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Phonon interactions are inevitable in cavity quantum electrodynamical systems based on solid-state emitters
or fluorescent molecules, where vibrations of the lattice or chemical bonds couple to the electronic degrees of
freedom. Due to the non-Markovian response of the vibrational environment, it remains a significant theoretical
challenge to describe such effects in a computationally efficient manner. This is particularly pronounced when the
emitter-cavity coupling is comparable with or larger than the typical phonon energy range, and polariton forma-
tion coincides with vibrational dressing of the optical transitions. In this paper, we consider four non-Markovian
perturbative master equation approaches to describe such dynamics over a broad range of light-matter coupling
strengths and compare them with numerically exact reference calculations using a tensor network. The master
equations are derived using different basis transformations, and a perturbative expansion in the transformed
basis is subsequently introduced and analyzed. We find that two approaches are particularly successful and
robust. The first of these is suggested and developed in this paper and is based on a vibrational dressing of the
exciton-cavity polaritons. This enables the description of distinct phonon-polariton sidebands that appear when
the polariton splitting exceeds the typical phonon frequency scale in the environment. The second approach is
based on a variationally optimized polaronic vibrational dressing of the electronic state. Both of these approaches
demonstrate good qualitative and quantitative agreement with reference calculations of the emission spectrum
and are numerically robust, even at elevated temperatures, where the thermal phonon population is significant.
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I. INTRODUCTION

Quantum technology relies on the generation and process-
ing of fragile quantum mechanical states [1]. Interactions with
the surrounding environment inevitably destroy the coher-
ence and entanglement of these states. In solid-state quantum
devices, one such interaction is with lattice vibrations or
phonons and cannot be avoided even at absolute zero tem-
perature [2]. As an example, it has been shown that scattering
with phonons imposes a fundamental tradeoff between the in-
distinguishability and the efficiency of single-photon sources
[2]. These interactions can have a highly non-Markovian [3]
and complex nature, which leads to persistent optical emis-
sion features such as broad spectral sidebands [4], incoherent
scattering [5,6], and damping of coherent Rabi oscillations
[7–10].

In the regime where the light-matter coupling exceeds
the typical vibrational frequency of the environment, the na-
ture of the electron-phonon coupling drastically changes as
compared with the weak light-matter coupling regime. Here,
the strong emitter-cavity interaction can significantly influ-
ence and, in some cases, decouple the vibrational dynamics
[11–13]. In this regime, the optical emission spectrum ex-
hibits two distinct polariton peaks which are both dressed
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with a distinct vibrational sideband [14,15]. On the other
hand, resonant phonon-induced transitions between the po-
lariton states is a dominating effect in the intermediate
regime, where the polariton splitting is comparable with
the typical environmental phonon frequency. This effect
is an important resource for polariton condensation and
lasing [16–18].

Several recent developments in a broad range of nanopho-
tonics platforms have led to cavity quantum electrodynamical
systems with very strong light-matter coupling, which in
many cases is comparable with or exceeds the typical frequen-
cies of the phonons that couple to the electronic degrees of
freedom [19–30]. These experimental developments call for
theoretical tools that are accurate and stable in this regime
of cavity quantum electrodynamics. A theoretical description
that can describe the non-Markovian phonon response over
the full range of light-matter coupling strengths is, however,
a difficult task, and considerable efforts have been devoted
to developing nonperturbative and non-Markovian methods
[31–35]. On the one hand, nonperturbative numerical calcu-
lations of the dynamics and emission properties can provide
results with high numerical precision but are computationally
expensive and often do not provide physical insight to the
results. On the other hand, semi-analytic perturbative methods
are computationally efficient and can in many cases yield
improved physical understanding, e.g., through analytical re-
sults. An important challenge thus lies in identifying the most
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accurate perturbative method in a given situation and parame-
ter regime.

In this paper, we have implemented a computationally
efficient tensor network formulation, which allows us to cal-
culate two-time averages to any desired numerical precision
[14,36,37]. These calculations are then used as a bench-
mark to evaluate the accuracy of various less complex and
less computationally demanding and more physically intu-
itive perturbative master equations across a large range of
light-matter coupling strengths. By encoding electron-phonon
or polariton-phonon correlations differently into the basis
states before a perturbative expansion, the master equations
can capture different non-Markovian effects. Specifically, we
compare the performance of four master equation approaches:
a so-called polariton-polaron master equation, a variational
polaron master equation, a standard polaron master equation,
and a weak-phonon master equation.

As a test system, we use a nanocavity containing a
semiconductor quantum dot coupled to a continuum of lon-
gitudinal acoustic phonon modes of the host lattice [4,38–40].
The primary quantity used for comparison of the methods is
the optical emission spectrum, which relies on the calculation
of the two-time correlation function of the cavity mode. Two-
time averages are generally more sensitive to non-Markovian
effects than one-time averages [41,42] and are thus more
challenging to correctly calculate with perturbative methods.
Thus, by using the emission spectrum for comparison, the
ability of the methods to capture the full non-Markovian
phonon response is more clearly exposed than evaluation of
one-time averages.

The polariton-polaron approach is found to be the most ac-
curate method in the strong-coupling regime, where phonons
manifest themselves as sidebands on the polariton peaks
[14,15]. The variational approach is, on the other hand, found
to be precise in the Purcell regime, where the zero-phonon line
acquires a phonon sideband [2,43].

This paper is organized as follows: In Sec. II, we intro-
duce the model used to study phonon-coupled cavity quantum
electrodynamics. In Sec. III, we derive the perturbative mas-
ter equations and introduce the various transformations that
lead to these master equations. In Sec. IV, we discuss pos-
sible ways of calculating the emission spectrum using the
derived master equations and discuss how the different trans-
formations enable the inclusion of phonon memory effects. In
Sec. V, we benchmark the master equations with a numer-
ically convergent tensor network in the strong light-matter
coupling regime and in the Purcell regime. In Sec. VI, we
analyze the strength of the perturbation in the different ap-
proaches. In Sec. VII, we discuss non-Markovian effects
in one- and two-time averages, followed by conclusions in
Sec. VIII.

II. MODEL

The model we consider in this paper consists of a local-
ized exciton state |X 〉 that couples with a cavity mode with
annihilation (creation) operator a (a†) through the Jaynes-
Cummings model [32,43]:

HS = h̄ωegσ
†σ + h̄ωca†a + h̄g(σ †a + a†σ ), (1)

where ωeg is the exciton frequency, ωc the cavity mode fre-
quency, g the light-matter coupling strength, and σ = |g〉〈X |
the annihilation operator for the exciton, with |g〉 being the
ground state. The exciton is furthermore coupled with a bath
of phonons through the term [32,43,44]

HI = σ †σ
∑

k

h̄gk(b†
k + bk ), (2)

where gk denotes the coupling strength to the phonon mode,
with momentum k created by the operator b†

k, see, eg.,
Ref. [45]. The free energy of the phonons is given by
[32,43,44]

HE =
∑

k

h̄νkb†
kbk, (3)

where νk is the frequency of the phonon mode b†
k|0〉. The

central quantity that characterizes the influence of the phonon
environment on the dynamics of the exciton-cavity system is
the spectral density, defined as

J (ν) =
∑

k

|gk|2δ(ν − νk ). (4)

The spectral density generally depends on the shape of the
exciton wave function and the nature of the phononic envi-
ronment. In this paper, we consider as an example system a
semiconductor quantum dot in a spherically harmonic con-
finement potential coupled to longitudinal acoustic phonons.
In this case, the spectral density can be approximated as
[43,46] J (ν) = αν3 exp(−ν2/ν2

c ) where α and νc are param-
eters that depend on the size of the quantum dot and the
properties of the surrounding material. The parameter α de-
scribes the overall strength of the coupling, and νc is a cutoff
frequency, which sets the frequency scale around which the
interaction with phonons is strongest. In addition to the ef-
fects generated by the Hamiltonians in Eqs. (1)–(3), decay
of the cavity mode with rate κ is included in the dynam-
ical evolution as a Markovian effect. In a similar fashion,
temperature-dependent pure dephasing due to higher-order
phonon scattering effects is also included. This will be further
elaborated on in the following section, where the derivation of
different perturbative master equations from this fundamental
model is considered.

