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Commensurability oscillations in the Hall resistance of unidirectional lateral superlattices

Akira Endo ,* Shingo Katsumoto , and Yasuhiro Iye
The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

(Received 23 March 2021; accepted 19 May 2021; published 3 June 2021)

We have observed commensurability oscillations (CO) in the Hall resistance Ryx of a unidirectional lateral
superlattice (ULSL). The CO, having small amplitudes (∼1 �) and being superposed on a roughly three orders
of magnitude larger background, are obtained by directly detecting the difference in Ryx between the ULSL area
and the adjacent unmodulated two-dimensional electron gas area and then extracting the odd part with respect
to the magnetic field. The CO thus obtained are compared with a theoretical calculation and turn out to have the
amplitude much smaller than the theoretical prediction. The implication of the smaller-than-predicted CO in Ryx

on the thermoelectric power of ULSL is briefly discussed.
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I. INTRODUCTION

Commensurability oscillations (CO), also known as Weiss
oscillations, have been arguably one of the best-known mag-
netoresistance phenomena in mesoscopic systems since their
discovery in 1989 [1,2]. They were uncovered in a unidirec-
tional lateral superlattice (ULSL), a two-dimensional electron
gas (2DEG) subjected to a weak one-dimensional (1D) peri-
odic modulation V (x) of the electrostatic potential. The most
prominent oscillations were observed in the magnetoresis-
tance Rxx along the modulation, with the minima taking place
at the flat-band conditions,

2Rc

a
= n − 1

4
, (n = 1, 2, 3, ...), (1)

where a is the period of V (x) and Rc = h̄kF/(e|B|) is the cy-
clotron radius, with kF = √

2πne the Fermi wave number, ne

the electron density, and e the elementary charge. We assume a
sinusoidal modulation V (x) = V0 cos(2πx/a) throughout the
paper. The magnetic field B is applied perpendicular (‖ z axis)
to the 2DEG plane (x-y plane, see Fig. 1). Oscillations were
also observed in the transverse direction Ryy, albeit with much
smaller amplitudes and taking maxima instead of minima at
Eq. (1) [1]. Soon after the discovery, a pictorial explanation
invoking the E × B drift velocity of semiclassical cyclotron
orbits was presented [3], which captures the physics behind
the dominant mechanism (band contribution, ascribed to the
modulation of the Landau-band dispersion and hence of the
group velocity) generating the oscillations in Rxx. However,
full understanding of CO in a ULSL, including the oscillations
in Ryy, requires [4] quantum mechanical theories [5–8], in
which additional contribution due to the modulation of the
density of states (collisional contribution) is implemented.

Although occasionally overlooked, the theories [5–8] pre-
dict the presence of CO also in the Hall resistance Ryx,
resulting from the collisional contribution as is the case in
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Ryy. To the knowledge of the present authors, however, an
unambiguous experimental observation of CO in the Hall
resistance of a ULSL has never been reported for nearly three
decades after the theoretical predictions [9]. We surmise that
the observation has been hampered mainly by two obstacles:
the smallness of the amplitudes and unintentional mixing of
the Rxx component into the measurement. First, the amplitude
of the oscillatory part δRyx is predicted to be of the order of
1 �, accounting for only ∼0.1% of the total Ryx � 1k� �
Rxx. The signal from δRyx can thus readily be buried in the
noise level for the measurement setup with sensitivity adjusted
to measure Ryx. Second, due to inevitable imperfectness of the
Hall bar device, e.g., the misalignment of voltage probes, a
small portion of Rxx can inadvertently mix into the measured
Ryx. The effect of the mixed Rxx is totally insignificant in the
usual measurement of Ryx, since Rxx � |Ryx| for B � 0.1 T
in high-mobility 2DEGs. Focusing on the oscillatory parts,
however, parasitic δRxx component can easily outweigh the
intrinsic δRyx, since the amplitudes of the former is about two
orders of magnitude larger than the predicted amplitudes of
the latter. Here and in what follows, we denote the oscillatory
part of a quantity X by δX , and the difference in X with and
without V (x) by �X . The latter can contain the nonoscillatory
part induced by V (x) in addition to δX .

