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Many-body perturbation theory for the superconducting quantum dot: Fundamental
role of the magnetic field
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We develop the general many-body perturbation theory for a superconducting quantum dot represented by
a single-impurity Anderson model attached to superconducting leads. We build our approach on a thermody-
namically consistent mean-field approximation with a two-particle self-consistency of the parquet type. The
two-particle self-consistency leading to a screening of the bare interaction proves substantial for suppressing the
spurious transitions of the Hartree-Fock solution. We demonstrate that the magnetic field plays a fundamental
role in the extension of the perturbation theory beyond the weakly correlated 0 phase. It controls the critical
behavior of the 0-π quantum transition and lifts the degeneracy in the π phase, where the limits to zero
temperature and zero magnetic field do not commute. The response to the magnetic field is quite different in
0 and π phases. While the magnetic susceptibility vanishes in the 0 phase it becomes divergent in the π phase at
zero temperature.
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I. INTRODUCTION

Nanostructures with well separated localized energy levels
are objects that can be isolated in regions of a few nanometers
or microns. They can be experimentally realized by magnetic
impurities on metallic surfaces [1–6], semiconducting quan-
tum dots [7] nanowires [8,9], carbon nanotubes [10–28], or
single C60 molecules [29]. They are ideal systems for studying
elementary quantum mechanical phenomena according to the
substrates on which they are grown or in which they are
embedded due to a detailed control of the relevant micro-
scopic parameters. When the impurity atoms with unpaired
correlated electrons are placed in metals one observes the
Kondo effect [4–6]. The correlated quantum nanostructres
attached to superconductors represent tunable microscopic
Josephson junctions [10,12,30]. The simultaneous presence of
strong electron correlations on semiconducting impurities and
proximity of superconductors allow us to observe and analyze
the interplay between the Kondo effect and the formation of
the Cooper pairs carrying the Josephson current through the
semiconducting nanodevices [8,15–17,21,31–45].

Strong Coulomb repulsion on quantum dots attached to
superconducting leads may cause a local quantum critical
point at which the lowest many-body eigenstates of the sys-
tem cross and a spin-singlet ground state with the positive
supercurrent (0 phase) goes over to a spin-doublet state
with a small negative supercurrent (π phase) [8,15,16,25,31–
33,37,38,41,44,46–49]. This transition is associated with
crossing of the Andreev bound states (ABS) at the Fermi
energy as has also been observed experimentally [9,23,26].

A number of theoretical techniques have been used
to address the 0-π transition and related properties of
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superconducting quantum dots. A very good quantitative
agreement with the experiments [26,28,44] can be obtained
in a wide range of parameters using heavy numerics such as
numerical renormalization group (NRG) [26,38,39,45,46,50–
53] and quantum Monte Carlo (QMC) [28,37,44,54,55].
However, both NRG and QMC demand extensive time and
computational resources and they do not disclose the micro-
scopic origin of this quantum critical behavior. They are also
unable to distinguish the physically different properties of the
in-gap states in the 0 and π phases. Alternatively, analytic
approaches mostly based on perturbation expansions, either
in the strength of the Coulomb repulsion [56–61] or around
the atomic limit, have been used [49,62–64].

The perturbation expansion in a small parameter cannot
describe any collective behavior. A self-consistent summation
of infinite series must be included to interpolate between weak
and strong couplings needed to describe the 0-π transition.
Summations via self-consistences are used both in the expan-
sion in the Coulomb repulsion and around the atomic limit
[65]. Perturbation expansions around the atomic limit miss
the strong-coupling Kondo effect for narrow superconduct-
ing gaps. The expansion in the Coulomb repulsion is well
defined only at zero temperature and in the weakly coupled
spin-symmetric state of the 0 phase.

The standard way to include critical behavior and phase
transitions is to use a mean-field approximation with spin-
polarized states as a starting point for the perturbation
expansion [57]. Although the mean-field, Hartree-Fock ap-
proximation may give reasonably good quantitative predic-
tions for weak and moderate coupling [53] it is conceptually
unacceptable, since the real 0-π transition is a consequence of
a spurious critical transition to the magnetic state [65].

There is a way to improve upon the improper start of the
perturbation expansion in the interaction strength. One has to
replace the weak-coupling mean-field approximation with an
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advanced one that is able to interpolate consistently between
the weak and strong couplings. It must be a self-consistent
theory suppressing the spurious transition to the magnetic
state and reproducing the Kondo strong-coupling regime in
the impurity models. One of the authors proposed a mean-field
theory with a two-particle self-consistency that is free of any
unphysical behavior and qualitatively correctly reproduces the
Kondo limit of the single-impurity Anderson model (SIAM)
[66–70]. This mean-field approximation is a thermodynami-
cally consistent extension of the weak-coupling theory to the
whole range of the input parameters.

It is the aim of this paper to apply the mean-field approx-
imation from references [66–70] to the Anderson impurity
attached to superconducting leads. The superconducting leads
induce a gap on the impurity with no states at the Fermi
energy. Instead, discrete in-gap states emerge the position
of which depends on the interaction strength and the phase
difference between the attached superconducting electrodes.
The theory developed for the SIAM with nonzero density of
states at the Fermi energy will be appropriately modified to
offer a reliable description of the models with a gap. The
extension of the mean-field approach to the singlet phase
of the superconducting quantum dot seems straightforward,
since it is the ground state in weak coupling. An extension
to the doublet phase with a degenerate ground state and no
weak-coupling regime appears to be more elaborate.

The many-body perturbation theory for low-energy ex-
citations can be used only with a unique, nondegenerate
many-body ground state. It means that a degeneracy of the
ground state in the doublet phase must be lifted before we
can apply the many-body Green function technique and the
diagrammatic expansion. The doublet ground state is degen-
erate with respect to the spin reflection. We must then use a
small magnetic field on the impurity to lift the degeneracy.
We hence need to formulate the mean-field approximation
for the dot in an external magnetic field. The properties of
the superconducting quantum dot with a Zeeman field were
recently studied experimentally [71–74] and also theoretically
[64,75–81].

The role of the Zeeman field in the perturbation theory of
the superconducting quantum dot is crucial. It allows us to
circumvent the quantum critical point of the 0-π transition and
to extend the many-body approach from weak to strong cou-
pling regimes at zero temperature. The limits to zero filed and
zero temperature do not commute in the π phase. Moreover,
the response to the magnetic field is crucial for distinguishing
between the 0 phase with bound singlet Cooper pairs and the
π phase with in-gap fermionic excitations carrying a local
magnetic moment. This will be demonstrated on the behavior
of the magnetic susceptibility. This feature has not yet been
disclosed because a full consistent many-body theory of the
superconducting quantum dot with the Zeeman field and at
arbitrary temperature is still missing.

The layout of the paper is the following. We present the
model and the Nambu formalism of the correlated impurity
attached to superconducting leads in Sec. II. We introduce
the basic ingredients of the standard many-body perturba-
tion theory in Sec. III. The core of our thermodynamically
consistent mean-field approximation with a two-particle self-
consistency is presented in Sec. IV. We apply our mean-field

approximation to study the behavior of the in-gap states
and the 0-π transition in Sec. V. Explicit calculations are
performed in the asymptotic atomic limit of the infinite su-
perconducting gap in Sec. VI. Numerical results are presented
in Sec. VII and Sec. VIII brings concluding remarks. Less
important and elucidating technical details are presented in
Appendices A–C.

II. MODEL HAMILTONIAN AND ANDREEV
BOUND STATES

Standardly, a single impurity is used to simulate the
nanowire with separated energy levels connecting supercon-
ducting leads in the experimental setup. The Hamiltonian of
the system consisting of a single impurity attached to BCS
superconducting leads is

H = Hdot +
∑

s=R,L

(
Hs

lead + Hs
c

)
, (1)

where the impurity Hamiltonian is a single-level atom with
the level energy ±ε for single electron (hole) and Coulomb
repulsion U in the Zeeman magnetic field h

Hdot =
∑

σ=±1

(ε − σh)d†
σ dσ + Ud†

↑d↑d†
↓d↓, (2)

where σ = ±1 corresponds to spin up/down
(parallel/antiparallel to the applied magnetic field).

The Hamiltonian of the leads is

Hs
lead =

∑
kσ

ε(k)c†
skσ cskσ

− �s

∑
k

(ei�s c†
sk↑c†

s−k↓ + H.c.)

(3)

with s = L and R denoting the left and right leads, respec-
tively. Finally, the hybridization term for the contacts reads

Hs
c = −ts

∑
kσ

(c†
skσ dσ + H.c.). (4)

We use the Nambu spinor formalism to describe the Cooper
pairs and the anomalous functions related with the supercon-
ducting order parameters and breaking charge conservation.
The Nambu spinors in the superconducting leads are

ϕ̂skσ =
(

cskσ

c†
sk̄σ̄

)
, ϕ̂

†
skσ = (c†

skσ , c
sk̄σ̄

), (5)

where we introduced k̄ = −k and σ̄ = −σ .
Due to the hybridization the Cooper pairs can penetrate

onto the impurity giving rise to anomalous impurity Green
functions. Hence, we introduce the Nambu spinors also for
the impurity (local) operators

φ̂σ =
(

dσ

d†
σ̄

)
, φ̂†

σ = (d†
σ , dσ̄ ). (6)

The individual degrees of freedom of the leads are unim-
portant for the impurity quantities and we integrate them out
leaving only the impurity variables dynamical. The fundamen-
tal function after projecting the lead degrees of freedom is the
one-electron impurity Green function measuring (imaginary)
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time fluctuations that in the Nambu formalism is a 2 × 2
matrix

Ĝσ (τ − τ ′) = −
(〈T [dσ (τ )d†

σ (τ ′)]〉 , 〈T [dσ (τ )dσ̄ (τ ′)]〉
〈T [d†

σ̄ (τ )d†
σ (τ ′)]〉 , 〈T [d†

σ̄ (τ )dσ̄ (τ ′)]〉
)

=
(

Gσ (τ − τ ′) , Gσ (τ − τ ′)
Ḡσ (τ − τ ′) , Ḡσ (τ − τ ′)

)
(7)

correlating appearance of electrons and holes with specific
spin on the impurity. We introduced normal particle and
hole Gσ , Ḡσ propagators that conserve spin and anoma-
lous Gσ and Ḡσ Green functions that create and annihilate
singlet Cooper pairs in the spin-polarized solution. The
electron and hole functions are connected by symmetry re-
lations Ḡσ (τ ) = −Gσ̄ (−τ ) = −Gσ̄ (τ )∗, Ḡσ (τ ) = Gσ̄ (−τ )∗,
and Gσ (τ ) = −Gσ̄ (−τ ).