III. PERTURBATIVE MASTER EQUATIONS

From the total Hamiltonian H = HS + HI + HE, a mas-
ter equation can be derived by treating the interaction HI

perturbatively. However, before performing the perturbative
expansion, a unitary transformation U can be applied. If the
transformation cannot be factorized into system and environ-
ment parts, i.e., U �= US ⊗ UE, it induces a mixing of the
system and environmental degrees of freedom. As a result,
the transformed Hamiltonian H̃ = UHU † needs to be reparti-
tioned into system, environment, and interaction terms. Even
when imposing the Markov approximation in the transformed
reference frame, it is possible to include non-Markovian ef-
fects because system-environment correlations are built into
the transformed basis states. It also follows that the magnitude
of the perturbation parameter depends on the transformation,
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FIG. 1. A sketch of the system considered in this paper. Middle:
A cavity mode with decay rate κ is coupled to a two-level emitter,
which in turn is coupled to phonon modes bk. Two transformations of
the system are illustrated. In the polaron transformation, the phonons
dress the emitter, and in the polariton-polaron transformation, the
phonons dress the coupled emitter-cavity polaritons. In both cases,
the effect of the polaron transformation and the polariton-polaron
transformation is shown. As depicted, the phonon modes are dis-
placed in the transformed frames. In the polaron frame, the modes
are displaced with fk depending on the exciton state. In the polariton-
polaron frame, the displacement depends on the polariton state |±〉.

and therefore, different transformations in general lead to
different ranges of validity of the ensuing system.

As previously stated, we will consider four master equa-
tions in this paper, and these are distinct in the unitary
transformation applied to the Hamiltonian before derivation
of a second-order perturbative Markovian master equation.
In this section, we present the underlying unitary transfor-
mations and derive the corresponding master equations. The
unitary transformations considered are the identity transfor-
mation, the standard polaron transformation [38,44,47–49],
a variationally optimized polaron transformation [14,50–53],
and a polariton-polaron transformation. An illustration of the
exciton-cavity-phonon system together with the effects of
the variational polaron transformation and polariton-polaron
transformation can be seen in Fig. 1. Each phonon mode is
represented as a harmonic oscillator. The general effect of the
transformations is to displace the equilibrium around which
the phonon modes oscillate. This is illustrated as a shift in the
placement of the harmonic oscillator that represents a phonon
mode. As an example, the variational polaron transformation
displaces the phonon modes depending on the state of the ex-
citon; therefore, the phonon modes associated with the excited
state of the exciton are displaced with factors f1, f2, f3, ...,
while the phonon modes associated with the ground state
are not displaced at all. The polariton-polaron transformation
describes the system in the polariton frame and displaces the
phonon modes depending on the polariton state, which is
depicted accordingly in the figure.

Before deriving the specific master equations by applica-
tion of these unitary transformations, we briefly outline the
general form of second-order perturbative Markovian master
equations.

A. Second-order Markovian master equation

As in Sec. II, we partition the total Hamiltonian into sys-
tem, environment, and interaction parts H = HS + HE + HI.
To derive the Markovian master equations used in this paper,
a general interaction Hamiltonian which is decomposed into
operators working on the system and environment is consid-
ered:

HI =
∑

i

Ai ⊗ Bi, (5)

where Ai works on the system Hilbert space and Bi on the
environment Hilbert space. Following, e.g., Refs. [53,54], a
Markovian second-order master equation that is perturbative
in HI can be derived:

dρS(t )

dt
= − i

h̄
[HS, ρS(t )]

−
∑

i j

∫ ∞

0
dτ {Ci j (τ )[Ai, Ā j (−τ )ρS(t )]

+Cji(−τ )[Ai, Ā j (−τ )ρS(t )]}. (6)

Here, we have defined the interaction picture system operators
Āi(τ ) = exp(iHSτ/h̄)Ai exp(−iHSτ/h̄), the system part of the
density matrix ρ = ρS ⊗ ρE , and the environmental correla-
tion functions

Ci j (τ ) = 1

h̄2 TrE[B̄i(τ )BjρE(0)], (7)

where B̄i(τ ) = exp(iHEτ/h̄)Bi exp(−iHEτ/h̄). In the deriva-
tion of the master equation, a Markovian approximation was
imposed by extending the upper limit of the τ integral in
Eq. (6) from t to infinity [54]. The environment and system
were furthermore assumed to be factorized initially ρ(0) =
ρS(0) ⊗ ρE(0). As a shorthand notation, we shall refer to
the terms in the master equation involving the environmental
correlation functions as the phononic dissipator K[ρS].

In addition to the phonon-induced effects generated by the
Hamiltonian in Sec. II, we also include a Markovian cavity
decay process with rate κ as well as pure dephasing resulting
from virtual higher-order phonon transitions to energetically
higher exciton states [55–57] with a rate

γ (T ) = αμ

v4
c

∫ ∞

0
ν10 exp

(−2ν2

ν2
c

)
n(ν)[n(ν) − 1]dν, (8)

where μ is a material dependent parameter and n(ν) = [1 −
exp(−β h̄ν)]−1. Including these effects, the resulting master
equation can be written as

dρS(t )

dt
= − i

h̄
[HS, ρS(t )] + K[ρ] + κDa[ρ]

+ 2γ (T )Dσ †σ [ρ], (9)

where DA[ρ] = 1
2 (2AρA† − ρA†A − A†Aρ) is the Lindblad

dissipator.
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We are now in a position to derive the specific master
equations resulting from the different unitary transformations.

B. Weak phonon-coupling master equation

The weak phonon-coupling master equation is the simplest
of the four master equations considered, as it does not in-
volve any transformation of the Hamiltonian. The interaction
Hamiltonian in Eq. (5) thus only has {i} = Z , AZ = Z = σ †σ ,
and BZ = ∑

k h̄gk(b†
k + bk ). The environmental correlation

function is found from Ref. [53]:

CZZ (τ ) =
∫ ∞

0
J (ν)

[
coth

(
β h̄ν

2

)
cos(ντ ) − i sin(ντ )

]
.

(10)
This outlines the weak phonon-coupling master equation

approach. It is worth noting that the master equation is
Markovian, so memory effects due to phonons are lost. Fur-
thermore, the master equation is based on a second-order
perturbation theory and thus requires the perturbative quantity
to be small. The perturbative quantity is the interaction Hamil-
tonian, and it should therefore be smaller than the system and
environment Hamiltonian. This means that the coupling rate
to phonons should be smaller than the light-matter coupling
rate. The weak phonon-coupling master equation is thus per-
turbative in the phonon coupling, hence its name.

C. Standard and variational polaron master equations

In this section, the standard and variational polaron master
equations are derived. These transformations are very similar,
but differ in that a variational optimization step is performed
in the latter, but not the former. The standard polaron transfor-
mation has two main purposes. First of all, the transformation
is a way of encoding phonon memory information into the
state of the exciton and thus allowing the inclusion of certain
non-Markovian effects. This encoding is illustrated in Fig. 1,
where the polaron transformation displaces the phonon modes
depending on the state of the exciton. Secondly, it changes
the interaction Hamiltonian from being perturbative in the
exciton-phonon coupling to being perturbative in the light-
matter coupling [53]. The standard polaron transformation can
thus treat strong exciton-phonon couplings, but instead fails at
strong light-matter couplings.

The variational polaron transformation is very similar to
the standard polaron transformation, but the transformation
leaves the interaction Hamiltonian with terms that can be
associated with the weak phonon-coupling master equation
and the standard polaron master equation. The variational
polaron master equation is therefore a “middleway” between
the weak phonon-coupling master equation and the standard
polaron master equation. The perturbative parameter of the
variational polaron master equation is thus a combination of
the light-matter coupling and exciton-phonon coupling, and
the transformation is variationally optimized in an attempt to
reduce these perturbation terms.

