which have the same

orbital part, but opposite spins (σ = −1, blue, and σ = +1,
red, respectively). The second pair, |L2 ⇑〉 = h+

L2⇑|0〉 and
|L2 ⇓〉 = h+

L2⇓|0〉, are the two spin states associated with an
excited orbital. In the right dot we specify only one pair of
levels, |R ⇑〉 = h+

R⇑|0〉 and |R ⇓〉 = h+
R⇓|0〉, which are the two

spin states associated with the lowest-energy orbital. More-
over, with curved arrows we indicate the tunneling channels
of either spin, enabling the hole to tunnel from the source into
the right dot as well as from the left dot into the drain.

Utilizing the single-particle basis described above, we
model the double-dot system with the effective Hubbard
Hamiltonian of the following form:

Ĥeff =
∑

K

∑
σ

εKσ nKσ +
∑
K,K ′

∑
σ,σ ′

tKσ,K ′σ ′h+
Kσ hK ′σ ′

+
∑
K,K ′

∑
σ,σ ′

UKσ,K ′σ ′nKσ nK ′σ ′, (2)

where K = L1, L2, R, nKσ = h+
Kσ hKσ is the density operator

on the orbital |Kσ 〉, tKσ,K ′σ ′ are the single-particle hopping
matrix elements, and UKσ,K ′σ ′ describe the effective Coulomb
hole-hole interactions.

The onsite energies εKσ = εK (VL,VR, B) + 1
2 g∗μBBσ . The

first term accounts for their dependence on gate voltages and
the magnetic field (via the diamagnetic shift [35]) while the
second term accounts for the Zeeman energies. Additionally,
the energies εL1σ and εL2σ can be tuned with respect to εRσ

by the gate voltages. As shown in Fig. 2, we tune the voltage
VL, which influences both dots but the left dot more strongly.
As a result, by tuning VL we tune the detuning between dots
�ε = εL1⇓ − εR⇓. We convert the gate voltage into the on-
site energies using the measured lever arm parameter α =
50 μeV/mV, so that �ε = αVL.

The elements tKσ,K ′,σ ′ taken with σ = σ ′ represent the
spin-conserving tunneling. No off-diagonal matrix elements
connecting L1 and L2 states will be generated, as these
have been chosen as eigenstates of the left-dot potential (i.e.,
tL1σ,L2σ = 0). Of the remaining spin-conserving tunneling
elements, we define tL1⇓,R⇓ = tL1⇑,R⇑ = −tN , and tL2⇓,R⇓ =
tL2⇑,R⇑ = −t ′

N , with real and positive tN and t ′
N .

Let us now turn to the spin-flip elements. As evident from
the Hamiltonian Ĥ2D, these terms are a consequence of the
Dresselhaus SOI, expressed with the generalized momentum
in third power. This operator is of odd symmetry, and therefore
we may expect a strong connection between single-hole states
only if these states are sufficiently different in their orbital
part. Indeed, tL1⇓,L1⇑ = 0 because these two basis states have
the same orbital part. On the other hand, the element tL1⇓,L2⇑
is, in principle, finite. The impact of a similar intradot spin-flip
element has been observed in InAs wires confining electrons
[49]. However, in our system we find it to be negligible, as
evidenced by two-hole transport spectra considered in detail
below. The small magnitude of that element was also reported
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in the theoretical studies of self-assembled quantum dots
confining holes [25]. Thus, we consider the spin-flip matrix
elements of the form tL1⇑,R⇓ = tL1⇓,R⇑ = −itF and tL2⇑,R⇓ =
tL2⇓,R⇑ = −it ′

F , with real and positive tF and t ′
F .

The difference in the microscopic origin of tN and tF
leads to their different dependence on the magnetic field.
In our earlier studies, we have found that tN decreases with
the increase of B owing to the diamagnetic squeezing of
the single-dot states. On the other hand, the B-field depen-
dence of tF was shown to be nonmonotonic in systems with
weak tunnel coupling (i.e., larger dots) [23], but exhibited
a monotonic exponential decay in strongly coupled systems
(smaller dots) [9].

In our previous work [24], we have extensively studied the
single-hole system defined by the Hamiltonian (2) utilizing
the Landau-Zener-Stückelberg as well as the photon-assisted
tunneling spectroscopy and have shown that this model is
sufficient to describe the essential physics of our double dot
confining a single hole. Presently we will build upon this
model to treat the two-hole system.

B. Two-hole Hamiltonian

We consider only those two-hole configurations in which
one hole is placed in the left dot. Figures 3(b)–3(e) show

several such configurations. We begin with the charge con-
figuration (20), in which both holes occupy the left dot.
The singlet configuration |S(20)〉 = h+

L1,⇑h+
L1,⇓|0〉 is shown in

Fig. 3(b). This is the only configuration in which both holes
occupy the orbital L1 (with opposite spins). Owing to the
Pauli principle, both orbitals L1 and L2 are needed to con-
struct the doubly occupied triplets |T−(20)〉 = h+

L1,⇓h+
L2,⇓|0〉,

|T0(20)〉 = 1√
2
(h+

L1,⇑h+
L2,⇓ − h+

L2,⇑h+
L1,⇓)|0〉, and |T+(20)〉 =

h+
L1,⇑h+

L2,⇑|0〉. The polarized triplet |T−(20)〉 is shown
schematically in Fig. 3(c).

In the charge configuration (11), we take the sin-
glet |S(11)〉 = 1√

2
(h+

L1,⇑h+
R,⇓ + h+

R,⇑h+
L1,⇓)|0〉, shown schemat-

ically in Fig. 3(d). Note that the diagram represents only
the second configuration in this superposition. The un-
polarized triplet |T0(11)〉 = 1√

2
(h+

L1,⇑h+
R,⇓ − h+

R,⇑h+
L1,⇓)|0〉 is

similar to the singlet except for the phase factor. Finally,
the two polarized triplets are |T−(11)〉 = h+

L1,⇓h+
R,⇓|0〉 and

|T+(11)〉 = h+
L1,⇑h+

R,⇑|0〉, of which the former is shown in
Fig. 3(e).

We order the two-hole configurations as {|S(20)〉,
|T−(20)〉, |T0(20)〉, |T+(20)〉, |T−(11)〉, |S(11)〉, |T0(11)〉,
|T+(11)〉}. In this basis we arrive at the following two-hole
Hamiltonian matrix:

Ĥ2H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ES(20) 0 0 0 itF −√
2tN 0 −itF

0 ET (20) − EZ 0 0 −t ′
N

i√
2
t ′
F − i√

2
t ′
F 0

0 0 ET (20) 0 − i√
2
t ′
F 0 −t ′

N − i√
2
t ′
F

0 0 0 ET (20) + EZ 0 − i√
2
t ′
F − i√

2
t ′
F −t ′

N

−itF −t ′
N

i√
2
t ′
F 0 ET (11) − EZ 0 0 0

−√
2tN − i√

2
t ′
F 0 i√

2
t ′
F 0 ES(11) 0 0

0 i√
2
t ′
F −t ′

N
i√
2
t ′
F 0 0 ET (11) 0

itF 0 i√
2
t ′
F −t ′

N 0 0 0 ET (11) + EZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Here, ES(20) is the energy of the doubly occupied singlet
configuration |S(20)〉, while ET (20) is that of the unpo-
larized triplet |T0(20)〉. In terms of the elements of the
Hubbard Hamiltonian (2), these energies can be expressed as
ES(20) = 2εL1 + UL1⇑,L1⇓ and ET (20) = εL1 + εL2 + UL1⇑,L2⇓.
Here, εK = 1

