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Elastic backscattering of quantum spin Hall edge modes from Coulomb interactions
with nonmagnetic impurities
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We demonstrate that electrostatic interactions between helical electrons at the edge of a quantum spin Hall
insulator and a dynamical impurity can induce quasielastic backscattering. Modeling the impurity as a two-level
system, we show that transitions between counterpropagating Kramers-degenerate electronic states can occur
without breaking time-reversal symmetry, provided that the impurity also undergoes a transition. The associated
electrical resistance has a weak temperature dependence down to a nonuniversal temperature scale. Our results
extend the range of known backscattering mechanisms in helical edge modes to include scenarios where electron
tunneling out of the system is absent.
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I. INTRODUCTION

The quantum spin Hall (QSH) effect [1–4] is a prototypi-
cal example of a symmetry protected topological phase [5],
featuring helical edge modes that remain gapless and con-
ducting as long as time-reversal symmetry is maintained and
the bulk gap stays open. While these edge modes have been
directly observed in a variety of solid state systems using pho-
toemission spectroscopy [6], their characteristic conductance
properties are found to be much less robust than those of chiral
edge modes in the integer quantum Hall effect [7–11].

Aside from perturbations to the edge mode that break
time-reversal symmetry—either explicitly or spontaneously
[11–13]—a number of mechanisms have been put forward
to account for the edge mode resistance seen in experiment.
In systems with inhomogeneous doping, the bulk gap may
vary with position and even close in certain regions, lead-
ing to the formation of metallic charge puddles. If helical
electrons can tunnel into these gapless regions, then their
protection against backscattering is compromised and the
edge becomes resistive [14,15]. This effect is particularly
strong for Kramers-degenerate impurities, wherein the resul-
tant magnetic exchange interactions can facilitate quasielastic
backscattering, i.e., involving only a small energy exchange
(of the order of the Kondo temperature) [16–21].

In the above mechanisms, either the bulk gap or the pro-
tecting time-reversal symmetry (TRS) are compromised, and
so the induced resistance can be strong. In contrast, if the bulk
gap and TRS are maintained, the only known sources of re-
sistance involve inelastic backscattering, which is less strong
at low temperatures due to the need for energy exchange.
Electron-electron and electron-phonon mediated backscatter-
ing lead to a resistance that is strongly suppressed as the
temperature or voltage is decreased [22–27], which is incon-
sistent with the weak dependence seen in experiment [9–11].
One possible explanation is that the necessary energy is pro-
vided by external noise, which gives a weaker temperature
dependence [28].

In this article, we identify a mechanism by which he-
lical electrons can undergo quasielastic backscattering that
does not involve tunneling into in-gap states or TRS break-
ing. Electrostatic interactions between helical electrons and
a nonmagnetic dynamical impurity lead to transitions be-
tween degenerate counterpropagating states, as illustrated in
Fig. 1. The resistance profile induced by this scattering pro-
cess strongly resembles that of a magnetic impurity: for

FIG. 1. Quantum spin Hall insulator coupled to an impu-
rity (modeled as a two-level system) via electrostatic interactions
[Eq. (3)]. Inset: the bare couplings Jz and Jx [Eq. (5)] combine
to induce elastic backscattering between Kramers-degenerate states
(black and white dots). The transition can proceed by two paths
(green and violet) depending on which perturbation is applied
first. Because the impurity pseudospin operators do not com-
mute [σ̂ z, σ̂ x] = 2iσ̂ y, destructive interference of these two paths is
avoided. During this process, the impurity undergoes a simultane-
ous transition, thus requiring an energy transfer of ε :=

√
E 2

sp + �2 ,
which can be arbitrarily small.
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FIG. 2. Resistance of helical edge modes due to interaction with
a two-level system impurity, in the regime ε � Ey such that Eq. (9)
applies with Ecut = ε, for various values of K . The resistance is plot-
ted in units of R0 := (h/e2) × y2

0(Ecut/Eg)2K−2. For Ey � ε, the same
qualitative form is expected with Ecut = Ey. The dashed line includes
the contributions from inelastic scattering, which are dominant for
T � Ecut.