In the present study, we circumvent these problems by
employing simple techniques: directly measuring the excess
Hall resistivity �Ryx attributable to V (x) and then extracting
the antisymmetric part with respect to the magnetic field.
The δRyx thus obtained is compared with δRyx numerically
calculated from the formula for the conductivity σyx expressed
in terms of summation over the Landau indices given in
Ref. [8]. To gain transparent insight into the behavior of σyx

and to efficiently extract the oscillatory part, we also deduce
an analytic asymptotic expression that approximates the σyx

quite well. We find that the observed δRyx is much smaller
than the theoretical prediction, even if we consider damping
of the oscillations due to small angle scatterings neglected in
the original theory.
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FIG. 1. Schematic drawing of the Hall bar device containing, in
series, areas with (ULSL) and without (p2DEG) the periodic poten-
tial modulation V (x). Wiring for directly measuring the excess Hall
resistance, �Ryx = Ryx,U − Ryx,P, introduced by V (x) is also shown.

The present study is partly motivated by rather counterintu-
itive isotropic behavior of the CO in the Seebeck coefficients
(diagonal components of the thermopower tensor) of a ULSL
predicted in Ref. [8], which we have recently noticed [10] to
be strongly related via the Mott relation to the CO in the Hall
conductivity. As we will see, the smallness of Ryx found in the
present study casts doubt on the isotropic behavior.

II. EXPERIMENTAL DETAILS AND RESULTS

Figure 1 illustrates the schematics of the Hall bar device
used in the present study. The device contains a modulated
area (ULSL) and a plain 2DEG (p2DEG) area in series,
with the voltage probes to measure the magnetoresistance
Rxx,U/P and the Hall resistance Ryx,U/P attached to both areas,
where the subscript U and P represent ULSL and p2DEG
areas, respectively. The device was fabricated from a conven-
tional GaAs/AlGaAs 2DEG wafer having the mobility μ =
70 m2/(Vs) and the electron density ne = 2.1 × 1015 m−2.
Modulation V (x) with the period a = 184 nm was introduced
by placing a grating of negative-tone electron-beam resist
on the surface of the ULSL area [11], exploiting the strain-
induced piezoelectric effect [11,12]. All the measurements in
this study were performed at 4.2 K.

In Fig. 2(a), we plot Ryx,U/P and Rxx,U/P measured employ-
ing standard low-frequency ( f = 73 Hz) ac lock-in technique
with the current I = 100 nA. Rxx,U exhibits prominent CO
with the minima occurring at the positions given by Eq. (1).
Small-amplitude oscillations observed at higher magnetic-
field regions (|B| � 0.5 T) both in Rxx,U and Rxx,P are the
Shubnikov-de Haas (SdH) oscillations. On the other hand,
Ryx,U/P appears as a featureless line in the plots. To extract
the component deriving from V (x), we take the differences
�Ryx = Ryx,U − Ryx,P and �Rxx = Rxx,U − Rxx,P, and plot
them in Fig. 2(b). Since the difference is large for Rxx, �Rxx

can be obtained reliably by simply subtracting the two traces
in Fig. 2(a) numerically. We can see that the SdH oscillations
are partially canceled out in �Rxx [13]. In Ryx, by contrast,
minuscule difference (∼�) unobservable in Fig. 2(a) needs to
be drawn out from orders of magnitude larger (∼k�) values.

FIG. 2. (a) Hall resistances Ryx,U and Ryx,P (blue lines, left axis)
and magnetoresistances Rxx,U and Rxx,P (red lines, right axis) mea-
sured in the ULSL area (solid lines) and in the p2DEG area (dashed
lines). (b) Excess Hall resistance �Ryx obtained by the arrangement
depicted in Fig. 1 (blue line, left axis) and excess magnetoresistance
�Rxx obtained by taking the difference between Rxx,U and Rxx,P

shown in (a). Vertical dotted lines indicate the locations of the nth
flat-band condition given by Eq. (1).