2 (εK⇓ + εK⇑) is the orbital part of the single-hole
energy. The Coulomb interaction terms U will be obtained
by fitting to the experimental data. Here let us only mention
that the interaction term appearing in the triplet energy can be
decomposed as UL1⇑,L2⇓ = U D

L1⇑,L2⇓ + U X
L1⇑,L2⇓, i.e., the di-

rect Coulomb repulsion and the exchange terms, respectively.
As can be seen, the energy gap �EST = ET (20) − ES(20) =
εL2 − εL1 + UL1⇑,L2⇓ − UL1⇑,L1⇓ appears primarily due to the
fact that the triplet configuration is created by placing one
of the holes on an excited single-particle orbital L2 in the
left dot, while in the singlet configuration both holes occupy
the lowest single-particle orbital L1. The interaction terms
also contribute to this gap. The energies of the two polarized
triplets |T−(20)〉 and |T+(20)〉 are, respectively, lower and
higher than that of the unpolarized triplet by the Zeeman

energy EZ = g∗μBB. We stress that the singlet-triplet gap
�EST depends on the magnetic field. Moreover, there exists
a magnetic field BST, for which we find the singlet-triplet
transition in the ground state of the doubly occupied dot, from
the singlet to the polarized triplet |T−(20)〉 [35,50].

In the (11) charge configuration, the singlet and unpo-
larized triplet energies are, respectively, ES(11) = εL1 + εR +
U S

L1⇑,R⇓ and ET (11) = εL1 + εR + U T
L1⇑,R⇓. Assuming equal g∗

factors in each dot, these energies differ only by the interaction
terms U , and specifically by the different contributions of
the hole-hole Coulomb exchange. However, in our system the
resultant energy gap between the states |S(11)〉 and |T0(11)〉
is negligibly small, and in the following we treat these two
configurations as degenerate in energy, i.e., ES(11) = ET (11),
and assume U S

L1⇑,R⇓ = U T
L1⇑,R⇓ = 0. For the charge config-

uration (11) there are no level crossings, and the polarized
triplet |T−(11)〉 is the lowest-energy configuration for any
finite magnetic field owing to the Zeeman energy EZ .

The next step in our computational procedure is to di-
agonalize the above two-hole Hamiltonian to obtain the

235310-6



SPIN-ORBIT ENABLED QUANTUM TRANSPORT CHANNELS … PHYSICAL REVIEW B 103, 235310 (2021)

quantum-molecular two-hole states. We do this for each value
of the magnetic field and each gate voltage VL. As a result, we
obtain eight double-dot, two-hole quantum molecular states
|i〉, with i = 1, . . . , 8, expressed, in general, as linear combi-
nations of all eight two-hole basis states:

|i〉 =
8∑

j=1

A(i)
j | j〉, (4)

where the index j enumerates the basis states in the order
given above.

C. Calculation of the tunneling current

To calculate the tunneling current flow we utilize the den-
sity matrix formalism. We define the density matrix �̂ in the
basis of the eight two-hole quantum molecular states plus two
states for the single “spectator” hole, |L1 ⇑〉 and |L1 ⇓〉. The
dynamics of the system can be calculated by solving the usual
master equation

d

dt
�̂(t ) = i[�̂, Ĥ ] + 	̂(in)�̂ + 	̂(out)�̂ + 	̂(SF)�̂, (5)

where the second, third, and fourth terms on the right-hand
side describe the hole tunneling in, out, and spin-flip relax-
ation processes, respectively. In the molecular basis {|i〉} the
Hamiltonian is diagonal, which sets the commutator to zero
allowing us to track exclusively the time evolution of the
diagonal density matrix elements ni (i.e., level occupations).
The long-time (steady-state) behavior of our system is ob-
tained by setting d

dt �̂(t ) = 0. As a result, we only account
for the incoherent processes transferring the hole from and
to the leads (	̂(in) and 	̂(out), respectively) and the spin-flip
relaxation processes 	̂(SF). Details of the treatment of the
former two processes are given in Appendix A, while the
latter is described in Appendix B. The system of 10 algebraic
equations to be solved as a function of gate voltages and the
magnetic field is presented in Appendix C. Once the occupa-
tions of the two-hole molecular levels are obtained, the current
is computed as the total charge flux out of the double dot:

I = e
8∑

i=1

∑
σ1

∑
σ2

	
(out)
i (σ1, σ2)ni. (6)

IV. TRANSPORT SPECTRA OF TWO HOLES IN THE
BLOCKADED DIRECTION

Our theoretical description is formulated for the “block-
aded” direction of transport, i.e., one in which the sequence of
charge configurations is (10) → (11) → (20) → (10). Here,
the spectator hole is confined in the left dot. The transport
spectra as a function of the magnetic field recorded at this
configuration are shown in Figs. 2(c) and 2(e) for the voltage
region marked in Fig. 1(c) by the red square. In that case,
the voltage applied to the gate C was VC = −0.16 V. In this
section we will reproduce these spectra with our theoretical
model.

FIG. 4. Different realizations of tunneling resonances between
(20) (left in each panel) and (11) (right) charge configurations rele-
vant for the blockaded direction. A through F show level alignments
with increasing negative detuning. Red (blue) color corresponds to
singlet (triplet) levels.

A. Positions of current maxima

Formation of conduction channels across the double dot
occurs when any (11) configuration is close to resonance with
a (20) configuration, the former being connected to the source
and the latter to the drain. In Fig. 4 we show all possible
resonant level alignments relevant for the blockaded direction.
We choose to represent these alignments schematically for
the magnetic field B < BST, i.e., when the lowest-energy (20)
configuration is the singlet S(20), but all these resonances can
be traced to higher fields with appropriate changes in their or-
dering. Further, assuming a short spin-flip relaxation time TSF,
the tunneling will be mediated predominantly by the |T−(11)〉
configuration. First, we consider the |T−(11)〉-|S(20)〉 reso-
nance shown in Fig. 4 A. Transport maximum will be recorded
if ES(20) = ET −(11). With the detuning �ε = εL − εR, the
above condition is fulfilled for �εA = −UL1⇑,L1⇓ − EZ . The
doubly occupied configuration has to be detuned to compen-
sate for the charging energy, while the Zeeman contribution
results from the different spin polarization of the two con-
figurations. As a result, we expect a current maximum for a
negative detuning which shifts approximately linearly with
the magnetic field, with some nonlinearity arising from the
dependence of the charging energy on B. A similar analysis
for the |T−(11)〉-|T−(20)〉 resonance (Fig. 4 D) reveals the
detuning �εD = −UL1⇑,L1⇓ − �EST. Relative to the detun-
ing �εT −,S , this position will be shifted to more negative
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FIG. 5. (a) Differential current dI/dVL as a function of the gate voltage VL and the magnetic field at conditions identical to Fig. 2(e). Note
the identification of characteristic elements of the spectrum of (20) charge configuration. (b) Calculated positions of the transport maxima as
a function of detuning and the magnetic field. Labels correspond to the resonances shown in Fig. 4. (c), (d) Show, respectively, the tunneling
current I measured as a function of the gate voltage VL and the magnetic field at conditions identical to Fig. 2(c), and the current calculated
theoretically.

values by the singlet-triplet gap �EST, but will not be mod-
ified by the Zeeman term. The two remaining resonances
|T−(11)〉-|T0(20)〉 (Fig. 4 E) and |T−(11)〉-|T+(20)〉 (Fig. 4 F)
are expected, respectively, at �εE = �εD − EZ and �εF =
�εD − 2EZ . They are shifted from the resonance D by, re-
spectively, once and twice Zeeman energy, accounting for the
change of spin polarization by one and two. In the case of
fast spin relaxation we expect that only the |T−(11)〉 state will
be occupied, and the transport spectra will reveal the energy
structure of the doubly occupied charge configuration (20).

