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Driven dynamics of a quantum dot electron spin coupled to a bath of higher-spin nuclei
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The interplay of optical driving and hyperfine interactions between an electron confined in a quantum dot and
its surrounding nuclear spin environment produces a range of interesting physics stemming from the creation
of dynamic nuclear polarization. In this paper, we go beyond the ubiquitous spin-1/2 approximation for nuclear
spins and present a comprehensive theoretical framework for an optically driven electron spin in a self-assembled
quantum dot coupled to a nuclear spin bath of arbitrary spin. Using a dynamical mean-field approach, we
compute the nuclear spin polarization distribution with and without the quadrupolar coupling. We find that while
hyperfine interactions drive dynamic nuclear polarization in such a way that the electron spin precession becomes
synchronized with the driving, quadrupolar couplings counteract this phenomenon. The tension between these
mechanisms is imprinted on the steady-state electron spin evolution, providing a way to measure the importance
of quadrupolar interactions in a quantum dot. Our results show that higher-spin effects such as quadrupolar
interactions can have a significant impact on the generation of dynamic nuclear polarization and how it influences
the electron spin evolution.
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I. INTRODUCTION

Spins in self-assembled quantum dots (QDs) are under
intense investigations for a variety of quantum informa-
tion applications, including quantum information processing,
quantum communication, and quantum transduction [1–4].
The relatively long coherence times, fast controllability [5–7],
and good photon emission properties of these systems [8–11]
make them promising candidates for achieving high-quality
spin-photon interfaces and for producing large-scale multi-
photon entangled states [12–15]. The deterministic generation
of these multiphoton entangled states has been demonstrated
experimentally using the dark excitonic states of QDs [16].

While optically controlled quantum dot spins offer a wide
range of technological possibilities, hyperfine (HF) interac-
tions between the confined spin and its surrounding nuclear
spin bath have been a major impediment. This interaction is
the main source of decoherence in these systems and it also
causes spectral wandering and inhomogeneities in quantum
dot ensembles, aspects that have been researched extensively
over the past two decades [17–51]. However, many works
have shown that the state of the bath, and consequently its
deleterious effects, can be influenced by driving the elec-
tron spin. For example, several experiments have shown that
driving can generate dynamic nuclear polarization (DNP), an
effect that has been observed in self-assembled QDs [52–64]
and also in other systems such as gated QDs [65–68], quantum
wires [69] and in bulk materials [70,71], findings that have
been supported by a number of theory works [72–84]. In
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self-assembled QDs, it has been shown that DNP can survive
on the order of minutes due to the suppression of nuclear spin
diffusion caused by strain-induced quadrupolar interactions
[85–87]. An important example of DNP in self-assembled
QDs is the mode-locking experiments of Refs. [52–58], where
an ensemble of QD electron spins becomes synchronized
with a periodic train of optical pulses as a consequence of
DNP. Continuous-wave laser driving of the electron has been
shown to create DNP in QDs as well, leading to interesting
phenomena such as the line-dragging effect, i.e., the locking
of an optical QD transition to the frequency of the laser
[60,62,63,76,88]. Owing to the long coherence times of nu-
clear spins, DNP has been proposed for applications such as
quantum memories [89,90], which has recently been demon-
strated experimentally [91,92].

Although most of the fully quantum mechanical theoretical
treatments of the HF decoherence problem allow for nuclei
with spin greater than 1/2 [22–24], studies of the driven,
HF-induced generation of DNP have mostly focused on spin
1/2 nuclei to reduce the computational complexity of the
problem [53,72,73,81,82,93]. The latter works typically rely
on either stochastic equations or rate equations to solve for
the nuclear polarization distribution. While solving the feed-
back problem for spin 1/2 nuclear baths can yield qualitative
insights about DNP experiments, the quantitative accuracy of
such models is limited by the fact that the most commonly
studied semiconductor QDs are in materials such as InAs or
GaAs, which contain nuclei of spin I > 1/2. In addition to
artificially reducing the size of the bath Hilbert space, assum-
ing spin 1/2 nuclei also ignores effects such as quadrupolar
interactions, which are only present for I > 1/2. There do ex-
ist a few theoretical works that allow for I > 1/2 [18,37,74].
Specifically, Huang and Hu [18] studied DNP arising from
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HF interactions with the spin 3/2 arsenic nuclei in InGaAs by
making use of Fermi’s golden rule; however, only qualitative
agreement with experiment was achieved due to the need to
introduce phenomenological parameters. Yang and Sham [74]
presented a general framework for nuclei of arbitrary total
spin by unifying the stochastic and rate-equation approaches.
In this work they focused on a drift feedback loop (which
allows for a possible bias in nuclear spin-flip processes)
and obtained a Fokker-Planck equation for the polarization
of the bath. Although this framework captures line-dragging
and other DNP phenomena seen in experiments, it has only
been established for continuous-wave driving, and so it is not
immediately applicable to experiments with periodic driving
such as the mode-locking experiments of Refs. [52–58]. The-
oretical works that have specifically focused on mode-locking
type experiments have either assumed I = 1/2 nuclear baths
[72,73] or utilized semiclassical methods [94–100]. While
semiclassical approaches have been successful in reproducing
qualitative features seen in experiments including DNP and
mode locking, it remains an outstanding challenge to de-
velop a more quantitatively accurate description of the driven
electron-nuclear spin system. Unlike in the case of nuclear-
spin-induced decoherence, where semiclassical treatments
have been shown to agree well with quantum mechanical ones
[79,101–103], similar comparisons in the context of optically
driven DNP have revealed significant quantitative differences
[95].

In this paper, we develop a quantum, nonperturbative
framework to solve the dynamics of an optically driven elec-
tron spin coupled to a bath of I > 1/2 nuclear spins. We
focus on DNP feedback mechanisms that arise from driving
the electron with a periodic train of optical pulses while it is
subject to HF interactions with a nuclear spin bath, as in the
mode-locking experiments [52–58]. Here, we also consider
the effect of quadrupolar interactions. To compute DNP and
its effect on the evolution of the electron spin, we use an
approach based on dynamical maps and kinetic equations in-
troduced in Refs. [72,73] but, importantly, here we generalize
the formalism to higher nuclear spin and treat the problem
nonperturbatively. Our framework provides a self-consistent
description of the feedback loop between the driven electron
and DNP.

We compute the nuclear spin polarization distribution and
its influence on the electron spin evolution for spin-1 and
spin-3/2 baths and compare the results to the I = 1/2 case.
Our approach is able to treat bath sizes of up to thousands
of nuclear spins in the I = 1/2 and I = 1 cases and up to
several hundred spins in the I = 3/2 case. Although evi-
dence of mode locking is seen in all three cases, we find
that quadrupolar interactions act to suppress mode locking
for I > 1/2, especially when the angle between the principal
strain axis and the applied magnetic field is large. We also
find that while HF interactions can produce a significant bath
polarization that grows linearly with the number of nuclei
for I > 1/2, quadrupolar interactions work to counteract this
buildup of DNP. We further show that the relative impor-
tance of quadrupolar effects grows as the magnitude of the
applied magnetic field is increased. The competition between
HF and quadrupolar interactions imprints clear signatures
in the steady-state electron spin evolution, providing an

experimental tool to measure the strength of quadrupolar cou-
plings in a QD. Our results show that accounting for higher
nuclear spin is important not only for quantitative accuracy but
also for capturing important qualitative features of the DNP
process in driven QD systems.

The paper is structured as follows. In Sec. II, we describe
the system and Hamiltonian. In Sec. III, we lay out the the-
oretical approach in detail for arbitrary nuclear spin I and
construct the equations that govern DNP for I = 1/2, 1, and
3/2 nuclear spin baths. We present an analytical solution
for the steady-state nuclear spin polarization distribution for
I = 1/2. In Sec. IV, we numerically compute steady-state
polarization distributions for I = 1 and 3/2 and compare the
results to the I = 1/2 solution for various parameter choices.
We also study the effect of DNP on the electron spin evolution.
We conclude in Sec. V. Two Appendices contain details about
the steady state of a driven electron spin in the absence of HF
interactions.

II. SYSTEM AND HAMILTONIAN

Our focus in this paper is on QD experiments in which a
single electron is periodically pumped by a train of optical
pulses [52–58,104]. Each pulse excites the electron to a trion
state (a bound state of an electron and an exciton), which
then decays back to the electronic ground state manifold via
spontaneous emission. The full Hamiltonian of the nuclear
spin bath and the driven electron is given by

H (t ) = H0,e + H0,n + Hc(t ) + Hres + HHF + HQ. (1)

Here, H0,e describes the electronic degrees of freedom in the
QD in the absence of driving:

He,0 = ωeŜz + ωT̄ |T̄ 〉〈T̄ |, (2)

where ωe is the electron spin Zeeman frequency, Ŝz is the spin
operator in the electronic ground space, and ωT̄ is the energy
of the trion state |T̄ 〉. We take the magnetic field to be oriented
along the z direction, while the optical axis lies in the x
direction (see Fig. 1). We neglect the second trion level |T 〉
in H0,e because it is not excited by the laser polarization we
are considering. This driving is described by the Hamiltonian

Hc(t ) = �(t )|x̄〉〈T̄ | + H.c., (3)

where we assume the drive laser is left-circularly polarized
(red arrow in Fig. 1) with periodic temporal profile �(t +
TR) = �(t ), so each pulse couples the electron spin state |x̄〉 to
the trion state |T̄ 〉. The latter decays via spontaneous emission
with rate γe. This process arises from interactions with a
photonic bath, which is represented by the term Hres. We do
not give an explicit expression for this term as it is not needed
in what follows. The Zeeman splitting of the nuclear spins is
given by H0,n = ωn