Both polaron transformations are described by the unitary
operator UV = eV, which transforms the total Hamiltonian as
H̃V = UVHU †

V and is generated by the anti-Hermitian operator

[53]

V = σ †σ
∑

k

fk

νk
(b†

k − bk ), (11)

where { fk} is a set of transformation parameters. The effect of
the transformation and the role of the transformation parame-
ters can be elucidated by expanding UV in the form

UV = |g〉〈g| + |X 〉〈X |
∏

k

Dk

(
fk

νk

)
, (12)

where Dk(αk ) = exp[αkb†
k − α∗

kbk] is the displacement oper-
ator of the kth phonon mode. From this form, it can be seen
that the transformation displaces the phonon environment
depending on the excitonic state, thus describing polaronic
electron-phonon hybridization.

The difference between the standard and variational po-
laron transformations lies in the choice of the displacement
parameters fk: In the standard polaron transformation, the dis-
placement is fixed at fk = gk, whereby the electron-phonon
coupling term vanishes in the transformed Hamiltonian. In
the variational polaron transformation, on the other hand, the
displacement parameters are determined by minimization of
the Bogoliubov upper bound of the free energy. This varia-
tional transformation is like the method employed by Harris
and Silbey [50] and Yarkony and Silbey [58] studying a spin-
boson type model, which was later adopted by McCutcheon
et al. [52] and Nazir and McCutcheon [53] to a coherently
driven two-level emitter coupled to a phonon bath to develop
a variational master equation. The transformation has also
been extended to a coherently driven quantized cavity mode
coupled to a two-level emitter [51]. The main physical moti-
vation for this transformation is that it should come as close
as possible to diagonalizing the Hamiltonian and thus closely
resemble the equilibrium states of the system and reduce the
strength of the interaction Hamiltonian [53]. To illustrate this,
consider the case where the light-matter coupling is vanishing,
i.e., g = 0, in which case the model reduces to the indepen-
dent boson model [44]. Here, the Hamiltonian can be exactly
diagonalized through the polaron transformation by setting
the transformation variables as fk = gk. If the variational
transformation is chosen wisely, then it can approximately
diagonalize the Hamiltonian for nonvanishing light-matter
couplings g �= 0, only leaving a small interaction term that
can be treated perturbatively. To determine the variational pa-
rameter fk such that the transformation results in the smallest
interaction term possible, the Bogoliubov upper bound on the
free energy of the system is minimized. To understand why
this minimization should lead to a partition of the Hamiltonian
with a small interaction term, we consider the Bogoliubov
inequality [59–61] for two Hermitian operators H and H ′ and
follow the arguments of Ref. [62]:

−β−1 ln Tr{e−βH } � −β−1 ln Tr{e−βH ′ } + 〈H − H ′〉H ′ ,

(13)

where 〈·〉H ′ = Tr{(·)e−βH ′ }/Tr{e−βH ′ } and β = 1/kbT . The
free energy is unchanged under a general unitary transforma-
tion UHU † = H̃0 + H̃1, and thus, choosing H ′ = H0 gives the
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inequality

−β−1 ln Tr{e−βH } � −β−1 ln Tr{e−βH̃0} + 〈H̃1〉H0 . (14)

The inequality only becomes an equality if the uni-
tary transformation diagonalizes the total Hamiltonian, and
minimizing the upper bound on the free energy AB =
−β−1 ln Tr{e−βH̃0} + 〈H̃1〉H0 is thus a way of partitioning the
Hamiltonian in such a way that the zeroth-order Hamiltonian
H0 resembles the diagonalized case as much as possible, given
the restrictions of the transformation [61,62].

This is the fundamental principle behind the variational
polaron approach, where the transformation is applied with
the goal of leaving a small interaction term. Applying the
transformation to the Hamiltonian leads to the transformed
system Hamiltonian (transformed frame denoted by subscript
V):

H̃SV = (h̄ωeg + h̄R)σ †σ + h̄ωca†a + h̄gV(σ †a + a†σ ),
(15)

where the variational shift R = ∑
k fk( fk − 2gk )/νk and

renormalization gV = 〈B〉g has been introduced. 〈B〉 = 〈B±〉
is the thermal expectation value of the variational displace-
ment operator B± = ∏

k Dk(± fk
νk

). The frequency shift and
coupling-strength renormalization arise from a rearrangement
of terms that assures that the thermal expectation value of
the interaction Hamiltonian vanishes 〈HIV〉 = 0. With this
rearrangement, the interaction Hamiltonian in the variational
frame is

H̃IV = XBX + Y BY + ZBZ , (16)

where X = h̄g(σ †a + a†σ ), Y = ih̄g(σa† − σ †a), Z =
σ †σ , and BX = (B+ + B− − 2〈B〉)/2, BY = i(B+ −
B−)/2, BZ = ∑

k h̄(gk − fk )(b†
k + bk ). Here, H̃EV = HE

is unchanged under the transformation by rearranging terms
into HSV and HIV.

We here note that taking the limits fk → 0 restores the
original Hamiltonian, which leads to the weak-phonon master
equation because the transformation UV reduces to the iden-
tity. The other limit of fk → gk leads to the standard polaron
transformation and its corresponding master equation.

Following Refs. [14,52,53] and minimizing the upper
bound on the free energy leads to the following expressions
for the variational factors fk and the resulting frequency shift
and light-matter renormalization:

fk

gk
=

[
1 − δV

ηV
tanh

(
β h̄ηV

2

)]
1 − δV

ηV
tanh

(
β h̄ηV

2

)[
1 − 2g2

V
νkδV

coth
(

β h̄νk
2

)] , (17)

R =
∫ ∞

0
dν

J (ν)

ν
F (ν)[F (ν) − 2], (18)

〈B〉 = exp

[
−1

2

∫ ∞

0
dν

J (ν)F 2(ν)

ν2
coth

(
β h̄ν

2

)]
, (19)

where the sums have been converted into integrals using
the spectral density function J (ν), and the dimensionless
variational function F (νk ) = fk

gk
has been defined as well as

the quantities ηV =
√

4g2
V + δ2

V , δV = ωeg + R − ωc := 
 +
R. The variational Eq. (17) thus expresses an implicit relation

for F (ν), which needs to be solved self-consistently. This
self-consistent solution is obtained numerically.

Using the definition in Eq. (5), the interaction Hamiltonian
now has i = X,Y, Z with Ai = X,Y, Z and Bi = BX , BY , BZ .
The phonon correlation functions Ci j (τ ) are all given from
Ref. [53] as

CXX (τ ) = 〈B〉2

2
[eφ(τ ) + e−φ(τ ) − 2],

CYY (τ ) = 〈B〉2

2
[eφ(τ ) − e−φ(τ )],

CZZ (τ ) =
∫ ∞

0
dνJ (ν)[1 − F (ν)]2

×
[

coth

(
β h̄ν

2

)
cos(ντ ) − i sin(ντ )

]
,

CY Z (τ ) = − 〈B〉
∫ ∞

0
dνJ (ν)ν−1F (ν)[1 − F (ν)]

×
[

i cos(ντ ) + coth

(
β h̄ν

2

)
sin(ντ )

]
,

CZY (τ ) = − CY Z (τ ),

(20)

where φ(τ ) = ∫ ∞
0 dνJ (ν)ν−2F 2(ν)[coth(β h̄ν/2) cos(ντ ) −

i sin(ντ )] and CXY , CY X , CXZ , and CZX are zero.
We note that the standard polaron master equation can

directly be obtained from the variational master equation
by setting F (ν) = 1 rather than determining F (ν) through
Eq. (17). This leaves only CXX and CYY as nonzero correla-
tion functions. Similarly, the weak phonon-coupling master
equation can be recovered by setting F (ν) = 0, in which case
only CZZ is nonzero.

D. Polariton-polaron transformation

In the absence of interactions with the environment, the
eigenstates of the Jaynes-Cummings Hamiltonian are known
as the dressed states or upper and lower polariton states [63].
In the strong-coupling regime, which can be roughly esti-
mated as 4g > κ , these polariton states dominate the optical
response of the system. Describing the system in a basis of
the polariton states is therefore natural when the system is in
the strong-coupling regime. In the previous section, the vari-
ational polaron transformation was introduced. This approach
is based on an assumption of how the equilibrium states ap-
proximately look for nonvanishing light-matter couplings. A
central feature of the polaronic transformations is that they
are diagonal in the uncoupled exciton basis {|g〉, |X 〉}, as is
explicitly seen in Eq. (12). However, since the eigenstates
of the system in the absence of phonon interactions are the
polariton states, it seems natural to introduce a transformation
that is diagonal in the dressed exciton-cavity states rather than
the bare exciton states.