temperatures T above some nonuniversal cutoff Ecut, the resis-
tance scales inversely with temperature as T 2K−2, where K �
1 is the Luttinger parameter (equal to unity for noninteracting
electrons; see Fig. 2). This contrasts strongly with previously
studied inelastic backscattering mechanisms. At temperatures
below Ecut, the dynamics of the impurity becomes frozen,
leaving only the aforementioned processes which scale as T η

with η > 0.
Quasielastic backscattering is possible here because time-

reversal symmetry does not act “locally” on the helical edge
electrons, but on the composite system plus impurity, as
we highlighted in Ref. [29]. Accordingly, transitions be-
tween Kramers-degenerate electron states—which would be
forbidden by time-reversal symmetry in the absence of any
extraneous degrees of freedom—are in fact allowed, pro-
vided that the impurity undergoes a simultaneous transition. In
essence, the energy scale below which the helical edge modes
are protected is not set by the QSH gap, but by the gap of the
composite system, which can be arbitrarily small. Our results
indicate that the elimination of charge puddles (e.g., by using
QSH insulators with larger band gaps) will not necessarily
restore conductance quantization.

II. SETUP

The boundary of a two-dimensional topological insulator
hosts a single pair of counterpropagating modes in which
the direction of motion is correlated with the electron spin.
In a clean, dispersionless, noninteracting system in the ab-
sence of Rashba spin-orbit coupling, the Hamiltonian can be
written as

Ĥ0 =
∑

σ

σvF

∫
dx ψ̂†

σ (x)i∂xψ̂σ (x), (1)

where ψ̂†
σ (x) creates a fermion with spin σ ∈ {+1,−1} at

a coordinate x along the edge, and vF is the velocity of
edge electrons. The TRS operator T̂ (which is antiunitary
T̂ i T̂ −1 = −i) exchanges the two spin species T̂ ψ̂σ (x)T̂ −1 =
σψ̂−σ (x) and squares to T̂ 2 = (−1)N̂F , where N̂F is the

fermion number operator. Perturbations cannot couple coun-
terpropagating states of the same energy unless TRS is broken
explicitly or spontaneously [4]. This protection against elastic
backscattering prevents the helical edge modes from being
gapped or localized [3].

The simple Hamiltonian Ĥ0 can be refined by includ-
ing electron-electron interactions. It then becomes convenient
to employ bosonization techniques [30]. Within a fixed N̂F

sector, we write ψ̂σ (x) = (2πξ )−1/2eiσ (kF −π/L)xeiθ̂ (x)−iσ φ̂(x),
where kF is the Fermi wavelength, L is the length of the
edge, ξ is a short distance cutoff of the order u/Eg [16] (Eg

is the bulk gap, and u is a renormalized velocity), and φ̂(x),
θ̂ (x) are bosonic fields satisfying the commutation relations
[φ̂(x),∇ θ̂ (x′)] = iπδ(x − x′). The edge modes are then de-
scribed by the helical Luttinger liquid (HLL) theory [3]

ĤHLL = u

2π

∫
dx

1

K
(∇φ̂)2 + K (∇ θ̂ )2, (2)

where the dimensionless Luttinger parameter K quantifies the
strength of interactions (K < 1 for repulsive interactions).
Stability of the edge mode against spontaneous TRS break-
ing requires K > 1/4 [16]. TRS acts as T̂ φ̂(x)T̂ −1 = φ̂(x) +
π/2; T̂ θ̂ (x)T̂ −1 = −θ̂ (x) + π/2 [31].

Here, we consider generic helical edges without any ad-
ditional symmetries. Due to Rashba spin-orbit coupling and
other related effects, such edges will generically possess
nontrivial spin textures in momentum space, i.e., the spin
quantization axis depends on wave vector [32,33]. The HLL
theory can still be used in this case, but the usual bosonization
identity relating bare electron operators and bosonic variables
cannot be directly used, since it assumes a fixed spin quanti-
zation axis. Nevertheless, the fields φ̂(x), θ̂ (x) obey the same
symmetry properties as before. One should think of Eq. (2) as
a long-wavelength fixed point Hamiltonian whose symmetries
are inherited from a more complicated microscopic theory.

It is well known that the perfect conductance of these
helical edge modes can be compromised if the electrons can
tunnel into magnetic impurities [3,16,17], which induces an
exchange coupling J

∑
α=x,y,z Ŝα

el(x) ⊗ Ŝα
imp. The electron spin

operators Ŝα
el(x) = ∑

σσ ′ ψ̂†
σ [τα]σσ ′ψ̂σ ′ (τα are the Pauli ma-

trices) are odd under time reversal [34], and so can induce
elastic backscattering even though TRS is preserved overall.
We will instead consider electrostatic interactions between the
HLL and a nonmagnetic impurity, such that the Hamiltonian
only features TRS-even, fermion-number-conserving opera-
tors acting on the system. Despite the absence of any tunneling
or exchange processes, we will show that this nonmagnetic
impurity can still give rise to quasielastic backscattering,
leading to a deviation from quantized conductance that is in
principle just as strong as a magnetic impurity.