The problem can be exactly solved for an impurity with-
out the onsite interaction, U = 0. In this case the inverse
unperturbed propagator for the spin-polarized situation can
be represented in the Nambu formalism as a matrix. We
use identical left and right hybridizations to superconductors,
tL = tR = t without loss of generality. The asymmetric situ-
ation can be transformed to a symmetric one [82]. Due to
energy conservation it is convenient to use Fourier transform
from (imaginary) time to frequency (energy) where the Green
function can analytically be continued to complex values. The
matrix of the inverse Green function for a complex energy z
reads

Ĝ−1
σ (z) =

(
z[1 + s(z)] + σh − ε, � cos(�/2)s(z)

� cos(�/2)s(z), z[1 + s(z)] + σh + ε

)
,

(8)

where

s(z) = i
0

ζ
sgn(�z). (9)

is the “hybridization self-energy” s(z), that is, a dynamical
renormalization of the impurity energy level due to the hy-
bridization to the superconducting leads. We approximated
the Green function in the leads by its value at the Fermi energy
and denoted 
0 = 2πt2ρ0 being the effective hybridization
strength. We further denoted � = �L − �R the difference
between the phases of the attached superconducting leads and
ρ0 the density of states of the lead electrons at the Fermi
energy. To represent explicitly the hybridization self-energy
we introduced a new complex number ζ = ξ + iη derived
from the complex energy z = x + iy by a quadratic equation
ζ 2 = z2 − �2. Thereby the following convention for the com-
plex square root has been used

ξη = xy, sgn(ξ ) = sgn(x), sgn(η) = sgn(y). (10)

The renormalized energy ζ along the real axis z = x ±
i0 is real outside the energy gap (−�,�) and imaginary
within it

ζ = sgn(x)
√

x2 − �2 for |x| > �,

ζ = ±i
√

�2 − x2 for |x| < �. (11)

Accordingly, the hybridization self-energy is purely imagi-
nary outside the gap and real within it

s(x ± i0) = ± i
0 sgn(x)√
x2 − �2

for |x| > �,

s(x ± i0) = 
0√
�2 − x2

for |x| < �. (12)

With the above definitions the unperturbed (U = 0) impu-
rity Green function is

Ĝ(0)
σ (z)

= 1

Dσ (z)

(
z[1 + s(z)] + σh + ε , −c��s(z)

−c��s(z) , z[1 + s(z)] + σh − ε

)
.

(13)

where we denoted c� = cos(�/2) and introduced

Dσ (z) = [z(1 + s(z)) + σh]2 − ε2 − c2
��2s(z)2

the determinant of the matrix of the inverse unperturbed im-
purity Green function. It is decisive for the determination of
the gap states. This determinant is real within the gap and can
go through zero determining the gap states that are simultane-
ously the Andreev states. They are four of them ±ωσ in the
external magnetic field. We denote the two independent

ωσ (1 + sσ ) = −σh +
√

ε2 + c2
��2s2

σ . (14)

where we used Eq. (13) and denoted sσ = s(ωσ ).

III. PERTURBATION EXPANSION: DIAGRAMMATIC
REPRESENTATION

The best way to represent the many-body perturbation ex-
pansion is to use a graphical, diagrammatic representation that
can be introduced also in the Nambu formalism. We start with
the diagrammatic representation of the Nambu spinor of the
impurity propagator to which we assign solid lines decorated
with arrows as follows:(

Gσ (iωn) , Gσ (iωn)
Ḡσ (iωn) , Ḡσ (iωn)

)
=

(
Gσ (iωn) , Gσ (iωn)
G∗

σ̄ (−iωn) , −Gσ̄ (−iωn)

)

=

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

(15)

We used the symmetry relations of the unperturbed Green
functions that remain generally valid and read in (complex)
energy representation

Ḡσ (iωn) = −Gσ̄ (−iωn) = −G∗
σ̄ (iωn), (16a)

Ḡσ (iωn) = G∗
σ̄ (−iωn) = −G∗

σ̄ (iωn). (16b)

We keep the time (charge) propagation (from left to
right) in the diagrammatic representation and attach the spin
up/down to the upper/lower line. Anomalous propagators
do not conserve charge by annihilating two electrons with
opposite spins (arrows against each other) or create a Cooper
pair (arrows from each other). We can construct the standard
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Feynman many-body diagrams for processes induced by the
Coulomb interaction of the electrons on the impurity between
two superconducting leads. The Coulomb interaction will be
represented via a wavy line. Since the interaction is static, the
interaction wavy line is always vertical. Before we start to
analyze the diagrammatic contributions from the perturbation
expansion we sum up basic exact relations.

The impact of the Coulomb repulsion on the one-electron
Green function is included in a matrix self-energy �̂(z) so
that the full inverse propagator in the spin-polarized situation
reads Ĝ−1(iωn) = Ĝ−1

0 (iωn) − �̂(iωn). Its explicit component
representation is

Ĝσ (iωn) = 1

Dσ (iωn)

( −Xσ̄ (−iωn), −c�Y (iωn)

−c�Y ∗(−iωn), Xσ (iωn)

)
(17)

with

Xσ (iωn) = iωn[1 + s(iωn)] + σ [h − ��(iωn)] − ε − �(iωn),

(18a)

Y (iωn) = s(iωn)� − S (iωn). (18b)

We denoted �(iωn), ��(iωn) the even and odd parts of the
normal self-energy with respect to the magnetic field and
S (iωn) the anomalous superconducting part of the interaction-
induced self-energy. The even, spin-symmetric self-energy,
�(iωn) and the anomalous one, S (iωn), will be determined
form the dynamical spin-symmetric Schwinger-Dyson equa-
tion. The odd self-energy ��(iωn) generalizes the classical
order parameters and will be related with the two-particle
irreducible vertex via a linearized Ward identity [70].

The spin-dependent determinant of the inverse of the ma-
trix propagator in this notation is

Dσ (iωn) = −Xσ (iωn)Xσ̄ (−iωn) − c2
�Y (iωn)Y ∗(−iωn), (19)

with the electron-hole symmetry Dσ (iωn) = D−σ (−iωn).
The normal spin-dependent impurity propagators are

Gσ (iωn) = −Xσ̄ (−iωn)

Dσ (iωn)
, (20a)

Ḡσ (iωn) = Xσ (iωn)

Dσ (iωn)
, (20b)

while the anomalous propagators are

Gσ (iωn) = −c�

Y (iωn)

Dσ (iωn)
, (21a)

Ḡσ (iωn) = −c�

Y ∗(−iωn)

Dσ (iωn)
. (21b)

The existence and positions of the Andreev states are again
determined from zeros of determinant Dσ (iωn). They depend
on the behavior of the normal and anomalous self-energies
for which we introduce a diagrammatic expansion. We first
formulate the perturbation expansion in the thermodynamic
language using the Matsubara representation. Only after hav-
ing chosen the contributions to the perturbation expansion
and within the selected approximations we perform analytic
continuation to real frequencies so that to control the behavior
of the Andreev bound states (ABS).

IV. PERTURBATION EXPANSION: REDUCED
PARQUET EQUATIONS

The basic element of the many-body perturbation expan-
sion is the one-particle propagator. Knowing it, we determine
all the physical quantities. The Dyson equation introduces
the self-energy containing the whole impact of the particle
interactions on the one-particle propagator. That is why most
of the theoretical approaches focus on the self-energy. It is,
however, not the best way to control the critical and crossover
behavior from weak to strong coupling regimes. Although it
is more elaborate and complex in its analytic structure, per-
turbation theory applied directly to two-particle functions has
gained on popularity in recent years. The idea to extend the
perturbation theory and its renormalizations to two-particle
functions is rather old [83,84]. Presently, this general ap-
proach is used within the so-called parquet equations that
add a two-particle self-consistency [85,86]. Generally, the full
unrestricted approximations at the two-particle level can be
solved only numerically and in the Matsubara formalism at
nonzero temperatures. One has to resort to simplifications if
the critical behavior should be controlled analytically. We de-
veloped the so-called reduced parquet equations to reach this
objective [66–70]. The fundamental idea of this two-particle
approach is to treat approximate two-particle vertex functions
and one-particle self-energy separately and match them at the
end so that to keep the theory thermodynamically consistent
and conserving.