In this section, we introduce such a transformation and
its associated master equation approach. Here, the system is
described in the basis of the polariton states, and a trans-
formation that dresses these polariton states with polarons
is performed. The approach is inspired by recent studies
showing optical signatures of dressed polaritons [14] or
polaron-polaritons [64]. The transformation is like that of
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Ref. [64], where the cavity modes are explicitly dressed by
a generalized Merrifield transformation. The transformation
we propose is, however, more intuitive since it is described in
the polariton basis, and the dressing or formation of polariton-
polarons can be explicitly seen. Furthermore, the necessary
groundwork for a master equation description is also estab-
lished.

We start by writing our Hamiltonian in the basis of the
polaritons. The polariton states are given as [63]

|+〉 = C+|X, 0〉 + C−|g, 1〉,
|−〉 = C−|X, 0〉 − C+|g, 1〉, (21)

where C± = 1√
2
[1 ± 


(
2+4g2 )1/2 ]1/2, and the exciton-cavity ba-
sis states are defined as |α, n〉 = |α〉 ⊗ |n〉, where α = g, X
and n = 0, 1 are the exciton state and cavity photon number,
respectively. For the sake of simplicity, it will be assumed
that there is no detuning 
 = 0, and thus C+ = C− = 1√

2
.

The following approach can straightforwardly be extended to
the nonzero detuning case, but this will require calculation
of a spectral densitylike function, and the expressions are
generally cumbersome.

The polaritons are the eigenstates of the Jaynes-Cummings
Hamiltonian, and the system Hamiltonian is therefore diag-
onal in the polariton states with their respective eigenval-
ues E± = (h̄ωeg + h̄ωc)/2 ± h̄g. The interaction Hamiltonian,
however, contains the term σ †σ = |X 〉〈X |, which needs to be
written in terms of the dressed states. We assume that there is
maximally one excitation in the system, and thus, |X 〉〈X | ⊗
|1〉〈1| is not a possible state which reduces σ †σ to 1

2 (p† p +
m†m − p†m − m† p), where the notation p = |g, 0〉〈+| and
m = |g, 0〉〈−| has been introduced. The total Hamiltonian can
thus be expanded in the dressed state basis as

H = E+ p† p + E−m†m +
∑

k

h̄νkb†
kb

+ 1

2

(
p† p + m†m − p†m + m† p

) ∑
k

h̄gk(b†
k + bk ). (22)

At this point, we define a unitary transformation of the form

W = |g, 0〉〈g, 0| + m†m exp

[∑
k

f −
k

νk
(b† − b)

]

+ p† p exp

[∑
k

f +
k

νk
(b† − b)

]
. (23)

This transformation generates a polaronic phonon-
displacement that is diagonal in the polariton basis, and
we thus denote it as the polariton-polaron transformation.
In analogy with the standard polaron transformation, the
coefficients f ±

k are determined such that the phonon
interaction terms that are diagonal in the polariton basis
are eliminated. In Appendix A, the transformation is
applied, and for the resonant case (
 = 0), we find this
requirement to be f −

k = f +
k = gk/2, yielding the transformed

Hamiltonian

H̃SW = p† p

(
E+ + h̄
p

4

)
+ m†m

(
E− + h̄
p

4

)

− h̄
p

2
(p†m + m† p),

H̃IW =
∑

k

− h̄gk

2
(b†

k + bk )[p†m + m† p]. (24)

The environment Hamiltonian H̃EW = HE is again unchanged
by rearranging terms. Using the definition in Eq. (5), the inter-
action Hamiltonian has one term with Ai = − 1

2 (p†m + m† p)
and Bi = BZ = ∑

k h̄gk(b†
k + bk ). We note that phonon part

BZ is identical to the one appearing in the weak-coupling
master equation, and the phonon correlation function is al-
ready known from Eq. (10). This concludes the derivation
of the master equations. Very importantly, however, three of
the four master equations describe the system evolution in
a transformed frame. This has crucial implications on how
the emission spectrum should be calculated, and this will be
elaborated upon in the next section.

IV. EMISSION SPECTRUM

There are generally two approaches for calculating the
emission spectrum of the cavity from one of the perturbative
master equations. Both involve calculating a two-time corre-
lation function from the quantum regression theorem [65]:

〈O†(t + τ )O(t )〉 = Tr{O†eLτ OeLtρ(0)}, (25)

where O is an arbitrary operator, and L is a Liouvillian su-
peroperator defined so that the time evolution of the density
matrix is given as dρ

dt = L[ρ]. Here, ρ(0) is set to ρ(0) =
|X 〉〈X |, which mimics the moment after the emitter has been
excited. The difference between the two methods for calcu-
lating the emission spectrum is the operator O that is used
for calculation of the two-time average. Specifically, the cav-
ity emission spectrum can be directly calculated from the
Fourier transform of the cavity correlation function by setting
O = a. Alternatively, the spectrum can be calculated from
the dipole spectrum (O = σ ) via a Green’s function. As we
shall see, in the limit of weak light-matter coupling 4g < κ ,
this dipole-based calculation is preferable for the polaron-type
master equations described in Sec. III C because it allows us
to capture non-Markovian effects manifested in the spectral
phonon sideband [66].

We note that the quantum regression theorem only holds
when the time evolution is Markovian [54,65], but since the
two-time average in Eq. (25) is evaluated in a transformed
reference frame, this does not imply that Markovian evolution
in the original (laboratory) reference frame is needed. As will
be demonstrated in the following, pronounced non-Markovian
effects arising from the delayed phonon response can still
be captured. Other studies have examined the validity of the
quantum regression theorem in the laboratory frame and to
some extent under the standard polaron transformation [67].
We find that the Markov approximation and thus the applica-
bility of the quantum regression theorem is closely connected
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to the suitability of the applied basis transformation and the
perturbation strength in the transformed reference frame.

A. Dipole spectrum method

The cavity emission spectrum can be related to the dipole
correlation function as [2,66]

S(ω) = G(ω)
∫ ∞

−∞
dt

∫ ∞

−∞
dτ e−iωτ 〈σ †(t + τ )σ (t )〉. (26)

where G(ω) is the optical Green’s function connecting the
dipole emission spectrum to the cavity emission spectrum,
which in the present case of a single-mode cavity is given
by [2] G(ω) = 4g2

κ

(κ/2)2

ω2+(κ/2)2 . In the evaluation of the two-time
correlation function through a master equation formulated in
a transformed reference frame, it is necessary to transform the
correlation function back to the “lab” or “original” reference
frame [66]. For the standard and variational polaron transfor-
mations this gives [43]

〈σ †(t + τ )σ (t )〉 = 〈σ †(t + τ )B−(t + τ )B+(t )eQ(t )σ (t )〉V,

(27)
where the subscript V denotes evaluation of the expectation
value in the polaron frame.

Assuming that the phonon bath is in thermal equilibrium
in the transformed reference frame, the two-time average can
be split into a thermal phonon part and an emitter-cavity part
[43,45]:

〈σ †(t + τ )σ (t )〉 ≈ 〈B〉2eφ(τ )〈σ †(t + τ )σ (t )〉V. (28)

The two-time average 〈σ †(t + τ )σ (t )〉V can be evaluated
directly from the standard or variational polaron master equa-
tion using Eq. (25). This relation shows how the standard and
variational polaron approaches allows us to resolve phononic
memory effects in the time evolution of the system when the
Markov approximation is imposed in the transformed refer-
ence frame. When the dipole operator is transformed back to
the original reference frame, a displacement of the phonon
bath in the correlation function is included, thus carrying in-
formation about the phonon bath. It is the phonon correlation
function in Eq. (28) that gives rise to the non-Markovian
phonon sideband in the emission spectrum [66].