To do this with sufficient signal-to-noise (S/N) ratio, we col-
lect the excess Hall resistance �Ryx directly, employing the
arrangement depicted in Fig. 1: The Hall voltages from ULSL
and p2DEG areas are first amplified (×100) by separate dif-
ferential preamplifiers [14], and then their outputs are plugged
into differential input of a lock-in amplifier [15]. The input
voltage range of the lock-in amplifier can thus be adjusted
to the minimum range that encompasses the small difference
voltage, which serves to significantly improve the S/N ratio.
As can be seen in Fig. 2(b), �Ryx obtained by this method
clearly shows oscillations corresponding to both CO and par-
tially canceled SdH oscillations (or, more precisely, incipient
quantum Hall plateaus). In the present paper, we focus on the
CO. A notable feature is the asymmetry between B > 0 and
B < 0 regions. In both regions, maxima are observed roughly
at the flat-band conditions Eq. (1). However, the amplitudes
of the oscillations are much larger in B > 0. As mentioned
earlier, the observed CO are considered to be composed of
two components: intrinsic δRyx and parasitic δRxx. Since δRyx

is an odd function of B while δRxx is an even function, the two
components are superposed either destructively (B < 0 in the
present case) or constructively (B > 0), depending on the sign
of the magnetic field. This explains the observed asymmetry in
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FIG. 3. Even (�Ryx,even, thin solid line) and odd (�Ryx,odd, thick
solid line) parts of the excess Hall resistance �Ryx . Linear compo-
nent γ B (with γ = 18.8 �/T) is subtracted from �Ryx,odd for clarity.
Linear combination of Rxx,U and Rxx,P (with α = −0.0197 and β =
0.0212), which emulates the parasitic Rxx component contained in the
measured Hall resistance, is also shown (thin dashed line). Vertical
dotted lines indicate the locations of the nth flat-band condition given
by Eq. (1).

the CO amplitudes. We have measured several ULSL devices
in addition to the one shown in Fig. 2. Similar asymmetry was
observed for all of them.

In order to separate the two components, we take the even
�Ryx,even and the odd �Ryx,odd parts of �Ryx, �Ryx,even(B) =
[�Ryx(B) + �Ryx(−B)]/2 and �Ryx,odd(B) = [�Ryx(B) −
�Ryx(−B)]/2, corresponding to the parasitic and the intrinsic
components, respectively, and plot them in Fig. 3. Noting that
the Hall probes in both ULSL and p2DEG areas generally can
pick up the corresponding parasitic Rxx,U/P components inde-
pendently, possibly with differing weights, we can expect that
the parasitic component can be expressed by the linear com-
bination αRxx,U + βRxx,P with small values of |α| and |β|. By
properly selecting α and β, with special care to reproduce the
oscillatory part due to the CO [see also Fig. 4(a)], fairly good
agreement can be achieved between αRxx,U + βRxx,P and the
observed �Ryx,even, supporting the interpretation on the origin
of �Ryx,even. This confirms that the remnant �Ryx,odd is the
intrinsic CO in Ryx, the target we are seeking in the present
study. In the plot of the odd part, we subtracted a linear term
γ B, which is attributable to the small difference in the electron
density, �ne � −1.3 × 1013 m−2, between the ULSL and the
p2DEG areas.

III. COMPARISON WITH THEORETICAL
CALCULATIONS

A. Deducing superlattice parameters from commensurability
oscillations in the magnetoresistance

The next step is to compare the observed δRyx with the
theoretical prediction. Before discussing δRyx, however, we
briefly review well-documented behavior of δRxx [8,11], from

FIG. 4. (a) Oscillatory parts δRxx,U (thick solid line) and
δ�Ryx,even (thin dashed line) obtained by subtracting the slowly-
varying background from Rxx,U and �Ryx,even shown in Figs. 2(a) and
3, respectively. The latter is scaled by the factor 1/α = −50.6. Cal-
culated δRxx [Eq. (4) with V0 = 0.35 meV and μw = 8.2 m2/(Vs)]
is also shown (thin solid line), exhibiting excellent agreement with
δRxx,U (apart from SdH oscillations at B � 0.6 T). (b) Oscillatory
parts δ�Ryx,odd (thick solid line), extracted from the experimentally
obtained �Ryx,odd shown in Fig. 3 by subtracting the slowly-varying
background. δRyx calculated with Eq. (16) (thin solid line) and modi-
fied Eq. (16) with the damping factor A[π/(μwB)] multiplied to δσ A

yx

(dashed line), using the sample parameters deduced in (a), are also
plotted. Thin dashed curve represents basically the same calculation
but with μw in the damping factor replaced by μ∗

w = μw/2. Vertical
dotted lines indicate the locations of the nth flat-band condition given
by Eq. (1).

