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Revealing the vacuum level in an infinite solid by real-space potential unfolding
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Although real materials are finite in size, electronic structure theory is built on the assumption of infinitely
large solids, which led to a longstanding controversy: where is the vacuum level? Here, we introduce an analytic
real-space potential-unfolding approach to uncover the vacuum level in infinitely large solids. First-principles
calculations show that, in the absence of a physical surface, the bulk band structure, often measured with respect
to an average bulk potential, is offset by a hereto unknown and orientation-dependent bulk quadrupole with
respect to the vacuum level. By identifying intrinsic contributions of a bulk solid to its surface and interface
properties, our theory eliminates the ambiguities surrounding the physical origin of the band alignment between
matters.
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I. INTRODUCTION

Modern electronic structure theory [1,2] assumes infinitely
large, periodic systems to take advantage of the Bloch theorem
[3] and, for computational physics, the advanced algorithms
of the fast Fourier transform. The theory has served the
condensed-matter community tremendously well [1,2], how-
ever, the infinite-crystal assumption leads to many subtleties
in electrostatics. One such example is the electric dipole in
homogeneous bulk solids [4]. While the dipole is well defined
in finite systems, it becomes ill-defined in infinite systems.
Nonetheless, it was shown by Resta that the change in the
dipole under the adiabatic condition, i.e., the bulk polar-
ization, is well-defined as a bulk quantity [5], which was
expressed by King-Smith and Vanderbilt [6] in terms of the
Berry phase of the wave functions [7,8]. Another example is
the electric dipole at heterogeneous interfaces, i.e., the built-in
potential, ψ . Although charge density has been commonly
used to investigate ψ [9], there has been a contentious issue
regarding the initial basis of comparison [10–14]. Recently,
we showed that ψ can be explicitly given by the electrostatic
potential. The key in the finding is the identification of a com-
mon energy reference V 0 between two dissimilar bulk solids
as the maximum values of the planar average electrostatic
potentials before they were put into contact [15].

Yet, one of the most puzzling problems in electrostatics of
infinitely large systems is the average electrostatic potential,
V , with respect to the vacuum. Its ambiguity was first intro-
duced perhaps by Ihm, Zunger, and Cohen in 1979 [16]. After
years of debate [17,18], there is now a general consensus that
V is an ill-defined quantity because the vacuum level in bulk
cannot be unambiguously determined. The ambiguity can be
alternatively explained in two ways: (1) a direct integration of
charge density [see Eq. (2) for V below] is a conditionally con-
vergent quantity whose value depends explicitly on how the
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integral is taken. (2) Equivalently, in the Fourier representa-
tion of the electrostatic potential, the limit V = limG→0 V (G)
is not generally well defined, but instead depends on the direc-
tion from which the limit is taken. In practice, V is often set
to zero. The advantage is that the eigenvalues with respect to
V = 0, defined here as εV , become orientation independent.
However, the alignment between different systems is now
ill defined [12,19]. Even worse, calculation shows that εV is
strongly pseudopotential dependent with a deviation that can
be as large as several eVs.

Ironically, a number of widely adopted concepts in
condensed-matter physics and chemistry such as deformation
potential [19–22], band alignment [23–27], charged defect
formation energy [28,29], electrode potentials [13,14,30], and
redox potential [30,31] all rely on referencing the energies
between different periodic systems. Moreover, understanding
the effect of many-body interactions on the electronic states of
bulk materials also requires a universal energy reference [32].
Historically, these problems have been dealt with by using
nonuniversal references such as the local (or near) vacuum
level of a surface [9,12], core energy level [21], onsite energy
(in the tight-binding model), or even the ambiguous V , which
restrict our ability to obtain a complete, or in some cases a
correct, answer. Determination of the vacuum level position
in infinitely large systems and clarification of the physical
meaning of V will thus provide fundamental breakthroughs
in our understanding of electronic materials.