For simplicity and concreteness, we model the impurity
as a two-level system (TLS). We discuss possible physical
manifestations of such TLSs below. For now, consider the
impurity to have two low-energy configurations whose zero
point energies differ by Esp, with a tunneling matrix ele-
ment � between the two [35]. The Hamiltonian is ĤTLS =
(Esp/2)σ̂ z + (�/2)σ̂ x, where σ̂ x,y,z are the Pauli matrices in
the impurity Hilbert space. In this basis, time reversal acts

235164-2



ELASTIC BACKSCATTERING OF QUANTUM SPIN HALL … PHYSICAL REVIEW B 103, 235164 (2021)

as T̂ = K , the complex conjugation operator, which forbids
a term proportional to σ̂ y.

Electrostatic density-density interactions between the sys-
tem and the TLS take the form

Ĥint =
∫

d2�r ρ̂el(�r) ⊗ [σ̂ xVx(�r) + σ̂ zVz(�r)], (3)

where ρ̂el(�r) is the density operator for the bare electrons and
Vx,z(�r) are arbitrary real functions of the 2D spatial coordinate
�r, which we presume to be localized near some point x = 0
along the edge. This interaction captures the dependence of
both the splitting Esp and tunneling matrix element � on the
distribution of electrons in the system. No term proportional to
σ̂ y appears because the charge density operator for the degrees
of freedom in the impurity must be TRS invariant.

Note that there is some freedom in choosing the basis
for the impurity Hilbert space. However, generically it is
not possible to find a basis in which the Hamiltonian only
includes diagonal TLS operators. One could pick a coordinate
�r∗ and perform a basis transformation using the unitary Û =
eiθσ̂ y/2, with θ = tan−1[Vz(�r∗)/Vx(�r∗)]. The contributions to
(3) in the vicinity of �r ≈ �r∗ would then be diagonal, but
those further away from �r∗ will not be diagonal, because
the ratio Vz(�r)/Vx(�r) will generically vary. If we write Âα =∫

d2�r ρ̂el(�r)Vα (�r) (α = x, z), then (3) becomes

Ĥint = Âx ⊗ σ̂ x + Âz ⊗ σ̂ z. (4)

As long as the operators Âx and Âz are linearly independent,
we must consider both terms in the above. This will prove
crucial for our subsequent analysis.

For concreteness, from hereon we will work in a basis in
which the uncoupled impurity Hamiltonian is diagonal, so we
can write ĤTLS = εσ̂ z, where ε =

√
E2

sp + �2 .

III. EFFECTIVE LOW-ENERGY THEORY

We now analyze the low-energy properties of the full
Hamiltonian Ĥtot = ĤHLL + ĤTLS + Ĥint . Our strategy is to
consider which terms can appear in the bare microscopic
Hamiltonian and study how they behave under renormaliza-
tion.

As mentioned, if the helical modes have nontrivial spin
texture then it is unclear how to express Eq. (3) in terms
of the bosonic fields φ̂(x), θ̂ (x). Nevertheless, we can deter-
mine which terms will generically arise by considering the
symmetry properties of the operators acting on the system
Âα . Evidently, Âα are Hermitian, charge-conserving, TRS-
invariant operators [36]. Furthermore, since the interaction
between the system and the TLS is localized around the point
x = 0, we can perform a gradient expansion of the bosonic
fields about this point (which is well controlled at low en-
ergies), leaving only the fields φ̂(x), θ̂ (x) and their spatial
derivatives evaluated at x = 0.

There are still infinitely many terms that meet these criteria,
but for illustrative purposes we will consider just two,

Ĥint = Jz∇2φ̂ ⊗ σ̂ z + Jx :∇ θ̂ cos[2φ̂] : ⊗ σ̂ x + · · · , (5)

with all fields evaluated at x = 0. (The colons denote normal
ordering with respect to the product of ∇ θ̂ and cos[2φ̂].) The
coefficients Jx,z will depend in some complicated way on the

microscopic details of the QSHE system in question as well
as the profiles Vx,z(�r) in (3), but neither are constrained by
time-reversal symmetry. Later, we will consider a specific
microscopic model for the impurity and obtain expressions
for the bare parameters Jx, Jz.