To connect our description to the experimental data, we
focus on the data set presented earlier in Fig. 2(e), shown
in Fig. 5(a) in higher resolution. We find that, as expected,
at zero magnetic field we see only two current maxima as
a function of the voltage VL, separated by �VL = 1.3 mV.
Using the lever arm α = 50 μeV/mV, we estimate this gap to
be 65 μeV. This is the (20) singlet-triplet gap �EST(B = 0).
Next, we extract the effective g factor g∗ = 1.35 by mea-
suring the detuning corresponding to the Zeeman energy
as marked in Fig. 5(a). Finally, we observe a crossing of
two transport maxima at the magnetic field BST = 0.72 T.
This is the signature of the singlet-triplet transition in the

(20) configuration. At this magnetic field we have EST(B =
BST) = g∗μBBST, as the Zeeman energy is equal to the singlet-
triplet gap. From that equation we obtain �EST(B = BST) =
56.25 μeV and, assuming a linear dependence of �EST on
the field, we obtain �EST(B) = (65.00–12.15B) μeV. The
only parameter left unaccounted for in our analysis is the
charging energy UL1⇑,L1⇓. Since this energy renormalizes all
resonance detunings equally, we are unable to extract it from
the experimental data and we will treat it as a reference en-
ergy, i.e., we will calibrate our detuning as �εA(B = 0) = 0.
Figure 5(b) shows the position of transport resonances as a
function of detuning and the magnetic field calculated with
our model. We recover a one-to-one correspondence with the
experimental result, including all characteristic points of the
spectrum.

Next we reproduce theoretically the amplitudes of the
transport peaks. Tracing the resonances A, D, and E from
Fig. 4, we find that the tunnel couplings between the relevant
(20) and (11) configurations are set up in the Hamiltonian
(3) by tunneling elements tF , t ′

N , and t ′
F . We also find that

the resonance in Fig. 4 F is not provided for in that matrix,
as the relevant off-diagonal matrix element is zero. This is
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due to the fact that such a coupling would require a double
spin flip [from configuration T−(11) to T+(20)] which is not
accounted for in our simple Hamiltonian. Nonetheless, in the
experimental data we find a very weak resonant peak at the
line Fig. 4 F, originating most likely from a higher-order
tunneling process, and to enable it in our model we introduce
an additional effective matrix element τ .

We have extracted the magnetic field evolution of the
elements tN and tF in our earlier work in the single-hole
regime [24]. By fitting to the experimental data, we obtained
tN (B) = t (0)

N exp(−B2/2B2
N ) with t (0)

N = 0.24 μeV and BN =
1.33 T for the fundamental spin-conserving element, and
tF (B) = (t (0)

F + t (2)
F B2) exp(−B2/B2

F ) with t (0)
F = 0.1 μeV,

t (2)
F = 0.27 μeV/T, and BF = 1.28 T. We were unable to

establish the parameters t ′
N (B) and t ′

F (B) in an independent
fashion, but expect that they will exhibit a similar general
behavior as the fundamental ones and be somewhat smaller.
For the present discussion we take model values t ′

N (B) =
0.75tN (B) and t ′

F (B) = 0.75tF (B). Moreover, the effective
double-flip tunneling element is taken as τ = t ′

F (B)/10.
To complete our theoretical model, we also require the

estimate of the spin-flip relaxation time TSF and the rates 	(in)

and 	(out) characterizing the tunnel coupling to the leads. The
spin-flip relaxation rate was measured by us in Ref. [21] where
we found TSF(B) = T (0)

SF B−5 with T (0)
SF = 2.5 μs T5. However,

we find that this functional relationship was obtained for a
single hole in a single lateral gated dot and in relatively high
magnetic fields and does not appear to be appropriate in our
low-field two-hole system. Indeed, if we assume such long
spin-flip times in our simulation, the contribution from excited
states features much more prominently than is actually seen
in experiment, as further discussed below. We find that our
simulations satisfactorily correspond to the experimental data
with a field-independent TSF = 500 ns. This large discrepancy
is due most likely to the fact that TSF is strongly renormalized
by the cotunneling effects brought about by the connection
to the leads [51]. This effect did not occur in our earlier
measurements [21], in which the quantum dot states were kept
away from the conduction window, which prevented the co-
tunneling from taking place. Further, we take 	(in) = 	(out) =
2 GHz, consistent with our previous work [24].

Results of our calculations are presented in Fig. 5(d) and
compared with the measured current shown in Fig. 5(c). The
experimental result is a zoomed-in version of the data set
from Fig. 2(c). In the theoretical plot, the region appearing in
black in the upper part of the image corresponds to the energy
blockade, i.e., the alignment of levels in which all energies
of the (20) configuration lie above the lowest-energy level
of the (11) configuration. In this case, the system would be
blockaded in the |T−(11)〉 state leading to the collapse of the
tunneling current. Our steady-state approximation describes
this accumulation of charge only partially, giving a gradual
decrease of the current as the detuning is made more positive.
To compensate for this, the energy blockade was introduced
manually by removing the current in the blockaded regions,
which results in a better agreement with experimental data.
Further, our calculation reproduces all features of the ex-
perimental data with one additional maximum, denoted by
the label C. This maximum corresponds to the alignment of
levels as in Fig. 4(c), in which an excited state T0(11) or

S(11) is in resonance with the state T−(20), and a similar
resonance appears between T+(11) and T0(20). On the other
hand, the ground state T−(11) is not aligned with any states
in the (20) configuration. In such case, with a sufficiently
short spin relaxation time TSF, we would again experience
an energy blockade, with charge accumulation on the level
T−(11). A residual tunneling current appears only because
our value of TSF is still slightly too large compared with the
experimental data, in which the feature C is not well resolved.
This enables the two resonances of excited states to mediate
the tunneling before the system can relax to the lowest level.
We study this additional maximum in our next data set. We
note that a similar nontrivial maximum should appear in the
alignment of levels in Fig. 4 B. We do not appear to detect
it, as in addition to the relaxation argument the tunneling in
this alignment would require a double spin flip, and therefore
would be characterized by the very small element τ .

B. Tunneling amplitudes

In this section, we will analyze quantitatively selected
tunneling elements and the tunnel coupling to the leads. In
Figs. 6(a) and 6(b) we show the result of another transport
spectroscopy measurement, this time with a slightly higher
interdot barrier (smaller coupling), set by the voltage VC =
−0.11 V. We fit the theoretical transport curves to the ex-
perimental data at several values of the magnetic field. For
example, in Fig. 6(c) we show the measured (symbols) and
fitted current (line) at B = 0.6 T, while a similar fit at B =
1.5 T is shown in Fig. 6(d). The fitting is performed with the
assumption of the couplings with both leads of 	 = 2 GHz,
however, all other model parameters are treated as variables
in the procedure. Overall, we achieve a very close fit with the
exception of the region of large negative detunings [left-hand
side of the two panels, or the lower region of Fig. 6(a)]. This
discrepancy between the theory and the experiment can be
traced to the incoherent off-resonant leakage current across
the device, which is not taken into account in the model. We
also note the signature of the resonance F in the left-hand side
of Fig. 6(d), which is not reflected in the theoretical curve as
we set the double spin-flip element τ = 0.