In this paper, we devise an analytic approach to determine
the vacuum level position in infinitely large systems. We find
that the average potential with respect to the vacuum level is
exactly equal to the quadrupole per volume of the unit cell
under consideration. We also show that the eigenvalue of an
infinitely large solid can be separated into two parts: the part
with respect to V that is independent of the crystallographic
orientation and the part that is explicitly orientation dependent
due to the bulk quadrupole. This procedure paves the way for
extracting intrinsic physical properties of any heterogeneous
complex systems.
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II. RESULTS AND DISCUSSION

The electrostatic potential at a location in space may be
viewed as the least amount of work required to move a positive
unit charge from a reference point to a specific point in that
space. By the definition, a reference must be provided in order
to determine the value of the electrostatic potential. Assuming
4πε0 = 1, the electrostatic potential for a finite system arising
from a charge density ρ(r) is given by

V (r) =
∫

ρ(r′)
|r − r′|dr′, (1)

where vacuum is defined as a point infinitely far away from
ρ(r), and satisfies V (|r| → ∞) = 0. For an infinitely large
solid, one usually extends Eq. (1) in space so the average
electrostatic potential becomes

V = 1

�

∫
unit cell

V∞(r)dr = 1

�

∫
unit cell

∫
∞

ρ(r′)
|r − r′|dr′dr,

(2)

where V∞(r) is the electrostatic potential due to an infinitely
extended charge density, ρ(r). Although the reference does
not change in extending the finite system to an infinite one,
the reference becomes buried as there is no longer a region of
space where the vacuum is preserved.

Moreover, the evaluation of Eq. (2) yields ambiguities,
which may be categorized into four groups: first, there is
an infinite number of ways to choose the shape of the unit
cell; second, there are an infinite number of ways to choose
the origin; third, there are an infinite number of ways to
choose the three-dimensional (3D) coordination system for
the integration of ρ(r′)/−|r − r′| in an infinite 3D space; and
fourth, for a given coordinate system, the order of integration
may matter: there are in fact six different ways to order the
integration along the three major axes. Even if we stick to
the conventions in electronic structure calculations, namely,
a parallelepiped unit cell made of the three lattice vectors and
a coordinate system of which the lattice vectors are the axes
[1,2], there still exists an infinite number of different types of
unit cells to choose from [2].

The ambiguities in Eq. (2) arise because of the difficulty to
directly calculate V∞(r). The key to eliminating these ambi-
guities lies in a transformation of Eq. (2), as detailed below. In
a system with infinite number of unit cells, V∞(r) can be ex-
pressed as the superposition of the electrostatic potentials due
to the constituent unit cells, i.e., V∞(r) = ∑∞

n Vnth unit cell(r),
where Vnth unit cell (r) is the potential due to charge densities
in the nth unit cell [see Fig. 1(a)]. Owing to the translational
symmetry, the superposed potential V∞(r) in a unit cell [see
Fig. 1(b) can be unfolded to the potential Vunit cell(r) in the
extended space [see Fig. 1(c)]. This procedure is analogous
to the folding and unfolding of a band structure, e.g., that
of a free-electron gas, in the reduced and extended Brillouin
zones in Fourier space [1]. This transforms the difficult inte-
gration of V∞(r) in a unit cell to an equivalent integration of
Vunit cell(r) in an infinite space, namely,∫

unit cell
V∞(r)dr =

∫
∞

Vunit cell(r)dr. (3)

There are two important consequences: first, it is easier to
calculate Vunit cell(r) than V∞(r), and second, it recovers the
vacuum level in real space, when |r| → ∞, Vunit cell(|r| →

FIG. 1. Electrostatic potentials of infinitely large crystals in (a)
repeated, (b) reduced, and (c) extended schemes. The potentials due
to the 0th (central), ±1th, ±2th, and ±3th cells are represented by
the black, blue, orange, and green solid lines, respectively. In (c), the
unfolded potential of (b) is shown by a combination of the black solid
and dashed colored lines in different cells, which is identical to the
electrostatic potential due to the 0th unit cell (i.e., the black solid line
in the whole space).