A. Two-particle vertex: effective interaction

The fundamental element in the two-particle perturbation
theory is the two-particle vertex 
. It has generally three
dynamical variables, two fermionic iωn, iωn′ , one bosonic iνm,
and two spin indices σ, σ ′. An irreducible vertex � plays
the role of the two-particle self-energy. The two-particle ir-
reducibility is not uniquely defined and hence there is not a
unique way to select the irreducible vertex [85]. The most
important one is, however, that from the two-particle scatter-
ing channel leading to a singularity and a critical behavior
in intermediate coupling. It is the spin-singlet electron-hole
scattering channel. The full vertex then can be decomposed
into its irreducible � and reducible, K, parts


↑↓(iωn, iωn′ ; iνm) = �↑↓(iωn, iωn′ ; iνm)

+ K↑↓(iωn, iωn′ ; iνm), (22)

where ωn and ωn′ are energies of the incoming and outgoing
electron, respectively, and νm is the energy difference between
the electron and the hole that is conserved in the multiple
singlet electron-hole scatterings.

Generally, the reducible vertex in one scattering chan-
nel becomes irreducible in the other scattering channels.
The parquet equations self-consistently intertwine them to
determine both irreducible and reducible parts of the full
vertex. Our approximation resorts to a two-channel version
of the parquet equations with only singlet electron-hole and
electron-electron multiple scatterings. The sum of the series
of the repeated scatterings of particle pairs are mathematically
represented by the Bethe-Salpeter equations. The Bethe-
Salpeter equation in the electron-hole channel determines the
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FIG. 1. Diagrammatic representation of the Bethe-Salpeter equation for the reducible vertex in the electron-hole channel. The electron-hole
propagator contains simultaneous normal and anomalous propagators. The lines from the central part in the brackets are attached to the left
and right vertices (the three parts separated by brackets are mathematically multiplied) to form two connected diagrams.

reducible vertex K as a functional of the irreducible one �

and is diagrammatically represented in Fig. 1. The irreducible
vertex in our approximation is determined from a reduced
Bethe-Salpeter equation that is diagrammatically represented
in Fig. 2. The reduction of the full Bethe-Salpeter equation in
the electron-electron channel consists in suppressing convolu-
tion of two diverging reducible vertices KGGK so that not to
destroy the possible quantum criticality in the strong-coupling
regime of the full vertex 
. The suppressed term is expected
to be compensated by higher-order terms not included in the
two-channel approximation [70].

The mean-field approximation enters these reduced par-
quet equations by replacing the irreducible vertex with a
frequency and spin-independent constant � that then plays
a role of an effective interaction. The reducible vertex deter-
mined by the equation of Fig. 1 is

Kσ (iνm) = − �2φσ (iνm)

1 + �φσ (iνm)
, (23)

where the fermionic frequencies are ωn = (2n + 1)πT and
ωn′ = (2n′ + 1)πT , and the bosonic is νm = 2mπT . We de-
noted the full electron-hole bubble

φσ (iνm) = 1

β

∑
ωn

[Gσ̄ (iωn + iνm)Gσ (iωn)

+ Gσ̄ (iωn + iνm)Gσ (iωn)]. (24)

The reduced parquet equations are justified in the critical
region of the magnetic transition, that is, in the spin symmetric
case where G↑ = G↓. The mean-field approximation must be,
however, defined in the whole representation space, including
the spin-polarized state. Since we introduced only a spin-
independent renormalization of the bare interaction strength,
we replace the spin-dependent bubble with its symmetric
form, that is, φσ (iνm) → φ(iνm) = (φ↑(iνm) + φ↓(iνm))/2 to
determine the effective interaction �. Inserting this function

FIG. 2. The reduced Bethe-Salpeter equation as explained in the
text for the irreducible vertex from the electron-hole scattering chan-
nel. The electron-electron propagator does not contain an anomalous
part due to conservation laws.

into the reduced Bethe-Salpeter equation from Fig. 2 leads to[
1 + 1

β

∑
νm

K(−iνm)G↑(iωn+m)G↓(iωn′−m)

]
� = U, (25)

which cannot, however, be satisfied for all fermionic frequen-
cies. An approximate treatment of this equation is necessary
to close the mean-field scheme.

The dominant contribution in metallic systems to vertex
� comes from the lowest Matsubara frequencies close to
the Fermi energy, that is |n| ≈ |n′| ≈ 0. We can then take
the lowest values near the Fermi energy at low-temperatures
as we did in the SIAM [68–70]. The Fermi energy of the
superconducting quantum dot lies in the gap and there is no
contribution from small fermionic frequencies to screening of
the interaction. The fluctuations in the fermionic Matsubara
frequencies may shift the value of the critical interaction but
do not affect the universal critical behavior. We can use av-
eraging over the fermionic Matsubara frequencies to obtain
a mean-field (static) renormalization of the bare interaction
strength at any temperature within the same universality
class [66]. The averaging is not uniquely defined and the
optimal one, producing the most accurate result, depends
on the studied problem. We found that the most suitable
averaging scheme here is to multiply Eq. (25) by a prod-
uct G↑(−iωn′ ) exp(−iωn′0+)G↓(−iωn) exp(−iωn0+) and sum
over the fermionic frequencies. The resulting equation for the
effective interaction � then is

� = Un↑n↓
n↑n↓ + �2X , (26)

where nσ is the density electrons with spin σ and

X = − 1

β

∑
νm

ψ (iνm)ψ (−iνm)φ(−iνm)

1 + �φ(−iνm)
. (27)

We introduced the electron-electron bubble

ψ (iνm) = 1

β

∑
ωn

G↓(iωm+n)G↑(−iωn)

= 1

β

∑
ωn

G↑(iωm+n)G↓(−iωn), (28)

which is spin independent.
Equation (26) determines the effective interaction for the

known densities nσ and the screening integral X . The explicit
solution for � can be obtained by a substitution with an
auxiliary variable w

� = w − n2 − m2

12wX , (29a)
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where we used nσ = (n + σm)/2 with n and m being the total
charge and spin density, respectively. The cube of the new
variable w3 satisfies a quadratic equation with a single positive
root

w3 = U (n2 − m2)

8X

[
1 +

√
1 + 1

27

n2 − m2

U 2X

]
. (29b)

The known value of w determines the effective interaction �

from Eq. (29a). The consistency condition for positivity of the
effective interaction is

12w2X � n2 − m2. (30)

Equation (29) does not, however, determine the effective in-
teraction explicitly since integral X depends on the solution.
The final solution can be reached only via iterations.

B. Thermodynamic propagators: static self-energies

One cannot close the equation for the two-particle vertex
� without connecting it with the one-particle densities. It
means that we must determine how the self-energy in the
one-particle propagators determining the charge and spin den-
sities is related with the two-particle vertex from Eq. (26). We
introduce two self-energies according to their symmetry with
respect to the spin reflection to keep the theory conserving
and thermodynamically consistent. We split the self-energy to
two. One with odd and the other with even symmetry with
respect to the symmetry-breaking field of the critical point of
the two-particle vertex. They will be related to the two-particle
vertex differently in approximate schemes.

The odd self-energy stands for the order parameter emerg-
ing below the critical point with a diverging vertex. The
system with the repulsive interaction is driven in intermediate
coupling towards a magnetic order. The odd self-energy must
then enter the Ward identity in order to keep thermodynamic
consistency between the criticality in the two-particle vertex
and the order parameter in the symmetry-broken phase. We
argued in previous publications [68–70] that it is sufficient
to obey the Ward identity only in the leading linear order
in the symmetry-breaking (magnetic) field to describe the
critical behavior qualitatively correctly. The odd self-energy
determined from the static irreducible vertex � satisfying the
linearized Ward identity is

�� = −�

2
m. (31)

There is no critical behavior in the charge sector and the
even self-energy does not affect the critical behavior near
the transition to the magnetic state. It need not be related to
the two-particle irreducible vertex via the Ward identity. It
is responsible for the charge dynamics and should obey the
Schwinger-Dyson equation of motion. Its mean-field (static)
version is just the Hartree-Fock spin symmetric approxima-
tion. We then have

�0(ω) = U

2
n. (32a)

Analogously the anomalous self-energy that has no odd
part is

S0(ω) = Uν (32b)

and it is proportional to the density of the Cooper pairs on the
impurity.

The components determining the one-electron Green func-
tion of the superconducting quantum dot in the mean-field
approximation are

Xσ (ω) = ω[1 + s(ω)] + σ

(
h + �

2
m

)
−

(
ε + U

2
n
)
, (33a)

Y (ω) = �s(ω) − Uν. (33b)

The charge and spin densities are

n = 1

β

∑
ωn

eiωn0+
[G↑(iωn) + G↓(iωn)], (34a)

m = 1

β

∑
ωn

eiωn0+
[G↑(iωn) − G↓(iωn)], (34b)

and the density of the Cooper pairs on the dot is

νc� = 1

2β

∑
ωn

[G↑(iωn) + G↓(iωn)]. (34c)

The equations for the effective interaction �, the density
of Cooper pairs ν, the charge density n, and magnetization m
close our mean-field approximation. It is free of the unphysi-
cal and spurious finite-temperature transition to the magnetic
state due to the two-particle self-consistency. It qualitatively
correctly describes the behavior of the quantum dot in weak
as well as in strong coupling, including the Kondo regime
for the dot attached to metallic leads. It can be applied at
all temperatures and also in an arbitrary magnetic field. This
mean-field approximation serves as the proper starting point
for the perturbation expansion to include dynamical correc-
tions. The mean-field one-particle Green functions replace
the bare propagators in the perturbation expansion around the
mean-field solution. We call them thermodynamic propaga-
tors.

C. Spectral representation

The whole mean-field approximation can be fully solved
in the Matsubara formalism. What cannot be determined from
the Matsubara frequencies are the spectral properties of the
one and two-particle Green functions. To determine also the
spectral properties one has to perform analytic continuation to
real frequencies. One needs to rewrite the sum over Matsub-
ara frequencies to integrals with Fermi and Bose distribution
functions.

