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The quenching of degenerate impurity states in metals generally induces a long-range correlated quantum
state known as the Kondo screening cloud. While a macroscopic number of particles clearly take part in forming
this extended structure, assessing the number of truly entangled degrees of freedom requires a careful analysis
of the relevant many-body wave function. For this purpose, we examine the natural single-particle orbitals that
are eigenstates of the single-particle density (correlation) matrix for the ground state of two quantum impurity
problems: the interacting resonant level model (IRLM) and the single impurity Anderson model (SIAM). As a
simple and general probe for few-body versus many-body character we consider the rate of exponential decay of
the correlation matrix eigenvalues towards inactive (fully empty or filled) orbitals. We find that this rate remains
large in the physically most relevant region of parameter space, implying a few-body character. Genuine many-
body correlations emerge only when the Kondo temperature becomes exponentially small, for instance near a
quantum critical point. In addition, we demonstrate that a simple numerical diagonalization of the few-body
problem restricted to the Fock space of the most correlated orbitals converges exponentially fast with respect
to the number of orbitals, to the true ground state of the IRLM. We also show that finite-size effects drastically
affect the correlation spectrum, shedding light on an apparent paradox arising from previous studies on short
chains.
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I. INTRODUCTION

Strongly interacting quantum many-body systems consti-
tute one of the most challenging problems in physics. The
combination of a macroscopic number of particles with in-
teractions that are relevant in the renormalization sense puts
paid to strategies involving the most commonly used tools
of quantum mechanics (perturbation theory, exact diagonal-
ization). Over the past decades, advanced numerical methods
have been tailored to reliably extract physical information
of interacting fermion models, from the numerical renormal-
ization group (NRG) [1] and density-matrix renormalization
group [2] in low dimensions, to continuous time quantum
Monte Carlo simulations [3] within the dynamical mean-field
theory [4] for higher-connectivity lattices. While answering
many physical questions, these methods have not yet fully
characterized the link between strong correlations and phys-
ical complexity for generic quantum many-body systems.

Some classes of problems that are insurmountable by
brute force can be tackled due to a hidden simplicity of the
physically relevant states (e.g., ground and low-lying ther-
mal states). Indeed, diagnostic tools such as entanglement
measures [5] have shown that the density-matrix renormal-
ization group [6–9] owes its success to the matrix-product
state structure of ground states of locally interacting one-
dimensional lattices. Insights about entanglement between
spatially distinct regions have subsequently led to a deep
understanding of the matrix and tensor product state struc-
ture of translationally invariant low-dimensional interacting
ground states. The conceptual understanding of inhomoge-

neous systems is less complete, as attested to by the ongoing
work on many-body localization [10]. A simple starting point
for studying nonuniform many-body states is the class of
systems known as quantum impurity models [11,12]: while
strong interactions are limited to a few local sites, scattering
from electronic reservoirs generates complex quantum states
showing long-range spatial entanglement, dubbed the Kondo
screening cloud [13]. The question of quantifying the amount
of correlations contained in such a nonlocal many-body im-
purity state has not yet been addressed exhaustively [14–16].
In this article, we answer the question “How many of the
particles in the Kondo cloud are correlated with each other
or with the impurity in the quantum many-body sense?”

Given the central position that the Kondo problem oc-
cupies in many-body physics, it may seem that the answer
is obvious: many electrons become correlated. After all, the
Kondo screening cloud is typically much larger than the Fermi
wavelength and thus encompasses many conduction electrons.
However, recent studies have come to a different and seem-
ingly paradoxical conclusion [17,18]. These works considered
the one-body density matrix (also called the correlation ma-
trix) [19–21] of the Kondo problem. Its eigenvectors define
an optimal set of single-particle orbitals that are commonly
referred to as “natural orbitals” in the quantum chemistry
literature [22]. The associated eigenvalues are ground-state
occupation numbers for the natural orbitals. If an occupation
number is close to zero or one, i.e., nearly empty of filled,
the corresponding orbital is not involved in many-body cor-
relations and is therefore said to be inactive. The remaining
orbitals are called active and host correlated particles. One
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study [18] found that there is a single active orbital that is
“solely responsible for screening the impurity spin in both
the weak and strong Kondo coupling regime,” and that the
resulting singlet is disentangled from the rest of the system.
The authors of another study [17] similarly report that they
have identified “a dominant single particle wave function that
is entangled to the impurity forming a singlet that is, to a great
extent, practically disentangled from the rest of the conduction
electrons.” We will show that this proposed single-correlated-
orbital picture at weak coupling is purely a finite-size effect
(here “weak coupling” means a small exchange interaction,
so that the Kondo temperature is exponentially low). Indeed,
in the works quoted, systems consisting of at most a few
hundred real-space lattice sites were studied. However, the
Kondo length becomes quickly larger than this system size
when the dimensionless Kondo coupling is reduced to values
below unity. When this happens, Kondo correlations can-
not fully develop, and many-body effects are dramatically
reduced compared with the thermodynamic limit. Clearly,
a systematic characterization of the active space of Kondo-
correlated systems in the thermodynamic limit is still lacking,
and this will be one important goal of our study. We point
out that the question we are asking concerns how to express
microscopically the ground state of the system in terms of the
complete set of bare degrees of freedom, used to define the
model. It is of course well known that the effective description
of excitations at energies sufficiently smaller than the Kondo
temperature is that of a Fermi liquid.