∞) = 0. Note that this is the vacuum level of the infinitely
large system, to be termed the ideal vacuum level, φ0. While
by definition, φ0 should be the true vacuum level in a finite
system, it is different from the so-called local vacuum asso-
ciated with the work function measurement [9,12,33], as the
latter includes the effects due to surface electronic and ionic
relaxations from those of a truncated bulk.

We consider the evaluation of V for the charge density
consisting of an arbitrary set of N point charges in a unit cell,
ρ(r′) = ∑N

n=1 qnδ(r′ − rn), with a corresponding V∞(r) =∑
R j

∫
∞

∑
n qnδ(r′ − rn − R j )/|r − r′|dr′ and Vunit cell (r) =∫

∞
∑

n qnδ(r′ − rn)/|r − r′|dr′, where Rj is the location of
the jth cell. As V = �−1

∫
unit cell V∞(r)dr, Eq. (3) yields

V i jk = 1

�

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Vunit cell(r)dxidx jdxk

= 1

�

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

N∑
n=1

qn

|r − rn|dxidx jdxk, (4)
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FIG. 2. Lattice models (a),(b) depicting charge distributions and their corresponding planar average electrostatic potentials (c)–(f), whose
maximum value, equivalent to φ0, has been set to zero. In the potential plots, dotted lines denote the calculated average electrostatic potential.

where the subscript ijk denotes the order of integration to be
arbitrary axes xi, x j , xk , respectively. As each term diverges,
we add and subtract a counter charge at the origin, yielding

V i jk = 1

�

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
N∑

n=1

(
qn

|r − rn| − qn

|r|
)

+
N∑

n=1

qn

|r|

]
dxidx jdxk, (5)

where the last term vanishes as the net charge in the unit cell
is zero, leaving a sum of finite non-vanishing neutral terms.
Using the linearity of integration, Eq. (5) becomes

V i jk = 1

�

N∑
n=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
qn

|r − rn| − qn

|r|
)

dxidx jdxk .

(6)
For an orientation x3 = x1 × x2, where x1 and x2 axes are

any of xi, x j , xk , Eq. (6) becomes V 123 = −2πQ33/� [34],
where Q33 is an element of the bulk quadrupole tensor, defined
by Qαβ = ∫

unit cell ρ(r)xαxβdr. More concisely,

V n = −2π

�
nT Qn, (7)

where n = x3, which is consistent with the momentum space
derivation of V [34]. The calculation of V in absolute terms,
i.e., relative to the vacuum level, is thus equivalent to the cal-

culation of nT Qn. This expression naturally explains why the
average potential behaves like an ill-defined quantity and de-
scribes the true nature of the average potential as a quadrupole
tensor. Here, we note that Eq. (7) is equally well applied to
continuous charge densities if we let qn → δqn and N → ∞.
Note that only when the dipole of the unit cell vanishes, the is
the average potential independent of the choice of origin [18].

The dependence on the order of the last integration in V
has, in fact, a clear physical meaning, namely, the plane over
which the planar average potential is evaluated. For instance,
when a z-axis integration is performed in Cartesian coordi-
nate system using Eq. (4), V is given by �−1

∫
unit cell V (z)dz,

where V (z) is the xy-planar average electrostatic potential. On
the other hand, in a momentum-space approach, the average
potential depends on the direction from which the limit is
taken [34], which along a direction parallel to the z axis can
be written as limGz→0 V (0, 0, Gz ) = −2πQzz/�. The central
message here is that, although the vacuum level φ0 in infinite
solid is well-defined, V is orientation dependent due to the
fact that the often-nonzero quadrupole nT Qn depends on the
orientation.