An important methodological remark concerns the treat-
ment of the maxima D corresponding to the highest peaks
in Figs. 6(c) and 6(d). Our theoretical model assumes ex-
plicitly the formation of fully coherent two-hole molecular
states of the form of Eq. (4) whenever different two-hole
configurations are in resonance. As evident from Fig. 4, such
resonances occur for each of the maxima A, D, and E. How-
ever, the alignment D is special in that the resonance occurs
for all available states of the (11) charge configurations. This
resonance, therefore, is not affected by the spin relaxation
process, and will result in a very strong current maximum.
In reality, this resonance is affected by the sample environ-
ment, and in particular by the charge noise. This charge noise
was shown to influence significantly the transport spectra in
Landau-Zener-Stückelberg-Majorana and the photon-assisted
tunneling experiments [24]. The charge oscillators present in
the vicinity of our system will introduce a randomly fluc-
tuating effective detuning between different configurations,
thereby disrupting the resonance condition and decreasing the
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FIG. 6. (a) Tunneling current and (b) the derivative dI/dVL as a function of the gate voltage VL and the magnetic field with the interdot gate
voltage VC = −0.11 V. Note the identification (letter labels) of characteristic elements of the spectrum of (20) charge configuration. The black
double arrow in (b) marks the zero-field singlet-triplet gap �EST(B = 0). (c), (d) The tunneling current as a function of the left gate voltage VL

extracted from (a) at the magnetic field B = 0.6 and 1.5 T, respectively: experimental data (symbols) and theoretical fits (lines). (e) Effective
g∗ factor (blue) and the spin-flip relaxation time TSF (orange) as a function of the magnetic field extracted by fitting the theoretical model. (f)
Fitted values of the spin-conserving (t ′

N , orange) and spin-flipping (tF , green, and t ′
F , blue) matrix elements as a function of the magnetic field.

Dashed lines are fits of model theoretical curves (see text).

effective current. These effects are not taken into account
in our model, therefore, in order to achieve correspondence
between the theoretical model and the experimental data, we
truncated the peaks D, as clearly seen in Fig. 6(c) and to a
lesser extent in Fig. 6(d), attempting to fit to the width of
the peak D rather than to its height. Without this truncation,
the theoretical values of the current close to the resonance
appear by a factor of about 5 too large. A similar issue does
not occur for the maxima A and E since in these align-
ments at least one level of the (11) configuration is not on
resonance and the tunneling process is naturally attenuated
by the spin-flip relaxation with the characteristic time TSF.
This is why both the width and the height of these maxima
are well reproduced by the theory. Note that the peak D in
our model is characterized by the spin-conserving tunneling

element, while the peaks A and E by the spin-flip tunneling
elements.

In Figs. 6(e) and 6(f) we show the parameters of the model
extracted in the fitting procedure as a function of the magnetic
field. In Fig. 6(e), we find an approximately constant value
of the effective g factor g∗ ≈ 1.56 (blue), while the spin-
flip relaxation time decreases with the increase of the field
as TSF = T (0)

SF + T (1)
SF B, with TSF(0) = 273.21 ns and T (1)

SF =
−64.98 ns/T (orange). As we already saw in Fig. 5, the
extracted value of TSF is smaller than that measured by us in
an isolated dot [21], particularly at lower magnetic fields, and
exhibits a different functional dependence on the field (linear
as opposed to B−5). In Fig. 6(f) we present the extracted
tunneling matrix elements. The spin-conserving element t ′

N
(orange) is extracted from the maximum D, the spin-flipping
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element tF (green) from the maximum A, and the spin-flipping
element t ′

F (blue) from the maximum E. We do not fit the
spin-conserving element tN , as in this alignment there is no
current maximum governed by it at nonzero fields; we will
come back to this element later on. In general, we find the
expected general decrease of all values with the increase of
the magnetic field, with the exception of tF (green), which
appears to be lowest for lower values of B. However, in the
region of B between 0.6 and 1.1 T, the peak A is obscured
by the maximum D, making a reliable fitting very difficult.
We expect that the nonmonotonic behavior of tF is there-
fore an artifact and approximate a field-independent value of
tF = 0.75 μeV (dashed green line). The model fits to t ′

N and
t ′
F (orange and blue dashed lines, respectively) are postulated

in analogy to the relationships taken in the previous section.
We find a very good approximation of both progressions with
the following model formulas: t ′

N = t ′(0)
N exp(−B2/2B′2

N ), with
t ′(0)
N = 1.78 μeV and B′

N = 1.45 T for the spin-conserving
element, and t ′

F = (t ′(0)
F + t ′(2)

F B2) exp(−B2/B′2
F ) with t ′(0)

F =
2.64 μeV, t ′(2)

F = 4.12 μeV/T2, and B′
F = 1.24 T for the spin-

flip element. We note that the overlap of maxima D and E at
magnetic fields lower than 0.5 T prevents us from extracting
reliable values for all model parameters.

Next, we generate the theoretical plot reproducing the ex-
perimental data set shown in Fig. 6(a). From the differential
current in Fig. 6(b) we find the singlet-triplet transition in this
experiment at the field BST = 0.93 T. Moreover, the singlet-
triplet gap appears to change somewhat nonlinearly with the
magnetic field, which we approximate by a linear dependence
of the T−(11)-S(20) resonance A, as shown in Fig. 6(b) with
the green line. Taking this dependence, we extract �EST(B =
0) = 99.5 μeV and �EST(B = BST) = 80.8 μeV and arrive at
the relationship �EST(B) = (99.5–20.1B) μeV. Also, we ex-
trapolate the extracted dependencies of the model parameters
to the field values below 0.5 T and assume the unfitted matrix
element tN = t ′

N . The simulation result is shown in Fig. 7(a) on
the same color scale as the experimental data in Fig. 6(a). We
find that, aside from the linearized magnetic-field dependence
of the positions of the resonant tunneling peaks, all features
appearing in the experimental data are well reproduced by our
theoretical model.

C. Signatures of level degeneracies (hot and cold spots)

Now we focus on two current special points, marked in
Fig. 7(a) as C and ST. The hot spot C is found along the reso-
nance A (see Fig. 4 for the generic alignment of levels) and is
clearly visible in Fig. 7(b) showing the measured current ex-
tracted along that line. This feature is detected at the magnetic
field B ≈ 0.5 T, at which the alignment A coincides with the
alignment C, as shown in Fig. 7(c). Here, the Zeeman energy
is equal to exactly half of the singlet-triplet gap �EST, which
is measured between the configurations S(20) and T0(20). At
the magnetic fields away from that point, in either A or C
there are always levels of the (11) configuration which are not
resonant with any of the (20) levels. As a result, the tunneling
current is limited by the spin relaxation process. However,
when the two alignments coincide, all (11) levels are aligned
with their counterparts in the (20) configuration, and therefore

FIG. 7. (a) Calculated tunneling current as a function of the de-
tuning and the magnetic field, with fitted model parameters following
the lines in Figs. 6(e) and 6(f). (b) Experimental amplitude of the cur-
rent along the resonance A extracted from Fig. 6(a) as a function of
the magnetic field; the hot spot C occurs at B ≈ 0.5 T. (c) Alignment
of levels corresponding to the hot spot C. The green arrow shows the
current direction. (d) The tunneling current on resonance D measured
in the experiment [Fig. 6(a)]; the point marked as ST corresponds
to the singlet-triplet transition in the (20) charge configuration. (e)
Alignment of levels corresponding to the singlet-triplet transition ST.
The green arrow shows the current direction.

the current is only limited by the magnitude of tunneling
elements, providing for a much more efficient tunneling. The
second hot spot ST appears as a shoulder on the magnetic field
dependence of the current measured along the resonance D,
as shown in Fig. 7(d). As is evident from the extracted field
dependencies of the tunneling elements shown in Fig. 6(f), we
would expect a smooth decay of the current along that line,
as it is governed by the spin-conserving matrix element t ′

N .
However, in the vicinity of the singlet-triplet transition in the
(20) configuration we detect an enhancement in the current.
This enhancement is brought about by another complete res-
onance of all (11) levels, as shown schematically in Fig. 7(e).
Compared to the alignment of levels for the resonance D at an
arbitrary field (see Fig. 4 D), we see that at B = BST the singlet
(20) level (red) and the (20) triplet T− (blue) together are in
resonance with the (11) triplet T−. This opens an additional
conducting channel, which is absent at arbitrary fields and
leads to the observed enhancement of the current. Both hot
spots are reproduced in the model calculations.
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FIG. 8. Current through the device (a) and the current derivative
dI/dVL (b) as a function of the magnetic field and the left gate
voltage VL measured in the blockaded direction The interdot barrier is
set up by applying the voltage VC = −0.09 V. The transport spectrum
is measured in the region of gate voltages within the green rectangle
of Fig. 1(c), i.e., in the direction opposite to that in Figs. 5 and 6.