We have devised the following method to determine the
number of particles taking part in ground-state correlations:
We use the NRG to calculate the correlation matrix of a
fermionic quantum impurity model. We are particularly in-
terested models that display Kondo correlations. The Wilson
grid discretization [12] employed by NRG allows us to study
systems with a real-space size that grows exponentially with
the dimension of the single-particle Hilbert space. We are
thus able to obtain results for the correlation matrix that
are converged to the thermodynamic limit. We then use the
eigenorbitals of the correlation matrix to construct a trial state
containing M active orbitals on top of an uncorrelated Fermi
sea. At half filling, minimizing the energy expectation value
of the trial state is equivalent to exactly diagonalizing an
M/2-particle problem in the subspace of active orbitals. The
resulting variational energy is compared with the true ground-
state energy (very accurately calculated with NRG). If the
energy difference is much less than the Kondo temperature,
then the trial state is an accurate approximation of the true
ground state. When this is the case, we conclude that at most
M orbitals (M/2 particles) take part in correlations.

We have carried out the above procedure for the interacting
resonant-level model (IRLM) that displays bona fide Kondo
correlations in its charge sector. What we find is surprising:
while the picture of a single orbital screening the impurity
(advocated in Refs. [17,18]) does not apply in general, neither
does the pessimistic view that Kondo correlations involve a
macroscopic number of electrons within the large screening
cloud. For a realistic Kondo temperature of 10−3 times the ul-
traviolet scale set by the Fermi energy, we find that a trial state
with only seven correlated particles approximates the ground-
state energy to an accuracy of 1% of the Kondo temperature.

Only when one reaches unrealistic regimes where the Kondo
temperature becomes exponentially small does the number
of correlated particles in the ground state increase beyond a
handful, making impractical a description in terms of natural
orbitals. This observation suggests that Fermi-liquid ground
states of quantum impurity models in the thermodynamic limit
are for practical purposes few-body in nature, thus neither
single-body nor many-body, once reformulated in the optimal
space of natural orbitals.

An important question concerns whether these results are
a general feature of Kondo physics or specific to the IRLM.
Arguably, mapping the IRLM to the anisotropic Kondo model
might yield a more correlated state than the IRLM ground
state. Indeed since IRLM fermions are nonlinear and nonpoly-
nomial functions of the bare fermions of the Kondo model,
a few-body correlated IRLM ground state might translate
into a truly many-body correlated ground state in the Kondo
representation. For instance, the Toulouse point of the Kondo
model is certainly nontrivial in the original Kondo framework,
while it involves completely free fermions on the IRLM side.
We have therefore also studied the Anderson impurity model
(SIAM), which displays Kondo correlations in its spin sector.
Our study of the SIAM again reveals an exponential decay
of the natural orbitals to full occupancy or vacancy for any
finite Kondo temperature. Our conclusions are therefore not
specific to the IRLM and pertain to other quantum impurity
models displaying a Fermi-liquid ground state.

The rest of this article is structured as follows: In Sec. II
we introduce the IRLM and discuss its equivalence to the
single-channel Kondo model. We also review general prop-
erties of the correlation matrix for quantum impurity models.
In Sec. III, we examine numerical results for the correlation
matrix spectrum, using systematic NRG calculations. Special
attention is paid to finite-size effects (extra technical details
are given in several Appendixes). In Sec. IV, we propose
a few-body ansatz based on natural orbitals, which shows
exponential convergence to the numerically exact multipar-
ticle wave function describing our NRG results. Section VI
contains our results for the correlation matrix of the SIAM,
which shows that our conclusions are not specific to the
IRLM. Section VI summarizes our main findings and iden-
tifies promising directions for future research.

II. GENERALITIES ON THE CORRELATION MATRIX

A simple setting to probe Kondo correlated states is the
interacting resonant-level model [23] (IRLM):

H = U

(
d†d − 1

2

)(
c†

0c0 − 1

2

)
+ V (d†c0 + c†

0d )

+
N−2∑
i=1

ti(c
†
i ci−1 + c†

i−1ci ), (1)

involving spinless fermions on a tight-binding chain of N sites
(including the d level as site i = −1). Both the Coulomb
interaction U and tunneling V couple the resonant level d†

to the local orbital c†
0 at the start of the chain. Despite the

absence of spin degrees of freedom, the IRLM can be mapped
onto the spin-anisotropic Kondo model [24–26]. The mapping
is exact for energy scales below the ultraviolet scale set by the
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Fermi energy measured from the bottom of the band, provided
the Kondo coupling times the density of states is sufficiently
small, i.e., one is in the universal Kondo regime. The equiv-
alence relies on spin-charge separation in the Kondo model,
with only spin-density fluctuations coupling to the magnetic
impurity. This subsystem is then bozonized and refermion-
ized in terms of spinless fermions. The procedure was first
outlined in Ref. [27]. For a recent review, including careful
bookkeeping of phases generated by fermion exchange, see
for instance Ref. [28]. This equivalence has been used in
the past to study some delicate facets of the Kondo problem
with high accuracy, for instance quench dynamics [29]. In the
present context, the spinless nature of the IRLM facilitates
the bookkeeping that is necessary to compute accurately the
correlation matrix.

To introduce the correlation matrix, it is helpful to first
consider the properties of uncorrelated fermionic states. These
can be viewed as single Slater determinants, characterized by
a set of one-particle orbitals q†

n that are each either filled or
empty. The orbitals are linear combinations of the physical
orbitals c†

i used to construct the Hamiltonian, e.g., the lattice
site basis, q†

n = ∑
i Unic

†
i . Introducing the correlation matrix

matrix of the physical orbitals Qi j = 〈c†
i c j 〉, it is clear that for

a Slater determinant one obtains
∑

i j UmiU
∗
niQi j = 〈q†

mqn〉 =
λnδn,m with λn = 0 or 1, depending whether orbital q†

n is
empty or filled. Note that Q̂ is proportional to the one-particle
reduced density matrix. Recent studies have used the corre-
lation matrix as a tool to study quantum impurity problems
[18–20]. For a general many-body state, the eigenvalues λn of
the correlation matrix Q̂ define occupancies between zero and
one. The number of eigenvalues significantly different from
zero or one provides a sensitive measure of correlations, while
the associated eigenvectors of Q̂ define the single-particle
basis in which correlations are most economically represented
[19]. It is worth pointing out that many NRG studies of
impurity models focus on observables associated with the
impurity degree of freedom only. The N × N matrix elements
Qi, j = 〈c†

i c j 〉 (where i, j ∈ {−1, 0, . . . , N − 2} and c−1 ≡
d) involve observables in the environment (i, j > −1) and
observables that are hybridized between the impurity and the
environment (i = −1, j > −1; j = −1, i > −1). Calculat-
ing Q̂ using NRG is therefore more involved than the standard
NRG analysis of impurity problems.