For the polariton-polaron transformation, the dipole op-
erator transforms as σ → C+ pe−Q+ − C−me−Q− with Q± =∑

k
f ±
k
νk

(b†
k − bk ). The two-time correlation function is there-

fore written as

〈σ †(t )σ (t ′)〉 = 〈[C+eQ+(t ) p†(t ) − C−eQ−(t )m†(t )]

× [C+e−Q+(t ′ ) p†(t ′) − C−e−Q−(t ′ )m†(t ′)]〉W ,

(29)

where the subscript W signifies that the expectation value is
evaluated in the polariton-polaron reference frame, i.e., under
the transformation W . As for the standard and variational
polaron transformations, we assume that the phonon environ-
ment remains close to its thermal state in the transformed
reference frame, thereby allowing us to factorize the correla-
tion function. With zero detuning (
 = 0), we have C+ = C−
and f +

k = f −
k , which leads to

〈σ †(t + τ )σ (t )〉 ≈ B̃1/2eφ̃(τ )/4〈σ †(t + τ )σ (t )〉W , (30)

where B̃1/2 and φ̃(τ ) are defined as in Eq. (19) and below
Eq. (20), with F (ν) = 1.

B. Cavity spectrum method

The other and more straightforward method to calculate the
emission spectrum is to use the cavity operator [31,68]

S(ω) = κ

∫ ∞

−∞

∫ ∞

−∞
〈a†(t + τ )a(t )〉e−iωτ dtdτ. (31)

The cavity operator is unchanged under the standard and
variational polaron transformations, and therefore, no further
work is required in this case, i.e., 〈a†(t + τ )a(t )〉 = 〈a†(t +
τ )a(t )〉V. This also means that no phonon sideband effects
can be captured in this approach. As we shall see, the dipole-
spectrum approach breaks down in the strong light-matter
coupling regime, whereby the consideration of the cavity
spectrum becomes the only feasible approach.

However, under the polariton-polaron transformation, the
cavity operator transforms as a → C− pe−Q+ + C+me−Q− .
Thus, writing out the correlation function in the original
reference frame in terms of the transformed quantities and
factorizing the phononic part in complete analogy with the
procedure in Sec. IV A yields

〈a†(t + τ )a(t )〉 ≈ B̃1/2eφ̃(τ )/4〈a†(t + τ )a(t )〉W . (32)

When the cavity operator method is used, the polariton-
polaron method is therefore the only master equation that
can incorporate phonon memory effects. As we shall see, this
means that phonon sideband effects can be well-described
even in the regime of strong light-matter coupling.

With the necessary theoretical groundwork established, we
are now ready to benchmark the four master equations against
tensor network reference calculations.

V. BENCHMARK OF EMISSION SPECTRUM

In this section, we benchmark calculations of the emission
spectrum using the four master equations introduced against
the tensor network reference calculation. An estimate of the
accuracy of the tensor network calculations together with an
elaboration of the approach is given in Appendix B. In most
cases, the accuracy of the tensor network is on the order of 1%
or better, which is accurate enough to determine the validity
of the master equations.

As a concrete example, we consider a quantum dot with
a confinement length of 3 nm embedded in GaAs as the
emitter which leads to the following phonon parameters [43]:
phonon coupling constant α = 0.0251 THz, phonon cutoff
frequency νc = 2.23 THz, and pure dephasing constant μ =
0.02284 ps4. These parameters will be used throughout this
paper.

A. Cavity emission spectrum

We start by considering the cavity operator approach for
calculating the emission spectra described in Sec. IV B in
the strong light-matter coupling regime. We set κ = 0.5 THz
and vary the light-matter coupling g from 0.57 to 10 THz.
This range of light-matter couplings represents possible
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(a) (b) (c)

(d) (e) (f)

FIG. 2. The cavity emission spectrum S(ω) calculated from the four master equations resulting from different transformations (lines) and
compared with numerically accurate tensor network calculations (shaded graph). The upper panels show the calculations for T = 4 K and the
lower for T = 50 K. The cavity decay rate is κ = 0.5 THz, and the light-matter coupling is varied from 0.57 to 7.91 THz.

values obtainable through dielectric bow-tie cavities with deep
subwavelength confinement [14,28]. The range of light-matter
couplings also investigates the transition from a configura-
tion where the phonon environment has the fastest timescale
to a configuration where the light-coupling rate exceeds the
frequency of the phonon environment. This type of configu-
ration is relevant in a number of other physically realizable
experimental platforms such as transition metal dichalco-
genides [22,25,26], single methylene blue molecules [19], and
nitrogen-vacancy centers [69,70].

The resulting emission spectra can be seen in Fig. 2 for
cryogenic temperatures T = 4 K and high temperatures T =
50 K. In the former, the asymmetries due to phonons are
pronounced, and in the latter, the thermal energy is high
enough to excite a substantial phonon population, which leads
to stronger but spectrally symmetric phonon effects. The
doubled peaked structure of the emission spectra shows that
the system is in the strong-coupled regime, where polaritons
form. For T = 4 K, the asymmetric phonon effects manifest
themselves in uneven heights of the polariton peaks. The left
peak is higher than the right because the phonon emission
process |+〉 → |−〉 is dominating over the absorption process
|−〉 → |+〉 due to the low temperature and therefore small
population of the phonon modes [14].

For T = 50 K, the formation of polariton-polarons is
pronounced due to the stronger exciton-phonon interaction
associated with higher temperatures. This is seen in Fig. 2(f).
The hybridization leading to the double peaked structure
constitutes the polaritons, while the forming of polarons is
associated with the sideband structure observed around each
of the peaks [71]. Only the polariton-polaron master equa-
tion is able to capture this sideband structure, and the violet
dotted line in Fig. 2(f) therefore also serves to highlight the
appearance of this phonon sideband. The motivation behind
the polariton-polaron transformation is now clear. By dressing
each of the polariton states with phonons, we can capture
the highly non-Markovian phonon sidebands. This is like the
polaron transformation, but the basis of the transformation is
different, which successfully captures the phonon sidebands
of the polariton peaks. The polariton-polaron master equation
and the exact tensor network calculation together show that
the emission spectrum of a strongly coupled cavity can be
explained by the forming of polariton-polarons.

The master equations have tails on their emission spectra
that deviate from the tensor network. We emphasize that the
tails are not originating from inaccuracies in the numerical so-
lution of the master equations but arise due to the perturbative
terms in the Liouvillian.

To further assess the accuracy of the different master equa-
tions, we compute the root mean square relative error with
respect to the tensor network calculation:


S =
[∫ |Stn(ω) − S(ω)|2 dω∫ |Stn(ω)|2 dω

]1/2

, (33)

where Stn(ω) is the tensor network spectrum and S(ω) the
relevant master equation spectrum. The spectral integration
area is from −62.8 to 62.8 THz, and thus, all important
features are included. The relative error can be seen in Fig. 3.
The variational polaron approach is seen to have a lower
or approximately equal relative error than the standard po-
laron and weak-coupling master equation at all light-matter
couplings. The minimization of the free energy has thus
led to an improved perturbation theory within the restric-
tions given by the variational polaron transformation. From
Fig. 3, it is also clear that the polariton-polaron master equa-
tion performs better than all the other approaches when the
light-matter coupling exceeds the phonon cutoff frequency
(marked with dashed lines). This is especially true when

FIG. 3. The relative mean square error for the variational, po-
laron, and weak-phonon methods at T = 4 K (T = 50 K) for the
left (right) panel. The dotted vertical lines indicate the phonon cutoff
frequency g = νc = 2.23 THz.
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FIG. 4. The emission spectrum of the four master equations
calculated with the dipole operator method in the strong-coupling
regime with κ = 0.5 THz and g = 2.14 THz. It is clear that all four
master equations produce an incorrect feature close to zero frequency
detuning that is not predicted by the tensor network. Line styles are
the same as in Figs. 2 and 5.

the temperature is high and the polariton sidebands are
pronounced.