which we draw out parameters characterizing our ULSL. As
mentioned earlier, two different mechanisms, the band and the
collisional contributions, are responsible for CO. Asymptotic
analytic expressions for the oscillatory parts of the conduc-
tivity, valid at low magnetic fields where large numbers of
Landau levels are occupied [8], are given for the two contri-
butions as

δσ band
yy = σ0V 2

0

EF h̄ωcakF
A

(
π

μwB

)
A

(
T

Ta

)
sin rc (2)

235303-3



ENDO, KATSUMOTO, AND IYE PHYSICAL REVIEW B 103, 235303 (2021)

and

δσ col
xx = − 3σ0V 2

0 akF

8π2EF h̄ωc(μB)2
A

(
π

μwB

)
A

(
T

Ta

)
sin rc, (3)

respectively, where σ0 = eneμ is the conductivity at B = 0,
EF the Fermi energy, ωc = e|B|/m∗ the cyclotron angular
frequency with m∗ the effective mass, rc ≡ 4πRc/a, Ta ≡
h̄ωcakF/(4π2kB), and A(x) ≡ x/ sinh x. Although absent in
the original theories [5–8], an additional damping factor
A[π/(μwB)] accounting for the effect of small angle scatter-
ing, with the value of μw close to the quantum mobility μq

[11,16], are contained in Eqs. (2) and (3) in addition to the
thermal damping factor A(T/Ta). More detailed discussion on
the factor A[π/(μwB)] will be given below. The resistivity
tensor ρi j (i, j = x, y) is obtained by inverting the conductiv-
ity tensor σi j : σxx = σ sc

xx + δσ col
xx , σyy = σ sc

xx + δσ col
xx + δσ band

yy ,
and σyx = −σxy = σ sc

yx + δσyx, where σ sc
xx = σ0/(1 + μ2B2)

and σ sc
yx = σ0μB/(1 + μ2B2) are the semiclassical conductivi-

ties for a p2DEG. Noting that μB � 1 and |δσ band
xx | � |δσ col

xx |,
and using the relation Rxx/R0 = σ0ρxx with R0 representing
Rxx at B = 0, we obtain, to a good approximation,

δRxx

R0
= (μB)2

δσ band
yy

σ0
(4)

and likewise δRyy/R0 = (μB)2δσ col
xx /σ0. Equation (4) has

been shown to describe experimentally obtained CO ex-
tremely well [11]. This is confirmed in Fig. 4(a), which
shows δRxx,U extracted from Rxx,U in Fig. 2(a) by subtracting
slowly varying background following the protocol detailed in
Ref. [11], along with δRxx in Eq. (4) obtained by the fitting,
employing V0 and μw as fitting parameters. The fitting yields
V0 = 0.35 meV and μw = 8.2 m2/(Vs). The value of μw is
close to μq = 8.6 m2/(Vs) deduced from the SdH oscillations
in Rxx,P plotted in Fig. 2(a).

B. Asymptotic analytic expressions for the Hall conductivity

Now we turn to the Hall component. We start with the
expression of the Hall conductivity in a ULSL presented in
Ref. [8],

σyx = 2e2

h

∞∑
N=0

(N + 1)
∫ 1

0

fEF (EN,ξ ) − fEF (EN+1,ξ )

[1 + λN cos (2πξ )]2 dξ (5)

with

EN,ξ = EN + V0 exp
(
−u

2

)
LN (u) cos (2πξ ) (6)

and

λN = V0

h̄ωc
exp

(
−u

2

)
L−1

N+1(u), (7)

where fEF (E ) = {1 + exp[(E − EF)/kBT ]}−1 is the Fermi-
Dirac distribution function, N is the Landau index, EN ≡
(N + 1/2)h̄ωc, ξ ≡ x0/a with x0 the guiding center, u ≡
2π2l2/a2 with l = √

h̄/(e|B|) the magnetic length, and LN (u)
and LM

N (u) are the Laguerre and the associated Laguerre poly-
nomials. Note that Eq. (5) is valid only for B > 0. Since σyx

is an antisymmetric function with respect to B, σyx at B < 0 is
obtained by inverting the sign of Eq. (5). The increment of σyx