To provide some intuition, if we were to map these two per-
turbations back to fermionic operators using the bosonization
identity then the first term would describe forward scattering
of electrons. The second term corresponds to single-particle
backscattering between nondegenerate states, which is al-
lowed because counterpropagating states of different energies
are not related by TRS. (See Fig. 1.)

At tree level, both operators in Eq. (5) are RG irrelevant,
with scaling dimensions �1 = 2, �2 = 1 + K . Therefore, the
deviation from quantized conductance at leading order in Jx,z

will decrease as the temperature of the system is lowered as
T 2K . The reason we consider them here is that when pertur-
bative loop corrections are included, the combination of these
two operators will generate a new relevant operator,

Ĥy = (yu/ξ ) cos[2φ̂] ⊗ σ̂ y, (6)

where y is a dimensionless coupling constant. The operator
cos[2φ̂] describes single-particle backscattering of the same
kind that would be expected from a magnetic impurity [16],
and the factor of σ̂ y indicates that the impurity undergoes a
simultaneous transition. This is represented by the solid black
arrow in Fig. 1.

Although the product Ĥy is invariant under TRS, the indi-
vidual operator cos[2φ̂] is odd under TRS. This coupling is
therefore forbidden in the bare theory due to the microscopic
symmetries of the electrostatic coupling (3) (4). (Recall that
the operators Âα acting on the system are TRS invariant.) Nev-
ertheless, the renormalized theory can have a nonzero value of
y. Because cos[2φ̂] is TRS odd, this gives rise to quasielastic
backscattering, which as we will see is not suppressed at low
temperatures in the way that inelastic backscattering is.

To be more precise, in the Supplemental Material [37], we
study an infinitessimal RG transformation in which the UV
cutoff length scale ξ transforms to ξ → eδ�ξ for some δ� � 1.
The parameter y flows according to

dy

d�
= (1 − K )y − JxJz/u2ξ + · · · . (7)

The irrelevant parameters Jx, Jz also obey their own RG
equations, under which they flow towards zero:

dJz

d�
= − Jz + O

(
J2

x,z

)
, (8a)

dJx

d�
= − KJx + O

(
J2

x,z

)
. (8b)

Even though Jx, Jz eventually drop out of the theory, in the
early stages of the flow the second term in (7) drives the sys-
tem away from the unstable fixed point y = 0. Then, since y is
RG relevant (or marginal for noninteracting fermions K = 1),
its value will increase (or stay constant) during the subsequent
flow. Specifically, if we solve the above equations using y =
0 at � = 0, we find y(�) = [−KJx(0)Jz(0)/2u2ξ ](e(1−K )� −
e−(1+K )�), which in the late stages of the flow tends towards
y(�) → y0e(1−K )�, with y0 = −KJx (0)Jz(0)/2u2ξ . Thus, as
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long as both Jx(0) and Jz(0) are nonzero, the low-energy
theory will feature the emergent relevant operator (6).

While we have focused on the two couplings given in
Eq. (5), there are infinitely many more combinations of
irrelevant operators that can combine to contribute to y, as rep-
resented by the ellipsis in Eq. (7). Thus solving the RG flow
equations in full generality is prohibitively hard. However, the
behavior of y(�) at large � will necessarily be independent of
the initial values of these couplings, except for a modification
of the multiplicative factor y0. Thus one can treat y0 as a single
phenomenological parameter capturing the influence of all the
other couplings on the long-wavelength physics.

Our derivation of the RG equation (7) (details of which can
be found in the Supplemental Material [37]) is a variant of the
Anderson-Yuval-Hamann approach to the Kondo model [38].
Because the underlying theory (2) is free, we can compute
the operator product expansion of the two terms in Eq. (5),
from which the one-loop beta function can be obtained using
standard methods (see, e.g., Ref. [39]).

One can develop a more intuitive understanding of how the
elastic backscattering term (6) arises by successively applying
the two terms in Eq. (5) in a perturbative manner, as illustrated
in the inset of Fig. 1 (working in a fermionic representa-
tion). An electron undergoes a transition proceeding via an
intermediate virtual state, which will be either left or right
moving depending on whether the forward- or backscattering
term (Jz or Jx, respectively) is applied first. If the operators
acting on the impurity were not included in Eq. (5), then
the contributions from the two choices of ordering would
destructively interfere due to TRS. However, because σ̂ x and
σ̂ z anticommute, an additional relative phase of π between the
two contributions is introduced. The result is elastic backscat-
tering accompanied by a transition of the state of the impurity,
as represented by the coupling (6).