Note that a difference in the electron charge densities, ρe,
and orientations can greatly affect V i, even if the ion positions
are identical. To see this, Fig. 2 shows a toy model where a
unit cell in a periodic cubic lattice contains a single proton
but different ρe. For case (a) in Fig. 2(a), we have a homoge-
neous ρe within a sphere of radius R = 2 Å, namely, ρe(r) =
3e/4πR3 for r < R and ρe(r) = 0 for r > R. Equation (7)
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yields for the (100) and (120) directions identical V (100) =
V (120) = −eR2/10ε0a3 = –0.072 eV. This is because the unit
cell boundary lines in Fig. 2(a) do not cut through the electron
density in either direction. For case (b) in Fig. 2(b), on the
other hand, while we also have a homogeneous ρe, due to the
larger radius R = 4.5 Å, ρe must cross the boundaries. In this
case, V (100) and V (120) are –0.366 and –0.164 eV, respectively.
Compared to V (100), V (120) is reduced in this case because
of the overlap of the projected ρe along the (120) direction
[Figs. 2(d) and 2(f)].

In Ref. [15], a different approach was introduced to iden-
tify the ideal vacuum level φ0 in bulk, namely, the vacuum
insertion method, where it was found that φ0 is equal to the
maximum value of the planar average electrostatic potential.
It is straightforward to show that the two completely different
approaches give identical results. For the model cases at hand,
Figs. 2(c)–2(f) depict the average electrostatic potentials with
respect to φ0 [denoted as V φ0

in Fig. 2(c)] calculated using the
method in Ref. [15]. In all cases, a perfect agreement between
the quadrupole approach and the maximum value of the planar
average potential was found.

By the above discussions, it is clear that eigenvalues as-
sociated with the intrinsic band structure of a solid with
respect to the true vacuum level, εφ0 , should be orientation-
dependent due to the nonvanishing bulk quadrupole. For
applications where interface, and hence band alignment, is
not involved, however, it would still be valuable to have an
orientation-independent band structure, e.g., with respect to
the bulk average potential, εV . The difference between εφ0

and εV is just φ0 − V . Conceptually, there is no obstacle
against decomposing εφ0 into (orientation-independent) εV +
(orientation-dependent) φ0 − V = 2πnT Qn/�. To see this,
we perform density functional theory (DFT) calculations us-
ing Perdew-Burke-Ernzerhof exchange-correlation functional
[35] with projector augmented wave pseudopotentials [36], as
implemented in the VASP code [37]. Figure 3 shows the rela-
tions between the valence band maximum (VBM), V , and φ0

along three different crystallographic orientations of diamond.
While the VBM relative to V , εVBM

V
, does not depend on the

orientations, the quadrupole term shows a strong orientation
dependence as expected.

Determination of the offset between φ0 and V reshapes our
understanding of the band offsets at heterojunctions. While
V has often been regarded as a reference potential when
describing the interfacial effects on the band offsets [10,12],
our findings indicate that such calculations of the interfacial
charge transfer dipole are incorrect as they neglect all of the
contribution from the bulk quadrupole. Truncation of the bulk
quadrupole leaves a dipole at the surface which is often large
but purely reflective of the bulk material properties and has
nothing to do with interfacial charge transfer. On the other
hand, there is indeed an additional dipole associated with the
charge transfer which depends on the detailed chemistry at the
interface. This suggests an explanation to the unexpectedly
large interface dipoles between quite similar materials [10],
as in such cases the dipole is dominated by bulk quadrupole
terms instead of the interfacial chemistry.