D. Equivalence of transport spectra for opposite
tunneling direction

To conclude the discussion of transport in the blockaded
direction, in Figs. 8(a) and 8(b) we show, respectively, the
current and the current derivative dI/dVL recorded at the
region of voltages within the green rectangle of Fig. 1(c). In
this region, the transport occurs in the sequence of charge con-
figurations (01) → (11) → (02) → (01), i.e., in the mirror
opposite of the alignment shown in Fig. 2(a). The cru-
cial difference here is that the “spectator” hole now resides
in the right-hand dot and the source-drain bias VSD is re-
versed. Therefore, by adjusting the left gate voltage VL we
are influencing the energies of the states of the (11) charge
configuration more than we do those of the (20) charge con-
figurations. As a result, in this alignment the spectra have to
be recorded by adjusting the voltage VL to the less negative
values, as opposed to Figs. 5 and 6, and the characteristic
transport peaks appear inverted relative to the ones discussed
earlier. This is exactly what we observe in Fig. 8. With that
in mind, we clearly identify the relevant resonance lines: A,
D, E, and F, with the singlet-triplet transition in the (02)
configuration occurring at the magnetic field BST ≈ 1.0 T. We
also recover a faint signature of the hot spot C. We find that the
transport spectra recorded in the blockaded direction are qual-

itatively the same irrespective of the variant of the tunneling
sequence, i.e., they do not depend upon whether the specta-
tor hole resides in the left- or the right-hand dot. Therefore,
the tunneling peaks analyzed in this section result from the
electronic properties of the two-hole double-dot rather than
from the details of hole-lead tunneling, and are accurately and
quantitatively reproduced by our theoretical model.

V. TRANSPORT SPECTRA OF TWO HOLES IN THE
NONBLOCKADED DIRECTION

In this section, we focus on the transport spectra in the
“nonblockaded” or conduction direction, i.e., the alignment
of voltages in which the sequence of charge configurations is
(10) → (20) → (11) → (10). Just as it was in the discussion
of the blockaded direction (Secs. IV A–IV C), the specta-
tor hole is confined in the left dot. However, now the first
tunneling event brings an additional hole from the left lead
into the left dot, as depicted in Fig. 2(b). We note that we
remain in the same region of the charging diagram, marked
in Fig. 1(c) with the red rectangle, the only difference being
the direction of the source-drain voltage VSD. The theoretical
model describing transport in the conduction direction differs
from the one described above only in one aspect, i.e., the
coupling to leads. Since the source and drain now correspond
to the left and right lead, respectively, we need to interchange
the couplings 	

(in)
i and 	

(out)
i in Eqs. (A3)–(A8). Owing to the

formulation of our model in terms of molecular orbitals, the
entire density matrix formalism remains unchanged, including
the expression for the total current, Eq. (6), albeit with the new
definition of the rate 	

(out)
i . The transport spectra recorded in

the conduction direction were already shown in Fig. 2(d) for
the current, and Fig. 2(f) for the current derivative. We will
now discuss them in detail.

A. Positions of current maxima

In contrast to the blockaded direction, here we use the
levels of the (20) charge configuration as a spectroscopic tool
to map out the energy levels of the (11) configuration. To
this end, we will now tune the left gate voltage VL towards
more positive values. This shifts the (20) energies up relative
to those of the (11) configuration.

We first perform a qualitative analysis assuming the fast
spin-flip relaxation, i.e., we will assume that only the lowest-
energy (20) level is occupied. As demonstrated in the previous
section, the doubly occupied system undergoes the singlet-
triplet transition at the magnetic field B = BST. Therefore, it is
necessary to develop our analysis separately for the magnetic
fields smaller and larger than BST.

Let us first focus on the region B < BST, shown in the
left-hand column of Fig. 9. Here the lowest-energy (20) con-
figuration is the singlet S(20), and its energy will now be
compared to those of the (11) configurations. In Fig. 9 A we
show the fundamental resonance, S(20)-T−(11), correspond-
ing to precisely the same level alignment as that described in
Fig. 4 A for the blockaded direction. As discussed before,
the transport maximum for this resonance will occur for the
detuning �εA = −EZ . As we shift the (20) energies higher,
we encounter the second resonance S(20)-S(11), shown in
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FIG. 9. Different realizations of tunneling resonances between
(20) (left in each panel) and (11) (right) charge configurations rel-
evant for the conduction direction. In the left-hand (right-hand)
column we show the alignment for low B < BST (high, B > BST)
magnetic field. Panels from top to bottom show level alignments with
increasing positive detuning. Red (blue) color corresponds to singlet
(triplet) levels.

Fig. 9 G. Note that only the resonance of the two singlets
produces tunneling, as the tunnel coupling between S(20) and
T0(11) is zero. Since this resonance does not involve a spin
flip, its position in the spectra will be independent of the
magnetic field, and will correspond to the detuning �εG = 0.
The third strong resonance will connect S(20) with T+(11), as
shown in Fig. 9 H. This spin-flip resonance will correspond
to the detuning �εH = +EZ . As we can see, at low magnetic
fields we expect three main current maxima, separated from
one another by the Zeeman gap.

Let us now move on to the high magnetic fields B > BST

(right-hand column of Fig. 9). Here, the lowest-energy (20)
configuration is the polarized triplet T−(20). The first, funda-
mental resonance will occur when this level is aligned with
the polarized triplet T−(11), as shown in Fig. 9 D. This align-
ment of levels has already appeared in the analysis and is
shown in Fig. 4 D, although for much lower magnetic fields.
We find this resonance at the detuning �εD = −�EST(B).
Since the singlet-triplet gap �EST(B) depends somewhat on
the magnetic field due to the diamagnetic effect, we expect
that the position of this current maximum will be weakly
dependent on the field. Moreover, since here we deal with
alignment of all three triplets, we expect that the amplitude
of this resonance will be high. As the detuning is made more
positive, we find the next resonance at the alignment shown in

Fig. 9 J. Here the energy matching occurs between T−(20) and
S(11) and between T0(20) and T+(11). We therefore expect a
current maximum at the detuning �εJ = −�EST(B) + EZ . As
we align only two triplet levels, we expect that the amplitude
of this maximum will be smaller than that of the alignment D.
Finally, the third resonance occurs at the alignment of levels
T−(20) and T+(11), as shown in Fig. 9 K. This alignment
corresponds to the detuning �εK = −�EST(B) + 2EZ . We
note that here we match the energies of only one pair of
triplets, and the transition itself involves a double spin flip,
which allows us to expect the current maximum with the
lowest peak amplitude. To summarize, in the region of high
magnetic fields B > BST we also expect three current peaks
separated from one another by the Zeeman gap. Unlike in
the low magnetic case, however, their positions will also be
influenced by the magnetic-field-dependent singlet-triplet gap
�EST.