∑
i Î i

z .
The HF interaction is given by the contact term

HHF =
N∑

i=1

AiŜzÎ
i
z +

N∑
i=1

Ai/2(Ŝ+ Î i
− + Ŝ− Î i

+), (4)

where N is the number of nuclei that interact appreciably with
the electron. The first term is referred to as the Overhauser
term and it gives rise to an effective magnetic field seen by
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FIG. 1. The relevant level structure in the mode-locking experi-
ments. |x〉 and |x̄〉 are the electron spin states along the optical axis.
These states are coupled by an external magnetic field along the z
direction. Circularly polarized light excites the ground electron spin
states to excited trion levels |T 〉 and |T̄ 〉 with angular momentum
projections +3/2 and −3/2, respectively. The selection rules are
such that each ground state couples to only one excited state. The
trion states decay via spontaneous emission with rate γe. In this
paper, we focus on left-circularly polarized driving.

the electron spin in the case of nonzero nuclear spin polariza-
tion. The second term generates flip-flop interactions under
which the electron spin flips with a nuclear spin. These terms
are responsible for transferring angular momentum from the
electron onto the nuclei, while the Overhauser term is the
primary mechanism for feedback between the nuclear spin
polarization and the electron spin evolution. The HF couplings
Ai are determined by the magnitude of the electronic wave
function at the location of the nuclear spin I i. However, on
timescales short compared to N/A ∼ μs, where A is the total
HF interaction energy, the variations in these couplings do
not significantly affect the electron spin evolution [25]. Here,
we focus on fast optical driving where the electron reaches a
steady state over a timescale of about 100 ns [73], which al-
lows us to make the box model approximation in which all the
HF couplings are taken equal: Ai = A ≡ A/N [25,105]. Fur-
ther comments about this approximation are given in Sec. V.

The quadrupolar interaction is given by [106,107]

HQ =
N∑

i=1

ν i
Q

2

(
Î i
z′

2 − I (I + 1)

3

)
. (5)

This interaction occurs due to the coupling of the nuclear
quadrupole moment to electric field gradients caused by strain
in the semiconductor lattice and is only present for I > 1/2.
The presence of quadrupolar interactions has led to striking
phenomena in various types of experiments conducted in
QDs. A few examples include the anomalous Hanle effect
[43] and suppression of spin diffusion [41]. Line-dragging
phenomena have also been associated with the presence of
quadrupolar interactions [62,63,74]. The coupling strength νQ

is referred to as the nuclear quadrupole resonance frequency,
which is estimated to be around 2.8 MHz for As [41]. The
quadrupole resonance frequency generally depends on the
local strain in the vicinity of each nuclear spin, and so it
generally varies across the material. Here, we assume that the
strain remains roughly constant over the QD, and so we take

all the frequencies to be equal: ν i
Q = νQ. The operator Îz′ in

Eq. (5) is the component of the nuclear spin operator along
the principal axis of the electric field gradient. Our focus will
be on the case of QDs with cylindrical symmetry in which
the electric field gradient makes an angle θ with the magnetic
field. Therefore, we have Îz′ = Îz cos θ + Îx sin θ , which then
gives [106]

HQ = νQ

2

N∑
i=1

[(
Î i
z

)2
cos2 θ − I (I + 1)

3

+ (
Î i
z Î i

x + Î i
x Î i

z

)
sin θ cos θ + (

Î i
x

)2
sin2 θ

]
. (6)

When θ = 0, HQ creates nonuniform energy spacings between
the nuclear spin levels. For θ �= 0, HQ has the additional effect
of driving �mI = ±1 and �mI = ±2 nuclear spin-flip transi-
tions, where mI is the eigenvalue of Îz. Notice that the rate
for �mI = ±1 transitions is maximal at θ = π/4, while the
rate for �mI = ±2 transitions is largest for θ = π/2, which is
also the value of θ where the nonuniformity in the energy level
spacings is zero. Thus, we see that the role of HQ changes as θ

varies from 0 to π/4, and from π/4 to π/2. Because HQ is π

periodic in θ , it suffices to focus on the range 0 � θ � π/2.
In the case of I = 1/2 nuclei, the underlying physical

mechanism behind the formation of DNP can be understood
as follows. Imagine that the electron spin starts in a pure
(polarized) state and the nuclear spins are in a totally mixed
(unpolarized) state. The HF interaction then transfers angular
momentum from the electron onto the nuclei, creating DNP.
In the absence of driving, this would lead to only a modest
nuclear spin polarization, and this polarization would be short
lived because it would eventually be transferred back to the
electron via the HF interaction. However, the laser pulses peri-
odically reset the electron spin to a polarized state, enabling a
net transfer of angular momentum from the laser, through the
electron, and onto the nuclei. This basic mechanism can also
underlie DNP in nuclear spin baths with I > 1/2, however, it
is unclear what role the quadrupolar interactions play in this
story. Answering this question is a main goal of this paper.

It is worth noting that our Hamiltonian, Eq. (1), does not
include internuclear dipolar interactions. In self-assembled
QDs, these interactions are weak compared to the HF and
quadrupolar interactions, and their main effect is to drive nu-
clear spin diffusion, which gradually causes the decay of DNP.
It has been shown experimentally, however, that this diffusion
process is strongly suppressed in self-assembled QDs due to
strain [85–87], leading to diffusion times in excess of several
minutes. This is longer than the timescale for generating DNP
(∼seconds [53]). For this reason, we neglect nuclear dipolar
interactions and diffusion in this paper.

III. NUCLEAR SPIN-FLIP RATES AND KINETIC
EQUATION

Before we describe our approach in detail, we first give an
overview of the general strategy and main ingredients. Our
framework is summarized in Fig. 2. The overall strategy is
similar to that introduced in Refs. [72,73]. However, signifi-
cant modifications are needed to allow for higher nuclear spin.
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Joint evolution:

S(∞)
e ⊗ Sn

Flip rates

wj
i : i → j

Kinetic equation:
d
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P(m) = K[P(m)]
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P(m)
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Adding a single
nuclear spin

Multinuclear
effects

FIG. 2. Schematic depiction of the self-consistent formalism
we use to model DNP with feedback. We exploit a hierarchy of
timescales to first solve for the joint evolution of the electron coupled
to a single nuclear spin. Under a Markovian approximation, the
electron spin state is reset after each drive period. The resulting
nuclear spin evolution yields nuclear spin-flip rates that are then fed
into a kinetic equation governing the dynamics of the multinuclear
spin polarization distribution. The flip rates depend on the effective
electron spin precession frequency, including the Overhauser field
contribution for self-consistency. The solution to the kinetic equation
is then used to update the electron steady state, closing the feedback
loop.

Also, here we present a nonperturbative approach, whereas
Refs. [72,73] relied on perturbation theory. Therefore, the
theoretical model presented in this section has overlap with,
but supersedes, that of Refs. [72,73]. Readers who are only
interested in the results and not the approach could skip ahead
to Sec. IV.

We are dealing with a system that is both open and driven.
An efficient way to treat nonunitary evolution is to use dynam-
ical maps [72,73,108–110]. In this approach, the nonunitary
evolution of a system from an initial state ρ to a final state ρ ′
is implemented by applying a set of operators and summing
the results:

ρ ′ =
∑

k

EkρE†
k . (7)

The operators Ek are known as Kraus operators, and they
constitute a generalization of the usual unitary operators that
evolve closed quantum systems to the case of nonunitary
evolution in open systems. The condition

∑
k E†

k Ek = 1 en-
sures that the trace of the density matrix is always unity.
The advantage of Kraus operators is that they allow one to
incorporate effects due to the transient occupation of excited
states using operators that live purely in the ground space of
the system. In the present problem, we use these operators
to describe the effect of each optical pulse on the electron
spin state. The entire process of optical excitation, subsequent
decay, and rotation is captured by an appropriate set of Kraus
operators (given in Appendix A) without having to explicitly

include excited states or a photonic bath into the formalism.
The dynamical map description works well so long as the
population returns regularly to the electron spin ground states,
as is the case for the periodic driving used in the mode-locking
experiments. These Kraus operators can then be used to obtain
the electron spin steady state in the absence of nuclei, as
shown in Appendix B.

Of course, we are interested in the case where the electron
spin is coupled to a nuclear spin bath through HF interactions
while it is being driven. Under the condition that the electron
is being pumped fast enough (which indeed is the case for
the mode-locking experiments [52–58]), the electron reaches
its steady state on a much faster timescale compared to the
electron-nuclear interaction dynamics and the electron spin
decoherence time. This allows us to use a Markovian approx-
imation in which we first solve for the driven electron steady
state and then incorporate the effects due to the electron-
nuclear couplings on top of this.

To bring the nuclei into the framework, we first solve for
the joint evolution of one nuclear spin coupled to the driven
electron spin. Although the HF interaction generates unitary
dynamics, this is disrupted periodically by the pulses, and this
in turn leads to an effective nonunitary dynamical map for the
nuclear spin that depends on the electron steady state under
the Markovian approximation. We extract nuclear spin-flip
rates from this effective nuclear spin evolution operator; these
rates provide information about the movement of population
between the different nuclear spin levels.

We calculate the steady state of the entire nuclear spin
bath using a rate equation that depends on the spin-flip rates
obtained from the single-nucleus solution. A critical step is
that we build in self-consistent system-environment feedback
by modifying the flip rates. To understand this, we first need to
describe the Overhauser effect [111], which is the main feed-
back mechanism between the electron and nuclei. A polarized
nuclear spin bath acts as an effective magnetic field and there-
fore shifts the Zeeman frequency of the electron. However, the
interaction between the electron and the nuclear spin bath is
reciprocal; not only will the state of the electron change under
the Overhauser field, but the nuclear spins will also be affected
by the Knight field [112], i.e., the effective magnetic field due
to polarization of the electron. The Knight field is given by
the electron steady-state spin vector (SV), and so it enters into
the nuclear spin flip rates, as explained above. The electron
steady state (and hence the Knight field) in turn depends on the
total magnetic field, which includes the Overhauser field due
to nuclear polarization. These interdependencies constitute a
complete feedback loop that must be treated self-consistently.
We do this by making the nuclear spin-flip rates depend on
the net nuclear polarization of the bath. The steady state of
the rate equation then gives the polarization distribution of
the nuclear spin bath with feedback included. Finally, we
use this nuclear polarization distribution to perform the Over-
hauser shift on the Zeeman frequency of the electron and
update the nuclear-bath-averaged electron spin steady state
self-consistently.