Let us focus now on the general properties of the corre-
lation matrix Q̂. Clearly, its eigenvalues λn are independent
of the choice of one-particle orbitals used in its definition.
Since the eigenvalues λn = 〈q†

nqn〉 correspond to occupancies
of the natural orbitals, they belong to the interval [0,1]. As
mentioned before, the eigenvalues are either zero or one for a
Slater determinant, and their departure from these trivial val-
ues signal that the associated orbitals participate in quantum
many-body correlations. As a simple example, consider the
Bell-like state:

|�〉 = 1√
2

(c†
i c†

j + c†
kc†

l )|�〉, (2)

with |�〉 being a Slater determinant that does not involve
orbitals i, j, k, and l (considered distinct from each other).
It is easy to check that, for this state, Q̂ has four eigen-

values different from zero or one, that are all equal to 1/2.
The IRLM Hamiltonian (1) manifests particle-hole symmetry
H = P†HP, where P is the unitary and Hermitian particle-
hole conjugation operator:

P =
N
2 −1∏
i=0

(c2i−1 − c†
2i−1)(c2i + c†

2i ), (3)

acting as P†ciP = (−1)ic†
i and P|0〉 = c†

−1c†
0 . . . c†

N−2|0〉.
Since P2 = 1, the eigenvalues of P are ±1, and we have Qi j =
δi j − (−1)i+ jQ ji, thus the diagonal entries of Q̂ are all equal
to 1/2. Furthermore, the matrix elements of the Hamiltonian
H are all real in the Fock-space basis built from c†

i operators
and hence the expansion coefficients of the eigenstates of H
in this basis are real, too. This implies Qi j = Qji, and from
the particle-hole symmetry of Q̂, we conclude that Qi j = 0
for i + j even and i �= j. Owing to particle-hole symmetry the
eigenvalues of Q̂ then come in pairs 1/2 ± r.

III. STUDY OF THE INTERACTING RESONANT-LEVEL
MODEL CORRELATION SPECTRUM

The relatively low computational cost to implement NRG
for the IRLM makes it possible to track with high accuracy
the flow of the N2 operators c†

i c j needed for calculating Q̂
with modest computational resources, provided the block-
diagonal structure imposed by particle-number conservation
is exploited to keep matrix dimensions manageable. Aiming to
resolve Q̂ eigenvalues that are exponentially small, we calcu-
late the elements of Q̂ to a very high precision, allowing up to
thousands of kept states after truncation (see Appendix A for a
detailed study of the convergence). The NRG implementation
is based on the hopping amplitudes along the Wilson chain
[12]:

t j = (1 + �−1)(1 − �− j−1)

2
√

1 − �−2 j−1
√

1 − �−2 j−3
�− j/2D, (4)

so that D = 1 sets the half-bandwidth of the bath and also
our Fermi energy. We present here calculations for the Wilson
parameter � = 1.5 (a more systematic study is presented in
Appendix A), tunneling V = 0.15D and up to N = 180 sites.
The lowest energy at play is thus of the order �−N/2D 	
10−16D, ensuring convergence to the ground state for all prac-
tical purposes.

Figure 1 displays the full eigenspectrum of Q̂, showing on
the left side 1 − λn for 1/2 < λ < 1, and on the right side
λn for 0 < λn < 1/2, so that particle-hole symmetry becomes
apparent. Note that the eigenvalue index n runs from −N/2
to N/2, excluding n = 0, in order to display more clearly
the particle-hole conjugation. The general behavior of the
particle-hole symmetrized spectrum is as follows. There is
an approximate fourfold degeneracy of the highest eigenvalue
λmax ≡ λ1 = 1 − λ−1, indicating Bell-like entanglement be-
tween the four most correlated orbitals q†

−1, q†
−2, q†

1, q†
2 (from

our chosen convention, the index n is centered around those
most correlated orbitals). This is related to the fact that, at neg-
ative U , the impurity orbital and the first energy shell tend to
be either both filled or both empty due to Coulomb attraction,
and similarly, at positive U , if the impurity orbital is filled,
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FIG. 1. (top panel) Spectrum of Q̂ for the IRLM at various values
of interaction U for V = 0.15, in units of the half bandwidth D = 1.
The right side shows eigenvalues 0 < λn < 1/2, while the left side
shows 1 − λn for 1/2 < λn < 1, thus exhibiting particle-hole sym-
metry explicitly. Apart from four strongly correlated orbitals on the
plateau (around which the horizontal index n is centered), the rest
of the eigenvalues decay exponentially fast towards either the empty
and filled occupancies. In Appendix A it is demonstrated that these
results are converged to the continuum and thermodynamic limit
N → ∞, � → 1.

the first energy shell tends to be empty, and vice versa. The
other eigenvalues decay exponentially, λn 	 Ae−xn for n > 2
and λn 	 1 − Ae+xn for n < −2, with a decay rate x that
depends on interaction strength. We show in Appendix A that
this exponential decay is not an artifact of the Wilson chain
and is robust in the continuum limit � → 1. This behavior
of the Q̂ eigenvalues has previously been observed in studies
of impurity models discretized on regular real-space latices
[18–20]. We emphasize that the Kondo regime corresponds
to U < 0 in the IRLM, and indeed the slower decay of the Q̂
eigenvalues in Fig. 1 attests that this regime is more correlated
than for U > 0.