The one-electron Green functions have a gap around the
Fermi energy. Since the hybridization self-energy s(z) has
a square-root singularity at the gap/band edges, the gap is
fixed in the one-electron Green function and does not depend
on the interaction strength. The poles and the band edges of
the higher-order Green functions do, however, depend on the
interaction strength. We hence must be careful when treating
the two-particle functions in the spectral representation.

The sum over the fermionic Matsubara frequencies for the
one-particle function can then be rewritten in the spectral

235163-6



MANY-BODY PERTURBATION THEORY FOR THE … PHYSICAL REVIEW B 103, 235163 (2021)

representation

1

β

∑
n

F (iωn)eiωn0+ →
∑

i

f (ωi ) Res[F, ωi]

−
[∫ −�

−∞
+

∫ ∞

�

]
dω

π
f (ω)�F (ω + i0+). (35)

Functions with bosonic symmetry have no gap in their spectra
at nonzero temperatures with discrete Matsubara frequencies.

The Andreev bound states are determined from zeros of
the denominator Dσ (ω) from Eq. (19). The frequencies of
the poles of the one-electron Green function in the mean-field
approximation are

ωσ (1 + sσ ) = −σ

(
h + �

2
m

)

+
√(

ε + U

2
n
)2

+ c2
�(sσ� − Uν)2. (36)

The other two frequencies of the gap states are symmetrically
situated on the other side of the Fermi energy.

The spectral representations for the densities are

n = ng + nb =
∑
α,σ

f (ασωσ ) Res[Gσ , ασωσ ]

−
∑

σ

[∫ −�

−∞
+

∫ ∞

�

]
dω

π
f (ω)�Gσ (ω+), (37a)

m = mg + mb =
∑
α,σ

σ f (ασωσ ) Res[Gσ , ασωσ ]

−
∑

σ

σ

[∫ −�

−∞
+

∫ ∞

�

]
dω

π
f (ω)�Gσ (ω+), (37b)

c�ν = c�(νg + νb) = 1

2

∑
α,σ

f (ασωσ ) Res[Gσ , ασωσ ]

− 1

2

∑
σ

[∫ −�

−∞
+

∫ ∞

�

]
dω

π
f (ω)�Gσ (ω+). (37c)

We abbreviated the notation of the frequency with an infinites-
imal imaginary part ω + i0+ = ω+. We split the contributions
to the densities to those from the in-gap states, subscript g and
from the band states, subscript b. Notice that the density of
the Cooper pairs from the gap and band states is now spin
dependent.

The residues of the one-electron Green function are

Res [Gσ , σσ ′ωσ ′] = 1

Kσ ′

[
Xσ ′ + σσ ′

(
ε + U

2
n
)]

, (38a)

Res [Gσ , σσ ′ωσ ′] = −σ ′c�

Kσ ′
[sσ ′� − Uν], (38b)

with

Xσ =
√(

ε + U

2
n
)2 + c2

�(sσ� − Uν)2, (39a)

Kσ = 2Xσ

[
1 + �2sσ

�2 − ω2
σ

]

−2c2
�(sσ� − Uν)

ωσ sσ�

�2 − ω2
σ

. (39b)

The analytic representation of the two-particle Green and ver-
tex functions is more complex. The integrand of the screening
integral has no gap at nonzero temperatures with a simple
analytic representation of the sum over bosonic Matsubara
frequencies

X = −P
∫ ∞

−∞

dx

π
b(x)�

[
ψ (x+)ψ (−x+)φ(−x+)

1 + �φ(−x+)

]
. (40)

The explicit analytic representations separating the gap and
band contributions of the electron-hole φσ (ω+) and electron-
electron ψ (ω+) are presented in Appendices A and B.

D. Full Green function and the spectral self-energy

The spectral representation is necessary not only to deter-
mine the positions of the in-gap states. It is generally needed
to disclose the whole spectral structure of the interacting sys-
tem when we go beyond the mean-field approximation in the
perturbation expansion. The first step beyond the static theory
are dynamical corrections to the static self-energy. The even
self-energy is determined from the dynamical Schwinger-
Dyson equation of motion. Its form with the static irreducible
vertex � is for the normal part

�Sp(ω+) = −U
∫ ∞

−∞

dx

π

{
f (x)

�ḠSp(x+)

1 + �φ(x − ω+)

− b(x)ḠSp(ω+ + x)�
[

1

1 + �φ(x+)

]}
(41a)

and analogously for the anomalous self-energy

c�SSp(ω+) = −U
∫ ∞

−∞

dx

π

{
f (x)

�ḠSp(x+)

1 + �φ(x − ω+)

− b(x)ḠSp(ω+ + x)�
[

1

1 + �φ(x+)

]}
. (41b)

The integrand in the Schwinger-Dyson equation contains two
parts, the two-particle and the one-particle one. The former
part, consisting of the electron-hole bubble φ(ω+) and ver-
tex �, controls the thermodynamic response and the critical
behavior. It hence must be the same as used to determine
the two-particle irreducible vertex � and the odd self-energy
��. The one-particle propagators GSp(ω+) and GSp(ω+) in
the Schwinger-Dyson equation carry information about the
spectral properties. Its odd self-energy �� must be identi-
cal with that used to determine the two-particle vertex. Its
noncritical even self-energy �Sp(ω+) can be selected self-
consistently containing the spectral self-energy, a solution of
the Schwinger-Dyson equation. Since the Schwinger-Dyson
equation determines only the spin-symmetric self-energy we
used the spin-averaged propagators ḠSp(x+) = (GSp

↑ (x+) +
GSp

↓ (x+))/2 and ḠSp(x+) = (GSp
↑ (x+) + GSp

↓ (x+))/2.

The one-particle propagators GSp
σ and GSp

σ used in the
Schwinger-Dyson equation then are

GSp
σ (ω+) = ω + σ (h − ��) + ε + �Sp(−ω+)

DSp
σ (ω+)

, (42a)
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GSp
σ (ω+) = −c�

s(ω+)� − SSp(ω+)

DSp
σ (ω+)

(42b)

with the denominator

DSp
σ (ω+) = [ω+(1 + s(ω+)) + σ (h − ��) − ε − �Sp(ω+)]

× [ω+(1 + s(ω+)) + σ (h − ��) + ε

+ �Sp(−ω+)] − c2
�[s(ω+)� − SSp(ω+)]2,

(43)

where �� = −�mT /2 and mT is the magnetization calcu-
lated with the thermodynamic propagator determining the
effective interaction �.

The normal dynamical self-energy �Sp(ω+) and the
anomalous one SSp(ω+) from the Schwinger-Dyson equation
(41) and the odd one �� from the Ward identity, Eq. (31),
are the physical self-energies. It means that a mean-field
approximation at the two-particle level generates nontrivial
dynamical contributions to the one-particle self-energy in an
analogous manner as the random-phase approximation gener-
ates a dynamical self-energy for the Hartree-Fock mean-field
thermodynamics. We will analyze the dynamical corrections
from the Schwinger-Dyson equation in a separate paper.

V. GAP STATES AND 0-π TRANSITION

The spectral representation is needed for the determination
of the positions of the in-gap states and finding the point of
their crossing signaling the 0-π transition at zero temperature.
We need to keep the applied magnetic field positive in order
to be able to continue the solution from the weak-coupling 0
phase to the strong-coupling π phase. We resort to the static
mean-field approximation to determine the 0-π transition.

We split the contributions from the band and gap states and
introduce the following abbreviations

εU = ε + U

2
n, (44a)


σ = sσ� − Uν. (44b)

The one-electron parameters are

n − nb = ng = 1

K↑K↓

∑
σ

Kσ [Xσ̄ − εU � fσ̄ ], (45)

m − mb = mg = 1

K↑K↓

∑
σ

Kσ [Xσ̄� fσ̄ − εU ], (46)

ν − νb = νg = 1

2K↑K↓

∑
σ

Kσ
σ̄� fσ̄ , (47)

where the subscripts b, g refer to the band and gap contribu-
tions, respectively. We denoted � fσ = f (−ωσ ) − f (ωσ ). We
recall that the poles of the mean-field propagators Gσ (ω) and
Gσ (ω) are ωσ and −ωσ̄ . The conditions for the in-gap-state
frequencies are determined in Eq. (36).

The 0-π transition in the external magnetic field in a spin-
polarized state happens at ω↑ = 0, that is

h + �

2
m =

√(
ε + U

2
n
)2 + c2

�(sσ� − Uν)2. (48)

This equation tells us that the effective interaction � affects
the transition only in the spin-polarized solution with h >

0. The transition in our mean-field approximation with no
spectral self-energy at h = 0 coincides with the Hartree-Fock
result. It is, however, important to realize that unlike the
Hartree-Fock solution the mean-field approximation with an
effective interaction � is free of the spurious transition to the
magnetic state at nonzero temperatures and is thermodynam-
ically consistent in the whole range of the input parameters.
Notice, however, that the effective interaction does affect the
position of the 0-π transition in the spin-symmetric state if we
employ the spectral self-energy from Eq. (41).

A. Spin-symmetric state

We first approach the 0-π transition from the weak-
coupling regime in the spin-symmetric state. We then have

X0 =
√

ε2
U + c2

�(s0� − Uν)2 with s0 = 
/

√
�2 − ω2

0 and
ω0(1 + s0) = X0. Further on,

K0 = 2κ0X0 = 2

{
1 + s0�

(1 + s0)
(
�2 − ω2

0

)
× [

� + c2
�Uν + s0�

(
1 − c2

�

)]}
X0. (49)

The equation for the positive frequency of the gap state is

[
(1 + s0)κ0ω0 + U

2
tanh

(
βω0

2

)]2

=
(

κ0εb + U

2

)2

+ c2
�κ2

0 
2
0b, (50)

where we used an identity � f (ω) = tanh(βω/2). We denoted
εb = ε + Unb/2 and 
0b = s(ω0)� − Uνb. There is aways a
solution for ω0 > 0 for arbitrary U at nonzero temperature.
There is hence no crossing of the in-gap states at nonzero
temperatures in the spin-symmetric state as already observed
in Ref. [59].