Figure 10(a) shows the current derivative dI/dVL as a
function of the gate voltage VL and the magnetic field in the
conduction direction for the tunnel barrier defined by the volt-
age VC = −0.07 V. In Fig. 10(b) we reproduce the positions
of transport peaks with our model and identify each reso-
nance with the label from Fig. 9. We find that the transition
from the low-field to the high-field region, occurring at the
critical field BST ≈ 1 T, is marked by characteristic kinks in
the resonances. By tracking any gap between two adjacent
maxima we can establish the effective g factor. Indeed, at
B = BST we read the gaps to be EZ (BST) = 65.3 μeV, giving
g∗ = 1.13. Note that the value of g∗ is different than that found
in the opposite tunneling direction. This is in line with the
dependence of g∗ on gate voltages reported by us recently
[9]. Moreover, at the critical magnetic field the Zeeman gap is
equal to the singlet-triplet gap �EST. By tracing the slope of
the line D we recover directly the magnetic field dependence
of the singlet-triplet gap, which in the linear approximation is
�EST(B) = (112.9–47.5B) μeV. These two parameters suf-
fice to reproduce the entire transport spectrum. We note that
the low-field resonance H continues into the high-field regime,
even though the energy matching takes place between excited
states [singlet S(20) and triplet T+(11)] of both charge config-
urations. This indicates that in the (20) charge configuration
both the ground and excited states have nonzero occupation
probabilities and can create resonances detected as transport
peaks.

In a more precise analysis, we reproduce the measure-
ment of the tunneling current, shown in Fig. 10(c), with the
full density-matrix simulation, whose results are shown in
Fig. 10(d). Here we use model (i.e., unfitted) tunneling matrix
elements identical to those given in Sec. IV A. The only
exception is made for the spin-flip relaxation time, which
in this data set is taken to be TSF = 100 ns for all magnetic
fields. The most striking feature in the theoretical plot is
the difference in the overall current amplitudes between the
low- and high-field regions, seen as the difference in the
background shade between B < 1 T and B > 1 T. This is a
direct consequence of the change of the ground-state con-
figuration in the (20) charge state. Indeed, for low fields the
relaxation occurs from all triplets into the singlet S(20). Since
in our model the relaxation can happen only via a spin flip,
such process will not connect the unpolarized triplet T0(20)

235310-13



ALEX BOGAN et al. PHYSICAL REVIEW B 103, 235310 (2021)

FIG. 10. (a) Differential current dI/dVL as a function of the gate voltage VL and the magnetic field in the conduction direction for the
tunnel barrier defined by the voltage VC = −0.07 V. Note the identification of characteristic elements of the spectrum, i.e., the magnetic field
BST corresponding to the singlet-triplet transition and the Zeeman energy EZ . (b) Calculated positions of the transport maxima as a function
of detuning and the magnetic field. Labels correspond to the resonances shown in Fig. 9. (c), (d) Show, respectively, the tunneling current
measured as a function of the gate voltage VL and the magnetic field and the corresponding theoretical simulation.

to S(20), as here the spin projection does not change. The
relaxation can still take place in an indirect fashion, i.e., by
T0(20) relaxing to T−(20) and that to S(20). Such a slower
relaxation channel becomes important with a sizable starting
occupation of T0(20). On the other hand, in the high-field
region the lowest-energy configuration is T−(20) and therefore
both spin-unpolarized configurations S(20) and T0(20) are
directly connected to it via the spin-flip relaxation channel.
The double-flip relaxation is required from the highest-energy
configuration T+(20) to T−(20), but this indirect process can
be realized by two pathways, i.e., via either spin-unpolarized
configuration, and therefore is also fast.

Second, apart from all main maxima, we still track the
secondary features: the resonances G and H continuing to the
high-field regime, and the resonance J visible already in the
low-field regime. Not all these features are apparent in the
experimental data. In the next section we will present a more
detailed fitting of the tunneling matrix elements, resulting
in a closer correspondence of experimental and theoretical
spectra.

B. Tunneling amplitudes

For the quantitative analysis of the current spectra we take
the transport measurement performed at the interdot gate volt-
age VC = −0.09 V. Figure 11(a) shows the measured current,
and Fig. 11(b) the differential current dI/dVL as a function of
the voltage VL and the magnetic field. We perform the genetic

fitting of all tunneling matrix elements, including the double-
spin flip element τ , assuming the coupling to the leads to be
	 = 2 GHz. Figures 11(c) and 11(d) show the experimental
data (symbols) and the theoretical fit (lines), respectively, for
the magnetic field B = 0.6 and 1.5 T. In contrast to the data
in the blockaded direction, shown in Fig. 6, here we deal
with a higher interdot barrier, resulting in a smaller current
overall. In consequence, the charge leakage visible at large
gate voltages VL contributes more to the spectra. Nonetheless,
the positions and widths of transport peaks could be fitted
satisfactorily. The maximum D in the high-field regime is
treated in the same way as in the blockaded direction, i.e.,
we truncate it manually to account for the decoherence in our
system.

In Fig. 12 we show the model parameters extracted in
the fitting procedure as a function of the magnetic field.
As shown in Fig. 12(a), the extracted g∗ factor is magnetic
field independent, with the average value of g∗ = 1.42. The
spin-flip time TSF, on the other hand, is field independent
only in the low-field section, with an approximate value of
TSF = 207.1 ns. For the magnetic fields B > BST the spin-flip
time decreases linearly with the field, with the fitted functional
relationship of TSF(B) = (545.0–148.9B) ns. We note that at
the singlet-triplet transition, occurring at the magnetic field
BST = 0.95 T, the relaxation time appears to jump discontin-
uously. In our model this discontinuity appears as a result
of the change of the ground state in the (20) configuration
and the concomitant rearrangement of relaxation pathways, as
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FIG. 11. (a) Tunneling current and (b) the derivative dI/dVL as a function of the gate voltage VL and the magnetic field with the interdot
gate voltage VC = −0.09 V. (c), (d) The tunneling current as a function of the left gate voltage VL extracted from (a) at the magnetic field
B = 0.6 and 1.5 T, respectively; experimental data (symbols) and theoretical fits (lines).

FIG. 12. Results of fitting of model parameters in the conduction
direction as a function of the magnetic field. (a) The effective g∗

factor (black) and the spin-flip relaxation time TSF (red). (b) The
spin-conserving matrix elements tN (black) and t ′

N (red). (c) The spin-
flip matrix element tF . (d) The secondary spin-flip matrix element t ′

F

(black) and the double-spin flip element τ (red). In (b)–(d), the lines
are guides to the eye.

discussed in the previous section. In fitting we also recover the
magnetic-field dependence of the singlet-triplet gap in the (20)
charge configuration (not shown). This gap changes approxi-
mately linearly according to �EST(B) = (126.9–44.7B) μeV.