The framework we have just outlined can be thought of
as a self-consistent dynamical mean-field approach. In the
remainder of this section, we use this approach to compute
the dynamical map for a single nuclear spin as well as the
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nuclear spin flip rates. We then construct the kinetic equations
that govern the dynamics of the full nuclear spin bath. Our
method is quite general and can be applied to baths of any
nuclear spin. Here, we focus on the cases I = 1/2, 1, and 3/2.

A. Effective dynamical map for one nuclear spin

Given the electron spin steady state [Eq. (B5)], we can
proceed to construct an effective dynamical map for a single
nuclear spin. We do this by first constructing the evolution
operator in the SV representation that describes the joint
evolution of the electron and nuclear spins over one driving
period. We then apply the Markovian approximation and reset
the electron spin to its steady state at the end of the period.

Tracing out the electron then leaves an effective dynamical
map for the nuclear spin.

To start, we must choose a basis of Hermitian matrices
λ̂k of dimension 2I + 1, where k = 1, . . . , (2I + 1)2 to define
the nuclear SV. Unlike in the spin I = 1/2 case considered
in Refs. [72,73], for I > 1/2 we have much more freedom in
how to choose this basis, and the choice we make can have
a substantial impact on the complexity of the analysis that
follows. We choose the first 2I + 1 of these matrices to be
diagonal, each with a single nonzero component equal to one.
The remaining 2I (2I + 1) matrices each have two nonzero
components, and these matrices are purely real or purely
imaginary. For example, in the case of I = 3/2, we have 16
basis matrices:

λ̂k,ab = δakδbk, k = 1 . . . 4,

λ̂5,ab = 1√
2

(δa1δb2 + δa2δb1), λ̂6,ab = −i√
2

(δa1δb2 − δa2δb1), λ̂7,ab = 1√
2

(δa1δb3 + δa3δb1),

λ̂8,ab = −i√
2

(δa1δb3 − δa3δb1), λ̂9,ab = 1√
2

(δa1δb4 + δa4δb1), λ̂10,ab = −i√
2

(δa1δb4 − δa4δb1),

λ̂11,ab = 1√
2

(δa2δb3 + δa3δb2), λ̂12,ab = −i√
2

(δa2δb3 − δa3δb2), λ̂13,ab = 1√
2

(δa2δb4 + δa4δb2),

λ̂14,ab = −i√
2

(δa2δb4 − δa4δb2), λ̂15,ab = 1√
2

(δa3δb4 + δa4δb3), λ̂16,ab = −i√
2

(δa3δb4 − δa4δb3). (8)

These matrices are normalized such that Tr[λ̂ j λ̂k] = δ jk . De-
noting the nuclear spin density matrix as ρn, the components
of the nuclear SV Sn are then given by

Sn,k = Tr[ρnλk]. (9)

Note that the populations, ρn,ii, are the first four components
of Sn. We will see that this feature simplifies the process of
computing flip rates.

Let us denote the density matrix that describes the total
electron-nuclear spin state at the beginning of a driving period
by �. We expand this in terms of an operator basis formed
from tensor products of the nuclear spin operators λ̂k with the
electron spin Pauli matrices σ̂ j ,

Ĝ(2I+1)2 j+k = σ̂ j ⊗ λ̂k, (10)

with j = 0, .., 3, k = 1, ..., (2I + 1)2, and where we define
σ̂0 = 12×2. We use this set of 4(2I + 1)2 operators as a basis
for the SV of the joint system: S� = Tr(�Ĝ�). This SV evolves
over one driving period according to S ′ = YS , where the SV
evolution operator Y is given by

Y��′ = 1
2 Tr[Ĝ�UĜ�′U†], (11)

where U = exp{−i(ωeŜz + ωnÎz + HN=1
HF + HN=1

Q )TR}
describes the joint evolution of the electron spin and
single nuclear spin under precession and the HF and
quadrupolar interactions. At this point, we invoke the
Markovian approximation: Because the electron reaches
its steady state, Sss

e , quickly compared to the timescales
for nuclear spin and HF dynamics, we reset the electron
SV to its steady state value at the beginning/end of each

period: S = Sss
e ⊗ Sn. We then obtain an effective nuclear

spin dynamical map, Yn, by acting with the full evolution
operator, Y , on the tensor product Sss

e ⊗ Sn and reading off
the coefficients of the components of the nuclear SV, Sn, from
the resulting S ′:

Yn, jk = d

dSn,k

[
Y

(
Sss

e ⊗ Sn
)]

j . (12)

Here, j, k = 1, ..., (2I + 1)2, that is, we only retain the com-
ponents of S ′ that correspond to the basis operators Ĝk =
12×2 ⊗ λ̂k , i.e., the components that correspond to purely
nuclear spin degrees of freedom. Note that although the joint
evolution operator Y describes unitary evolution, the nuclear
spin dynamical map, Yn, implements non-unitary evolution.
This nonunitarity is a consequence of the Markovian approx-
imation, which is itself due to the nonunitary driving of the
electron spin.

B. Single-nucleus flip rates

We can use the nuclear spin dynamical map, Yn, that we
found in the previous subsection to find the flip rates for a
single nuclear spin interacting with the electron spin. These
flip rates govern the movement of population from one nuclear
spin state to another. Such processes are described by the
following kinetic equation:

d pm

dt
=

∑
n �=m

wm
n pn −

∑
n �=m

wn
m pm, (13)
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where pm is the population of level m, and wm
n is the rate to

flip from state n to m, which in general differs from the rate to
flip from m to n, wn

m. Which transitions are allowed depends
on the type of interactions present in the Hamiltonian. For
instance, the HF flip-flop terms only cause �mI = ±1 transi-

tions, while the quadrupolar interaction also drives �mI = ±2
transitions. We can combine the rate equations (13) into a
matrix equation. We exemplify this in the I = 3/2 case, where
we denote the four states |+3/2〉, |+1/2〉, |−1/2〉, |−3/2〉, by
the shorthand {++,+,−,−−}. The matrix equation is then
Ṗ = MP , where P = (p++, p+, p−, p−−), and

M =

⎡
⎢⎢⎣

−(w
+
++ + w

−
++ + w−−

++) w
++
+ w

++
− w++

−−
w

+
++ −(w

++
+ + w

−
+ + w

−−
+ ) w

+
− w

+
−−

w
−
++ w

−
+ −(w

++
− + w

+
− + w

−−
− ) w

−
−−

w−−
++ w

−−
+ w

−−
− −(w

+
−− + w

−
−− + w++

−−)

⎤
⎥⎥⎦. (14)

It is clear that this equation satisfies the condition that the sum
of the components of the probability vector P should be unity
at all times. This is guaranteed by the property that the sum of
the rows of M vanishes.

To determine the flip rates, we need to connect the generic
kinetic equation, Eq. (13), to the nuclear spin evolution opera-
tor, Eq. (12), derived earlier. This can be done by starting from
the evolution over one driving period:

Sn(t + TR) = YnSn(t ). (15)

The fact that the nuclear spin evolution is much slower than
the driving period TR allows us to coarse grain this equation to
arrive at a continuous evolution equation:

d

dt
Sn = 1

TR
(Yn − 1)Sn. (16)

Because we have defined Sn such that its first four components
are just the populations of the nuclear spin states, we can iden-
tify this equation with Ṗ = MP and therefore read off the
flip-rate matrix components from the nuclear spin evolution
matrix:

Mi j = 1

TR
(Yn − 1)i j, i, j = 1...2I + 1. (17)

This allows us to read off the flip rates from the nuclear
spin dynamical map. It is worth noting that Yn contains not
only terms that mix the populations of the different nuclear
spin levels but also terms that mix populations and nuclear
spin coherences. Here, we are neglecting the influence of the
latter on the late-time populations. In numerical simulations,
we find that these terms have a negligible effect on the flip
rates. Moreover, they will be further suppressed by nuclear
spin dephasing [7,32], which happens quickly compared to
nuclear spin flips. This simplification allows us to obtain non-
perturbative expressions for the flip rates.