The behavior of λmax, the maximum eigenvalue of Q̂ in
the range [0, 1/2], is displayed as a function of interaction
U in Fig. 2, showing that it remains small for all U > 0
(this is the weakly correlated sector of the IRLM), vanishes
at U = 0 (the ground state is a Slater determinant, so that
all eigenvalues are trivial), and increases sharply only for
−1.3 < U < −1.0 due to the approach to the IRLM quantum
critical point Uc = 1.3 where the Kondo temperature van-
ishes. Our key observation is that the decay rate x of the
Q̂ eigenvalues drops to small values only when the Kondo
temperature becomes exponentially small, seemingly with a
linear vanishing as |U − Uc| (see middle panel), as also shown
by the slow inverse logarithmic decrease of x as a function of
Kondo temperature (see bottom panel of Fig. 2). Thus, only
the quantum critical regime corresponds to a true many-body
state as opposed to a few correlated particles on top of an
uncorrelated Fermi sea. Larger negative U < −1.3 leads to
a discontinuous transition to a phase where particle-hole sym-
metry is broken (corresponding to the ferromagnetic phase of
the Kondo Hamiltonian), involving clearly less correlations
due to a jump of the decay rate x to finite values.

Our results are seemingly inconsistent with results for the
Kondo model reported in Refs. [17,18]. According to these
studies, x should become large close to the phase transition,
whereas we find that it vanishes. To shed light on the apparent

FIG. 2. (top panel) Maximum Q̂ eigenvalue λmax as a function of
interaction U . (middle panel) Decay rate x of the Q̂ eigenvalue (upper
curve) and Kondo temperature TK (lower curve) versus U . Only the
quantum critical regime near Uc 	 −1.3 is strongly correlated, since
the Q eigenvalues show both a slow decay (x < 1) and an enhanced
λmax 	 0.5. (bottom panel) Decay rate x replotted as a function of
Kondo temperature Tk , showing a slow inverse logarithmic decrease
of x when Tk vanishes at the IRLM quantum critical point.

paradox, we show in Fig. 3 the spectrum of Q̂ as a func-
tion of the number N of Wilson chain sites. The real-space
system size is �N/2. Here we used � = 2.25 and picked a
point U = −1.2 close to the critical point. For this choice,
the Kondo length has the astronomically large value 1/TK =
1013, which matches the system size when N = 75. (In
Appendix C we explain how the Kondo temperature TK is
calculated.) For N significantly smaller than 75, we see very
quick exponential decay of the spectrum, corresponding to
large x and a ground state with few correlated particles. How-
ever, when N increases beyond 75, the decay rate x soon
saturates to a small value, so that a large number of cor-
related particles participate in the true ground state in the
thermodynamic limit. These finite-size artifacts explain the
results reported in Refs. [17,18] where real-space lattices with
at most a few hundred sites were studied, leading to system
sizes of the order of a hundred times the Fermi wavelength.
The exponentially diverging Kondo length reaches this order
of magnitude long before the weak-coupling regime in the
vicinity of the critical point is entered. In terms of IRLM
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FIG. 3. Finite-size scaling of the Q̂-matrix spectrum for U =
−1.2 near the quantum critical point, for various system sizes N . To
reach the exponentially long Kondo length 1/TK = 1013, a slightly
larger discretization parameter � = 2.25 was used. The correspond-
ing real-space system size �N/2 equals the Kondo length when
N = 75, as seen by the convergence to the thermodynamic limit
for N > 80. Smaller systems are plagued by finite-size effects that
preempt the full formation of the Kondo state and show a very rapid
decay of the Q̂ eigenvalues.

parameters, a system size between 102 and 103 times the
Fermi wavelength prevents a fully correlated ground state
from forming for U < −0.5 and leads to a severe overestimate
of the decay rate x close to the critical point. Figure 3 clearly
establishes that correlations increase when the Kondo cloud
becomes more extended, in agreement with intuition.

A standard method for probing Kondo correlations is to
perturb the system at the Kondo scale and to see the effect this
has on observables. For instance, a biasing potential εd d†d in
the IRLM, corresponding to a Zeeman splitting between the
spin-up and spin-down states of the magnetic impurity in the
Kondo model, prevents formation of the Kondo singlet. The
occupancy 〈d†d〉 (or equivalently the impurity magnetization)
reveals significant symmetry breaking when εd reaches the
Kondo scale. It is intuitively clear that the symmetry breaking
in the ground state is a sign of reduced correlations, but the
observable 〈d†d〉 does not directly measure this—one can
clearly modify the degree of correlations in the ground state
without changing 〈d†d〉 at half filling (εd = 0) when U is
changed. The spectrum of Q̂, on the other hand, directly
measures correlations. In Fig. 4 we plot the decay rate x of
the Q̂ eigenvalues as a function of εd . The calculation was
performed for U = −1.0 and V = 0.15, which corresponds
to TK = 1.87 × 10−6. We used � = 1.5 which yields a decay
rate x that is converged to the N → ∞, � → 1 limit. For
comparison, we also plot 〈d†d〉 versus εd in the inset of Fig. 4.
We see that x starts changing from its unperturbed value when
εd exceeds the Kondo temperature. As εd increases further,
x increases monotonically, indicating that fewer and fewer
correlated particles are present, the more severely singlet for-
mation is prevented. In this way, the Q̂ matrix spectrum proves
the picture suggested by the d-level occupancy 〈d†d〉.