Figure 12 also shows the tunneling matrix elements ex-
tracted in fitting. In Fig. 12(b) we show the extracted
magnetic-field dependence of the spin-conserving elements tN
(black) and t ′

N (red); Fig. 12(c) shows the spin-flip element
tF , and Fig. 12(d) shows the spin-flip element t ′

F and the
double-spin-flip element τ . In contrast to the results obtained
in the blockaded direction (Fig. 6), here the elements do not
present simple exponential dependencies on the field. In gen-
eral, all elements do appear to diminish at higher magnetic
fields. However, the elements tN and tF appear to change
discontinuously across the singlet-triplet transition at BST.
This discontinuity is again traced to the change of relaxation
pathways, perturbing the timing of the tunneling processes.
Moreover, the large scatter in fitted elements is most likely
due to the level of noise evident in the experimental data of
Fig. 11(a). This is why we choose not to fit these magnetic-
field dependencies with any definite model function, but use
these data point by point in our calculations. The result of
our model calculations based on the extracted parameters
is presented in Fig. 13(a). As we can see, the calculation
with fitted parameters faithfully reproduces the experimental
spectra.

C. Signatures of level degeneracies (hot and cold spots)

Let us now analyze the current maximum corresponding to
the most negative detuning, i.e., along the resonance A in low
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FIG. 13. (a) Calculated tunneling current as a function of the detuning and the magnetic field, with fitted model parameters as in Fig. 12.
(b) The tunneling current extracted from the experimental data as in Fig. 11(a) along the lowest maximum (A at low fields and D at higher
fields). (c) Alignment of levels corresponding to the maximum in tunneling current in (b). The green arrow shows the current direction.
(d) Alignment of levels corresponding to the narrow minimum in (b). The green arrow shows the current direction.

fields, and along the resonance D in high fields. The current
amplitudes corresponding to these resonances, extracted from
the experimental data of Fig. 11(a), are shown in Fig. 13(b).
We note that we have already made a similar analysis for the
blockaded direction, with the corresponding results shown in
Fig. 7. Here we focus on two features: the peak at the magnetic
field B ≈ 0.53 T and the sharp minimum at B = 0.95 T.

The alignment of levels corresponding to the current peak
is shown in Fig. 13(c). This alignment appears at the magnetic
field for which the Zeeman energy EZ is equal to half of the
singlet-triplet gap �EST in the (20) charge configuration. At
this field, three levels S(20), T−(20), and T0(20) are aligned,
respectively, with T−(11), S(11) degenerate with T0(11), and
T+(11). The only (20) level not on resonance with any of the
(11) levels is T+(20). In such an alignment we deal with three
conduction channels, and, with the exception of T+(20), we
do not expect any charge accumulation to occur. The highest
(20) level is efficiently emptied to lower levels by the spin-flip
relaxation along two channels: to S(20) and T0(20). This is
in contrast to alignments at different fields, shown generically
in Fig. 9, where only one (20) level is in resonance with one
of the (11) levels, resulting in a more substantial charge ac-
cumulation on other (20) levels and more complex relaxation
pathways. As a result, we observe a strong peak in the current,
similarly to the maximum discussed in Figs. 7(b) and 7(c).

The current minimum, seen in Fig. 13(b) at BST = 0.95 T,
on the other hand, does not match any feature in the blockaded
direction. On the contrary, in Fig. 7(d) at the singlet-triplet
transition we observe a pronounced high-current shoulder.

However, in both the blockaded and conduction directions the
level alignment is the same, as shown in Figs. 7(e) and 13(d),
respectively. To understand this difference, we write a reduced
Hamiltonian at B = BST, involving only three resonant levels:
S(20), T−(20), and T−(11), in that order. Extracting these
three basis states from the general Hamiltonian (3), we have

Ĥ2H (B = BST) =
⎡
⎣ E0 0 itF

0 E0 −t ′
N

−itF −t ′
N E0

⎤
⎦. (7)

Since the three levels are on resonance, at this magnetic field
E0 = ES(20) = ET (20) − EZ = ET (11) − EZ . One of the eigen-
states of this Hamiltonian has the form

|B〉 = 1√
t2
F + (t ′

N )2
[t ′

N |S(20)〉 − itF |T−(20)〉], (8)

with the eigenenergy E0. This state is composed only of the
levels of the (20) charge configuration. We stress that both the
spin-conserving and spin-flip tunneling processes contribute
to its formation. The two other eigenstates are superpositions
of levels both of (20) and (11) type. Let us now analyze
the tunnel connection of the state |B〉 to the leads. In the
blockaded direction, |B〉 is not connected directly to the source
since it does not contain admixtures of the (11) charge con-
figurations. The occupation of this level may occur only by
spin-flip relaxation, whereupon |B〉 is efficiently emptied into
the drain owing to its good connection with that lead via
the (20) levels. The two remaining eigenstates are connected
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FIG. 14. Current (a) and the current derivative dI/dVL (b) as a
function of the magnetic field and the left gate voltage VL measured
in the conduction direction The interdot barrier height is defined by
the voltage VC = −0.09 V. The transport spectrum is measured in the
region of gate voltages within the green rectangle of Fig. 1(c), i.e., in
the direction opposite to that in Figs. 10 and 11.

both to the source and the drain, and therefore form efficient
transport channels. As a result, no charge accumulation occurs
on any levels shown in Fig. 7(e), and this multiple resonance
is seen as a maximum in the current seen in Fig. 7(d).

On the other hand, in the conduction direction the state |B〉
is filled from the source owing to contributions of the (20)
configuration, but cannot empty directly into the drain, as it
lacks admixtures of the (11) charge configuration. As a result,
|B〉 is now a blocking eigenstate. Even though at B = BST all
available levels are in resonance, the overall current will be
suppressed and the measured amplitude will be determined
by the spin-flip relaxation time. We note that the state |B〉
is an exact eigenstate only at B = BST. As we depart from
that magnetic field, the eigenstate of the Hamiltonian (7)
corresponding to |B〉 will acquire an increasing contribution
of the (11) charge configuration, and therefore will become an
increasingly efficient transport channel, which is seen as an
increase of the current both below and above BST.

D. Equivalence of transport spectra for opposite
tunneling direction

To confirm our analysis, in Figs. 14(a) and 14(b) we
show, respectively, the current and the current derivative

dI/dVL recorded in the conducting direction at the region of
voltages within the green rectangle of Fig. 1(c). As discussed
already for the blockaded direction, here the spectator hole
resides in the right-hand dot and the source-drain voltage
VSD is reversed relative to the alignment discussed above.
Since now changing the voltage VL influences the (11) charge
configurations more than it does the (02) configurations, the
series of resonances occurs as we tune VL towards the more
negative values, and the pattern of transport peaks is reversed
compared with Fig. 11(a). Informed by that, we identify all
principal transport features and label them as in Fig. 14(b).
The characteristic kink in the spectra, corresponding to the
singlet-triplet transition in the (20) configuration, is seen at
B ≈ 0.9 T.

VI. CONCLUSIONS

In conclusion, we have reported and analyzed experi-
mentally and theoretically the magnetotransport spectra of
two holes in a gated lateral GaAs double-dot system. The
system was probed with transport spectroscopy in the high
source-drain voltage regime. Owing to the strong spin-orbit
interaction, the measured current revealed a series of maxima
corresponding to both spin-conserving and spin-flip reso-
nances, and therefore allowed to map out the complete energy
spectra of the system of two confined holes. Depending on
the tunneling direction, defined by the sign of the source-drain
voltage, we analyzed the singlet and triplet states of the doubly
occupied (20) charge configuration (the blockaded direction)
as well as the singly occupied (11) configuration (the conduc-
tion direction) as a function of the magnetic field.

In the blockaded direction we did not find the hole current
suppression accompanying the Pauli spin blockade observed
in gated devices confining electrons. Instead, we found en-
hancements of tunneling current at the gate voltages and
magnetic field for which multiple levels were aligned, i.e.,
on energy resonance. In the conduction direction one of such
alignments resulted in a strong suppression of the current
due to the formation of a strongly blockaded excited state in
the spectra. This state was found to be a consequence of an
interplay of the spin-conserving and spin-flip tunneling.