In the case of I = 1/2 nuclei, the flip rates can be obtained
analytically following the above procedure:

w± = A2
(
1 ± Sss

e,z

)
sin2(TR

√
(ωe − ωn)2 + A2/2)

2TR[(ωe − ωn)2 + A2]
, (18)

where we use the shorthand notation w+ ≡ w+1/2
−1/2 and w− ≡

w−1/2
+1/2. Note that unlike in Refs. [72,73], here we did not have

to resort to perturbation theory in the HF interaction to obtain
an analytical expression for the flip rates. The flip rates for
I = 1 and I = 3/2 can also be obtained analytically in the case

of zero quadrupolar coupling, νQ = 0. In this case, there are
four nonzero flip rates for I = 1:

w0
−1 = A2

(
1 + Sss

e,z

)
sin2(TR�

(1)
− /2)

TR(�(1)
− )2

,

w−1
0 = A2

(
1 − Sss

e,z

)
sin2(TR�

(1)
− /2)

TR(�(1)
− )2

,

w+1
0 = A2

(
1 + Sss

e,z

)
sin2(TR�

(1)
+ /2)

TR(�(1)
+ )2

,

w0
+1 = A2

(
1 − Sss

e,z

)
sin2(TR�

(1)
+ /2)

TR(�(1)
+ )2

, (19)

with

�
(1)
± =

√
(ωe − ωn)2 ± A(ωe − ωn) + 9A2/4, (20)

while there are six nonzero flip rates for I = 3/2:

w++
+ = 3A2

(
1 + Sss

e,z

)
sin2

(
TR�

(3/2)
+1 /2

)
2TR

(
�

(3/2)
+1

)2 ,

w+
++ = 3A2

(
1 − Sss

e,z

)
sin2

(
TR�

(3/2)
+1 /2

)
2TR

(
�

(3/2)
+1

)2 ,

w+
− = A2

(
1 + Sss

e,z

)
sin2

(
TR�

(3/2)
0 /2

)
TR

(
�

(3/2)
0

)2 ,

w−
+ = A2

(
1 − Sss

e,z

)
sin2

(
TR�

(3/2)
0 /2

)
TR

(
�

(3/2)
0

)2 ,

w−
−− = 3A2

(
1 + Sss

e,z

)
sin2

(
TR�

(3/2)
−1 /2

)
2TR

(
�

(3/2)
−1

)2 ,

w−−
− = 3A2

(
1 − Sss

e,z

)
sin2

(
TR�

(3/2)
−1 /2

)
2TR

(
�

(3/2)
−1

)2 , (21)

with

�(3/2)
η =

√
(ωe − ωn)2 + 2ηA(ωe − ωn) + 4A2. (22)

In the absence of quadrupolar interactions, only �mI = ±1
transitions (i.e., transitions between adjacent spin levels) are
allowed, as follows directly from the form of the HF flip-flop
interaction. When the quadrupolar coupling is nonzero, we
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FIG. 3. Single-nucleus spin-flip rates for (a,b) I = 1/2, (c,d) I = 1, (e,f) I = 3/2 as a function of the magnetization m of the nuclear
spin bath. Flip rates are shown in (a), (c), (e), while flip rate differences are shown in (b), (d), (f). The parameter values are TR = 13.2 ns,
NA = 10 GHz, N = 1000, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2. For (c-f), we set the quadrupolar parameters
to νQ = 2.8 MHz and θ = 0. Only the nonzero flip rates are shown.

can no longer obtain an analytical expression for the flip rates,
but these are still easily obtained numerically by computing
Yn for specific parameter values.

C. Multinuclear flip rates

We can convert the single-nucleus flip rates obtained above
into multinuclear flip rates by making them dependent on the
magnetization of the entire nuclear spin bath. This dependence
comes from the Overhauser effect in which nuclear spin polar-
ization acts as an effective magnetic field seen by the electron
spin. We incorporate this effect by adding a magnetization-
dependent shift to the precession frequency of the electron,

w
j
i (m) = w j

i (ωe → ωe0 + mA), (23)

where ωe0 denotes the contribution to the precession fre-
quency due purely to the external magnetic field, and where
we use w

j
i (m) to denote the rate to flip from state i to state j

in the presence of nuclear spin magnetization m. For nuclei
of spin I , we can express this magnetization in terms of
occupation numbers, N�, for each of the nuclear spin states:

m =
I∑

�=−I

� N�. (24)

Figure 3 shows the dependence of the flip rates on the net
magnetization m for I = 1/2, 1, and 3/2. In this figure, re-
sults for zero quadrupolar angle, θ = 0, are shown in the I >

1/2 cases. Even though the quadrupolar coupling is nonzero,
νQ > 0, only �mI = ±1 transitions are permitted in this case
because when θ = 0, the only effect of the quadrupolar inter-
action is to modify the energy splittings between nuclear spin
levels, and so the selection rules are still determined solely by
the HF interaction. We discuss the effect of nonzero θ below.

The salient features evident in Fig. 3 can be understood
from the nonperturbative expressions for the flip rates given

above. First, the flip rates are strongly peaked at magnetization
m ≈ −ωe0/A. In the spin-1/2 case, the precise location of the
peak is the value of m at which the argument of the sine in
Eq. (18) vanishes since the flip rates are essentially given by
squared sinc functions. For low to moderate external magnetic
field strengths and large N , the terms involving ωn and A2 can
be neglected, leaving m ≈ −ωe0/A. Similar statements hold
for I = 1 and I = 3/2 in the absence of quadrupolar effects,
as is clear from Eqs. (19) and (21). The fact that the flip rates
are maximal at m ≈ −ωe0/A can be understood from energy
conservation: At these values, the effective Zeeman energy
of the electron is almost zero, and thus so is the energy mis-
match between the electron and nucleus. This in turn reduces
the energy penalty for flip-flops, accelerating the transfer of
polarization. Conversely, the overall decay of the flip rates
away from m ≈ ωe0/A is due to the HF interaction becoming
inefficient at overcoming the large energy mismatch between
the electronic and nuclear spin splittings.

It is also evident in Fig. 3 that the flip rates vanish peri-
odically as a function of m. The periodicity is also controlled
by the arguments of the sine functions in the flip rates. These
zeros correspond to values of ωe for which complete flip-flops
between the electronic and nuclear spins occur—polarization
is transferred back and forth between the electron and nucleus
an integer number of times within a single drive period TR.
Because there is no net polarization transfer, the flip rate
vanishes. For I > 1/2, the locations of these zeros depend on
which pair of adjacent spin levels we consider, although this
dependence fades away in the large N limit, where A → 0.
In the next section, we show that these flip-rate zeros play a
central role in the phenomenon of mode-locking.

Each pair of flip rates describing transitions between the
same two spin levels are almost equal [see Figs. 3(b), 3(d) and
3(f). As can be seen from Eqs. (18)–(21), the differences of
these flip rates are proportional to Sss

e,z(m), and this component
of the electron steady state is suppressed near m ≈ −ωe0/A
because it is proportional to ωe [see Eq. (B5)]. This is a
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FIG. 4. Single-nucleus spin-flip rates as a function of nuclear spin bath magnetization m for I = 1 and for different values of the
quadrupolar angle θ . (a) Flip rate for the �mI = 1 transition |0〉 → |+1〉. (b) Flip rate difference for the |0〉 ↔ |+1〉 transitions. (c) Flip rate for
the �mI = 2 transition |−1〉 → |+1〉. The parameter values are TR = 13.2 ns, NA = 10 GHz, N = 1000, ωe0 = 0.5 GHz, ωn = −0.5 MHz,
γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

reflection of the fact that when ωe = 0, the electron steady
state becomes polarized along the optical pulse axis (the x
direction), where it is no longer affected by the pulses and
is thus stabilized. In the figure, we see that this combination
of accelerated flip-flops and the suppression of Sss

e,z(m) near
m ≈ −ωe0/A results in flip rate differences that are more than
two orders of magnitude smaller than the flip rates themselves.

The effect of a nonzero quadrupolar angle θ on the flip
rates is shown in Figs. 4 and 5 for I = 1 and 3/2, respectively.
In the case I = 1, it is evident that θ has a negligible effect
on the �mI = ±1 flip rates. On the other hand, sufficiently
large values of the angle, θ � π/4, give rise to �mI = ±2
transitions that are not otherwise present. Although the rates
for these transitions are two orders of magnitude smaller than
those of the �mI = ±1 transitions, they are still large enough
to affect the polarization distribution of the nuclear spin bath,
as we show in Sec. IV. Similar but somewhat more prominent
effects are evident for I = 3/2 in Fig. 5. Here, larger values
of θ produce small but noticeable changes in �mI = ±1 flip
rates, significant �mI = ±2 transition rates, and even �mI =
±3 transitions. A striking feature evident in both Figs. 4 and 5

is that the flip rates for �mI = ±2 transitions do not decay as
m moves away from m = −ωe0/A. This is consistent with the
fact that spin flips caused by the quadrupolar interaction do
not require the electron and nuclear spin Zeeman energies to
be equal. Unlike HF spin flips, quadrupolar spin flips depend
weakly on the bath magnetization. On the other hand, the
�mI = ±3 flip rates are sensitive to m [see Fig. 5(b)], because
these arise from a higher-order process that combines HF and
quadrupolar spin flips.

D. Kinetic equations for multinuclear spin-polarization
distributions

In this subsection, we use the flip rates obtained in the
previous subsection to construct kinetic rate equations that
govern the evolution of the polarization distribution of the
entire nuclear spin bath. We do this for each of the three values
of nuclear total spin I considered in this paper. Although the
kinetic equation for I = 1/2 has been discussed in detail else-
where [72,73], here we present an analytical solution to this
equation that was not previously known. The kinetic equations

FIG. 5. Single-nucleus spin-flip rates as a function of nuclear spin bath magnetization m for I = 3/2 and for different values of the
quadrupolar angle θ . (a) Flip rate for the �mI = 1 transition |−1/2〉 → |+1/2〉. (b) Flip rate for the �mI = 3 transition |−3/2〉 → |+3/2〉.
(c) Flip rate for the �mI = 1 transition |−3/2〉 → |−1/2〉. (d) Flip rate for the �mI = 2 transition |−3/2〉 → |+1/2〉. (e) Flip-rate difference
for the |−3/2〉 ↔ |−1/2〉 transitions. (f) Flip-rate difference for the |−3/2〉 ↔ |+1/2〉 transitions. The parameter values are TR = 13.2 ns,
NA = 10 GHz, N = 1000, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.
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for I = 1 and 3/2 will be solved numerically in the next sec-
tion to obtain nuclear spin polarization distributions in these
cases. Detailed comparisons of the polarization distributions
that result in all three cases for various parameter values are
given below in Sec. IV. In that section, these distributions are
then used to compute the effect on the electron spin evolution
with and without quadrupolar interactions.