We now examine the spatial dispersion (along the Wilson
chain) of the Q̂-matrix orbitals q†

n = ∑
i Unic

†
i by plotting

the absolute value |Uni| of the eigenvectors obtained from
the diagonalization of the matrix Qi j (this also displays
particle-hole symmetry more clearly). Figure 5 shows how
correlations spread along the system for four values of the
interaction U . It is clear from Fig. 5 that all the natural orbitals

FIG. 4. (main panel) Decay rate x versus d-level on-site energy
εd , at U = −1.0, V = 0.15, and discretization parameter � = 1.5.
The corresponding Kondo temperature is TK = 1.87 × 10−6. Corre-
lations are clearly weakened (x increases) when breaking the charge
degeneracy of the d level as εd increases. Inset shows ground-state d
level occupancy 〈d†d〉 versus d-level on-site energy εd , for the same
parameters as used in the main panel.

are highly nonlocal and carry information mostly forward
along the chain. The most correlated orbitals (n = 1 and
n = −1) are predominantly localized near the impurity (site
i = −1), as expected from the short range of the interaction,
but develop also long tails that extend to large distances. For
U > 0, the spatial structure of correlated orbitals is fairly
insensitive to the interaction strength, showing that this regime
remains weakly correlated. In contrast, for negative values of
the interaction, as we go closer to the quantum critical point
Uc = −1.3, correlated orbitals become more delocalized, due
to the divergence of the Kondo length. In addition, more and
more orbitals become entangled, due to the slower decay of
the eigenvalues λn in Fig. 1.
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FIG. 5. Spatial dispersion of the 14 most correlated orbitals
q†

n (n = −7, . . . , 7) along the Wilson chain (sites i = −1, . . . , 60),
given by the absolute value of eigenvectors |Uni|. The development
of Kondo correlations for U < 0 is evinced by the long spatial tails,
especially at U = −1.0, while little is changed in the spatial profile
for the weakly correlated regime U > 0.
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IV. FEW-BODY ANSATZ FROM NATURAL ORBITALS

Equipped with this construction of the natural orbitals
of the Q̂ matrix, we establish our most surprising finding,
namely, that the ground state of the IRLM is few-body in
nature for realistic (i.e., nonexponentially vanishing) Kondo
temperatures. This result is clearly suggested by the exponen-
tial decay of the Q̂ matrix eigenvalues in Fig. 1. Since most
of the eigenvalues λn are exponentially close to either zero
or one, it seems a good approximation to assume that their
associated orbitals are exactly uncorrelated, keeping a core of
M truly correlated orbitals within the ground-state wave func-
tion (those orbitals correspond to the Mλn eigenvalues that
are closest to 1/2, and we choose M to be even, which allows
for a correlated sector that is exactly half filled). Specifically,
half of the N − M uncorrelated orbitals (those that have their
eigenvalues closest to 1) will be frozen and described by a
Slater determinant

|�0〉 =
− M

2 −1∏
m=− N

2

q†
m|0〉

in the eigenorbitals of the correlation matrix computed by
NRG. The other half of the uncorrelated orbitals (those with
Q̂ eigenvalues closest to 0) are taken as empty. We therefore
write the full wave function as follows:

|�few〉 =
∑
{Nn}

�
(
N− M

2
, . . . , N M

2

) M
2∏

n=− M
2

[q†
n]Nn |�0〉, (5)

with Nn = 0, 1 being the occupancy of correlated orbital
q†

n, the summation restricted to occupations such that∑M/2
n=−M/2 Nn = M/2, and �(N− M

2
, . . . , N M

2
) being the com-

plete few-body wave function in the correlated subspace.
Note that the total set of Q̂ orbitals runs with index n =
−N/2, . . . , N/2, as in Fig. 1, and that the index n = 0 is ex-
cluded in the above expression. We stress that such an ansatz
is very common in quantum chemistry, where an active space
(also dubbed the correlated sector) is used to select the most
important chemical degrees of freedom [22].

The Hamiltonian can be reexpressed within the q†
n or-

bitals, and then exactly divided into three pieces: H =
Hcorr + Huncorr + Hmix, depending on whether the indices
n act only within the correlated sector (first term), or
only within the uncorrelated sector (second term), or mix
both sectors (third term). Minimizing 〈�few|H|�few〉 with
respect to the few-body wave function �(N− M

2
, . . . , N M

2
)

yields a variational energy equal to the ground-state energy
of the few-body Hamiltonian Hfew = Hcorr + �(Huncorr +
Hmix)�†, which acts on states in which electrons occupy cor-

related orbitals only, with � = ∏− M
2 −1

m=− N
2

qm. Within the Fock

space constructed from correlated orbitals only, �Huncorr�
†

is a real number, while �Hmix�
† is a quadratic operator

(see Appendix B for details). The optimal wave function
�(N− M

2
, . . . , N M

2
) can be found by exact diagonalization of

the few-body Hamiltonian Hfew, which we have done for
increasing values of M.

