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We study a one-dimensional lattice model of generalized statistics in which particles have next-nearest-
neighbor hopping between sites which depends on the occupation number at the intermediate site and a statistical
parameter φ. The model breaks parity and time-reversal symmetries and has four-fermion interactions if φ �= 0.
We first analyze the model using mean field theory and find that there are four Fermi points whose locations
depend on φ and the filling η. We then study the modes near the Fermi points using the technique of bosonization.
Based on the quadratic terms in the bosonized Hamiltonian, we find that the low-energy modes form two
decoupled Tomonaga-Luttinger liquids with different values of the Luttinger parameters which depend on φ

and η; further, the right- and left-moving modes of each system have different velocities. A study of the
scaling dimensions of the cosine terms in the Hamiltonian indicates that the terms appearing in one of the
Tomonaga-Luttinger liquids will flow under the renormalization group and the system may reach a nontrivial
fixed point in the long distance limit. We examine the scaling dimensions of various charge density and
superconducting order parameters to find which of them is the most relevant for different values of φ and η.
Finally, we look at two-particle bound states that appear in this system and discuss their possible relevance to
the properties of the system in the thermodynamic limit. Our work shows that the low-energy properties of this
model of generalized statistics have a rich structure as a function of φ and η.
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I. INTRODUCTION

The possibility of identical particles having generalized
statistics in one dimension has been studied extensively over
many years. Such generalizations can be introduced in many
different ways, for instance, by modifying the conditions on
the wave function and its derivative at the points when two
of the particles have the same coordinate, modifying the
commutation relations between the creation and annihilation
operators in a second-quantized formalism, or modifying the
form of the exclusion principle [1–15]. Several theoretical
proposals have been made for realizing generalized statistics
in one dimension [16–20].

A recent paper has studied a model of pseudofermions on
a one-dimensional lattice in which the second quantized oper-
ators have a generalized statistics governed by a parameter φ

[13]. The model has both nearest- and next-nearest-neighbor
hoppings t1 and t2, and the latter is sensitive to φ. At half-
filling, it has a rich phase diagram as a function of t1/t2 and
φ. The model has two Fermi points when |t1/t2| > 2 and four
Fermi points when |t1/t2| < 2, with a Lifshitz transition oc-
curring between the two phases at |t1/t2| = 2. The phase with
two Fermi points has been studied in detail using bosonization
[13]. However, the phase with four Fermi points is more diffi-
cult to study as it requires the diagonalization of a model with
two right-moving and two left-moving modes. In this paper,
we aim to analyze this phase in detail for arbitrary values of
the filling.

The plan of this paper is as follows. In Sec. II, we introduce
our model of pseudofermions with generalized statistics. In
order to focus on the phase with four Fermi points, we con-
sider only next-nearest-neighbor hoppings which have a phase
which depends on the particle number on the intermediate site
and a parameter φ. In Sec. III, we analyze the model using
mean field theory. This enables us to find the locations of the
four Fermi points as a function of φ and the filling which is
governed by a parameter η. In Sec. IV, we use the bosoniza-
tion method to study the modes close to the Fermi points.
We find that the bosonized Hamiltonian has terms which
are quadratic in the bosonic fields and terms which involve
cosines of those fields. We diagonalize the quadratic part
of the Hamiltonian, thereby finding that the model consists
of two decoupled Tomonaga-Luttinger liquids with separate
Luttinger parameters K1 and K2 and velocities of right- and
left-moving modes. We then calculate the scaling dimensions
of the cosine terms and discuss what these may imply about
the long-distance properties of the model. We also find the
scaling dimensions of various charge density and supercon-
ducting order parameters to determine which of them is likely
to dominate the long-distance properties. In Sec. V, we study
a system with only two particles and show that this has both
continuum and bound states. We examine the implication of
the bound states for the properties of the system with a large
number of particles. In Sec. VI, we summarize our results,
point out some directions for future studies, and mention pos-
sible realizations of our model. In the Appendixes, we discuss
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some technical details like a Bogoliubov transformation for
bosonic fields with unequal right- and left-moving velocities
and a nonlocal mapping between models with φ and π + φ.

II. GENERALIZED STATISTICS IN ONE DIMENSION,
HAMILTONIAN, AND SYMMETRIES

In this section, we will study a lattice model for gen-
eralized statistics which was introduced in Ref. [13]. The
generalized algebra of creation and annihilation operators of
pseudofermions on sites j and k is given by

a jak + aka je
iφsgn(k− j) = 0,

a ja
†
k + a†

ka je
−iφsgn(k− j) = δ jk,

[Nj, ak] = − δ jk ak,

[Nj, a†
k] = δ jk a†

k, (1)

where Nj = a†
j a j is the occupation number of pseudofermions

on site j. The definition sgn(0) = 0 generates the algebra of
pseudofermions for j = k which is consistent with the algebra
of usual fermions. In contrast, the algebra for j �= k is differ-
ent and it can be tuned from ordinary fermions to hard core
bosons by tuning the statistical phase from φ = 0 to φ = π .