These considerations imply that, at low energies, the he-
lical modes will be governed by an effective Hamiltonian
Ĥeff = ĤHLL + ĤTLS + (y0u/ξ ) cos[2φ̂] ⊗ σ̂ y (keeping only
relevant operators).

IV. CONDUCTANCE

Having derived the effective low-energy theory, we can
now calculate the resistance induced by the HLL-TLS interac-
tions by adapting the standard derivation for the conductance
of a Luttinger liquid in the presence of a static impurity [40].
Details of the calculations can be found in the Supplemental
Material [37].

At leading order in y0, we find a linear dc resistance of

R(T )

h/e2
= π2y2

0

2

(
2πT

Eg

)2K−2

sech

(
ε

2T

) |�(K + iε/2πT )|2
�(2K )

,

(9)

where h = 2π h̄, �(x) is the Euler gamma function, and ε =√
E2

sp + �2 is the difference in energy of the eigenvalues of
ĤTLS. For T � ε, the resistance scales as a nonpositive power
of temperature R(T ) ∼ T 2K−2, as could be anticipated from
the scaling dimension of y. This is in stark contrast to the
temperature dependence of inelastic scattering processes. For
example, if we only included the leading-order effects of the

terms in (5), we would find a resistance that decreases with
temperature as a power law: R(T ) ∝ T 2K . The difference is
that the operator cos[2φ̂] appearing in Eq. (6) can couple
counterpropagating helical states of the same energy, and so
in the noninteracting electron limit K = 1 the scattering rate
is independent of T .

As T is lowered below ε, the impurity becomes frozen in
its ground state, and so can no longer efficiently undergo a
transition. The contribution (9) edge resistance then becomes
thermally activated R(T ) ∼ e−ε/T . This reflects the quasielas-
tic nature of the process described here. Once the impurity is
frozen, the dominant sources of resistance will be the previ-
ously studied inelastic mechanisms, giving R(T ) ∼ T η, with
η = min(2K + 2, 8K − 2) > 0 [24]. Note that this scale ε is
nonuniversal, and so can be arbitrarily small in principle. If
the impurity itself is degenerate, e.g., due to some symmetry,
then ε = 0 and this “frozen” regime is never reached.

Being based on perturbation theory in Ĥy, Eq. (9) is valid
provided that the renormalized y(�) is small at the energy scale
of interest. The expression is only invalidated if T, ε � Ey,
where we define Ey = Egy1/(1−K )

0 , in which case y(�) flows
to strong coupling. By analogy to the Kondo effect in he-
lical liquids [16], the impurity and bulk electrons will then
hybridize and behave as a composite system with gap ∼Ey

and the remaining backscattering processes will be inelastic
R(T ) ∼ T η. Since we expect y to be perturbatively small for
realistic systems [37], it is likely that this regime will arise at
unrealistically low temperatures.

It is also possible to obtain expressions for the conductance
at finite voltage V (i.e., beyond linear response) and nonzero
frequencies ω. Outside of the frozen regime, the conductance
will scale as E2K−2, where E ∼ min(T,V, ω). See the Supple-
mental Material for details [37].

To conclude, the resistance (plotted in Fig. 2) scales as
R(T ) ∼ T 2K−2 for T above some nonuniversal cutoff scale
Ecut = max(ε, Ey) that depends on the details of the impurity,
and so can be arbitrarily small, in principle. This form is in
stark contrast with previously studied inelastic backscattering
mechanisms, which quickly decrease in magnitude as T is
lowered [22–25].

V. MICROSCOPIC MODEL

While the temperature dependence of R(T ) is universal
[Eq. (9)], the overall scale set by y0 depends on the specific
details of the impurity, and thus so far we have treated it as
a phenomenological parameter. Here, we construct a simple
microscopic model for an impurity capable of inducing the
backscattering processes studied above, which allows us to
obtain an order-of-magnitude estimate for y0 in certain ex-
perimentally relevant scenarios. The calculation also helps
provide more intuition behind the form of the system-impurity
interaction (3), (5).