The only relevant parameter of the few-body approxima-
tion is the number M of kept correlated orbitals. Obviously,

FIG. 6. Difference between the ground-state energy Efew com-
puted with the few-body wave function (5) and the numerically exact
energy ENRG obtained from NRG, as a function of the number of
correlated orbitals.

the limit M → N would lead to the exact wave function. We
stress that all computations at finite M are done in the thermo-
dynamic limit, since the N − M uncorrelated orbitals are fully
accounted for in our ansatz (5). These uncorrelated orbitals ac-
tually constitute a major part of the total energy, despite being
evaluated in a single-particle picture. The difference between
the computed few-body energy Efew = 〈�few|H|�few〉 at fixed
M and the many-body ground-state energy ENRG obtained
from the converged NRG simulations is shown in Fig. 6. We
find an exponential convergence of the few-body energy as a
function of the number M of correlated orbitals, as anticipated
from the structure of the Q̂-matrix spectrum. Note that, for the
half filling considered here, the number of truly interacting
fermions is M/2. We see that an accuracy of six digits is
obtained for six correlated orbitals (three interacting particles)
for all U > 0. For U < 0, the rate of convergence becomes
slower the closer we come to the critical point, consistent
with the increase in the number of Q̂ eigenvalues that are
significantly different from zero or one. However, even at
U = −1.0, where the Kondo temperature is 1.87 × 10−6, 20
correlated orbitals (10 interacting particles) would give an ac-
curacy better than 10% of the Kondo temperature. This clearly
vindicates our claim that, for practical purposes, the ground
state of the Kondo problem is few-body and not many-body
in nature, once expressed in the optimal set of natural orbitals.
Only exponentially close to a quantum phase transition does a
truly many-correlated-particle wave function emerge, as dis-
cussed previously for dissipative systems [30].

V. CORRELATION SPECTRUM OF SINGLE IMPURITY
ANDERSON MODEL

In this final section, we investigate whether our results ex-
tend to other impurity models by investigating the correlation
spectrum of the single impurity Anderson model (SIAM).
The IRLM and SIAM share the same universal low-energy
physics at scales that are small compared with the ultravio-
let cutoff, although Kondo correlations pertain to the charge
sector of the IRLM and to the spin sector of the SIAM.
Does this automatically mean that the ground state of the
SIAM (and other models in the same Kondo universality
class) is few-body in nature, as long as TK is finite but suffi-
ciently smaller than the ultraviolet cutoff? The universality of
Kondo physics does not settle this question, for the following
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reason: The fermionic operators that appear in the IRLM are
nonlinear (and nonpolynomial) functions of those appearing
in the definition of the anisotropic Kondo Hamiltonian. Our
results up to this point show that the Kondo ground state is
effectively few-body in nature, when expressed in terms of
IRLM fermions, and it remains to be checked whether this is
also true in other representations, such as the arguably more
fundamental fermions of the SIAM.

To address this question, we investigate the correlation
matrix of the single impurity Anderson model (SIAM):

H = U

(
d†

↑d↑ − 1

2

)(
d†

↓d↓ − 1

2

)

+V
∑

σ=↑,↓
(d†

σ c0,σ + c†
0σ dσ )

+
∑

σ=↑,↓

N−2∑
i=1

ti(c
†
i,σ ci−1,σ + c†

i−1,σ ci,σ ), (6)

whose effective low-energy description in the strong-
interaction limit U � 
 = V 2/(2D) is the Kondo model, D
being the half-bandwidth. Hamiltonian (6) is again discretized
on the Wilson chain, and we used particle number as well
as spin conservation to optimize the numerical simulations,
as the spinfulness of the SIAM fermions doubles the dimen-
sions of the single-particle Hilbert space. Because the ground
state is a spin singlet, 〈c†

iσ c jσ ′ 〉 ∝ δσσ ′ and 〈c†
i↑c j↑〉 = 〈c†

i↓c j↓〉.
Thus there is an extra twofold degeneracy in the correlation
matrix spectrum, as compared with the IRLM. The NRG
calculation of the correlation matrix demands more compu-
tational resources than for the IRLM, but as we show in
Appendix A, we succeeded in obtaining well-converged re-
sults. As for IRLM, we include the d-level fermions in the
operators used to construct the correlation matrix, so that the
limit U = 0 is strictly uncorrelated.

The top panel of Fig. 7 shows the correlation matrix
spectrum, plotted in the same way as for the IRLM in
Fig. 1. Beyond a central plateau, that still contains the four
eigenvalues furthest from full occupancy or vacancy, we see
degenerate pairs λn↑ = λn↓ that decay exponentially λnσ ∼
exp(−x|n|). In the bottom panel of Fig. 7, we show the ex-
tracted decay rate x, as a function of the Kondo temperature
Tk (the latter is calculated from the magnetic susceptibility of
the impurity). We see a finite decay rate even at extremely
low Kondo temperatures ≈10−12 of the bandwidth, and our
results are consistent with x vanishing at zero Kondo coupling
(U → ∞).

The exponential decay of correlation matrix eigenvalues
(natural orbital occupation numbers) to full occupancy or
vacancy therefore is not a special feature of the IRLM rep-
resentation of Kondo physics. Thus, also for the SIAM,
the single-particle Hilbert space can be partitioned into an
M-dimensional correlated sector and a remainder that is un-
correlated. An ansatz that straightforwardly generalizes (5)
can be constructed. Its accuracy is controlled by M, and any
desired accuracy can be obtained with an M that remains finite
in the thermodynamic limit. Due to the fact that there is an ex-
tra degeneracy in the correlation matrix spectrum of the SIAM
and also because, for given TK , the decay rate x is roughly

FIG. 7. (top panel) Correlation matrix spectrum for the single
impurity Anderson model (SIAM) for various ratios of the onsite
interaction U to the hybridization 
. In all cases 
 = 0.01D. As in
Fig. 1, the right side shows eigenvalues 0 < λnσ < 1/2, while the
left side shows 1 − λnσ for 1/2 < λnσ < 1. Spin degenerate pairs of
eigenvalues λnσ decay exponentially ∼ exp(−|n|x) to full occupancy
or vacancy. (bottom panel) Decay rate x of correlation matrix eigen-
values versus Kondo temperature Tk .

twice smaller for SIAM fermions than for IRLM fermions, a
larger M will be required for the same accuracy at a given TK

than in the IRLM. As a practical matter, this limits the range
of Kondo couplings for which few-body approximations to
the ground state of the SIAM can be found numerically, but,
in principle, the SIAM ground state is effectively a few-body
correlated state in terms of SIAM fermions, in the same way
that the IRLM ground state is few-body in nature, provided TK

is finite.