The in-gap-state frequency reaches the Fermi energy, that
is ω0 = 0, at the 0-π transition only at zero temperature.
The spin-symmetric state can reach the critical interaction
strength Uc of the 0-π transition only for βω0 = ∞ defin-
ing a quantum critical point. The equation for the critical
interaction reads

U 2
c

4
=

[(
1 + 


�

)
εb + Uc

2

]2

+ c2
�

(
1 + 


�

)2


2
0b. (51)

The equilibrium spin-symmetric solution must be stable
with respect to the perturbations caused by a small magnetic
field. Its local stability is determined from the static magnetic
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susceptibility. It is critically dependent on the effective inter-
action of the mean-field approximation. The mean-field static
susceptibility has the Stoner form

χ = − 2φ(0)

1 + �φ(0)
. (52)

The denominator on the right-hand side of Eq. (52) is posi-
tive at any temperature and the susceptibility nondiverging at
nonzero temperatures due to the appropriately chosen screen-
ing of the interaction strength in the self-consistent equation
(26). The susceptibility can diverge only at zero temperature
in the π phase as we demonstrate later.

B. Magnetic state

We introduce an effective magnetic field containing the
entire effect of the applied magnetic field in the mean-field
approximation to simplify the notation

h� = h

(
1 + �m

2h

)
. (53)

The crossing of the in-gap states takes place when ω↑ =
0 for which ω↓(1 + s↓) = 2h�. Consequently, K↑ = 4h�(1 +

/�), X 2

↑ = ε2
U + c2

�(
 − Uν)2 and

X 2
↓ = ε2

U + c2
�

⎛⎝ 
�√
�2 − ω2

↓
− Uν

⎞⎠2

, (54a)

K↓ = 4h�

{
1 + 
�

(�2 − ω2
↓)3/2

×
⎡⎣� − c2

�

⎛⎝ 
�√
�2 − ω2

↓
− Uν

⎞⎠⎤⎦⎫⎬⎭. (54b)

We further have � f↑ = 0 at the crossing point at nonzero
temperatures and hence

εU = U [K↓� + 2X↓(
 + �)] + 4X↓(
 + �)εb

(
 + �)(2K↓ + U� f↓)
,

(55a)


 − Uν = 2K↓
b + U� f↓(
 − s↓�)

2K↓ + U� f↓
. (55b)

The equation for frequency ω↓ at the crossing is

�2

(
2K↓ + U tanh

(
βω↓

2

))2

=
[
UK↓ + 4X↓

(
1 + 


�

)(
εb + U

2

)]2

+ c2
�

[
2K↓
b + U tanh

(
βω↓

2

)
(
 − s↓�)

]2

. (56)

The crossing leads to the 0-π transition only at zero tempera-
ture and zero magnetic field and it is a quantum critical point
with a diverging magnetic susceptibility when approached
from the spin-symmetric state.

The solution of Eq. (56) shows a universal behavior for
nonzero magnetic field. We can divide all energy variables

T, U, �, �, ε, K, X, and 
, by 2h > 0 to turn them
dimensionless. The dimensionless solution for ω̄↓ = 1 + �̄m
will then become universal, independent of the actual value of
the applied magnetic field.

VI. ASYMPTOTIC ATOMIC LIMIT

The important test of reliability of the approximations is a
comparison with the existing exact solutions in specific lim-
iting situations. The present two-particle approximation with
the effective interaction � from Eq. (26) and the spectral self-
energy from Eq. (41) was shown to reproduce qualitatively
correctly the Kondo regime of the exact solution of the SIAM
for � = 0. The opposite asymptotic atomic limit � → ∞ can
also be exactly solved [33,49,50,57,65]. Here we compare the
predictions of the presented mean-field approximation with
the exact results of the atomic limit with no hybridization to
the band electrons. The exact results of the atomic limit are
summarized in Appendix C.

The normal and anomalous Green functions in the atomic
limit are

Gσ (ω) = 1

2X0

[
X0 + εU

ω − ωσ

+ X0 − εU

ω + ωσ̄

]
(57a)

Gσ (ω) = −c�(
 − Uν)

2X0

[
1

ω − ωσ

− 1

ω + ωσ̄

]
, (57b)

where σ̄ = −σ and

ωσ = σ̄h� + X0, (58a)

X0 =
√

ε2
U + c2

�(
 − Uν)2. (58b)

The explicit value of the electron-hole bubble is

φ(ω+) = φ↑↓�ω

ω2+ − �ω2
, (59)

where we denoted φ↑↓ = (� f↓ − � f↑)/2 = −φ(0)�ω = m
and �ω = ω↓ − ω↑. Further on,

φ(ω+)

1 + �φ(ω+)
= φ↑↓�ω

ω2+ − ω2
φ

, (60)

where the poles ±ωφ of this function are

ω2
φ = �ω[�ω − �φ↑↓] = �ω2[1 + �φ(0)]. (61)

The particle-particle bubble in the atomic limit is

ψ (ω) = (� f↑ + � f↓)

8X 2
0

[
(X0 − εU )2

ω + 2X0
− (X0 + εU )2

ω − 2X0

]
. (62)

We further use the following identities

1

1 + �φ(0)
= 1 + �m

2h
, (63a)

�ω = 2h

(
1 + �m

2h

)
, (63b)

ωφ = 2h

√
1 + �m

2h
, (63c)

to represent the screening integral
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X = (� f↓ + � f↑)2m

64X 4
0

(
4X 2

0 − ω2
φ

)√1 + �m

2h

{
(X0 + εU )4 + (X0 − εU )4

4X0

[
2X0 coth

(
βωφ

2

)
− ωφ coth(βX0)

]

+
(
X 2

0 − ε2
U

)2(
4X 2

0 − ω2
φ

)[(
4X 2

0 + ω2
φ

)
coth

(
βωφ

2

)
− 4X0ωφ coth(βX0) − βωφ

(
4X 2

0 − ω2
φ

)
2 sinh2(βX0)

]}
. (64)

We used �b(ω) = b(ω) − b(−ω) = coth(βω/2). The screening integral at half filling, εU = 0, and for X0  ωφ reduces to

X = (� f↓ + � f↑)2m

256X 3
0

√
1 + �m

2h

[
2X0 coth

(
βh

√
1 + �m

2h

)
− 2h

√
1 + �m

2h

cosh (βX0) + βX0

2 sinh2(βX0)

]
(65)

and in the spin-symmetric state, ω↑ ↗ ω↓ = X0 to

X = T χ

128X 6
0

tanh2

(
βX0

2

)[
(X0 + εU )4

+ (X0 − εU )4 + 2
(
X 2

0 − ε2
U

)2]
,

(66)

where

χ = lim
h→0

m

h
= 2 f (X0)(1 − f (X0))

T − � f (X0)(1 − f (X0))
(67)

is the magnetic susceptibility.
The spin symmetric solution is locally stable at all nonzero

temperatures. If we introduce a generalized Kondo scale a =
1 + �φ(0) and assume that the solution approaches the criti-
cal point a ↘ 0 then the asymptotic critical solution is

� = T

f0(1 − f0)
, (68a)

a = T 3C
4UX 2

0 n2 f 2
0 (1 − f0)2

, (68b)

and

C = 1

4X 4
0

tanh2

(
βX0

2

)[
(X0 + εU )4

+ (X0 − εU )4 + 2
(
X 2

0 − ε2
U

)2]
, (68c)

where we denoted f0 = f (X0). The magnetic susceptibility
can diverge only at zero temperature. The critical region can,
however, be reached only if the product f0(1 − f0) � T/U
with the decreasing temperature so that U � � > 0.

The spin-symmetric solution is identical with the Hartree-
Fock one. It becomes exact at zero temperature. The boundary
for the 0 phase at zero temperature form Eq. (51) is

U 2
c

4
=

(
ε + Uc

2

)2

+ c2
�
2, (69)

which is the exact result for the 0-π transition in the atomic
limit [49,57].

Resolving the particle and Cooper-pair densities in the
spin-polarized state, we obtain

n = 2
2X0 − ε(� f↓ + � f↑)

4X0 + U (� f↓ + � f↑)
, (70a)

ν = 
(� f↓ + � f↑)

4X0 + U (� f↓ + � f↑)
, (70b)

εU = 4X0δ

4X0 + U (� f↑ + � f↓)

= δ
[
1 − U

2Uc
(� f↑ + � f↓)

]
, (71a)


 − Uν = 4X0


4X0 + U (� f↑ + � f↓)
, (71b)

where we denoted δ = ε + U/2 and Uc = 2
√

δ2 + c2
�
2.

The equation for X0 needed to obtain n and ν is[
2X0 + U

2
(� f↑ + � f↓)

]2

= 4
(
δ2 + c2

�
2
) = U 2

c . (72)

Since X0 � 0 then

2X0 = Uc − U

2
(� f↑ + � f↓) � 0. (73)

Using this solution, we obtain

n = 1 − δ

Uc
(� f↑ + � f↓), (74a)

ν = 
(� f↑ + � f↓)

2Uc
, (74b)

and

m = 1
2 (� f↓ − � f↑). (75)

Since ω↑ = −(h + �m/2) + X0 and ω↓ = (h + �m/2) +
X0, we have always three independent variables to determine
self-consistently, �, X0, and m. The three coupled equations
determining these variables are Eqs. (29), (73), and (75). The
charge density and the density of the Cooper pairs are then
calculated from Eqs. (74).