We have formulated a detailed theoretical model, account-
ing for both spin-conserving and spin-flip tunneling processes
as well as the tunnel connection to the leads and the spin-flip
relaxation process. We demonstrated that this model allows
for quantitative fitting to experimental tunneling current spec-
tra as a function of interdot detuning and the magnetic field.
The fitting allowed to extract the dependencies of the tunnel-
ing matrix elements on the magnetic field.
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APPENDIX A: TUNNEL COUPLING WITH THE LEADS

The tunneling of the hole across our system consists of two
phases: (i) tunneling of a single hole from the source (the
right-hand lead) into the double dot already containing one
spectator hole, and (ii) tunneling of the single hole into the
drain (the left-hand lead) leaving the spectator hole behind. In
all these processes we assume that the spectator hole occupies
one of the levels |L1 ⇓〉 or |L1 ⇑〉. In principle, the tunneling
of the second hole may leave behind the spectator hole in
the state |L2 ⇓〉 or |L2 ⇑〉. However, this would necessitate
a transfer of energy of order of εL2 − εL1 from the leads. We
assume that our choice of VSD does not allow this.

The quantitative description is cast in the language of el-
ementary tunneling rates, which, in terms of nonhybridized
single-hole levels, are denoted as 	(in) and 	(out). The former
parameter quantifies the tunneling from the source lead into
the right dot, depicted in Figs. 3(d) and 3(e) by the curved
arrows, respectively, red for the spin up and blue for the spin
down. The latter parameter is visualized in Figs. 3(b) and 3(c)
by the corresponding arrows showing the tunneling from the
left dot into the drain. We assume that the drain is coupled
equally to the states |L1σ 〉 and |L2σ 〉.

We now calculate the tunneling rates involving the hy-
bridized two-hole states |i〉 (4) using the procedure outlined
in Ref. [51]. We define the hole spin-, state-, and parameter-
dependent tunneling rates

	
(in)
i (σ1, σ2) = 	(in)

8∑
j=1

∣∣A(i)
j

∣∣2∣∣〈i|h+
Rσ1

h+
L1σ2

|0〉∣∣2
,

(A1)

	
(out)
i (σ1, σ2) = 	(out)

8∑
j=1

L2∑
K=L1

∣∣A(i)
j

∣∣2∣∣〈0|hL1σ2 hKσ1 |i〉
∣∣2

,

(A2)

where σ1 denotes the spin of the hole which tunnels into or
out of the system, while σ2 denotes the spin of the resident
spectator hole. For the two-hole state |i〉 to contribute to the
total current, both of these rates have to be nonzero, although
not necessarily for the same choice of σ1 and σ2, i.e., we
will consider both the spin-conserving and spin-flip conduc-
tion channels. Considering all combinations of the two spin
indices, we arrive at the following tunneling rates:

	
(in)
i (⇓,⇓) = 	(in)

∣∣A(i)
5

∣∣2
, (A3)

	
(in)
i (⇑,⇓) = 	

(in)
i (⇓,⇑) = 	(in)

2

(∣∣A(i)
6

∣∣2 + ∣∣A(i)
7

∣∣2)
,

(A4)

	
(in)
i (⇑,⇑) = 	(in)

∣∣A(i)
8

∣∣2
, (A5)

	
(out)
i (⇓,⇓) = 	(out)

∣∣A(i)
2

∣∣2
, (A6)

	
(out)
i (⇑,⇓) = 	

(out)
i (⇓,⇑) = 	(out)

2

(
2
∣∣A(i)

1

∣∣2 + ∣∣A(i)
3

∣∣2)
,

(A7)

	
(out)
i (⇑,⇑) = 	(out)

∣∣A(i)
4

∣∣2
. (A8)

The asymmetry of the 	
(in)
i (⇑,⇓) and 	

(out)
i (⇑,⇓) is under-

stood from Fig. 3: there is only one way to add a hole with
the spin opposite to that of the resident particle [one arrow in
Fig. 3(d)], but there are two ways of removing one hole from
the |S(20)〉 configuration [two arrows in Fig. 3(b)].

APPENDIX B: SPIN-FLIP RELAXATION

For the single-dot system, the spin-flip relaxation is de-
scribed in terms of the spin relaxation time T1 measured by
us previously [21]. For example, with the spectator hole, any
charge density corresponding to the occupation of the |L ⇑〉
state will decay to |L ⇓〉 at the rate 	SF = 1/T1. In the more
general treatment involving two holes, we assume that the
spin-flip process does not lead to the redistribution of charge,
i.e., will not connect the (20) configurations with the (11)
ones. Second, we account for the phonon-mediated Dressel-
haus spin-orbit interaction being the physical mechanism of
the spin relaxation [21]. This mechanism connects configura-
tions differing in their spin projections by one, i.e., the two
polarized triplets T+ and T− are both connected to the singlet
and unpolarized triplet T0, but no other relaxation pathways
are accounted for. For simplicity, all pathways possible in our
system are characterized by the same relaxation rate 	SF.

Rotation to the two-hole molecular basis, also accounting
for the incoherent character of the relaxation process, leads
to the following generalized relaxation rates between the two-
hole molecular states |i〉 and | j〉:

	
(SF)
i j = 1

T1

[(∣∣A(i)
1

∣∣2 + ∣∣A(i)
3

∣∣2)(∣∣A( j)
2

∣∣2 + ∣∣A( j)
4

∣∣2)
+ (∣∣A( j)

1

∣∣2 + ∣∣A( j)
3

∣∣2)(∣∣A(i)
2

∣∣2 + ∣∣A(i)
4

∣∣2)
+ (∣∣A(i)

6

∣∣2 + ∣∣A(i)
7

∣∣2)(∣∣A( j)
5

∣∣2 + ∣∣A( j)
8

∣∣2)
+ (∣∣A( j)

6

∣∣2 + ∣∣A( j)
7

∣∣2)(∣∣A(i)
5

∣∣2 + ∣∣A(i)
8

∣∣2)]
. (B1)

The redistribution of occupation will take place only from the
higher-energy towards the lower-energy molecular state.

APPENDIX C: STEADY-STATE EQUATIONS

The equations for the elements ni corresponding to each of
the eight two-hole quantum molecular states are

0 = (
	

(in)
i (⇓,⇓) + 	

(in)
i (⇑,⇓)

)
nL⇓ + (

	
(in)
i (⇓,⇑)

+	
(in)
i (⇑,⇑)

)
nL⇑ −

∑
σ1

∑
σ2

	
(out)
i (σ1, σ2)ni

+
8∑

k=i+1

	
(SF)
ki nk −

(
i−1∑
j=1

	
(SF)
i j

)
ni, (C1)
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with the first two terms describing the hole tunneling from
the source, the third term treating the hole tunneling into the

drain, and the last two accounting for the spin-flip relaxation.
For the single-hole states we have

0 = −
8∑

i=1

(
	

(in)
i (⇓,⇓) + 	

(in)
i (⇑,⇓)

)
nL⇓ +

8∑
i=1

(
	

(out)
i (⇓,⇓) + 	

(out)
i (⇑,⇓)

)
ni + nL⇑

T1
, (C2)

0 = −
8∑

i=1

(
	

(in)
i (⇓,⇑) + 	

(in)
i (⇑,⇑)

)
nL⇑ +

8∑
i=1

(
	

(out)
i (⇓,⇑) + 	

(out)
i (⇑,⇑)

)
ni − nL⇑

T1
. (C3)

This system of equations is solved algebraically with a subsidiary condition

8∑
i=1

ni + nL⇑ + nL⇓ = 1. (C4)
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