1. Kinetic equation for spin I = 1/2 nuclei

The polarization of a spin-1/2 nuclear bath in a definite
configuration with occupation numbers N+ and N− (the num-
ber of spins in the |+1/2〉 and |−1/2〉 states, respectively)
is given by m = (N+ − N−)/2. The total number of spins is
N = N+ + N−. Knowledge of the polarization m is sufficient
to determine the two occupation numbers, N+ and N−. This
in turn means that the probability of each bath configuration
is equal to the polarization probability distribution P(m). We
may write down a kinetic equation governing the dynamics of
this distribution [72,73]:

d

dt
P(m) = −

∑
±

[
w±(m)

N ∓ 2m

2

]
P(m)

+
∑
±

w∓(m ± 1)

[
N ± 2m

2
+ 1

]
P(m ± 1). (25)

A close look at this kinetic equation reveals that the right-
hand side is comprised of two terms that are related to each
other by shifting m → m + 1:

d

dt
P(m) = F (m + 1) − F (m), (26)

where F (m) = w−(m)(m + N/2)P(m) − w+(m − 1)(−m +
1 + N/2)P(m − 1). Therefore, in the steady state where
dP(m)/dt = 0, we find F (m) = F (m + 1) = const. Since we
must have P(N + 1) = 0, it follows that this constant is zero.
The equation F (m) = 0 then yields a two-term recursion rela-
tion [72,73]:

P(m) = N − 2m + 2

N + 2m

w+(m − 1)

w−(m)
P(m − 1). (27)

This relation can easily be solved iteratively starting from
an arbitrary value for P(−N ) and then imposing the normal-
ization condition

∑
m P(m) = 1. This approach was used to

produce numerical results for the polarization distribution in
Refs. [72,73]. Notice that this procedure yields the unique
steady state of the kinetic equation, Eq. (25). Because of
this uniqueness, the steady state must be stable. This is ev-
ident from the kinetic equation, where a positive fluctuation
that takes P(m) away from its steady-state value results in
dP(m)/dt < 0, which indicates that the steady state will be
subsequently restored. An analogous statement holds for a
negative fluctuation as well. The kinetic equations for I > 1/2
described below also possess this property.

Here, we obtain an analytical solution for P(m) by exploit-
ing the explicit, nonperturbative expressions we obtained for
the flip rates in Eq. (18). First, an expression for P(m) follows

immediately from Eq. (27):

P(m) = N−1
m∏

k=1−N/2

N − 2k + 2

N + 2k

w+(k − 1)

w−(k)

= N−1N!

(N/2 + m)!(N/2 − m)!

m∏
k=1−N/2

w+(k − 1)

w−(k)
, (28)

where N is a normalization factor. Next, we use the fact that
the two flip rates only differ by the sign in front of Sss

e,z(m),
which leads to a cascade of cancellations between the numer-
ator and denominator in the product. We are left with

P(m) = N−1

(N/2 + m)!(N/2 − m)!

m∏
k=1−N/2

1 + Sss
e,z(k − 1)

1 − Sss
e,z(k)

× (ωe0 − ωn + Am)2 + A2

sin2(TR

√
(ωe0 − ωn + Am)2 + A2/2)

, (29)

where we have absorbed additional constants into N . The
first, combinatoric factor in P(m) corresponds to a Gaussian-
like envelope that quickly approaches a Gaussian as N
increases: [(N/2)!]2/[(N/2 + m)!(N/2 − m)!] → e−2m2/N as
N → ∞. The second factor in Eq. (29) produces sharp spikes
at values of m that correspond to the zeros of the flip rates.
These values of m satisfy√

(ωe0 − ωn + Am)2 + A2 ≈ 2π p

TR
, (30)

where p is an integer. The concentration of probability near
these special values of m produces mode locking: Nuclear
polarization shifts the electron Zeeman frequency to values
where HF flip-flops stop transferring polarization between the
electronic and nuclear spins. This happens because an integer
number of flip-flops occur during each drive period. Using that
ωn � ωe0 and assuming N is sufficiently large that A � ωe0,
these values of m correspond to the electron precession be-
coming commensurate with the pulse train: ωe = ωe0 + Am ≈
2π p/TR, which is the primary signature of mode-locking seen
in experiments [52–58].

The middle factor (the product) in Eq. (29) is primarily
responsible for the average magnetization of the nuclear spin
bath, 〈m〉 = ∑

m mP(m). This factor is also where additional
pulse parameters such as the rotation angle φ and the residual
ground state population q0 influence the polarization distribu-
tion. If φ is equal to 0 or π or if q0 is zero, then Sss

e,z(k) = 0
for all k, in which case the final factor in Eq. (29) reduces
to 1. In this case, the combinatoric factor, which is centered
about m = 0, ensures that the average magnetization will be
small, 〈m〉 ≈ 0. On the other hand, if φ �= 0 and the external
magnetic field is sufficiently large, then 〈m〉 can be significant,
and its sign depends on the sign of φ and on the orientation
of the external field. If φ > 0, then Sss

e,z(m) is more often
positive than negative for m < −ωe0/A, which in turn means
that

1+Sss
e,z (m−1)

1−Sss
e,z (m) is biased toward values larger than 1, and so the

product grows as m increases. Once m passes −ωe0/A, Sss
e,z(m)

now tends to more negative values and the product shrinks
as m increases. Thus, we see that for φ > 0, the product in
Eq. (29) is peaked at m ≈ −ωe0/A, and so the average mag-
netization will lie between 0 and −ωe0/A. On the other hand,
if φ < 0, then the same reasoning leads to the conclusion that
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the product in Eq. (29) has a dip at m ≈ −ωe0/A and thus the
net magnetization is driven away from this point and will have
a sign that coincides with that of ωe0. These features are borne
out in plots of Eq. (29), as shown below in Sec. IV.

2. Kinetic equation for spin I = 1 nuclei

Before we write down the kinetic equation for I = 1 nuclei,
we first introduce the notation we use to distinguish different
bath configurations. We denote the occupation numbers of the
three spin states by N−1, N0, and N1. The bath polarization for
a given configuration is then m = +1 × N1 + 0 × N0 − 1 ×
N−1. We see immediately that there is an important difference
compared to the I = 1/2 case considered above: The polar-
ization does not uniquely specify a configuration of the bath.
For instance, in the case of two I = 1 spins with m = 0, we
can have either N1 = 1 = N−1 and N0 = 0 or N1 = 0 = N−1

and N0 = 2. This is in contrast to the I = 1/2 case, where
each value of m corresponds to a unique configuration. As
the number of spins increases, the number and orders of such
degeneracies grow quickly. Because the polarization does not
uniquely specify a configuration, we must combine it with one
of the occupation numbers to uniquely label different config-
urations. We choose to use N0 and express the probability of a
given configuration by P(m, N0). Unlike in the spin-1/2 case,
this quantity is now distinct from the polarization probability
distribution; the latter is obtained by summing over all possi-
ble values of N0 that are consistent with the given value of m:

P(m) =
∑
N0

P(m, N0). (31)

We can write down a kinetic equation for P(m, N0),
d

dt
P(m, N0) = F (m, N0) + G(m + 1, N0 − 1)

−G(m, N0) − F (m + 1, N0 + 1), (32)

where

F (m, N0) = −w−1
0 P(m, N0)N0 + w0

−1(m − 1)

× P(m − 1, N0 − 1)N−(m − 1, N0 − 1), (33)

G(m, N0) = w0
1P(m, N0)N+(m, N0)

−w1
0 (m − 1)P(m − 1, N0 + 1)(N0 + 1). (34)

Here N±(m, N0) ≡ (1/2)(N ± m − N0). In the kinetic equa-
tion above, we have only considered the �mI = ±1 tran-
sitions. Including transitions that change the angular mo-
mentum by more than 1 (for instance due to quadrupolar
interactions) leads to additional terms not shown above. Such
terms are illustrated for the case of I = 3/2 nuclei in the next
section. Returning to the spin-1 case, the steady state of the
above kinetic equation,

F (m, N0) − G(m, N0) = F (m + 1, N0 + 1)

− G(m + 1, N0 − 1), (35)

does not yield a recursion relation as in the I = 1/2 case.
We solve this equation (and its generalization for nonzero
quadrupolar interactions) numerically in Sec. IV.

3. Kinetic equation for spin I = 3/2 nuclei

We again adopt the notation {++,+,−,−−} to label
quantities associated with the four spin quantum numbers
mI = {+3/2,+1/2,−1/2,−3/2} of a spin-3/2 nucleus. For
a nuclear spin bath comprised of N = N++ + N+ + N− + N−−

spins, the magnetization of the system [Eq. (24)] is m =
(3N++ + N+ − N− − 3N−− )/2. In the I = 3/2 case, we need
two more quantities in addition to m to uniquely label different
multispin configurations. We choose these to be N++ and N−−.
The remaining two occupation numbers are then determined
by these three quantities for a fixed total number of spins:

N+ = 1
2 (2m + N − 4N++ + 2N−− ), (36)

N− = 1
2 (−2m + N + 2N++ − 4N−− ). (37)

The probabilities P(m, N++ , N−− ) that the nuclear spin bath is
in the various configurations labeled by m, N++ , and N−− obey
the following set of kinetic equations:

d

dt
P(m, N++ , N−− ) = F (m, N++ , N−− ) + G(m, N++ , N−− ) + H (m, N++ , N−− ) + I (m, N++ , N−− ) + J (m, N++ , N−− )

− F (m + 1, N++ + 1, N−− ) − G(m + 1, N++ , N−− − 1) − H (m + 1, N++ , N−− )

− I (m − 2, N++ − 1, N−− ) − J (m + 2, N++ , N−− − 1), (38)

where

F (m, N++ , N−− ) = +w
++
+ (m − 1)P(m − 1, N++ − 1, N−− )N+ (m − 1, N++ − 1, N−− ) − w

+
++ (m)P(m, N++ , N−− )N++ , (39)

G(m, N++ , N−− ) = +w
−
−− (m − 1)P(m − 1, N++ , N−− + 1)(N−− + 1)

−w
−−
− (m)P(m, N++ , N−− )N− (m, N++ , N−− ), (40)

H (m, N++ , N−− ) = +w
+
− (m − 1)P(m − 1, N++ , N−− )N− (m − 1, N++ , N−− )

−w
−
+ (m)P(m, N++ , N−− )N+ (m, N++ , N−− ), (41)

I (m, N++ , N−− ) = +w
−
++ (m + 2)P(m + 2, N++ + 1, N−− )(N++ + 1)

−w
++
− (m)P(m, N++ , N−− )N− (m, N++ , N−− ), (42)

J (m, N++ , N−− ) = +w
+
−− (m − 2)P(m − 2, N++ , N−− + 1)(N−− + 1) − w

−−
+ (m)P(m, N++ , N−− )N+ (m, N++ , N−− ). (43)
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FIG. 6. Structure of the matrix R defining the linear system of
equations governing the steady-state solution of the multinuclear
kinetic equation for spin I = 1 for (left) N = 3 spins and (right)
N = 20 spins in the absence of quadrupolar interactions.