FIG. 5. (a) The increment of the Hall conductivity due to V (x),
calculated with the exact [thick solid line, �σyx in Eq. (8)] and the ap-
proximate analytic [thin solid line, �σ A

yx in Eq. (13)] formulas, using
sample parameters of the ULSL in the present study. Nonoscillatory
background, �σ A

yx,bg in Eq. (14), of the approximate formula is plot-
ted with thin dot-dashed line. The increment deriving only from the
first term in Eq. (9), namely, �σ A(1)

yx = σ
A(1)
yx,bg + δσ A(1)

yx in Eq. (10a),
is also plotted (dashed line). (b) Oscillatory parts calculated from
exact (thick solid line, δσyx = �σyx − �σ A

yx,bg) and approximate [thin
solid line, δσ A

yx in Eq. (15)] formulas. Three constituent terms of
the oscillatory part are also plotted separately, with thin dashed,
thin dotted, and thick dashed lines representing δσ A(1)

yx , δσ A(21)
yx , and

δσ A(22)
yx in Eqs. (10c), (11c), and (12c), respectively. Vertical dotted

lines indicate the locations of the nth flat-band condition given by
Eq. (1).

introduced by the modulation,

�σyx = σyx(V0) − σyx(V0 = 0), (8)

numerically calculated [17] using Eq. (5) with the parameters
in the present ULSL is plotted in Fig. 5(a).

Since the behavior of σyx, notably the phase of the oscil-
lations, are not readily perceived from Eq. (5), we deduce an
asymptotic analytic expression, basically following the pre-
scription taken for σxx and σyy in Ref. [8]. Via the deriving pro-
cedure detailed in the Appendix, we arrive at an approximate
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formula σ A
yx � σyx,

σ A
yx = σ A(1)

yx + σ A(21)
yx + σ A(22)

yx , (9)

with

σ A(1)
yx = ν

e2

h
+ �σ A(1)

yx = ν
e2

h
+ σ

A(1)
yx,bg + δσ A(1)

yx (10a)

σ
A(1)
yx,bg = ν

e2

h

3

2
λc

2 (10b)

δσ A(1)
yx = −ν

e2

h
A

(
T

Ta

)
3

2
λc

2 sin (rc + δF), (10c)

σ A(21)
yx = σ

A(21)
yx,bg + δσ A(21)

yx (11a)

σ
A(21)
yx,bg = −ν

e2

h

akF

π
sin

(
π

akF

)
λc

2 cos

(
δF

2
+ π

akF

)
(11b)

δσ A(21)
yx = −ν

e2

h

akF

π
sin

(
π

akF

)
A

(
T

Ta

)
λc

2

× sin

(
rc + δF

2
− π

akF

)
, (11c)

and

σ A(22)
yx = σ

A(22)
yx,bg + δσ A(22)

yx (12a)

σ
A(22)
yx,bg = −sgn(B)

e2

h

akF

π
cos

( π

akF

)
λc

2 sin

(
δF

2
+ π

akF

)

(12b)

δσ A(22)
yx = sgn(B)

e2

h

akF

π
cos

( π

akF

)
A
( T

Ta

)
λc

2

× cos

(
rc + δF

2
− π

akF

)
, (12c)

where ν = neh/(eB) is the Landau-level filling
factor (ν < 0 for B < 0 by the definition), λc ≡
2
√

2/π [V0/(h̄ωc)][π/(akF)]rc
−1/2, δF ≡ 2 cot−1 rc, and

sgn(x) represents the sign of x. By collecting the
corresponding terms, we obtain the increment of the
conductivity, the nonoscillatory background of the increment,
and the oscillatory part,

�σ A
yx = �σ A(1)

yx + σ A(21)
yx + σ A(22)

yx , (13)