It is clear from Eq. (1) that changing φ → φ + 2π makes
no difference. Hence, it is enough to study values of φ lying
in the range [−π, π ]. We also see that the system remains un-
changed if we change φ → −φ and do a parity transformation
j → − j for all j. We will therefore only consider the range
0 � φ � π in this paper.

A. Hamiltonian

We consider the following Hamiltonian for a model of
pseudofermions,

H = −
∑

j

[(t1a†
j a j+1 + t2a†

j a j+2 + H.c.) + μa†
j a j], (2)

where t1 and t2 are the nearest- and next-nearest-neighbor
hopping amplitudes respectively, and μ is the chemical po-
tential. (Throughout this paper, we will set both h̄ and the
lattice spacing a to unity.) We can map this to a Hamiltonian of
ordinary (spinless) fermions by the fractional Jordan-Wigner
transformation,

c j = Kja j, c†
j = a†

j K
†
j ,

where Kj = e−iφ
∑

k< j nk , (3)

and c j and c†
j are the creation and annihilation operators of

fermions with the usual anticommuting algebra. Equation (2)
is then mapped into a Hamiltonian of ordinary fermions

H = −
∑

j

[(t1c†
j c j+1 + t2eiφn j+1 c†

j c j+2 + H.c.) + μc†
j c j],

(4)
where n j = c†

j c j . We note that the number operator Nj for
pseudofermions is mapped to the number operator of the
ordinary fermions n j by this transformation. The first term,
nearest-neighbor hopping with amplitude t1, remains unaf-
fected by the phase φ. However, the next-nearest-neighbor
hopping carries the information of the statistical phase: The

FIG. 1. Schematic picture of the system showing the two sublat-
tices corresponding to odd and even values of the site label.

fermions hop with a phase which 0 if the intermediate phase
is empty and is ±φ if the intermediate site is filled and the
hopping is to occurs to the left (right) respectively. This depen-
dence of the next-nearest-neighbor hopping on the statistical
phase φ makes it evident that a nonzero finite t2 is necessary
to obtain nontrivial phases in this model. This motivates us to
explore the limit where we have a finite t2, but t1 is set equal
to zero. We will therefore consider the Hamiltonian

H = −
∑

j

[(t2eiφn j+1 c†
j c j+2 + H.c.) + μc†

j c j]. (5)

Note that Eq. (5) remains invariant under t2 → −t2 since
we can change the sign of those terms by carrying out the
transformation

c j → ei jπ/2c j and c†
j → e−i jπ/2c†

j . (6)

A schematic picture of our model is shown in Fig. 1. Hop-
ping only occurs between nearest-neighbor sites on the same
sublattice, corresponding to either odd or even values of j;
the hopping amplitude depends on the occupation number of
the intermediate site which belongs to the other sublattice. We
note here that a system with t1 = 0 can be physically realized
if the sublattices are replaced by the two spin components of
a spin-1/2 particle; such a system naturally has t1 = 0 if the
hopping conserves the spin component. A system similar to
this has been experimentally studied in Ref. [21].

We will now do the following transformation on the cre-
ation and annihilation operators,

c j → c je
−i jφ/4, c†

j → c†
j e

i jφ/4. (7)

Then Eq. (5) takes the form

H = −
∑

j

[(t2eiφ(n j+1−1/2)c†
j c j+2 + H.c.) + μc†

j c j]. (8)

This is the Hamiltonian that we will study in the rest of this pa-
per. The choice of the term n j+1 − 1/2, rather than just n j+1,
in the phase is motivated by a particle-hole transformation
which will be discussed later.

Note that the number of particles on each sublattice (either
even- or odd-numbered sites) is a conserved quantity since the
hopping only occurs within each sublattice separately.

B. Symmetries

Next, we will the symmetries of our model. First, we
examine how the Hamiltonian in Eq. (8) behaves under a
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particle-hole transformation. To discuss that, we add a con-
stant to turn the Hamiltonian into

H = −t2
∑

j

[eiφ(n j+1−1/2)c†
j c j+2 + H.c.]

−μ
∑

j

[c†
j c j − 1/2]. (9)

Under a particle-hole transformation, we have

c j → c†
j and c†

j → c j . (10)

As a result of this transformation, we find that n j − 1/2 →
−(nj − 1/2). The Hamiltonian Eq. (9) then flips sign and we
obtain

H = t2
∑

j

[eiφ(n j+1−1/2)c†
j c j+2 + H.c.]