VI. CONCLUSIONS

We have calculated the correlation matrix of the IRLM and
the SIAM, two quantum impurity models that are equivalent
to the single-channel Kondo Hamiltonian. Several recent stud-
ies have noted that the eigenvalues of the correlation matrix of
quantum impurity models often decay exponentially towards
full occupation or vacancy [18–20], and our results confirm
this observation, provided that the ground state is not quantum
critical. We have, however, identified results in the literature
about the Kondo model, namely, that the exponential decay
rate of correlation matrix eigenvalues becomes large close to
the weak-coupling critical point, which are finite-size arti-
facts. We demonstrated that, in fact, the decay rate tends to
zero as the critical point is approached for a macroscopically
large electronic bath. Finite-size systems that are smaller than
the Kondo length prevent the full development of correlations.
We have also investigated the spatial structure of the most
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correlated natural orbitals as the critical point is approached
and detected clear fingerprints of the Kondo screening cloud.

Our main result presents a general method for determining
the effective number of correlated particles (on top of an un-
correlated Fermi sea). This involves using the natural orbital
single-particle basis to identify correlated and uncorrelated
sectors of Fock space. Owing to the exponential decay of the
correlation matrix spectrum to full occupancy or vacancy, the
correlated sector can, to a good approximation, be chosen to
contain a finite number of particles M/2, whereas the uncor-
related sector contains an infinite number of particles within a
single Slater determinant in the thermodynamic limit. The full
ground state can be reconstructed approximately by solving an
effective few-body problem for the particles in the correlated
sector. If the reconstructed state has an energy expectation
value that differs from the true ground state by an amount
that is significantly less than the Kondo temperature, then
the reconstructed state is a faithful approximation of the true
ground state. By comparing the energy of this reconstructed
state to the true ground-state energy, as a function of M, we
can thus determine the effective number of correlated parti-
cles. Whereas the number of correlated particles diverge at the
weak-coupling fixed point (TK → 0), for realistic Kondo tem-
peratures of ≈10−3 of the Fermi energy, the ground state only
hosts around seven correlated particles in the IRLM represen-
tation, and a larger but still finite number in the SIAM. The
different models host different numbers of correlated particles
at the same Kondo temperature because their microscopic de-
grees of freedom are nontrivially related. We have investigated
how this picture is affected when correlations are frustrated,
either by finite-size effects or by symmetry-breaking fields.
We showed that, as expected, physical cutoffs acting near
the Kondo scale are accompanied by a sharp reduction in
the number of correlated particles. However, we anticipate
that models tuned to criticality, such as the two-channel and
two-impurity Kondo models, remain truly many-body in any
single-particle basis. Our results open many interesting av-
enues for research, such as generalizations to other quantum
impurity problems or even to disordered lattice models. It
would also be interesting to investigate whether this few-body
picture is robust for excited or unitarily time-evolved states,
a notoriously challenging problem for strongly interacting
fermions.
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APPENDIX A: CONVERGENCE OF THE SPECTRUM OF Q̂
TO THE THERMODYNAMIC LIMIT

The thermodynamic limit of the Wilson chain used in NRG
is obtained mathematically by sending the chain length N
to infinity and subsequently sending � to 1. For the IRLM,
this limit describes a one-dimensional conduction band with
a constant density of states coupled via hybridization and
short-range Coulomb interactions to a resonant level. In prac-
tice, numerical calculations are performed at finite N and

� > 1, and also introduce a further regularization parameter
Nkept, which is the maximum dimension to which fixed par-
ticle number sectors of Hilbert space are truncated in each
renormalization step. In this section we demonstrate that our
numerical results are converge to the thermodynamic limit
with respect to these three regularization parameters. We first
show in Fig. 8 (top panel) that the Q̂-matrix spectrum is indeed
well converged for sufficiently long chains. Here, we consider
an interaction value U = −1.2D very close to the quantum
critical point Uc = −1.3D, leading to an exponentially small
Kondo temperature of order TK/D 	 �−75/2 	 10−13, which
is estimated from the crossover at N 	 75 seen in the flow of
the lowest eigenvalues of the rescaled Hamiltonian (bottom-
right panel in Fig. 8), using the value � = 2.25 for this NRG
computation. The same crossover scale is seen for all eigen-
values λn (see bottom-left panel in Fig. 8), which are well
saturated to their N = ∞ limit for N > 75. Note however, that
eigenvalues λn with n > N/2 are not defined since the chain
is too short to harbor those modes. Longer chains are thus
required to obtain such small eigenvalues.

We then investigate the issue of the convergence to the
continuum limit � → 1. In the left panel of Fig. 9, we plot the
Q̂ spectrum for U = 0.5, with Nkept = 450 many-body states
per block, for various � values. The first five eigenvalues are
clearly independent of �, showing that the exponential falloff
is robust in the thermodynamic limit. For the smaller eigenval-
ues λn with n � 6, some departure of the exponential decay is
seen for � = 1.5 and � = 1.4. We show in the middle panel
of Fig. 9 that this artifact is purely an effect of the truncation
error on the exponentially small magnitude of the eigenvalues,
that disappears progressively when increasing Nkept. Thus, in
practice, calculations with � = 2 and Nkept 	 450 provide
good convergence for spinless models, emphasizing that it
is not useful to consider λn eigenvalues below the machine
precision 10−16. We found similar results for other values of
the interaction U .