Here, we have included �mI = ±1 and �mI = ±2 tran-
sitions. Although �mI = ±3 transitions cannot be directly
driven by either the HF interaction or the quadrupolar inter-
action to first order in their respective coupling strengths, they
can potentially arise from higher-order effects as we saw from
the flip rates in Fig. 5. Now that we have the kinetic equations
governing the nuclear polarization, the next step is to solve
them.

IV. NUCLEAR POLARIZATION DISTRIBUTION AND
FEEDBACK

A. Steady-state polarization distributions

For I = 1 and I = 3/2, we solve the respective kinetic
equations numerically to obtain steady-state polarization dis-
tributions. This is done by first setting the time derivatives
to zero: d

dt P(m, N++ , N−− ) = 0. The resulting algebraic equa-
tions are then collected together and written as a matrix R
acting on a vector V of the probabilities P(m, N++ , N−− ) such
that RV = 0. Thus, the steady-state polarization distribution
is the unique null vector of R. The matrix R depends on the
Overhauser-shifted flip rates and occupation numbers for each
configuration. The linear dimension of this matrix is equal
to the number of distinct multi-spin configurations. For N
spins of total spin I , the number of configurations is given by
the simplicial polytopic numbers

(N+2I
2I

)
. For I = 1/2, 1, and

3/2, this gives N + 1, (N + 1)(N + 2)/2, and (N + 1)(N +
2)(N + 3)/6, respectively. Therefore, in the case of I = 1, we

must compute the null vector of a matrix that grows quadrat-
ically with the number of nuclei, while for I = 3/2, we must
do the same for a matrix that grows like N3. The matrix R
is quite sparse in both cases (see Fig. 6), especially in the
absence of quadrupolar interactions. This allows us to employ
the Arnoldi method to compute the steady-state polarization
distribution for hundreds of spins with I = 3/2 and thousands
of spins with I = 1.

Figure 7 compares results for the steady-state nuclear spin
polarization for N = 200 for all three values of I . In the
I > 1/2 cases, we set the quadrupolar angle to zero, θ = 0;
however, the nonzero quadrupolar interaction νQ > 0 still
modifies the energy splittings between the nuclear spin lev-
els. In all three cases, the polarization distribution exhibits
multiple narrow peaks at values of m that correspond to the
mode-locking frequencies, i.e., these values of m are such that
ωe0 + Am = 2π p/TR where p is an integer (for an analytical
derivation of the I = 1/2 case see Sec. III D 1). As discussed
in Sec. III B, the flip rates approximately vanish at these values
of m. (Note that the spacing of the peaks in Fig. 7 is five times
smaller than the spacing of the flip-rate zeros in Figs. 3–5
because this spacing is proportional to 1/A = N/A, and N
is five times smaller in Fig. 7.) The steady-state probabili-
ties P(m, N++ , N−− ) are largest at these magnetization values
because they are multiplied by nearly vanishing flip rates
in the kinetic equations; the probabilities must compensate
for the smallness of the flip rates such that the product of
the two is finite and comparable to terms of similar size in
the kinetic equations. This trend can be seen explicitly from
the analytical solution in the I = 1/2 case, Eq. (29), where
it is evident that P(m) depends inversely on the flip rates.
In Fig. 7, we see that this also occurs for I > 1/2. For all
values of I , we can physically understand the formation of
probability peaks at flip-rate zeros as resulting from the fact
that, at these magnetization values, the joint electron-nuclear
spin evolution under the HF interaction becomes commen-
surate with the driving pulses. Consequently, the pulses do
not cause a net polarization transfer between the electron
and nuclear spins. Thus, these values of the magnetization m
provide a point of stability in the electron-nuclear feedback
mechanism. We also see from Fig. 7(a), and to some degree
from Fig. 7(b), that the polarization distribution is suppressed
in the vicinity of m = −ωe0/A (which corresponds to m =
−10 for the parameters used in the figure). This is due to
the fact that the flip rates are largest near these magnetiza-

FIG. 7. Steady-state nuclear spin polarization distribution of a bath with N = 200 nuclear spins for (a) I = 1/2, (b) I = 1, and (c) I = 3/2.
The parameter values are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.
In the case of I = 3/2 and I = 1, the quadrupolar angle is θ = 0.

235301-11



VEZVAEE, SHARMA, ECONOMOU, AND BARNES PHYSICAL REVIEW B 103, 235301 (2021)

FIG. 8. Extrapolation of the average nuclear spin bath polariza-
tion 〈m〉 to larger bath sizes N for two values of total spin: I = 1
(red circles) and I = 3/2 (blue diamonds). The points are obtained
by solving the respective kinetic equations, Eqs. (32) and (38). The
lines are linear fits. The parameter values are TR = 13.2 ns, NA =
10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3,
φ = −π/2, νQ = 2.8 MHz, θ = 0.

tion values and therefore drive population away from these
values.

Another striking feature of the polarization distributions
in Fig. 7 is that the distributions for I > 1/2 exhibit broad
envelopes in addition to the mode-locking peaks. This is a
consequence of the fact that there are multiple distinct flip
rates for I > 1/2, as shown in Eqs. (19) and (21). These flip
rates oscillate with ωe at distinct frequencies that differ from
each other by an amount proportional to A. Therefore, they do
not all vanish at the same values of ωe, dulling the sharpness
of the mode-locking peaks. This effect becomes diminished at
larger N because in this limit A decreases, and all the flip-rate
zeros approach the values of m at which ωe0 + Am = 2π p/TR,
where p is an integer, producing a more comblike distribution.
The broadening of the distribution at smaller values of N is an
important feature that is missed when I = 1/2 spins are used
to model I > 1/2 spin baths. In the example of Fig. 7, we see
that it also leads to an increase in the average magnetization

〈m〉 due to the enhanced weight of the distribution at positive
magnetizations. This enhancement is more pronounced for
I = 3/2 compared to I = 1. Figure 8 examines the behavior
of 〈m〉 as a function of N . The points are obtained by solving
the respective kinetic equations, Eqs. (32) and (38). In the
I = 1 case, it is possible to obtain results for much larger bath
sizes because the R matrix is much smaller in this case. For
both I = 1 and I = 3/2, the points are well described by a
linear relationship between 〈m〉 and N , as shown in the figure.
We find that for the parameters considered and for large N ,
the average polarization for I = 3/2 is approximately two
times larger compared to that of an I = 1 bath, with the net
polarization in this case approaching 9%.

The effects of nonzero quadrupolar angle on the polariza-
tion distribution for I = 1, 3/2 are illustrated in Fig. 9. Here,
we set N = 150, because nonzero θ reduces the sparsity of the
R matrix, making the numerical computation more intensive
than before, especially for I = 3/2. From Fig. 9(a), we see
that for I = 1, nonzero θ leads to quantitative changes in
the heights of the mode-locking peaks, along with a slight
redistribution of the probability to negative magnetizations for
intermediate values of θ . Similar behavior occurs for I = 3/2,
as shown in Fig. 9(b). The redistribution can be understood
from the fact that, in the absence of the HF interaction, the
quadrupolar coupling produces a Gaussian distribution cen-
tered around m = 0. This is discussed in more detail below.
The fact that this redistribution is strongest near θ = π/4
suggests that the �mI = ±1 quadrupolar-driven transitions
play an important role in this process. This effect constitutes
another way in which the quadrupolar interaction can make
the DNP process for I > 1/2 depart significantly from what is
predicted for an I = 1/2 bath. Also notice that in both panels
of Fig. 9, the polarization distributions are still suppressed
near m = −ωe0/A even for θ > 0. This indicates that the HF
contributions to the flip rates remain an important factor in
shaping the overall distribution.

Figure 10 again shows the effect of nonzero θ for I = 1,
but now for a bath of size N = 1000. For θ = 0, there is
a distinct comblike structure that is the hallmark of mode
locking. However, for θ > 0, this structure quickly disappears
and is replaced by an almost Gaussian distribution centered

FIG. 9. Steady-state nuclear spin polarization distribution of a bath with N = 150 nuclear spins for four different values of the quadrupolar
angle θ for (a) I = 1 and (b) I = 3/2. The parameter values are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz,
q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.
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FIG. 10. Steady-state nuclear spin polarization distribution of a
bath with N = 1000 I = 1 nuclear spins for four different values
of the quadrupolar angle θ . The other parameter values are TR =
13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe =
0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

around zero magnetization. A Gaussian distribution is, in fact,
what occurs in the absence of the HF interaction because the
flip rates are then purely due to the quadrupolar coupling,
which means that they are independent of m and are equal
for �mI > 0 and �mI < 0. This shows that the quadrupolar
interaction plays a much more important role compared to
the HF interaction for the case considered in Fig. 10. This
is because the larger value of N corresponds to a reduction in
the HF coupling A, and hence in the magnitude of the flip rates
[see Eq. (19)]. This, in turn, increases the relative importance
of the quadrupolar interaction. This can be seen from Fig. 4,
where it is evident that as θ increases, the flip rate for the
�mI = 2 transition quickly surpasses the difference in the flip
rates for the �mI = ±1 transitions. As a consequence, the
probability distribution is no longer sensitive to the detailed
features of the �mI = ±1 transitions, which are responsible
for both the comblike mode-locking structure and the suppres-
sion near m = −ωe0/A. This shows that even small values of
θ can have a dramatic effect on the DNP process for large
numbers of nuclei. This is quantified in Fig. 11, which shows
how the nuclear spin polarization distribution and average
magnetization, 〈m〉, depend on θ . The latter quickly decays
with increasing θ . As is evident from the inset in Fig. 11, the
distribution itself exhibits mode-locking fringes at small θ that
become blurred at larger θ . The sensitivity of mode locking to
the quadrupolar interaction suggests that it could be used as a
diagnostic tool to estimate the quadrupolar coupling strength
and angle in experiments. This is further supported in the next
section, where we show how the steady-state electron SV in
the presence of DNP feedback depends on the quadrupolar
angle.