The equation determining the crossing of the in-gap states
in the applied magnetic field at nonzero temperature is ω↑ = 0
and � f↑ = 0, hence

Uc − U

2
tanh

(
βω↓

2

)
= 2h

(
1 + �m

2h

)
= ω↓. (76)

There is always a crossing of the in-gap states for arbitrary in-
teraction U at nonzero temperature at an appropriate magnetic
field.

The zero-temperature solution behaves differently. An in-
finitesimally small magnetic perturbation generates a fully
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polarized magnetic state in the π phase, U > Uc. The π phase
is bounded by ω↑ < 0, where m = 1 from Eq. (75), n = 1, and
ν = 0 from Eqs. (74) for β = ∞. The effective interaction
� = U at zero temperature and the screening integral from
Eq. (26) is proportional to n↑n↓ = (n − m)2/4 in the π phase.
It then means that ω↓ = Uc + U while ω↑ = Uc − U with
h ↘ 0. The Hartree-Fock solution at zero temperature is exact
also in the π phase at zero temperature.

There is a fundamental difference between the 0 phase
and the π phase and we can distinguish the two phases by
the low-temperature asymptotics of the magnetic susceptibil-
ity. We have 2X0 = Uc − U in the leading low-temperature
asymptotics in the 0 phase, that is, for U < Uc. Consequently,
the magnetic susceptibility from Eq. (67) at low temperatures
is

χ
.= 8

T
e−β(Uc−U ), (77)

which reflects the Meissner effect due to the presence of the
singlet bound states (ABS).

The situation in the π phase, U > Uc, is quite different.
Equation (73) leads at low temperatures to

X0 = T ln
(U + Uc

U − Uc

)[
1 − 4TU

U 2 − U 2
c

]
. (78)

The magnetic susceptibility is

χ =
(
U 2 − U 2

c

)
2TU 2

1

a
(79)

with the effective interaction and the Kondo scale from
Eqs. (68)

� = 4TU 2

U 2 − U 2
c

, (80)

a = 4T

Un2

U 2
c U 2(

U 2 − U 2
c

)2 ln−2

(
U + Uc

U − Uc

)
. (81)

The magnetic susceptibility diverges at zero temperature due
to the presence of the local magnetic moment of the fermionic
excitations on the dot. It can be represented as χ = C/T . The
exact value of the Curie constant is of order unity, C ≈ 1, in
the atomic limit, see Appendix C. It diverges at zero tempera-
ture in the present static approximation as

C = n2
(
U 2 − U 2

c

)3

8TU 3U 2
c

ln2

(
U + Uc

U − Uc

)
. (82)

This discrepancy between the exact result in the atomic limit
and the many-body theory is caused by the self-consistency
enhancing the susceptibility in the many-body perturbation
theory. The lattice many-body perturbation theory summing
specific classes of Feynman diagrams generically fails to re-
produce the exact solution of the atomic limit of any model of
interacting fermions [87].

The limits to zero magnetic field and to zero temperature
do not commute in the strong-coupling limit for U > Uc. If
we keep the magnetic field nonzero and limit the temperature
to zero the solution behaves analytically and continuously
reaches the fully saturated state at zero temperature with
no divergency. On the other hand, if we keep temperature
nonzero and switch off the magnetic field the spin-symmetric

FIG. 3. Magnetic susceptibility as a function of temperature in
the spin-symmetric state at half-filling in the 0 phase (U = 
) and
the π phase (U = 4
) for the phase difference � = 0. Hartree-Fock
(HF), reduced parquet equations (RPE) and exact (Exact) solutions
are compared. The unphysical instability with the diverging suscepti-
bility makes the Hartree-Fock mean-field solution in strong coupling
unreliable at low temperatures.

state remains locally stable down to zero temperature. The
spin-symmetric state becomes unstable with a diverging sus-
ceptibility at zero temperature where an infinitesimally small
magnetic field turns the solution magnetically saturated. The
parameter deciding about the low-temperature limit of the
susceptibility χ (T ) in the 0 phase is x = β(Uc − U ). The limit
behaves as χ (0) ∝ e−x/T .

VII. NUMERICAL RESULTS

We apply the mean-field approximation in the atomic limit
to show its similarities and stress the substantial differences
to the Hartree-Fock solution and to test the reliability of our
mean-field approximation in different regimes. The major as-
set of the mean-field approximations is that they can be used
in the whole range of the model parameters. They are qualita-
tively reliable if they do not lead to an unphysical and spurious
behavior. We know that the reduced parquet equations with a
two-particle self-consistency reproduce qualitatively correctly
the limit of the zero gap. It is instructive to apply it in the
opposite limit of the infinite superconducting gap which is
the least fitting situation for the application of the many-body
construction. Many of the qualitative features of the solution
in the atomic limit are generic and mimic the behavior of the
finite-gap model except for the Kondo limit of the vanishing
gap.

A. Spin-symmetric solution

Our static mean-field solution in the spin-symmetric state,
that is in the absence of the magnetic field, coincides with
the Hartree-Fock approximation. This may seem a limiting
factor, but it holds only at the one-particle level when the
dynamical corrections in the spectral self-energy from the
Schwinger-Dyson equation are neglected. The first, and the
most important difference between our mean-field theory and
the Hartree-Fock approximation in the spin-symmetric state is
the stability with respect to small fluctuations of the magnetic
field, which is reflected in the magnetic susceptibility.

We plotted the magnetic susceptibility of the spin-
symmetric state at half filling as a function of temperature
in Fig. 3. We compared the two mean-field approximations,
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FIG. 4. Different temperature behavior of the vertex renormal-
ization in the spin-symmetric state at half filling in the 0 and the π

phases for the phase difference � = 0.

our, based on the reduced parquet equations (RPE), and the
Hartree-Fock one (HF), with the exact solution in the atomic
limit. There is no big difference in the 0 phase where all
solutions asymptotically approach zero at zero temperature.
Quite a different behavior is, however, observed in the π

phase. Both, the exact and the RPE solutions lead to a diver-
gent susceptibility at zero temperature, while the HF solution
predicts an unphysical critical point with diverging suscepti-
bility at a temperature of order of the hybridization strength

 that is taken as the energy unit. The magnetic susceptibility
is a physical, measurable quantity being able to distinguish
the character of the in-gap states. The in-gap states in the
0 phase are bound pairs, ABS singlets being insensitive to
small magnetic perturbations. The in-gap states in the π phase
carry a local magnetic moment and react strongly on magnetic
perturbations.

If we add the band states when moving from the atomic
limit to a finite gap � < ∞, the susceptibility in the 0 phase
saturates at a nonzero value of a Pauli paramagnet being of or-
der of the inverse Kondo temperature TKχb ∝ 
2/(
2 + �2).
The susceptibility due to the in-gap states vanishes in the 0
phase but diverges as T χg ∝ �2/
2 in the π phase. We then
expect a crossover behavior at T0 ∝ TK�2/
2 at which the
Kondo behavior goes over to the diverging susceptibility in
the π phase, U > Uc, of the finite-gap model. The critical
interaction is, however, of order Uc ∝ 
2/�. The interplay
between the Kondo behavior of the gapless model and the
superconductivity of a small gap will be studied in detail
separately.

The reason why the RPE suppress the HF instability is the
two-particle self-consistency renormalizing the bare interac-
tion strength U to a screened effective one �. We plotted its
temperature dependence at half filling in Fig. 4. The renormal-
ization gets stronger with the decreasing temperature but starts
abating in the zero phase and dies out at zero temperature.
The effective interaction approaches zero, maximizing the
renormalization of the interaction, in the π phase consistent
with the divergence of the magnetic susceptibility of the exact
solution.

The thermodynamic mean-field solution with a static
self-energy produces good results for quantities with odd
symmetry and sensitive to the symmetry-breaking field. It is
quantitatively less accurate in determining the spin-symmetric
one-particle quantities with even symmetry with respect to
spin flips. We plotted the temperature dependence of the

FIG. 5. Density of the Cooper pairs ν in the spin-symmetric state
at half filling as a function of temperature in the 0 and the π phases
for the phase difference � = 0.

Cooper-pair density ν at half filling in the RPE/HF approx-
imation together with the exact result in Fig. 5. We can see
how the static spin-symmetric value deviates from the exact
value at low temperatures of the π phase. Unlike the HF mean
field, the RPE offer a direct improvement by including the
dynamical corrections from the Schwinger-Dyson equation
(41). It uses the renormalized interaction and this interaction is
strongly renormalized at low temperatures of the π phase. The
Cooper-pair density will then better follow the dependence of
the effective interaction as observed in the 0 phase in Fig. 4.
We discuss the impact of the dynamical corrections to the
static self-energy in detail elsewhere.

The spin-symmetric solution of the many-body Green-
function approach cannot be extended to the π phase at zero
temperature since one has to cross the quantum critical point.
One can nevertheless circumvent the critical point in that one
extends the spin-symmetric solution to nonzero temperatures.
There is no critical point at nonzero temperature and the
solution can be extended continuously from weak to strong
coupling [59]. No crossing happens and the energy of the in-
gap state remains positive and approaches the quantum critical
point at zero temperature, as demonstrated in Fig. 6. The spin-
symmetric solution in the π phase becomes unstable there and
decays into the degenerate spin doublet with a saturated local
magnetic moment.

FIG. 6. Temperature dependence of the positive energy of the
in-gap state in the spin-symmetric solution for weak and strong
interactions for the phase difference � = 0.
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FIG. 7. In-gap-state energies as a function of the phase differ-
ence � between the superconducting leads in a weak magnetic field
h = 0.01
 for different temperatures at half filling and U = 
. The
critical angle of the crossing increases with temperature.