+μ
∑

j

[c†
j c j − 1/2]. (11)

We then carry out the transformation given in Eq. (6) to
change the Hamiltonian in Eq. (11) to

H = −t2
∑

j

[eiφ(n j+1−1/2)c†
j c j+2 + H.c.]

+μ
∑

j

[c†
j c j − 1/2]. (12)

Comparing Eqs. (9) and (12), we see that the Hamiltonian re-
mains invariant under a particle-hole transformation provided
that we also change μ → −μ. (We note that the Hamiltonian
has this invariance only if t1 = 0.)

We will now discuss parity (P) and time-reversal (T ) trans-
formations. Under P, the creation and annihilation operators
transform as

c j → c− j, c†
j → c†

− j . (13)

The Hamiltonian in Eq. (8) then becomes

H = −
∑

j

[t2eiφ(n−( j+1)−1/2)c†
− jc−( j+2) + H.c.) + μc†

− jc− j],

(14)

which can be written as

H = −
∑

j

[t2(eiφ(n j+1−1/2)c†
j+2c j + H.c.) + μc†

j c j]. (15)

Thus, the Hamiltonian in Eq. (8) is not invariant under P,
unless we also flip φ → −φ. Similarly, under time-reversal
T , we complex conjugate the Hamiltonian, which implies that
Eq. (8) transforms into Eq. (15). Hence, the Hamiltonian is
not invariant under T . However, the Hamiltonian is invariant
under PT .

III. MEAN FIELD THEORY

We begin our discussion by considering the special case
φ = 0 which describes a system of noninteracting fermions.
The energy-momentum dispersion is then given by

Ek = − 2t2 cos(2k) − μ, (16)

where k lies in the range [−π, π ]. We see that this system has
four Fermi points if the chemical potential lies in the range
−2t2 < μ < 2t2. For μ = 0, the Fermi points lie at k = ±π/4
and ±3π/4.

We now discuss a mean field treatment for general φ to in-
clude the effect of the statistical interaction. In the rest of this
paper, we will set t2 = −1 for convenience. The Hamiltonian
is then

H =
∑

j

[eiφ(n j+1−1/2)c†
j c j+2 + H.c. − μc†

j c j]. (17)

Now, the exponential factor can be written in a more conve-
nient form by noting that nj can only take the values zero or
1. Hence,

(n j − 1/2)p = (1/2)p, if p is even

(n j − 1/2)p = (1/2)p−1(n j − 1/2) if p is odd. (18)

The phase factor can therefore be written as

eiφ(n j−1/2) = cos(φ/2) + 2i sin(φ/2)(nj − 1/2). (19)

The Hamiltonian in Eq. (17) can now be written as the sum
of a noninteracting part H0 (which is quadratic in the fermion
operators) and an interacting part Hint (quartic),

H = H0 + Hint,

H0 =
∑

j

[cos(φ/2)(c†
j c j+2 + c†

j+2c j )

− i sin(φ/2)(c†
j c j+2 − c†

j+2c j ) − μc†
j c j],

Hint = 2i sin(φ/2)
∑

j

n j+1(c†
j c j+2 − c†

j+2c j ). (20)

Following a mean field treatment, the interacting part becomes∑
j

n j+1(c†
j c j+2 − c†

j+2c j )

→
∑

j

[〈n j+1〉(c†
j c j+2 − c†

j+2c j ) +〈c†
i c j+2 − c†

j+2c j〉c†
j c j].

(21)

In the first term in Eq. (21), we replace 〈n j+1〉 → 1/2 + η,
where η denotes the deviation from half-filling and lies in the
range [−1/2, 1/2], where η = −1/2 and 1/2 correspond to
a completely empty and completely filled band respectively.
The second term in Eq. (21) corresponds to a shift in the
chemical potential. Its effect can be absorbed by introducing
a new chemical potential μ′

2i sin(φ/2)〈c†
j c j+2 − c†

j+2c j〉 − μ = −μ′. (22)

[Note that in the mean field treatment, we are setting ex-
pectation values of nearest-neighbor terms 〈c†

j c j±1〉 = 0. This
is because we are analyzing a model with nearest-neighbor
hopping t1 = 0. Hence the number of fermions on the sublat-
tices corresponding to even and odd values of j are separately
conserved; this means that 〈c†

j c j±1〉 = 0 in any state indepen-
dently of the mean field approximation.] The final form of the
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mean field Hamiltonian is given by

HMF =
∑

j

[α(c†
j c j+2 + c†

j+2c j )

+ iβ(c†
j c j+2 − c†

j+2c j ) − μ′n j],

α = cos(φ/2),

β = 2η sin(φ/2). (23)

Transforming to momentum space, we find that the dispersion
for the mean field Hamiltonian in Fourier space is given by

Ek = 2α cos(2k) − 2β sin(2k) − μ′. (24)

We now see that the mean field Hamiltonian in Eq. (23)
again has four Fermi points for any value of φ, provided
that μ′ lies in the range −2

√
α2 + β2 < μ′ < 2

√
α2 + β2.