�σ A
yx,bg = σ

A(1)
yx,bg + σ

A(21)
yx,bg + σ

A(22)
yx,bg , (14)

and

δσ A
yx = δσ A(1)

yx + δσ A(21)
yx + δσ A(22)

yx , (15)

respectively. Figure 5(a) illustrates that the asymptotic ana-
lytic expression Eq. (13) reproduces Eq. (8) quite well, except
for the small-amplitude oscillations at B � 0.6 T resulting
from the Landau quantization. This allows us to use the ap-
proximate background �σ A

yx,bg to extract the oscillatory part
from �σyx in Eq. (8). The oscillatory part thus obtained,
δσyx = �σyx − �σ A

yx,bg, is plotted in Fig. 5(b) along with δσ A
yx

in Eq. (15).
The analytic expression lets us grasp the outline of the

behavior of the oscillations. Since δσ A(1)
yx , δσ A(21)

yx , and δσ A(22)
yx

all oscillate with different phases depending on B through δF,
the phase of the CO in σyx is expected to exhibit rather com-
plicated behavior. We note, however, that π/(akF) (=0.148
in the present sample) is generally small for experimentally
achievable values of a and that δF is also small (�0.4 in the
magnetic-field range where CO is observed) and approaches
0 with decreasing B. Furthermore, at low magnetic fields
where ν is large, δσ A(22)

yx becomes much smaller than the other
terms. The dominance of δσ A(1)

yx and δσ A(21)
yx , combined with

the smallness of π/(akF) and δF, indicates that the oscilla-
tion phase of δσyx is close to that of δσ col

xx and thus takes
maximum at the flat-band conditions Eq. (1), or equivalently,
at rc = 2πn − π/2. The calculated δσyx plotted in Fig. 5(b)
are seen to actually take maxima at the flat-band conditions
at low magnetic fields. With the increase of the magnetic
field, slight deviation of the peak positions becomes apparent,
mainly due to the increase of δF and of the relative importance
of the third term δσ A(22)

yx , whose oscillation phase differs from
δσ A(21)

yx by π/2. Noting that (akF/π ) sin [π/(akF)] ∼ 1, the
two dominant terms are expected to have comparable oscilla-
tion amplitudes, which can also be confirmed in Fig. 5(b).

C. Comparison between experimental and calculated
commensurability oscillations in the Hall resistance

We obtain the Hall resistivity ρyx (=Ryx in a 2DEG) by
inverting the conductivity tensor and find that the oscillatory
part of the Hall resistance Ryx is given, considering |δσ A

yx| �
|σyx|, by

δRyx = 1

σ0
2

{
[(μB)2 − 1]δσ A

yx + μB
(
2δσ col

xx + δσ band
yy

)}
.

(16)
The oscillations are dominated by the first term. The second
term is negligibly small since |δσ col

xx | � |δσ band
yy |. The third

term, having the phase roughly opposite the first term, serves
to reduce the oscillation amplitude. In Fig. 4(b), we com-
pare the experimentally obtained oscillatory part δ�Ryx,odd,
extracted from �Ryx,odd shown in Fig. 3 by subtracting the
slowly varying background [11], with δRyx calculated by
Eq. (16) using the sample parameters deduced above from the
analysis of δRxx. The figure shows that the observed amplitude
of the CO is much smaller than the theoretical prediction
especially at lower magnetic fields, while the phase of the
oscillations is roughly in agreement.

It is well known that the scattering in a GaAs/AlGaAs
2DEG is predominantly caused by remote ionized donors, for
which scattering angles are generally small [18]. Although the
momentum relaxation is not significant for small scattering
angles, cyclotron orbits are disturbed regardless of the scatter-
ing angle and thus the CO amplitudes are severely diminished
even by the small-angle scattering [11,16]. The damping of
the CO is more prominent for lower magnetic fields where
the circumference of the cyclotron orbit 2πRc becomes large.
The effect of small-angle scattering, which has not been con-
sidered thus far for σ A

yx, can be implemented by multiplying
A[π/(μwB)], following the recipe applied for δσ band

yy and δσ col
xx

described above. Figure 4(b) reveals, however, that the dis-
crepancy between the amplitudes of the observed and the
calculated CO is still large even with the inclusion of the
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effect of the small-angle scattering. Apparently, the theory
overestimates the CO amplitudes in the Hall resistance, pos-
sibly because δRyx is much more vulnerable to the scattering
compared to δRxx and thus its damping cannot be described
by the factor A[π/(μwB)] with the same value of μw. Note
that the damping factor A[π/(μwB)] with μw � μq is firmly
established theoretically [16] and experimentally [11] only for
δσ band

yy and thus may not be applicable to δσ col
xx and σ A

yx with-
out modification [19]. As demonstrated in Fig. 4(b), heavier
damping of σ A

yx achieved by halving the μw roughly repro-
duces the experimental CO amplitudes, albeit without solid
theoretical underpinnings.