B. Zeeman field

The magnetic field acting on the spin of the electrons
(Zeeman field) plays the essential role in the application of the
many-body Green functions in the superconducting quantum
dot. It is needed to approach the zero-temperature solution in
the π phase and to see the crossing of the in-gap states at
nonzero temperatures. The doublet ground state, π phase, is
degenerate and the Zeeman field is the means to lift the degen-
eracy. Here we analyze the properties of the low-temperature
solution with an applied magnetic field.

We plotted the dependence of the in-gap-state energies on
the phase difference between the attached superconducting
leads in Fig. 7 and on the interaction strength in Fig. 8 for a
very small magnetic field h = 0.01
 at different temperatures.
The value of the magnetic field at the crossing increases with
temperature. Increasing the phase difference � decreases the

FIG. 8. In-gap-state energies as a function of the Coulomb repul-
sion U in a weak magnetic field h = 0.01
 for different temperatures
at half filling and phase difference � = 0. The critical interaction of
the crossing increases with temperature.

FIG. 9. In-gap-state energies as a function of the impurity energy
level ε for a low temperature, T = 0.05
, Zeeman field h = 0.2
,
interaction U = 8
, and phase difference � = π/2.

interaction at which the in-gap states cross. Choosing the
phase difference appropriately, the 0-π transition may happen
in weak coupling. The curves of the in-gap-state energies
are continuous due to the presence of the symmetry-breaking
magnetic field. We also plotted the dependence of the in-gap-
state energies on the impurity energy level ε + U/2 for strong
coupling, U = 8
, and phase difference � = π/2. We used
a small magnetic field h = 0.2
 to demonstrate the expected
behavior in the π phase, cf. Fig. 9. Note that the RPE solution
reproduces the exact positions of the in-gap states in the limit
T → 0 followed by the limit h → 0.

The low-temperature asymptotics of magnetization m
shows just the opposite dependence on temperature than the
Cooper-pair density ν in the weak Zeeman field (h = 0.1
) in
both the 0 and the π phases, see Fig. 10. The magnetization
vanishes and ν saturates in the 0 phase in both mean-field
approximations as well as in the exact one. In the π phase

FIG. 10. Temperature dependence of magnetization m and the
Cooper-pair density ν at half filling, h = 0.1
, and � = 0 in the
0 phase (U = 
) and the π phase (U = 4
) for the mean-field
solutions RPE and HF compared with the exact behavior. We see
that the exact behavior of the magnetization, with odd symmetry
with respect to spin flips, is better reproduced by the RPE while the
Cooper-pair density, with even symmetry, is better reproduced by the
HF approximation.
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FIG. 11. The temperature dependence of the renormalized in-
teraction strength � at half filling in a Zeeman field h = 0.1
,
phase difference � = 0 in weak and strong couplings. The vertex
� shows the same rescaled dependence demonstrating that there is
no difference between weak and strong interaction in the presence of
the magnetic field.

the temperature asymptotics is inverted in both quantities in
all solutions. The HF mean-field better simulates the exact
dependence of the Cooper-pair density ν while the RPE mean-
field then better fits the exact magnetization curve.

The renormalized interaction � in the Zeeman field has
a different low-temperature asymptotics in the π phase than
in the spin-symmetric case, see Fig. 11. Once the magnetic
field is kept nonzero down to zero temperature the effective
interaction approaches the bare value and the exact solution is
reproduced.

Although the HF solution quantitatively better approxi-
mates the exact behavior of the thermodynamic quantities
with even symmetry with respect to spin flips, it fails to re-
produce the exact limit of the vanishing Zeeman field since it
predicts a nonzero magnetization at zero field below its critical
transition to the magnetic state as documented in Fig. 12. It is
our mean-field that qualitatively correctly reproduces all the
limits of both one and two-particle thermodynamic quantities.

VIII. CONCLUSIONS

The quantum dot attached to superconducting leads poses
a challenging problem to the perturbation theory with many-
body Green functions. First, electron correlations on the dot
lead to a line of first-order transitions from the spin-singlet
to the spin-doublet state that ends up at a quantum criti-

FIG. 12. Magnetic-field dependence of magnetization m in weak
(U = 
) and strong (U = 4
) couplings for � = 0 and T = 0.5


and half filling. The strong-coupling HF solution below its magnetic
critical point is completely off in the limit to zero magnetic field
unlike the RPE solution.

cal point at zero temperature where the in-gap states reach
the Fermi energy. Moreover, the doublet state is degenerate
and it cannot be continuously approached from the weak-
coupling spin-singlet state. The basic assumptions of the
applicability of the many-body perturbation theory is a
nondegenerate ground state and the existence of an ana-
lyticity region from the weak-coupling limit within which
it can be applied. It cannot cope with two independent
many-body equilibrium states with a first order transition
between them. It may lead to a new equilibrium state,
phase, only if there is a divergence accompanied by a con-
tinuous symmetry breaking. It means that the many-body
perturbation expansion cannot reliably be applied to the su-
perconducting quantum dot at low temperatures around the
quantum critical point. A self-consistency must be intro-
duced in the many-body perturbation expansion in order
to deal with the quantum critical behavior. A static mean-
field approximation is the simplest way to achieve this
goal.

It has been known for long that the weak-coupling Hartree-
Fock self-consistency is not appropriate to deal with the
quantum critical point of the superconducting quantum dot
since it fails at nonzero temperatures where it leads to a spu-
rious transition to a magnetically ordered state in the absence
of the external magnetic field. We added a two-particle self-
consistency to the HF solution in that we replaced the bare
interaction with a renormalized, screened one. We thereby
suppressed the HF spurious transition to the magnetic state
and produced a fully thermodynamically consistent mean-
field approximation applicable in the whole range of the input
parameters. We demonstrated that it is able to deal quali-
tatively correctly with the quantum critical behavior of the
0-π transition in the superconducting dot as well as with the
Kondo limit of the dot attached to metallic leads.

The most important finding of our mean-field theory is
the manifestation of the fundamental role of the Zeeman
field in the analytic description of the 0-π transition and in
distinguishing the spin-singlet from the spin doublet. The
magnetic field not only lifts the degeneracy of the π phase
it allows us to determine the different character of the in-gap
states in the two phases. The 0-π transition is signaled by
a crossing of the energies of the in-gap states. The in-gap
states in the spin-singlet phase are the genuine Andreev bound
states of two electrons with opposite spins that are insensitive
to small magnetic perturbations. The low-lying excitations in
the spin-doublet phase are fermions, carry a local magnetic
moment, and are sensitive to the magnetic filed. The magnetic
susceptibility vanishes in the 0 phase and diverges in the π

phase at zero temperature. The equilibrium state at nonzero
temperatures turns magnetic only when the Zeeman field is
applied. Consequently, the weak-coupling spin-symmetric so-
lution can continuously be extended to strong coupling at
nonzero temperatures without crossing any critical point. The
limit to zero field leads to a magnetic state only at zero
temperature above the critical interaction strength of the 0-
π transition. The limits to zero magnetic field and to zero
temperature do not commute and the results depend on their
order in which they are performed. The Zeeman field plays the
role of a symmetry-breaking field we know from continuous
phase transitions. The π phase beyond the quantum critical
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point mimics the ordered phase in the lattice models. It means
that the 0-π transition is critical only at zero temperature
and zero magnetic field. It is a true local quantum phase
transition. The crossing of the in-gap states in the magnetic
field and nonzero temperature is noncritical. It signals a first-
order transition at which the excitations of the spin-singlet
equilibrium state are equally probable as the excitations of the
spin doublet.

The mean-field theory presented in this paper is the first
fully consistent analytic approximation that can describe not
only the critical behavior of the 0-π transition but it can
qualitatively correctly and reliably reproduce the behavior of
the quantum dot attached to both superconducting and normal
leads in the whole range of the model parameters. It was
derived within the perturbation expansion for two-particle
vertices to control their critical behavior. It offers a start-
ing point for adding dynamical corrections in a systematic
way. The first step, without changing the static irreducible
vertex, is to use the Schwinger-Dyson equation to determine
the spectral properties of the model. This opens a new way
to include dynamical fluctuation in the thermodynamic and
spectral properties with the controlled renormalizations of the
one- and two-particle functions.
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APPENDIX A: SPECTRAL REPRESENTATION:
ELECTRON-HOLE BUBBLE

The thermodynamic quantities including the effective
interaction can be calculated entirely in the Matsubara for-
malism without the necessity to continue analytically to real
frequencies. If we want, however, to use the Schwinger-Dyson
equation and determine the spectral properties we need a
spectral representation of the two-particle bubbles, at least the
electron-hole one.