In Sec. V we presented results for the spectrum of the
correlation matrix of the single impurity Anderson model.
Given the larger single-particle Hilbert space, it is important
to make sure that these results are converged with respect to
NRG truncation. In the right panel of Fig. 9, we show that this
is the case: The evolution of the spectrum of the numerically
computed correlation matrix for the SIAM as a function of
Nkept closely mirrors that of the IRLM (compare with the mid-
dle panel of Fig. 9.) We clearly see that the truncation error is
pushed closer and closer to full occupancy or vacancy as Nkept

is increased, and that results are consistent with a spectrum
that decays exponentially to full occupancy or vacancy.

APPENDIX B: FEW-BODY DIAGONALIZATION
IN THE Q̂ EIGENBASIS

We present here some technical details on how to per-
form an exact diagonalization of an arbitrary nonlocal
Hamiltonian, using the eigenvectors of the Q̂ matrix as
an optimized set of M correlated orbitals q†

n, with n =
−M/2, . . . ,−1, 1, . . . , M/2. The orbitals with −N/2 � n <

−M/2 are fully occupied, while the orbitals with M/2 < n �
N/2 are totally empty. As discussed in the main text, we write
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FIG. 8. (top) Q̂-matrix spectrum for U = −1.2D near the quantum critical point Uc = −1.3D for various chain lengths N (� = 2.25 here).
(bottom left) The same data, plotted as a function of N , showing convergence for N > 75. (bottom right) The corresponding flow of the five
lowest eigenvalues of the rescaled Hamiltonian. Both the Q̂ eigenvalues λn(N ) and the H eigenvalues εn(N ) show a crossover to the Kondo
fixed point at a scale N � 75, corresponding to TK/D 	 2.25−75/2 	 10−13.

the full wave function as follows:

|�few〉 =
∑

{Nn=0,1}
�

(
N− M

2
, . . . , N M

2

) M
2∏

n=− M
2

[q†
n]Nn |�0〉,

|�0〉 =
− M

2 −1∏
m=− N

2

q†
m|0〉, (B1)

with Nn = 0, 1 being the occupancy of correlated orbital
q†

n, the summation restricted to occupations such that∑M/2
n=−M/2 Nn = M/2 at half filling, and �(N− M

2
, . . . , N M

2
) be-

ing the complete wave function in the correlated subspace.
We then split the full Hamiltonian between the cor-

related and uncorrelated sectors as H = Hcorr + Hmix +
Huncorr. We label the correlated orbitals with roman in-
dices, such as q†

n with n = −M/2, . . . ,−1, 1, . . . , M/2, and
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FIG. 9. (left) IRLM Q̂ spectrum for U = 0.5 and Nkept = 450, for � = 1.4, 1.5, 2.0, showing robustness of the exponential decay in the
thermodynamic limit. (center) IRLM Q̂ spectrum as a function of Nkept for � = 1.5, displaying typical truncation errors of the NRG, and
their disappearance when increasing the number of kept states. (right) SIAM Q̂ spectrum versus Nkept, for 
 = 0.01D, U = 0.2D = 20
, and
� = 2.0.
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FIG. 10. Kondo temperature of the IRLM as a function of inter-
action U computed by NRG with Wilson discretization parameter
� = 2 and chains of length up to N = 110.

uncorrelated orbitals with greek indices, such as q†
α with

α = −N/2, . . . ,−M/2 − 1, M/2 + 1, . . . , N/2. The various
terms read

Hcorr =
∑
n,m

tnmq†
nqm +

∑
n,m,p,q

Unmpq q†
nq†

mqpqq,

Hmix =
∑
n,m

∑
α,β

(Un,α,m,β q†
nq†

αqmqβ

+Un,α,β,m q†
nq†

αqβqm

+Uα,n,m,β q†
αq†

nqmqβ

+Uα,n,β,m q†
αq†

nqβqm) + Hodd,

Huncorr =
∑
α,β

tαβq†
αqβ +

∑
α,β,γ ,δ

Uαβγ δ q†
αq†

βqγ qδ, (B2)

where Hodd contains odd terms in the uncorrelated orbitals,
such as the hopping term q†

αqn mixing both sectors, or inter-
action terms of the form q†

αq†
nqmqp. The terms in Hodd vanish

once we project the Hamiltonian in the family of states of
the form (B1). The resulting effective few-body Hamiltonian

reads

Hfew =
∑
n,m

tnmq†
nqm +

∑
n,m,p,q

Unmpq q†
nq†

mqpqq

+
∑
n,m

∑
α

q†
nqmnα (−Un,α,m,α + Un,α,α,m

+Uα,n,m,α − Uα,n,α,m )

+
∑

α

tααnα +
∑
α �=β

(Uαββα − Uαβαβ )nαnβ, (B3)

where nα is the occupancy of the uncorrelated orbitals in
the wave function (B1), namely, nα = 1 for α < −M/2 and
nα = 0 for α > M/2. We note that projecting Hmix generates
a renormalization of the hopping term q†

nqm within the corre-
lated sector (the last term under the parentheses in the first line
of the equation above). The projection of Huncorr provides only
a constant contribution to the Hamiltonian (second line of the
equation above). The ground-state energy of the initial many-
body Hamiltonian H is obtained by exact diagonalization of
Hfew in the few-body correlated sector.

APPENDIX C: EXTRACTION OF KONDO TEMPERATURE

For the IRLM, we take the following definition for the
Kondo temperature:

TK = 1

4χ
, (C1)

χ = lim
εd →0

d

dεd
〈d†d〉, (C2)

upon adding to the IRLM Hamiltonian a local potential on
the d level, namely, a term εd d†d . This is equivalent to the
standard definition [31] for the Kondo model in terms of the
magnetic susceptibility of the impurity spin. The resulting
Kondo TK temperature as a function of interaction U is given
in Fig. 10. A fit of the essential singularity at the critical point
allows us to determine the critical value Uc 	 −1.3. We also
recover our previous estimate TK/D 	 10−13 at U = −1.2
shown previously in Fig. 8.
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