IV. POSSIBLE ANISOTROPY IN THE
SEEBECK COEFFICIENT

Finally, we briefly discuss the effect of δσyx on the
CO of the Seebeck coefficients Sxx and Syy, the diagonal
components of the thermopower tensor Si j . The theory [8]
predicts that Sxx and Syy are almost identical and thus the
Seebeck coefficient accommodates CO isotropically. Si j can
be written as the product of the resistivity tensor ρi j and
the thermoelectric conductivity tensor εi j . The latter is re-
lated to the conductivity tensor by the Mott formula [20],
εi j = −L0eT (dσi j,T =0/dE )|E=EF with L0 = π2kB

2/(3e2) the
Lorenz number, at low temperatures [21]. We thus have
Sxx = ρxxεxx − ρyxεyx and Syy = ρyyεyy − ρyxεyx, where we
made use of the relations ρxy = −ρyx and εxy = −εyx. The
corresponding oscillatory parts due to the CO are given,
to a good approximation, by δSxx � (δεxx + μBδεyx )/σ0 and
δSyy � (δεyy + μBδεyx )/σ0 [22]. Since μB � 1 for a high-
mobility 2DEG in the magnetic field range where CO can be
observed, both δSxx and δSyy are dominated by the identical
second term if the magnitude of |δεyx| is comparable to those
of |δεxx| and |δεyy| as predicted in the theory [8], leading
to the rather counterintuitive isotropic behavior δSxx � δSyy.

However, the small |δσyx| we have experimentally found in
the present study, combined with the Mott formula, implies
that |δεyx| is much smaller than the theoretical prediction.
The resulting enhancement in the relative importance of the
first terms can lead to anisotropic behavior δSxx �= δSyy. This,
however, needs to be verified experimentally [23].

V. SUMMARY

To summarize, we have experimentally captured the CO
in Ryx of a ULSL, theoretically predicted some 30 years ago,
by employing the measurement arrangement designed to ef-
ficiently pick out the extra component of Ryx introduced by
V (x) and further by eliminating the parasitic component due
to an unintentionally mixed Rxx distinguishable as an even
function of the magnetic field. The amplitude of the CO thus
observed is found to be much smaller than the theoretical
prediction. We have also deduced an asymptotic analytic ex-
pression for CO in the Hall conductivity δσyx to facilitate the
comparison between the theory and the experiment and to
clarify the oscillation phase of δσyx. The smallness of δσyx

demonstrated in the present experiment suggests the possi-
bility of considerable anisotropy in the Seebeck coefficient,
contrary to the theoretical prediction.
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APPENDIX: DERIVATION OF THE ASYMPTOTIC
ANALYTIC EXPRESSIONS

In this Appendix, we describe the derivation of the asymp-
totic analytic expression σ A

yx given by Eq. (9) from σyx in
Eq. (5). Noting that λN � 0.1 for practical values of V0, a,
and B, we obtain, up to O(λ2

N ),

σyx � 2e2

h

∞∑
N=0

(N + 1)
∫ 1

0
dξ

{
fEF (EN ) − fEF (EN+1) +

[
dfEF (EN )

dE
LN (u) − dfEF (EN+1)

dE
LN+1(u)

]
V0e− u

2 cos (2πξ )

}

× [1 − 2λN cos (2πξ ) + 3λN
2 cos2 (2πξ )] = σ (1)

yx + σ (2)
yx (A1)

with

σ (1)
yx = 2e2

h

∞∑
N=0

(N + 1)
[

fEF (EN ) − fEF (EN+1)
](

1 + 3

2
λN

2

)
(A2)

and

σ (2)
yx = 2e2

h

∞∑
N=0

(N + 1)

[
−dfEF (EN )

dE
LN (u) + dfEF (EN+1)

dE
LN+1(u)