In addition to introducing broad spectral features and
asymmetries into the emission spectra, phonons also shift the
emitter frequency and thus change the resonance condition of
the system. This is seen explicitly in the variational and stan-
dard polaron transformations with the introduction of the shift
R. This quantity, however, does not fully describe the spectral
shift due to phonons. As shown in Appendix C, a second-
order phonon-induced Lamb shift plays an important role in
estimating the spectral shift due to phonons. Another effect of
phonons is an effective change in the light-matter coupling g,
shown explicitly by B in the variational and standard polaron
transformation. This renormalization of the light-matter cou-
pling is again best captured by including second-order effects
introduced by the phonon dissipator.

B. Dipole emission spectrum

In Sec. V A, the cavity operator was used for cal-
culating the emission spectrum, and the polariton-polaron
approach was seen to be superior when the light-matter cou-

pling exceeded the phonon cutoff frequency. Importantly, the
polariton-polaron transformation modifies the cavity operator
itself, which introduces non-Markovian phonon effects in the
sidebands. The variational and standard polaron transforma-
tions, in contrast, do not change the cavity operator, and
non-Markovian sideband effects cannot enter the cavity oper-
ator approach. Using the dipole operator is not an option when
considering a strongly coupled cavity because the method is
well known to produce a spurious and nonphysical peak at the
cavity frequency in this regime [66]. This is also illustrated
in Fig. 4, where the cavity decay rate is κ = 0.5 THz and
g = 2.14 THz. The dipole operator method is therefore not
suitable for studying the strong-coupling regime, and instead,
the cavity operator method must be used. This limits the ap-
plicability of the standard and variational polaron approaches
when considering a strongly coupled cavity.

The dipole operator method is, however, useful for ana-
lyzing the Purcell regime, where the nonphysical peak does
not appear. To assess the accuracy of the master equation
approaches in the Purcell regime, we pin the cavity decay rate
relative to the coupling strength so that κ = 4g and vary the
light-matter coupling g from 0.57 to 10 THz, as in Sec. V A.
The emission spectra can be seen in Fig. 5. Here, an asym-
metric phonon sideband is visible in Fig. 5(a). The phonon
sideband results from polaronic phonon dressing of the exci-
tonic transition, which leads to phonon-assisted relaxation of
the exciton. As discussed in Sec. IV A, it is possible to capture
such non-Markovian effects in the variational and standard
polaron master equations because the inverse transformation
from the polaron reference frame is accompanied by a phonon
correlation function. This is illustrated in Fig. 5(a), where the
sideband contribution to the spectrum is accurately captured
by the standard and variational polaron master equations. The
sideband, on the other hand, is not captured by the weak
phonon-coupling and polariton-polaron master equations. The
weak phonon-coupling master equation had no transformation
involved, and these non-Markovian effects are therefore lost.
The polariton-polaron master equation does employ a trans-
formation, but this transformation dresses the polariton states
with phonons, and these are not the relevant eigenstates in the
Purcell regime.

(a) (b) (c)

(d) (e) (f)

FIG. 5. The emission spectrum calculated via the dipole operator method from the four master equations resulting from different
transformations (lines) and compared with numerically accurate tensor network calculations (shaded graph). The system is kept in the Purcell
regime by setting κ = 4g. The light-matter coupling rate is varied from 0.57 to 7.91 THz. The upper panels show spectra at T = 4 K and lower
panels show T = 50 K.
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FIG. 6. Relative root mean square error for the same parameters
as in Fig. 5, calculated as in Eq. (34).

When the light-matter coupling strength is increased, the
phonons are dynamically decoupled [14] because the exciton
relaxation rate due to radiative transitions is strongly increased
due to the Purcell effect, while the phonon scattering rate is
largely unaffected. This means that the phonon sideband be-
comes less important, as seen in Figs. 5(b)–5(c). At T = 50 K,
the phonon sideband is no longer asymmetric, which is seen
in Fig. 5(d).

The phonon decoupling is also illustrated in the relative
error plot shown in Fig. 6. Here, the variational polaron, weak-
phonon, and polariton-polaron master equations all converge
to roughly the same prediction accuracy as the light-coupling
increases. This shows that the phonon sideband effects that
only the variational polaron master equation can capture are
vanishing since the other master equations predict the emis-
sion spectra with an equal accuracy. The polaron master
equation is seen to deviate marginally when the light-matter
coupling increased, which is consistent with the previous ob-
servations.

C. Discussion

From the calculations performed in the Purcell regime and
in the strong-coupling regime, it is evident that the varia-
tional approach is very versatile and performs well over a
large range of light-matter coupling rates and also at elevated
temperatures. The variationally optimized master equation is
therefore a good choice, with the notable exception of the
intermediate regime, where neither the light-matter coupling
nor the phonon coupling is dominating. In this case, neither
can therefore be treated perturbatively. This is particularly
visible in Fig. 3, where an increase in the relative error is
seen when the light-matter coupling approaches the phonon
cutoff frequency. Worth noting is also that the variational
approach appears to be more numerically stable than the stan-
dard polaron and weak-phonon master equations. Numerical
problems are encountered for the weak-phonon master equa-
tion at elevated temperatures, where small positive real parts
of the eigenvalues can lead to pronounced artifacts.

In the strong-coupling regime, the polariton-polaron ap-
proach is superior. By describing the system in the basis of
the polaritons, the perturbation strength associated with the
phonons is reduced, which allows for a more precise inclusion
of phonons. Also, most importantly, the transformation mod-
ifies the cavity operator so that non-Markovian effects such

as the polariton-polaron sideband can be included through the
cavity operator approach.

VI. ESTIMATION OF PERTURBATION STRENGTH

The different basis transformations employed in the master
equations imply that the perturbative terms differ in terms of
physics as well as magnitude. In this section, we evaluate
the magnitude of the effective perturbation strength, as this
provides a measure of the accuracy to be expected from the
corresponding master equation. The strength of the perturba-
tion can be estimated from the terms making up the phononic
dissipator as [72]∫ ∞

0
dτ

∑
i j

|Ci j (τ )AiAj (−τ )|. (34)

The phonon correlation functions Ci j (τ ) achieve their max-
imum value for τ = 0 and decay on a timescale of νc. The
integral can therefore be estimated roughly as gi j

|Ci j (0)|
νc

, with
gi j being the contribution of the operators Ai and Aj (−τ ) and
are of the following form: gXX = gYY = g2, gZY = gY Z = g,
and gZZ = 1 [72]. This perturbative term is required to be
smaller than higher order terms to ensure the accuracy of the
master equation. Since 〈HI〉 = 0, the next term in the master
equation expansion is of the fourth order and is estimated as

g2
i j

|Ci j (0)|2
ν3

c
[72]. This leads to the following condition for the

validity of the master equation:

PS =
∑

i j g2
i j |Ci j (0)|2

ν2
c

∑
i j gi j |Ci j (0)| � 1. (35)

The resulting perturbation strengths (PS) as a function of
the light-matter coupling can be seen for T = 4 and 50 K
in Figs. 7(a) and 7(b), respectively. Noticeably, the per-
turbation parameter of the polariton-polaron approach is
significantly lower than for the other approaches in the
strong light-matter coupling regime. This emphasizes the fact
that the polariton-polaron transformed basis states are closer
to the true eigenstates of the coupled system in this regime.
The standard polaron approach is also seen to imply a very
high perturbation strength in the strong light-matter coupling
regime, which explains its failures in the emission spectra.
The variational polaron approach has a lower perturbation
strength than the standard polaron and weak-phonon approach
for all light matter couplings. This is as expected since it
was optimized to reduce the perturbative strength. The varia-
tional polaron transformation, however, does have limitations
since the displacement of phonons depends only on the ex-
citon state. The polariton-polaron approach that displaces the
phonon modes depending on the polariton state captures the
strong light-matter coupling dynamics better and therefore has
a lower perturbation strength in this regime.