Consider an electron sitting a distance d above the layer
in which the QSH insulator resides. It is trapped in a double
quantum well, with two potential minima a distance r apart,
oriented at an angle π/2 − ϕ from the edge channel direction
(Fig. 3). At sufficiently low temperatures, the electron remains
in the ground state of one of the two wells. If r is sufficiently
small, then it is possible for the electron to tunnel between
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FIG. 3. Possible realization of an impurity capable of inducing
quasielastic backscattering, from top view (a) and side view (b). An
electron is confined within one of two potential wells (light green
lobes) separated by distance r along a direction oriented at an angle
ϕ from the normal to the edge. The impurity is a distance d above
the edge mode, where d may be much larger than a tunneling length.

these two ground states; the impurity can then be treated
as a TLS with splitting energy Esp and tunneling amplitude
� determined by the potential energy landscape felt by the
impurity electron [35]. This scenario is particularly relevant
to HgTe quantum well heterostructures [6,7,41], where dopant
ions in the layers above the QSH insulator naturally give rise
to local potential minima for electrons at random locations.
There, the distance over which the impurity electron can tun-
nel is set by the effective Bohr radius of the doped layers,
which can be on the order of tens of nanometers—comparable
to modulation doping distance d = 10 nm used in the experi-
ments of Refs. [6,7].

As a helical electron approaches the vicinity of the im-
purity, electrostatic interactions will modify the potential
landscape felt by the impurity electron, and thus Esp and
� will fluctuate. This interaction can be described by the
Hamiltonian (3). While we do not have full knowledge of
the double well potential, which would in principle allow us
to compute the profiles Vx,z(�r), we expect that their orders
of magnitude will be set by the scale of Coulomb repulsion
EC ∼ e2/4πε0κd , where κ is the effective dielectric constant.
The range over which the profiles drop off will also be set by
both d and ξ , since the effective potential may be smeared
over the penetration depth of the edge mode in the transverse
direction ξ . Since the value ξ ≈ 36 nm typical of HgTe quan-
tum well experiments [42] is the same order of magnitude as
r, d , we treat all length scales as comparable.

In the absence of inversion symmetry, the helical modes
have a nontrivial spin-momentum texture [22,32,33], which
can be parametrized by a typical wave vector k0 over
which the spin quantization axis varies appreciably. Thus
the charge density operator will be coupled to spin degrees
of freedom. To convert the interaction Hamiltonian (3) into
bosonized variables, we can use an expression for the elec-
tron density operator given in Ref. [31]: ρ̂el(x) ≈ ∇φ̂(x) +
ζ : ∇ θ̂ (x) cos[2φ̂(x)] : +O(ζ 2), where ζ ≈ 2kF ξ−1k−2

0 is a
dimensionless parameter that characterizes the strength of
Rashba spin-orbit coupling. Upon performing a gradient ex-
pansion, we see that the terms (5) do indeed arise, along with
others that we include explicitly in the Supplemental Material
[37].

Combining the various parameters, we find a resis-
tance of the order R(T ) ∼ α4

uζ
2(Eg/2πT )2−2K , where αu =

e2/4πε0 h̄u is a dimensionless parameter characterizing the
strength of Coulomb interactions in the edge mode. For HgTe

wells, αu ≈ 0.31 [14]. A more detailed description of this
estimate and the various experimental parameters used below
are given in the Supplemental Material [37].

Overall, we find that a single impurity induces a rather
small resistance due to the weak spin-momentum texture
found in the edge modes of HgTe quantum wells. Based on
an estimation of the number of dopant ions present in a given
experiment, we find a total resistance of around one percent
of h/e2 for a Ledge = 1 μm long edge, increasing linearly with
Ledge. Therefore, it is unlikely that the present microscopic
model can account for the resistance seen in experiment,
which is typically larger [6,7] and so more likely to be due
to backscattering from charge puddles [8]. Nevertheless, our
calculation highlights an important point of principle: even if
charge puddles were eliminated from the sample, one should
not expect to see quantized conductance at low temperatures,
since the helical modes are not protected against quasielastic
backscattering in the presence of dynamical impurities.