We decompose the imaginary part of the electron-hole
bubble φ(ω+) to a sum of three contributions �φ(ω+) =
�φbb(ω+) + �φbg(ω+) + �φgg(ω+), according to whether the
arguments of the Green functions of the integrand lie both
within the band, one within the band and one within the gap,
and both within the gap, respectively. We have for ω > 0

�φbb(ω+) = −
∑

σ

[∫ −�−ω

−∞
+

∫ −�

min(�−ω,−�)
+

∫ ∞

�

]
dx

2π
[ f (x) − f (x + ω)][�Gσ (x+ + ω)�G−σ (x+)

+ �Gσ (x+ + ω)�G−σ (x+)], (A1a)

�φbg(ω+) = −
∑

σ

[∫ min(�−ω,−�)

−�−ω

+
∫ �

max(�−ω,−�)

]
dx

2π
[ f (x) − f (x + ω)][�Gσ (x+ + ω)�G−σ (x+)

+ �Gσ (x+ + ω)�G−σ (x+)], (A1b)

�φgg(ω+) = −
∑

σ

∫ max(�−ω,−�)

−�

dx

2π
[ f (x) − f (x + ω)][�Gσ (x+ + ω)�G−σ (x+) + �Gσ (x+ + ω)�G−σ (x+)], (A1c)

and for ω < 0

�φbb(ω+) = −
∑

σ

[∫ −�

−∞
+

∫ max(�,−�−ω)

�

+
∫ ∞

�−ω

]
dx

2π
[ f (x) − f (x + ω)][�Gσ (x+ + ω)�G−σ (x+)

+ �Gσ (x+ + ω)�G−σ (x+)], (A2a)

�φbg(ω+) = −
∑

σ

[∫ min(�,−�−ω)

−�

+
∫ �−ω

max(�,−�−ω)

]
dx

2π
[ f (x) − f (x + ω)][�Gσ (x+ + ω)�G−σ (x+)

+ �Gσ (x+ + ω)�G−σ (x+)], (A2b)

�φgg(ω+) = −
∑

σ

∫ �

min(�,−�−ω)

dx

2π
[ f (x) − f (x + ω)][�Gσ (x+ + ω)�G−σ (x+) + �Gσ (x+ + ω)�G−σ (x+)]. (A2c)

The subscript at ω+ = ω + i0+ denotes the way the real axis is reached from the complex plane.
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The real part of the bubble is then determined from the Kramers-Kronig relation

�φ(ω) = P
∫ ∞

−∞

dx

π

�φ(x+)

x − ω
+ φ(∞). (A3)

APENDIX B: SPECTRAL REPRESENTATION: ELECTRON-ELECTRON BUBBLE

The electron-electron bubble has a simpler spectral representation. It is not needed for the spectral self-energy, but its spectral
representation is useful in the determination of the effective interaction � at low temperatures with a high precision. It has no
contribution from anomalous Green functions. Its imaginary part can be represented as

�ψ (ω+) = −
∫ ∞

−∞

dx

π
[ f x) − f (x − ω)]�G↑(ω+ − x)�G↓(x+) (B1)

Taking into account the induced gap on the dot we can represent the three contributions from the band and gap
states.

�ψbb(ω+) = −
[∫ min(−�,ω−�)

−∞
+

∫ ∞

max(�,ω+�)

]
dx

π
[ f (x) − f (x − ω)]�G↑(ω+ − x)�G↓(x+), (B2a)

�ψbg(ω+) = −
[∫ max(−�,ω−�)

min(−�,ω−�)
+

∫ max(�,ω+�)

min(�,ω+�)

]
dx

π
[ f (x) − f (x − ω)]�G↑(ω+ − x)�G↓(x+), (B2b)

�ψgg(ω+) = −
∫ min(�,ω+�)

max(−�,ω−�)

dx

π
[ f (x) − f (x − ω)]�G↑(ω+ − x)�G↓(x+). (B2c)

APPENDIX C: ATOMIC LIMIT: EXACT SOLUTION

We summarize the basic results of the exact solution of the
atomic limit with infinite superconducting gap. The atomic
Hamiltonian is a matrix

H =

⎛⎜⎝ 0 0 0 
c�

0 εd + h 0 0
0 0 εd − h 0


c� 0 0 2εd + U

⎞⎟⎠. (C1)

One can simply diagonalize the Hamiltonian matrix,
Eq.(C1), by observing that the central 2 × 2 sub-block is
decoupled from the rest. As a result, the four eigenstates
are summarized in the following: (i) E−

d = εd − h with
the eigenstate |1, 0〉; (ii) E+

d = εd + h with the eigenstate

|0, 1〉; (iii) E−
s = 1

2 [2εd + U −
√

(2εd + U )2 + 4
2c2
�] with

the eigenstate 1√

2c2

�+(E−
s )2

(
c�|0, 0〉 + E−
s |1, 1〉); and (iv)

E+
s = 1

2 [2εd + U +
√

(2εd + U )2 + 4
2c2
�] with the eigen-

state 1√

2c2

�+(E+
s )2

(
c�|0, 0〉 + E+
s |1, 1〉).

The general thermodynamic quantity is

Q = 1

Z

∑
i

〈Ei|Q̂|Ei〉e−β(Ei−μNi ), (C2)

where Ei and |Ei〉 are the eigenvalues and corresponding
eigenstates of the Hamiltonian, β = 1/kBT , and the partition
function is

Z = e−βE−
s + e−βE+

s + e−β(εd +h) + e−β(εd −h). (C3)

The thermodynamic properties can, alternatively, be de-
rived from the derivatives of the grand potential F = − 1

β
ln Z .

The charge and spin densities are

n = 1

Z

[∑
σ

e−β(εd −σh) + 2(E−
s )2


2c2
φ + (E−

s )2
e−βE−

s

+ 2(E+
s )2


2c2
φ + (E+

s )2
e−βE+

s

]
, (C4a)

m = 1

Z

[∑
σ

σe−β(εd −σh)

]
. (C4b)

The density of the Cooper pairs is

ν = 1

Z

[

E−

s


2c2
� + (E−

s )2
e−βE−

s + 
E+
s


2c2
� + (E+

s )2
e−βE+

s

]
.

(C5)
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[61] T. Domański, M. Žonda, V. Pokorný, G. Górski, V. Janiš, and T.

Novotný, Phys. Rev. B 95, 045104 (2017).
[62] M. Governale, M. G. Pala, and J. König, Phys. Rev. B 77,

134513 (2008).

235163-17

https://doi.org/10.1103/PhysRevLett.81.5225
https://doi.org/10.1126/science.281.5376.540
https://doi.org/10.1038/nnano.2010.84
https://doi.org/10.1038/nature05018
https://doi.org/10.1103/PhysRevLett.110.217005
https://doi.org/10.1126/science.284.5419.1508
https://doi.org/10.1126/science.286.5438.263
https://doi.org/10.1103/PhysRevB.68.214521
https://doi.org/10.1038/nature04550
https://doi.org/10.1103/PhysRevLett.96.207003
https://doi.org/10.1038/nnano.2006.54
https://doi.org/10.1021/nl071152w
https://doi.org/10.1088/1367-2630/9/5/124
https://doi.org/10.1063/1.2971034
https://doi.org/10.1007/s12274-008-8023-6
https://doi.org/10.1103/PhysRevB.79.155441
https://doi.org/10.1103/PhysRevB.79.161407
https://doi.org/10.1103/PhysRevLett.102.016803
https://doi.org/10.1038/nphys1811
https://doi.org/10.1103/PhysRevLett.109.186802
https://doi.org/10.1103/PhysRevX.2.011009
https://doi.org/10.1103/PhysRevB.88.045101
https://doi.org/10.1103/PhysRevB.89.075428
https://doi.org/10.1103/PhysRevB.91.241401
https://doi.org/10.1038/nphys1433
https://doi.org/10.1038/nnano.2010.173
https://doi.org/10.1143/PTP.57.1823
https://doi.org/10.1103/PhysRevB.62.6687
https://doi.org/10.1103/PhysRevLett.89.256801
https://doi.org/10.1088/0957-4484/15/7/056
https://doi.org/10.1103/PhysRevLett.93.047002
https://doi.org/10.1103/PhysRevB.70.020502
https://doi.org/10.1088/1367-2630/9/5/115
https://doi.org/10.1088/0953-8984/20/41/415225
https://doi.org/10.1103/PhysRevB.77.024517
https://doi.org/10.1143/JPSJ.79.043705
https://doi.org/10.1103/PhysRevB.84.075484
https://doi.org/10.1103/PhysRevLett.108.227001
https://doi.org/10.1103/PhysRevB.87.075432
https://doi.org/10.1143/JPSJ.69.1812
https://doi.org/10.1103/PhysRevB.72.174502
https://doi.org/10.1103/PhysRevB.72.224502
https://doi.org/10.1103/PhysRevB.79.224521
https://doi.org/10.1088/0953-8984/19/48/486211
https://doi.org/10.1088/0953-8984/20/27/275213
https://doi.org/10.1143/JPSJ.73.2494
https://doi.org/10.1088/0953-8984/24/38/385303
https://doi.org/10.1103/PhysRevB.81.024509
https://doi.org/10.1016/j.physb.2017.08.059
https://doi.org/10.1088/0953-8984/10/3/003
https://doi.org/10.1103/PhysRevB.68.035105
https://doi.org/10.1038/srep08821
https://doi.org/10.1140/epjb/e2016-70299-7
https://doi.org/10.1103/PhysRevB.93.024523
https://doi.org/10.1103/PhysRevB.95.045104
https://doi.org/10.1103/PhysRevB.77.134513


VÁCLAV JANIŠ AND JIAWEI YAN PHYSICAL REVIEW B 103, 235163 (2021)

[63] S. Droste, S. Andergassen, and J. Splettstoesser, J. Phys.:
Condens. Matter 24, 415301 (2012).

[64] N. Wentzell, S. Florens, T. Meng, V. Meden, and S.
Andergassen, Phys. Rev. B 94, 085151 (2016).

[65] V. Meden, J. Phys.: Condens. Matter 31, 163001 (2019).
[66] V. Janiš and P. Augustinský, Phys. Rev. B 75, 165108

(2007).
[67] V. Janiš and P. Augustinský, Phys. Rev. B 77, 085106 (2008).
[68] V. Janiš, A. Kauch, and V. Pokorný, Phys. Rev. B 95, 045108

(2017).
[69] V. Janiš, V. Pokorný, and A. Kauch, Phys. Rev. B 95, 165113

(2017).
[70] V. Janiš, P. Zalom, V. Pokorný, and A. Klíč, Phys. Rev. B 100,
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