]
V0e− u

2 λN , (A3)

where we performed the integration with respect to ξ . In the asymptotic limit of many filled Landau lev-
els (N � 1), we can make the replacements, e−u/2LN (u) → (π2Nu)−1/4 cos (2

√
Nu − π/4) and e−u/2L−1

N (u) →
u(4

√
π )−1(Nu)−5/4[4

√
Nu cos (2

√
Nu + π/4) − sin (2

√
Nu + π/4)], and take the continuum limit, EN → E ,

∑∞
N →∫ ∞

h̄ωc/2 dE/(h̄ωc). The latter can be replaced by
∫ ∞
−∞ dE/(h̄ωc) at low temperatures. We further make an approximation

fEF (EN ) − fEF (EN+1) � h̄ωc(−∂ f /∂E )|EF− h̄ωc
2

. By performing the energy integral, we get

σ (1)
yx � ν

e2

h

[
1 + 3

2
λc

2 − A

(
T

TaH

)
3

2
λc

2 sin (rc + δF)

]
(A4)
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and σ (2)
yx = σ (2a)

yx + σ (2b)
yx with

σ (2a)
yx � (ν + 1)

e2

h

√
2

π

V0

h̄ωc

λc√
r−

c

[
A

(
T

T +
aH

)
cos

(
r+

c + r−
c

2
+ δ+

F

2

)
− A

(
T

T δ
aH

)
sin

(
δ+

F

2
+ r+

c − r−
c

2

)]
(A5)

and

σ (2b)
yx � (ν − 1)

e2

h

√
2

π

V0

h̄ωc

λc√
rc

[
A

(
T

T −
aH

)
cos

(
r−

c + δ−
F

2

)
− 1√

1 + rc
2

]
, (A6)

where σ (2a)
yx (σ (2b)

yx ) derives from the first (second) term in

Eq. (A3), λc ≡ 4
√

2/π [V0/(h̄ωc)]u
√

(1 + r2
c )/r5

c , TaH ≡
Ta(r2

c + 1)/(r2
c − 1), r±

c ≡ rc

√
1 ± ν−1, δ±

F ≡ 2 cot−1 r±
c ,

T +
aH ≡ Ta · 2

√
1 − ν−2(r+

c
2 + 1)/[

√
1 + ν−1(r+

c
2 + 1) +√

1 − ν−1(r+
c

2 − 1)], T −
aH ≡ Ta · √

1 − ν−1(r−
c

2 + 1)/r−
c

2,
and T δ

aH ≡ Ta · 2
√

1 − ν−2(r+
c

2 + 1)/[
√

1 + ν−1(r+
c

2 + 1) −√
1 − ν−1(r+

c
2 − 1)].

Noting that ν, rc, r±
c � 1 in the range of the magnetic

field where CO is observed, we may neglect the difference
between Ta and TaH, T ±

aH to a good approximation. We can also
make an approximation λc � 4

√
2/π [V0/(h̄ωc)]ur−3/2

c to at-
tain the definition of λc presented in the main text. With these
approximations, Eq. (A4) becomes equivalent to Eq. (10a) in
the main text. It can also readily be found that A(T/T δ

aH) � 1

at the cryogenic temperatures where CO is observed. After
approximating λc/

√
r−

c in Eq. (A5) by λc/
√

rc for the sake of
simplicity, we expand (ν + 1) and (ν − 1) in Eqs. (A5) and
(A6), respectively. Then we collect the terms containing (not
containing) the factor ν, which yields Eq. (11a) [Eq. (12a)]
by further using the approximations r±

c � rc(1 ± ν−1/2) and
δ±

F � δF ∓ ν−1rc/(1 + rc
2) within the cos and sin terms. The

factor sgn(B) is incorporated in Eqs. (12b) and (12c) to ensure
the antisymmetry with respect to B. [See the caveat to Eq. (5)
in the main text.]

We note in passing that the expression σyx = (2e2/h)(N +
1)(1 + 3λN

2/2) presented just below Eq. (28) in Refs. [8,24]
corresponds to the low temperature limit of σ (1)

yx in the present
study. As mentioned in the main text, σ (1)

yx only accounts for
roughly half of the CO in σyx [see also Fig. 5(a)].
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