The fact that the polariton-polaron transformation leads to
a basis closer to the true eigenstates of the coupled system
is further supported by considering the upper bound on the
free energy seen in Figs. 7(c) and 7(d). The polariton-polaron
has a lower Bogoliubov bound on the free energy than the
variational polaron transformation in the strong light-matter
coupling regime. Thus, the variational polaron transforma-
tion minimized the upper bound on the free energy, given
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(a)

(c) (d)

(b)

FIG. 7. The strength of the second-order perturbation terms in
the master equations as a function of the light-matter coupling for
κ = 0.5 THz at (a) T = 4 K and (b) T = 50 K. The upper bound
on the free energy at (c) T = 4 K and (d) T = 50 K. The upper
bound on free energy of the polariton-polaron approach AB,W has
been subtracted from all bounds to enhance the differences. Line
styles are the same as in Figs. 2 and 5.

the constraints of the transformation. However, applying the
polariton-polaron transformation leads to a lower upper bound
on the free energy, indicating that diagonality in the excitonic
basis does not lead to a globally optimal transformation.

VII. DISCUSSION OF NON-MARKOVIAN EFFECTS

As stated in Sec. I, the non-Markovian response of the
environment is particularly pronounced in the two-time cor-
relation functions of the system, as compared with one-time
expectation values. Thus, the emission spectrum, which relies
on the evaluation of two-time correlation functions, is sensi-
tive to the accuracy of the four perturbative master equation
approaches and their ability to capture non-Markovian effects.
In this section, we show that the discrepancy between the
perturbative approaches is far less pronounced when one-time
averages are used for benchmarking.

In Fig. 8, the time evolution of the exciton population is
shown for T = 50 K. In Fig. 8(a), for g = 0.57 THz, the
polariton-polaron and the weak-phonon approaches both de-
viate clearly from the tensor network result, which was also
the case in the emission spectrum. As the light-matter cou-
pling increases, the standard polaron approach breaks down,
as expected, leading to nonsensical results. The variational
polaron, weak-phonon, and polariton-polaron approaches all
converge for light-matter coupling rates exceeding the phonon
cutoff frequency and predict the emitter evolution very ac-
curately. This is also illustrated in Fig. 8(e), where the
relative error converges to around 1%. In comparison, Fig. 3
shows a relative error in the spectrum of 16% for the weak

(a)

(c)

(e)

(d)

(b)g g

g

g

g

FIG. 8. (a)–(d) Time evolution of exciton population as pre-
dicted by the master equations and the tensor network for varying
light-matter coupling g, κ = 0.5 THz and at T = 50 K. (e) The
corresponding relative error of the exciton population, computed in
the same manner as Eq. (33). Line styles are the same as in Figs. 2
and 5.

phonon-coupling and variational polaron approaches, while
the polariton-polaron approach only showed 2% deviation.
For strong light-matter couplings, the three master equation
approaches are thus almost indistinguishable regarding the
population dynamics but very different when considering the
emission spectrum. As mentioned, this stems from the fact
that the non-Markovian effects such as the polariton-polaron
sidebands primarily enter through the multitime correlation
function rather than one-time expectation values.

VIII. CONCLUSIONS

In conclusion, we have introduced the polariton-polaron
master equation, which is valid when a localized exciton state
is coupled to a cavity mode with a light-matter coupling rate
that exceeds the typical vibrational frequency of the environ-
ment. The master equation captures non-Markovian features
such as the phonon dressing of the individual polariton peaks,
which is not accounted for by previously formulated mas-
ter equations. The polariton-polaron master equation was
benchmarked with a numerically convergent tensor network,
showing that it indeed leads to very accurate results in the
strong light-matter coupling regime.

A variationally optimized polaron master equation was
also introduced [53]. Although less accurate than the
polariton-polaron approach in the strong-coupling regime, it
was shown to give accurate results over a large span of light-
matter coupling rates with both high and low cavity decay
rates, highlighting the versatility of this approach. The bench-
marks made in this paper can serve as general guidelines

235309-11



BUNDGAARD-NIELSEN, MØRK, AND DENNING PHYSICAL REVIEW B 103, 235309 (2021)

to choosing the optimal master equation when considering
an exciton-cavity system coupled to a vibrational environ-
ment. These results and observations are of a general nature,
depending only on the relative magnitude of the phonon cutoff
frequency and the light-matter coupling rate, and are thus
applicable to other systems. Other such platforms include
transition metal dichalcogenides [22,25,26], single methylene
blue molecules [19], and nitrogen-vacancy centers [69,70].
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APPENDIX A: POLARITON-POLARON
TRANSFORMATION

In this Appendix, we describe the details of the polariton-
polaron transformation. We consider the Hamiltonian in the
basis of the polaritons, Eq. (22), and apply the unitary trans-
formation W HW † defined in Eq. (23). The transformation has
the following effect on the operators making up the system
part of the Hamiltonian:

W † p† pW = p† p, (A1)

W †m†mW = m†m, (A2)

W † p†mW = p†meQ, (A3)

W †m† pW = m† pe−Q, (A4)

where

Q =
∑

k

f +
k − f −

k

νk
(b†

k − bk ). (A5)

The transformation of the phonon operators is found using the
displacement transformation [44]

Dk

(
fk

νk

)
bk Dk

(
− fk

νk

)
= bk − fk

νk
,

which gives

W bkW † = bk − f +
k

νk
p† p − f −

k

νk
m†m. (A6)

Inserting this and rearranging terms leads to the transformed
Hamiltonian:

W HW † = E+ p† p + E−m†m +
∑

k

[
h̄νkb†

kbk − h̄ f +
k p† p

(
b†

k + bk − C2
+

gk

f +
k

b†
k − C2

+
gk

f +
k

bk

)

− h̄ f −
k m†m

(
b†

k + bk − C2
−

gk

f −
k

b†
k − C2

−
gk

f −
k

bk

)
+ h̄ f +

k
2

νk
p† p

(
1 − 2

C2
+gk

f +
k

)

+ m†m
h̄ f −

k
2

νk

(
1 − 2

C2
−gk

f −
k

)
− C+C−h̄gkeQ p†m

(
b†

k + bk
) − C+C−h̄gke−Qm† p

(
b†

k + bk
)

+ 2C+C−h̄gk

νk
( f −

k p†meQ + f +
k m† pe−Q)

]
. (A7)

In similar fashion to the standard polaron transformation, the coefficients f ±
k are chosen so that the interaction terms that are

diagonal in the dressed state basis, i.e., the third and fourth lines in Eq. (A7), vanish. This amounts to setting f ±
k = C2

±gk.
Thereby, the transformed Hamiltonian reduces to

W HW † = E+ p† p + E−m†m +
∑

k

[
h̄νkb†

kbk − C4
+

h̄g2
k

νk
p† p − C4

−
h̄g2

k

νk
m†m

−C+C−h̄gk(b†
k + bk )(eQ p†m + e−Qm† p) + 2C+C−h̄g2

k

νk
(C2

− p†meQ + C2
+m† pe−Q)

]
. (A8)

As stated earlier, the detuning is assumed to be zero 
 =
0, which implies that C+ = C− = 1/

√
2, and therefore also

fk+ = fk− and eQ = e−Q = 1. This reduces the complexity

significantly, and introducing the phonon shift 
p = −∑
k

g2
k

νk
leads to the Hamiltonian in Eq. (22).

APPENDIX B: TENSOR NETWORK

The tensor network algorithm used for reference calcu-
lations of the spectrum and dynamics was developed in
Refs. [36,37], and the implementation for the particular sys-
tem studied in this paper is presented in Ref. [14]. The
numerical accuracy in the calculated spectrum Stn(ω) or ex-
citon population dynamics Ptn(t ) can be traced back to two
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TABLE I. Numerical parameters used for the tensor network
reference calculations. The configuration “strong coupling” refers to
the parameter setting with κ fixed at 0.5 ps−1 (used in Figs. 2, 3, and
4), and “Purcell” refers to the setting with κ pinned to 4g (used in
Figs. 5 and 6).

Configuration, temperature λc tmax Nt

Strong coupling, 4 K 5 × 10−9 150 ps 3000
Strong coupling, 50 K 5 × 10−9 150 ps 3000
Purcell, 4 K 2.5 × 10−9 60 ps 3000
Purcell, 50 K 2.5 × 10−9 50 ps 3000

numerical parameters, namely, the singular-value truncation
cutoff [36,37] λc (given relative to the maximum singular
value in each compression step) and the timestep δt = tmax/Nt ,
where tmax is the total time span of the calculation, and Nt is
the number of time points used for time discretization. The
numerical parameters used for the reference calculations are
presented in Table I.