There may be related effects not captured by the present
calculation that could lead to a larger resistance. First, there
may be dynamical impurities of a different origin that are
more numerous. For instance, the impurities could have the
same origin as the effective two-level systems used to ac-
count for the ubiquity of “1/ f noise” in solid state systems
[43,44]. Secondly, we note that our analysis only captures
a subset of the possible backscattering processes that can
arise—specifically those in which the intermediate virtual
state lies within the edge channel (gray circles in Fig. 1).
There will also be transitions between counterpropagating
modes that proceed via bulk excited states [29], which can
have spin quantization axes that deviate appreciably from that
of the edge mode, thanks to the strong spin-orbit coupling
that is necessarily present in topological insulators. These
processes could be studied in detail with more precise knowl-
edge of the bulk band structure. Since such transitions are
still quasielastic, we expect that the resistance will exhibit a
similar temperature dependence and will not be suppressed in
the same way as the intra-edge-mode processes studied here.

The expression for R(T ) quoted above will be modified
if there is a hierarchy of length scales in the problem. For
instance, if d is much larger than ξ and r, then the coupling
strengths Jx,z will depend inversely on d , giving an overall d−4

dependence. Thus we expect an algebraic dependence on the
system-impurity distance, which contrasts with tunneling into
in-gap states, whose magnitude decays exponentially with
distance as e−d/�tun , where �tun is the tunneling length.

VI. CONCLUSIONS AND OUTLOOK

We have shown that electrostatic interactions between a
dynamic impurity and helical electrons facilitate quasielastic
backscattering, leading to an edge mode resistance that does
not decrease as T is lowered, in contrast to previously studied
inelastic backscattering mechanisms. The resistance increases
(or remains constant for K = 1) as the temperature is lowered,
following a power law T 2K−2 down to a nonuniversal cutoff
scale Ecut = max(ε, Ey). At temperatures below Ecut, the TLS
becomes frozen either by its own dynamics or by interactions
with bulk electrons, and the resistance then scales as T η (see
Fig. 2).
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The topological protection of helical edge modes is usu-
ally attributed to the fact that TRS-invariant Hamiltonian
perturbations Ĥ cannot couple counterpropagating Kramers-
degenerate states |ψ〉 and |ψ̄〉, since 〈ψ̄ |Ĥ |ψ〉 = 0. However,
such an argument only applies to situations where the quan-
tum spin Hall insulator is isolated. Here, the system is coupled
to additional degrees of freedom that make up the impurity.
TRS then applies at the level of the composite system plus
impurity, rather than just the system, and so transitions from
|ψ〉 to |ψ̄〉 are not forbidden, provided the environment un-
dergoes a simultaneous transition. (See Ref. [29] for a similar
example in 1D symmetry-protected topological phases.)

This same reasoning can be used to understand how
quasielastic backscattering can occur in scenarios where he-
lical electrons are tunnel coupled to magnetic impurities [16]
or charge puddles tuned to resonance [14]. However, a key
aspect that distinguishes the mechanism described here from
those previous results is that the impurities need not be tun-
nel coupled to the edge mode. As such, the impurities that
can contribute to the resistance are of a much broader class
and do not need to be within a tunneling length �tun of the
sample.

Unlike previously studied backscattering mechanisms in-
volving tunneling out of the helical edge, whose strength
decays exponentially with system-impurity distance d , here
the dependence on d is algebraic due to the long-ranged nature
of the Coulomb force [37]. This implies that the presence of
mobile electrons in regions relatively far from the sample may
still suppress conductance quantization. Therefore, even if the
contribution from a single impurity is small, it is likely that

many impurities will be involved in backscattering, poten-
tially leading to a significant cumulative resistance (similar
to Ref. [28]).

While we have adopted a two-level system model to de-
scribe the impurity, our arguments naturally generalize to
multilevel impurities. The low-energy effective theory will
generically contain all operators of the form (6) in which
σ̂ y is replaced with other Hermitian, TRS-odd operators. The
crossover scale ε below which the impurity dynamics is frozen
is again set by the energy difference between the two low-
est eigenstates. In certain scenarios, ε may be small or zero
by symmetry, in which case the resistance persists down to
correspondingly low temperatures. For instance, the impurity
may be formed of an odd number of electrons, which gives
ε = 0 by Kramers theorem. Therefore, in regimes where ε

is sufficiently small, our results are consistent with the weak
temperature dependence of the edge mode resistance seen in
experiment [10].

Finally, for the same general reasons, analogous effects
should arise in other systems featuring topological modes
where TRS plays an important rôle, e.g., 3D topological in-
sulators and Dirac semimetals.
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the form Âα = iĈ, where Ĉ is TRS odd, would be allowed,
which obviously can induce backscattering [45].