Our DFT calculation using Heyd-Scuseria-Ernzerhof
(HSE) functionals [38] indeed shows that the bulk quadrupole

FIG. 3. (a) Atomic structures of bulk diamond. (b)–(d) Planar
average electrostatic potentials (PAEP) along (100), (110), and (111)
with an ideal vacuum insertion (see the yellow-shaded regions)
where the vacuum level φ0 is set to zero. The PAEP and quadrupole
are calculated using the total charge density, i.e., the core electron
density + valence electron density + point ionic charges. The average
potentials and VBM are given by dashed black and solid red lines,
respectively.

can significantly contribute to the band offsets. Table I shows
comparisons between the calculated and measured valence
band offsets (VBOs) in some selected traditional semi-
conductor heterojunctions, Si/GaP, AlP/GaP, and Ge/AlAs.
Such heterojunctions are chosen as they possess large bulk
quadrupole differences between the constituent materials. The
V - and φ0-aligned VBOs are calculated by setting the ref-
erence energies V = 0 and φ0 = 0, respectively. As shown

TABLE I. Comparison between V -aligned, φ0-aligned, and ex-
perimental VBOs. Experimental values are taken from Ref. [26] and
therein. Units are in eVs.

V aligned φ0 aligned Experiment

Si/GaP(110) –0.97 0.84 0.80
AlP/GaP(100) –2.23 –0.22 –0.57, –0.43
Ge/AlAs(110) 2.74 1.04 0.95, 0.9
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in Table I, the V -aligned VBOs are misleading because they
attribute the huge differences of VBOs (1.74 ± 0.08 eV)
compared to the experiment to interfacial charge-transfer ef-
fects. In φ0-aligned cases, on the other hand, the calculated
VBOs are much closer to the experiment, with the differences
ranging from 0.04 to 0.35 eV; about an order of magnitude
smaller than those obtained from V -aligned VBOs. Based on
φ0-aligned VBOs, the interfacial charge transfer at traditional
semiconductor heterojunctions is small (consistent with the
nature of the chemical bonding). The discrepancy between V -
and φ0-aligned VBOs is exactly the bulk quadrupole effect,
which should not be neglected.

This finding is expected to impact the basic understanding
in condensed-matter physics and chemistry, in particular in
the interpretation of first-principles calculations. As we now
have an absolute potential reference between periodic sys-
tems, eigenvalue shifts in bulk materials can now be precisely
determined and understood. For instance, to improve the band
gap in conventional DFT calculations, many-body correction
schemes such as HSE and GW approximations [39,40] have
been widely used. However, the difficulty has been how to
compare the eigenvalues between the different schemes. In
general, V has been routinely used as the reference poten-
tial without justification. A well-defined energy reference φ0

here enables a precise calculation of the many-body correc-
tions to the eigenvalues of solid as well as the band offsets
at heterojuction interfaces [26,41]. This also opens new av-
enues in interface science, such as to what degree the band
offset is determined by the intrinsic quadrupole alignment
(for example, as shown in Table I) and to what degree can
it be modified by interfacial impurities or chemistry. Such
understanding could significantly advance our ability to de-
sign the functionality of interfaces. Furthermore, the absolute
electrode potentials and redox potentials at electrochemical
cells can now be calculated without any external energy refer-

ence. This can be done by replacing the conventional energy
reference, namely, the local vacuum levels just outside the
electrolyte surfaces [42], by φ0 of the electrolyte. Such a
procedure eliminates the contribution of the electrolyte sur-
face properties to the electrode and redox potentials, which
do not contribute in any way to the actual electrochemical
processes.

III. CONCLUSION

In conclusion, we have introduced an analytic real-space
unfolding scheme to uncover the vacuum level φ0 in infinite
solids. We have derived its relationship with the standard
average electrostatic potential V whose offset with φ0 is given
by an orientation-dependent bulk quadrupole, which can now
be unambiguously and accurately calculated. These results
provide new insights into the hereto hidden intrinsic physical
properties of infinite solids, as well as laying a solid ground
for understanding the electronic changes at interfaces with
respect to the noncontacting solids (on a par with modern
molecular orbital theory for quantum chemistry). Last but
not least, we offer a decomposition of the band structure of
infinite solids into an orientation-independent term and an
orientation-dependent term, and demonstrate the importance
of the quadrupole contribution to the band alignment at het-
erojunctions.
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