B. Feedback on electron spin

Once we obtain the steady-state polarization distribution
of the nuclear spin bath, the final step is to update the steady
state of the electron by applying the Overhauser shift to the

FIG. 11. The average polarization 〈m〉 of a nuclear spin bath
with N = 1000 nuclei of total spin I = 1 for several values of the
quadrupolar angle in the range of 0 � θ � π/2. The inset color map
shows the steady-state nuclear spin polarization distribution over
the same range of quadrupolar angles. The other parameter values
are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz,
γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

Zeeman frequency:

S
ss
e,i(t, ωe0) =

∑
m

P(m)Sss
e,i(t, ωe0 + mA). (44)

Here the summation is over all possible values of m, and t
is the time elapsed since the last pulse. We obtain the time-
evolved electron steady state by starting from the expression
for the steady state immediately after a pulse, Eq. (B5), and
evolving it under Larmor precession with frequency ωe0 + mA
for time t . Fig. 12 shows the resulting DNP-modified elec-
tron steady state over one drive period for different species
of nuclear spins. Fig. 12(a) compares I = 1/2, 1 and 3/2
species for N = 150, where the two latter DNP distributions
are shown in Fig. 9 for θ = 0. Fig. 12(b) compares the cases
I = 1/2 and 1 for N = 1000. It is evident that the total spin
of the nuclei can have a significant effect on the electron
spin precession in the steady state. Because the mode-locking
effect is stronger in the spin 1/2 case (see Fig. 7), the electron
spin precession is closer to a sinusoid due to the fact that only
a few discrete values of the Overhauser field contribute to
the sum in Eq. (44). On the other hand, for larger spins, the
nuclear polarization distribution is broader, giving rise to a
beating in the electron SV over each driving period.

The role of quadrupolar interactions in the feedback is
examined in Fig. 13, which shows the resulting DNP-modified
electron steady state over one drive period for six different
N = 1000, I = 1 polarization distributions. Two of these are
distributions shown in Fig. 10—the ones corresponding to
θ = 0 and θ = π/2. The modified steady states for these
two cases are shown in Fig. 13(a), where it is evident that a
large quadrupolar angle suppresses oscillations, both in the
vicinity of the driving pulses and in the echo that occurs in the
middle of the drive period near t = TR/2, which is 6.6 ns for
the chosen parameter values. A similar behavior occurs for
other values of the external magnetic field, as demonstrated
in Figs. 13(b) and 13(c). It should be noted that the ampli-
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(b)(a)

FIG. 12. The feedback effect of nuclear spin polarization on the x component of the electron spin steady state as a function of time over
one drive period TR = 13.2 ns. (a) N = 150 nuclei of spin I = 1/2, 1 and 3/2, and (b) N = 1000 nuclei of spin I = 1/2 and 1. The parameter
values are NA = 10 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

tude of these oscillations are used to identify the presence of
mode locking [52–58], and so the suppression of these oscil-
lations can provide an experimental indicator of substantial
quadrupolar effects.

The electron steady state, Eq. (B5), is a rapidly oscilla-
tory function of the applied magnetic field. In Ref. [73], it
was found using perturbation theory that for I = 1/2, nuclear
feedback suppresses the amplitudes of these oscillations. In
particular, it was shown that the x component of the electron
steady-state SV approaches unity for all values of the external
magnetic field as a consequence of mode locking: The SV
becomes synchronized with the pulses such that it lies parallel
to the optical axis at the pulse times. Here, we examine how
this effect is modified by the presence of quadrupolar inter-
actions. This is illustrated in the case of I = 3/2 in Fig. 14,
where we show the x component of the electron steady state
immediately after a pulse, Sss

e,x, for ten different values of
the electron Zeeman frequency with and without feedback.
We are primarily interested in the amplitude of the electron
steady-state oscillations, so we choose the ten different Zee-
man frequencies that correspond to minima of the oscillations
in the absence of feedback (red dots in Fig. 14). To find how

the envelope of the electron spin oscillations is affected by the
feedback process, we compute the nuclear spin polarization
distributions for each of these minima. These distributions
then alter the values of these minima according to Eq. (44)
(with t = 0). As can be seen from Fig. 14, the amplitude of
the electron steady-state oscillations is suppressed (i.e., the
minima increase up toward unity) in the presence of DNP,
and the degree of this suppression varies weakly and non-
monotonically with the quadrupolar angle θ . To understand
this behavior better, in Fig. 15 we show the polarization
distributions for five of the minima from Fig. 14 for four
different quadrupolar angles. It is clear that for all values of
θ , as the electron spin Zeeman frequency due to the external
magnetic field, ωe0, is increased, the polarization distributions
gravitate toward m = 0. This is because larger values of the
electron Zeeman frequency suppress HF flip-flops, as the
violation of energy conservation becomes more pronounced
in this case. This is why the θ = 0 curve in Fig. 14 mono-
tonically decreases with increasing ωe0. On the other hand,
quadrupole-induced nuclear spin flips do not depend on the
electron Zeeman frequency, and so these gradually begin to
dominate as both θ and ωe0 increase. This, in turn, causes the

FIG. 13. The feedback effect of N = 1000 I = 1 nuclear spins on the x component of the electron spin steady state as a function of
time over one drive period TR = 13.2 ns. Here the quadrupolar angles θ = 0 and θ = π/2 are considered for different bare electron Zeeman
frequencies of (a) 0.5 GHz, (b) 2.45 GHz and (c) 15.19 GHz. The electron Zeeman frequencies chosen for (b) and (c) correspond to the local
minima shown in Fig. 14 and the nuclear spin polarization distribution for (a) is shown in Fig. 10. The parameter values are NA = 10 GHz,
ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

235301-14



DRIVEN DYNAMICS OF A QUANTUM DOT ELECTRON … PHYSICAL REVIEW B 103, 235301 (2021)

FIG. 14. The effect of the I = 3/2 nuclear feedback on the x
component of the steady-state electron spin vector. The red filled cir-
cles indicate local minima of Sss

e,x (shown in gray) for several values
of the electron Zeeman frequency ωe0 without nuclear feedback. The
other points indicate the values of S

ss
e,x (ωe0) at the same values of ωe0

but now with feedback included as in Eq. (44). Results for four dif-
ferent values of the quadrupolar angle θ are shown. Other parameter
values are N = 150, TR = 13.2 ns, NA = 10 GHz, ωn = −0.5 MHz,
γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

curves in Fig. 14 to become essentially independent of ωe0 as
θ increases. This is another manifestation of how quadrupolar
interactions suppress mode-locking effects.

V. CONCLUSIONS

In this paper, we developed a general theoretical frame-
work to describe the dynamics of an electron trapped in a
self-assembled QD that is driven by a periodic train of optical
pulses and coupled to a nuclear spin bath. Using a dynamical,
self-consistent, mean-field-type approach, we calculated the
steady-state DNP as well as its influence on the evolution of
the electron spin. Our framework is nonperturbative, applies
to nuclei of arbitrary total spin I , and includes quadrupolar
effects that arise for I > 1/2.

We showed that the phenomenon of mode locking,
or DNP-induced frequency-focusing, seen in experiments
[52–58] emerges naturally from our formalism. It can be
understood as originating from the structure of the rates for
the electron and nuclear spins to flip with one another under
the HF interaction. The flip rates vanish when the effec-
tive electron precession frequency (including the DNP-driven
Overhauser shift) becomes commensurate with the optical
pulse train because in this case the pulses do not interrupt
the joint electron-nuclear evolution and so no polarization is
transferred from the electron spin to the nuclei. The vanishing
of the flip rates then leads to sharp peaks in the nuclear po-
larization distribution at magnetization values that satisfy the
commensurability condition. Our exact result for the nuclear
spin probability distribution in the I = 1/2 case makes this
connection explicit, since the distribution depends inversely
on the flip rates. In addition to mode locking, we showed that
HF flip-flops also give rise to a net nuclear spin polarization
that appears to grow linearly with the number of nuclei.

It is worth considering how the mode-locking peaks deter-
mined by the commensurability condition [Eq. (30)] might be
modified if we were to go beyond the box model and include
a distribution of HF couplings. First we note that, for generic
choices of the applied magnetic field, only the nuclei that are
closest to the center of the electronic wave function contribute
to mode locking. This is because P(m) is concentrated near
relatively small values of m [for I = 1/2 this is due to the
Gaussian-like factor in Eq. (29)], so the smallness of the
HF couplings of the nuclei that are farther away cannot be
compensated by larger values of m to satisfy the commensu-
rability condition. Small variations in the hyperfine couplings
of nuclei close to the center could be incorporated using a
wedding-cake model in which the nuclei are separated into
groupings defined by distinct values of the hyperfine coupling.
These groupings could be treated as smaller, independent spin
baths, each with its own mode-locking condition. Distinct but
nearly equal values of A will give rise to mode-locking peaks
at almost the same magnetization values m, and collectively
these closely spaced peaks will form broader mode-locking
features in P(m). The fact that clear signatures of frequency-
focusing are seen in experiments [52–58] suggests that this
broadening is a relatively small effect.