For each calculation of the spectrum or the population
dynamics, the numerical convergence with respect to the trun-
cation error and time discretization is studied to ensure that
the algorithm is operating in a numerically convergent regime.
Furthermore, we also used the convergence to estimate the
accuracy of the tensor network reference calculations. Using
the symbol X (x; λc, Nt ) to denote either the spectrum Stn(ω)
(where x = ω) or exciton population dynamics Ptn(t ) (where
x = t) calculated with truncation error λc and Nt time dis-
cretization points, the convergence properties are evaluated
through the relative deviation function defined as


X
[
λ(1)

c , N (1)
t ; λ(2)

c , N (2)
t

]

=
(∫

dx
{
X

[
x; λ(1)

c , N (1)
t

] − X
[
x; λ(2)

c , N (2)
t

]}2

∫
dxX

[
x, λ(1)

c N (1)
t

]2

)1/2

.

(B1)

The uncertainty due to the finite truncation error λc is then
estimated by comparing with a calculation with 2λc, i.e., by
evaluating the deviation 
X (λc, Nt ; 2λc, Nt ). This uncertainty
is shown in Fig. 9 for all calculations presented in this pa-
per (black triangle markers). For comparison, the smallest
benchmark error obtained from the master equations is also
shown (gray square markers). Similarly, the uncertainty due
to the finite time step is estimated by evaluating the devia-
tion 
X (λc, Nt ; λc, Nt/2), shown with black cross markers in
Fig. 9. In the parameter regions where the truncation error
uncertainty is far below the time step uncertainty, it is clear
that the accuracy of the calculation can be well approximated
by the time step uncertainty because the truncation error does
not contribute to any appreciable uncertainty. In the regions
where the errors are comparable, we assess that this is still
the case: Since uncertainty due to finite truncation error leads
to variations between the two influence functionals calculated
with Nt and Nt/2 time steps, the truncation error is also repre-
sented in the time step uncertainty 
X (λc, Nt ; λc, Nt/2). This
effect is also observable in Figs. 9(b)–9(d) [most noticeably
in Fig. 9(d)], where the time step uncertainty is consistently
higher than the truncation error uncertainty.

(a)

(c) (d)

(f)

(b)

FIG. 9. The estimated accuracy of the tensor network shown as
the uncertainty due to finite truncation error (black triangles) and
the uncertainty due to finite number of time steps (black crosses),
presented together with the lowest relative error of the four master
equations at each value of the light-matter coupling strength g. The
different panels relate to the different error plots shown throughout
this paper and have the same parameters as the figure they relate to.
(a) and (b) Relates to Fig. 3. (c) and (d) Relates to Fig. 6. (e) Relates
to Fig. 8(e).

We note that there are parameter regions where the esti-
mated uncertainty of the tensor network reference calculations
exceeds or is very close to the deviation of the best mas-
ter equation. In these regions, the accuracy of the reference
calculations and the deviation of the best-performing master
equation are both on the order of 1%, meaning that the master
equation is performing with accuracy within 1% of the true
result.

Due to technical challenges with the convergence of the
singular-value decomposition at T = 4 K with Nt = 3000 and
tmax = 50 ps, we have made an exception in the calculation of
the time step uncertainty for these calculations. Here, the devi-
ation 
X (λc, 3000; λc, 1500) is calculated with tmax = 60 ps
for Nt = 3000 and with tmax = 50 ps for Nt = 1500.

APPENDIX C: ESTIMATING THE PHONON SHIFT
AND RENORMALIZATION

The variational polaron transformation introduces a
phonon-induced shift R to the emitter frequency ωeg, as
given by Eq. (18). The naïve guess for the frequency shift
due to phonons would therefore be R since it explicitly
changes the emitter frequency in the Hamiltonian. However, a
second-order phonon-induced Lamb shift originating from the
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(a)

(c) (d)

(b)

g g

FIG. 10. The renormalization of the light-matter coupling rate
calculated from Eq. (C1) as a function of g at (a) T = 4 K and
(c) T = 50 K. The estimated phonon shift calculated from the po-
sitions of polariton peaks (b) T = 4 K and (d) T = 50 K. The peak
positions have been extracted from the eigenvalues of the Liouvillian
for the four master equations and by fitting a Lorentzian curve to
the tensor network results. The error bars indicate the uncertainty
of the peak splitting and shift in the tensor network data, evaluated
by comparing spectra calculated with different truncation cutoff and
time discretization in analogy with the error estimation presented in
Appendix B.

phononic dissipator K[ρ] constitutes a second nonnegligible
effect on the phonon shift. To extract the actual emitter shift
due to phonons, the frequencies of the polariton peaks are
computed by considering the eigenvalues of the Liouvillian.
The total shift can be estimated as S+ + S−, where S± denotes
the frequency of the upper/lower polariton peak. According
to the Jaynes-Cummings model, the eigenvalues and thus the
positions of the polariton peaks are E± = 


2 ±
√

4g2 + 
2/2,
where 
 is the detuning of the system. In our case, the de-
tuning without the inclusion of phonons is zero, and thus,
E+ + E− = 
 is the detuning solely imparted by the phonons.
To extract the polariton peak frequency predicted by the tensor

network, we fit a Lorentzian curve to each peak. In Figs. 10(b)
and 10(d), the naïve guess R is shown together with the
actual shift predicted by the tensor network and the shift
found by studying the eigenvalues. It is clear that the value
of the shift R does not constitute a good approximation of the
emitter shift due to phonons. By including the second-order
phonon-induced Lamb shift, found from the eigenvalues, the
variations with g of the renormalization and the detuning can
be well explained by the variational polaron, weak-coupling,
and polariton-polaron master equations. On the other hand,
the standard polaron master equation fails to capture these
effects at elevated temperatures and high light-matter coupling
rates, as was expected. Estimating the resonance frequency of
the system can thus be done by using either the variational po-
laron, weak-coupling, or polariton-polaron master equation.

Phonons also give rise to a change to the effective light-
matter coupling strength. This is illustrated explicitly by the
renormalization factor B from the variational polaron trans-
formation given in Eq. (19). In a similar fashion to the phonon
shift, there is also a contribution to the renormalization from
second-order effects introduced by the phonon dissipator.
These second-order effects cannot be neglected either, as illus-
trated in Figs. 10(a) and 10(c), where the light-matter coupling
renormalization is shown. The renormalization has here been
estimated as


η =
√

(S+ − S−)2 − (S+ + S−)2

2g
, (C1)

where the numerator, by insertion of the Jaynes-Cummings
eigenvalues, gives 2g′, where g′ is the effective light-matter
coupling. Thus, by normalizing with 2g, one finds the renor-
malization factor of the light-matter coupling. Again, the
naïve first-order guess B as the renormalization factor is
seen to deviate from the actual renormalization. Estimating
the renormalization factor by including second-order effects,
all the master equations, except the standard polaron mas-
ter equation, predict the renormalization well, however. The
renormalization factor converges to one and is thus only im-
portant for small light-matter coupling rates g. It is worth
noting that the prediction of 
η > 1 is a robust prediction, and
determining it via other means such as a fit on the evolution of
the emitter population yields similar values. Other numerical
studies also show similar results, which further validates the
prediction [57]. The implication of 
η > 1 is that phonons
enhance the light-matter coupling, which is opposite to what
is normally expected from phonons, i.e., the renormalization
factor B is always >1.
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(2008).

[71] D. Wigger, V. Karakhanyan, C. Schneider, M. Kamp, S.
Höfling, P. Machnikowski, T. Kuhn, and J. Kasprzak, Opt. Lett.
45, 919 (2020).

[72] D. P. S. McCutcheon, Open Quantum Systems in Spatially
Correlated Regimes, Ph.D. thesis, University College London,
2010.

235309-16

https://doi.org/10.1103/PhysRevB.92.205406
http://arxiv.org/abs/arXiv:2103.13100
https://doi.org/10.1103/PhysRevB.90.035312
https://doi.org/10.1103/PhysRevLett.109.033604
https://doi.org/10.1364/OE.16.019136
https://doi.org/10.1364/OL.385602