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.103.235164 for a derivation of the RG
equation (7), a calculation of the electrical conductance [Eq.
(9)], and an analysis of a microscopic impurity model depicted
in Fig. 3. Includes Refs. [46–50].

[38] P. W. Anderson, G. Yuval, and D. R. Hamann, Exact results
in the Kondo problem. II. Scaling theory, qualitatively correct
solution, and some new results on one-dimensional classical
statistical models, Phys. Rev. B 1, 4464 (1970).

[39] E. Fradkin, Field Theories of Condensed Matter Physics, 2nd
ed. (Cambridge University Press, Cambridge, UK, 2013).

[40] C. L. Kane and M. P. A. Fisher, Transmission through barriers
and resonant tunneling in an interacting one-dimensional elec-
tron gas, Phys. Rev. B 46, 15233 (1992).

[41] M. Knig, H. Buhmann, L. W. Molenkamp, T. Hughes, C.-X.
Liu, X.-L. Qi, and S.-C. Zhang, The quantum spin Hall effect:
Theory and experiment, J. Phys. Soc. Jpn. 77, 031007 (2008).

[42] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[43] P. Dutta, P. Dimon, and P. M. Horn, Energy Scales for Noise
Processes in Metals, Phys. Rev. Lett. 43, 646 (1979).

[44] M. B. Weissman, 1/ f noise and other slow, nonexponential
kinetics in condensed matter, Rev. Mod. Phys. 60, 537 (1988).

[45] T.-S. Deng, L. Pan, Y. Chen, and H. Zhai, Stability
of time-reversal symmetry protected topological phases,
arXiv:2009.13043.

[46] J. Cardy, Scaling and Renormalization in Statistical Physics,
Cambridge Lecture Notes in Physics (Cambridge University
Press, Cambridge, UK, 1996).

[47] A. Rogalski, HgCdTe infrared detector material: History, status
and outlook, Rep. Prog. Phys. 68, 2267 (2005).

[48] C.-Y. Hou, E.-A. Kim, and C. Chamon, Corner Junction as a
Probe of Helical Edge States, Phys. Rev. Lett. 102, 076602
(2009).

[49] D. G. Rothe, R. W. Reinthaler, C.-X. Liu, L. W. Molenkamp,
S.-C. Zhang, and E. M. Hankiewicz, Fingerprint of different
spin–orbit terms for spin transport in HgTe quantum wells, New
J. Phys. 12, 065012 (2010).

[50] J. I. Väyrynen and T. Ojanen, Electrical Manipulation and Mea-
surement of Spin Properties of Quantum Spin Hall Edge States,
Phys. Rev. Lett. 106, 076803 (2011).

235164-7

https://doi.org/10.1103/PhysRevLett.102.256803
https://doi.org/10.1103/PhysRevLett.106.236402
https://doi.org/10.1103/PhysRevLett.111.086401
https://doi.org/10.1103/PhysRevLett.110.206803
https://doi.org/10.1103/PhysRevB.93.241301
https://doi.org/10.1103/PhysRevB.96.081405
https://doi.org/10.1103/PhysRevLett.108.156402
https://doi.org/10.1103/PhysRevLett.108.086602
https://doi.org/10.1103/PhysRevB.85.235304
https://doi.org/10.1103/PhysRevB.90.075118
https://doi.org/10.1103/PhysRevB.89.235136
https://doi.org/10.1103/PhysRevLett.123.246803
https://doi.org/10.1103/PhysRevLett.121.106601
https://doi.org/10.1038/s41567-020-0956-z
https://doi.org/10.1103/PhysRevB.102.085152
https://doi.org/10.1103/PhysRevB.91.245112
https://doi.org/10.1103/PhysRevB.93.205431
https://doi.org/10.1080/14786437208229210
http://link.aps.org/supplemental/10.1103/PhysRevB.103.235164
https://doi.org/10.1103/PhysRevB.1.4464
https://doi.org/10.1103/PhysRevB.46.15233
https://doi.org/10.1143/JPSJ.77.031007
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.43.646
https://doi.org/10.1103/RevModPhys.60.537
http://arxiv.org/abs/arXiv:2009.13043
https://doi.org/10.1088/0034-4885/68/10/R01
https://doi.org/10.1103/PhysRevLett.102.076602
https://doi.org/10.1088/1367-2630/12/6/065012
https://doi.org/10.1103/PhysRevLett.106.076803