Our formalism includes not only HF-driven phenomena
but also quadrupolar effects that can arise for I > 1/2. We
found that the importance of quadrupolar interactions de-
pends sensitively on the quadrupolar angle θ between the
applied magnetic field and the principal axis of strain in the
dot. For θ < π/8, HF interactions tend to dominate, lead-
ing to clear signatures of mode locking. However, for θ �
π/8, quadrupole-induced nuclear spin flips begin to domi-
nate, which leads to a suppression of mode locking and a
reduction of the net nuclear polarization. We also showed
that quadrupolar effects become more pronounced when the
applied magnetic field is increased because HF flip-flops are
suppressed by the increasingly large Zeeman energy mis-
match between the electron and nuclei. These effects are
clearly visible in the nuclear spin polarization distributions
for both I = 1 and I = 3/2, and they translate to experimen-
tally detectable signatures that are encoded in the presence or
absence of electron spin oscillations in the steady state. HF
flip-flops lead to coherent oscillations in the vicinity of each
pulse and halfway between pulses, while quadrupolar interac-
tions act to suppress these oscillations. These signatures offer
a potential method to measure the strength of quadrupolar
interactions in QDs.

The framework we have presented constitutes an efficient,
quantitative approach to describe the dynamics of a driven
spin coupled to a spin bath. Going forward, it would be
interesting to see if some of the simplifying assumptions
made here can be relaxed to enhance quantitative accuracy.
For example, can we go beyond the box model limit and
allow for nonuniform HF couplings, perhaps using a wedding-
cake model in which the electronic wave-function envelope
is approximated by a piecewise-constant function? Such a
generalization would also allow for the inclusion of multiple
nuclear species, which is relevant for common semiconductor
QD compounds such as InGaAs. It would also be interesting
to extend this method beyond the independent nuclei approx-
imation, perhaps using a cluster-based approach in which
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FIG. 15. The nuclear spin polarization distributions corresponding to five of the electron Zeeman frequency values from Fig. 14 for
quadrupolar angles (a) θ = 0, (b) θ = π/8, (c) θ = π/4, and (d) θ = π/2 for an I = 3/2 nuclear bath. Other parameter values are N = 150,
TR = 13.2 ns, NA = 10 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

internuclear interactions are included gradually within clus-
ters of increasing size [20,113]. In terms of applications, our
framework could be employed to design driving protocols
to achieve desired bath polarization states to either mitigate
decoherence or utilize the bath as a quantum memory [89–92].
Finally, we note that the theory we developed is quite general
and could be applied to other problems involving a driven
system coupled to a quantum bath.
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APPENDIX A: KRAUS OPERATORS FOR OPTICAL
PUMPING OF THE ELECTRON

The existence of a hierarchy of timescales in mode-locking
experiments allows us to first solve for the electron spin dy-
namics without having to include nuclear spin effects. This
is due to the fact that the nuclear spin dynamics are slow
compared to those of the electron. Given that the nuclear
spins are the main source of decoherence for the electron, this
means we can also neglect electron spin decoherence effects.
In addition, the optical pumping and spontaneous emission are
fast compared to the pulse period, γeTR � 1, which ensures
that the excited population returns fully to the ground state
before the next pulse comes. This allows us to treat the evolu-

tion of the electron over each period in terms of a dynamical
map that acts only on the electron spin ground state subspace,
as in Eq. (7).

The Kraus operators, Ek , that make up the dynamical map
can be found by explicitly computing the non-unitary part of
the evolution for an arbitrary initial density matrix and com-
paring the initial and final density matrices [73]. To compute
the nonunitary part of the evolution due to the sequence of
pulses Hc(t ), we only need the electronic parts of the full
Hamiltonian in Eq. (1): He(t ) = H0,e + Hc(t ). The fact that
the pulse is much shorter than the spin precession period
allows us to ignore the precession during the action of the
pulse. Therefore, |x̄〉 and |T̄ 〉 can be considered as an effective
two-level system, where the evolution operator due to the
pulse in the |x〉, |x̄〉, |T̄ 〉 basis is

Up =
⎡
⎣1 0 0

0 ux̄x̄ −u∗̄
T x̄

0 uT̄ x̄ u∗
x̄x̄

⎤
⎦. (A1)

After the pulse, a fraction |uT̄ x̄|2 of the population remains in
the trion state. We can describe the decay of this population
due to spontaneous emission using the Liouville-von Neu-
mann equation with appropriately chosen Lindblad operators
L: ρ̇ = i[ρ, H0,e] + L(ρ), where the first term includes the
Larmor precession of the ground spin states during the decay.
Solving this equation for an arbitrary initial state then yields
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the following Kraus operators in the |x〉, |x̄〉 basis [73]:

E1 =
[

1 0
0 q

]
, E2 =

[
0 a1

0 −a2

]
, E3 =

[
0 0
0 κ

]
, (A2)

where q = ux̄x̄ ≡ qoeiφ , a1 = ωe

√
(1 − q2

o )/2(4γ 2
e + ω2

e ),
a2 = iγe

√
2
√

(1 − q2
o )/(4γ 2

e + ω2
e ), and κ =√

1 − q2
o − a2

1 − |a2|2. These Kraus operators guarantee
the unity of the trace of the density matrix by satisfying∑

k E†
k Ek = 1. The parameter qo quantifies the amount of

population remaining in the spin state |x̄〉 after the pulse is
applied, and φ is the angle about the x axis by which the
pulse rotates the electron spin. These two parameters can be
computed given a specific pulse shape, but in the following
we leave these parameters arbitrary. Note that these Kraus
operators capture the evolution of the electronic spin from the
beginning of the pulse until a steady state is reached under
the combined action of precession and spontaneous emission.
This steady state is reached on timescales large compared to
1/γe.

APPENDIX B: ELECTRON SPIN STEADY STATE

We can use the Kraus operators from above to compute
the electron spin steady state. Rather than work directly with
the Kraus operators, it is more convenient to switch to the
SV representation, especially since finding the steady state
requires applying the Kraus operators an infinite number of
times. In general, a SV S transforms under nonunitary evolu-
tion as follows:

S′ = Y S + K, (B1)

where Y is a matrix that generally both rotates and shrinks the
SV, while K corresponds to the nonunital part of the evolution
(i.e., a loss or gain of population in the subspace described by
S). If K is nonzero, then a nontrivial steady state is possible.
As shown in Ref. [73], for spin 1/2, these quantities can

be obtained from the Kraus operators using the following
formulas:

Ki = 1

2
Tr

∑
k

σ̂iEkE†
k , (B2)

Yi j = 1

2
Tr

∑
k

σ̂iEk σ̂ jE†
k , (B3)

where the σ̂i are Pauli matrices. In the case of the mode-
locking experiment, the Kraus operators Ek evolve the electron
spin over one period, that is, they include both the nonuni-
tary dynamics (Ek) generated by a pulse and also the unitary
precession under the magnetic field over time TR: Ek =
Eke−iωeTRŜz . In concatenating these two parts of the evolution
in this way, we are assuming that the drive period is much
longer than the time it takes the electron to reach a steady state
following the pulse. This, in turn, requires TRγe � 1, which is
typically satisfied in mode-locking experiments [52–58]. To
find the steady state, it is convenient to combine both Y and K
into a single 4 × 4 matrix:

Ye =

⎡
⎢⎣

1 0 0 0
Kx Yxx Yxy Yxz

Ky Yyx Yyy Yyz

Kz Yzx Yzy Yzz

⎤
⎥⎦, (B4)

where the evolution of the electron SV over one period is now
given by S ′

e = YeSe. Here, the first component of the four-
component SV Se is always fixed to 1, while the remaining
three components constitute the usual spin-1/2 SV. In this
representation, it is easy to see that the steady state Sss

e =
(1, Sss

e,x, Sss
e,y, Sss

e,z ) is the eigenvector of 1 − Ye with eigenvalue
zero. Transforming the Kraus operators of Eq. (A2) from the
x basis to the z basis, plugging the result into Eq. (B4), and
computing the null vector of Ye leads to the following steady
state electron SV [73]:

Sss
e,x = a1[a1qo(qo − cos φ) cos (ωeTR) − ia2(qo cos φ − 1) sin (ωeTR) − a1qo cos φ + a1](

a2
1 + q2

o − 1
)

cos (ωeTR) − a1qo cos φ[ia2 sin (ωeTR) + a1 cos (ωeTR) + a1] + ia1a2 sin (ωeTR) + (
a2

1 − 1
)
q2

o + 1
,

Sss
e,y = a1[a1qo(cos φ − qo) sin (ωeTR) − ia2(qo cos φ − 1)(cos (ωeTR) − 1)](

a2
1 + q2

o − 1
)

cos (ωeTR) − a1qo cos φ[ia2 sin (ωeTR) + a1 cos (ωeTR) + a1] + ia1a2 sin (ωeTR) + (
a2

1 − 1
)
q2

o + 1
,

Sss
e,z = a1qo sin φ[a1 sin (ωeTR) − ia2(cos (ωeTR) − 1)](

a2
1 + q2

o − 1
)

cos (ωeTR) − a1qo cos φ[ia2 sin (ωeTR) + a1 cos (ωeTR) + a1] + ia1a2 sin (ωeTR) + (
a2

1 − 1
)
q2

o + 1
.

(B5)

These are the components of the electron SV immediately after each pulse. The steady state at other times during the driving
period can be obtained by rotating this vector about the z axis by angle ωeTR (to account for the Larmor precession).
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