We denote the Fermi points by k′
1, k′

2, k′
3, and k′

4. The filling
1/2 + η leads to the following condition on the Fermi points,

k′
1 − k′

2 + k′
3 − k′

4

2π
= 1

2
+ η. (25)

The Fermi points can be calculated using Eqs. (24) and (25).
We find that

k′
1 = 3π

4
+ πη

2
− θ

2
,

k′
2 = π

4
− πη

2
− θ

2
,

k′
3 = −π

4
+ πη

2
− θ

2
,

k′
4 = −3π

4
− πη

2
− θ

2
, (26)

where θ and μ′ are given by

θ = tan−1(β/α) = tan−1(2η tan(φ/2)),

μ′ = 2
√

α2 + β2 sin(πη). (27)

Note that all the Fermi points shift by the same amount given
by θ/2. A plot of the dispersion in Eq. (24) along with the
four Fermi points k′

1, k′
2, k′

3, and k′
4 from right to left is shown

in Fig. 2 for φ = π/2 and η = 0.25.
We can check if any neighboring pair of Fermi points can

cross each other as the filling η and the statistical phase φ

are varied. Let us discuss this crossing with respect to the
Fermi point at k′

1. Equation (26) implies that the momentum
difference |k′

1 − k′
2| = π/2 + πη and |k′

1 − k′
4| = π/2 − πη

(to calculate the latter we have used the 2π periodicity of k).
Since η lies in the range [−1/2, 1/2], we see that k′

1 and k′
2 can

at most touch each other at η = −1/2 but not cross. Similarly,
k′

1 and k′
4 can at most touch at η = 1/2 but not cross.

An important point to note from Eq. (26) is that

k′
1 − k′

3 = k′
2 − k′

4 = π (28)

independently of η and φ. This is due to the fact that the
Hamiltonian in Eq. (8) remains invariant under the transfor-
mation

c j → (−1) jc j, c†
j → (−1) jc†

j . (29)

Since (−1) j = ei jπ , Eq. (29) corresponds to shifting the mo-
mentum k → k + π . As a result of this invariance, each Fermi

FIG. 2. Plot of the energy-momentum dispersion for φ = π/2
and η = 0.25. The four Fermi points are labeled 1, 2, 3, and 4 from
right to left, and the dotted line shows the value of μ′.

point is accompanied by another Fermi point with a momen-
tum difference π . [This symmetry of our model will be lost if
we turn on a nearest-neighbor hopping.]

The Fermi velocities dEk/dk at the four Fermi points can
be calculated in terms of α and β using Eqs. (24), (26), and
(27),

vk′
1
= vk′

3
= v,

vk′
2
= vk′

4
= −v,

where v = 4
√

α2 + β2 cos(πη). (30)

Note that v depends on both φ and η and it vanishes at the
limits η = ±1/2. Equation (30) implies that fermions near
both k′

1 and k′
3 are right-moving while those near k′

2 and k′
4

are left-moving.

IV. BOSONIZATION

We will now systematically develop a theory of fluctu-
ations about the mean field theory using the technique of
bosonization [22–26]. Bosonization involves mapping non-
interacting fermionic systems to systems of noninteracting
bosons in one dimension. It has been widely used to construct
the low-energy theory of one-dimensional systems with two
Fermi points, but our model requires us to use it for the case
of four Fermi points.

We begin by linearizing the spectrum near the four Fermi
points in Eq. (26) to obtain a low-energy effective description
of the fluctuations. We write the fermionic annihilation oper-
ators as

c j = eik′
1 j ψ1( j) + eik′

2 j ψ2( j)

+ eik′
3 j ψ3( j) + eik′

4 j ψ4( j), (31)

where k′
1, k′

2, k′
3, and k′

4 are the four Fermi points, and
ψ1, ψ2, ψ3, and ψ4 are the slowly varying fields with mo-
mentum components lying near those points. We now rewrite
the full Hamiltonian : HMF + Hint : (where :: denotes normal
ordering) in terms of these slowly varying fields. We consider
the mean field part first. Using Eq. (23) and using the Taylor
expansion ψ ( j + 2) = ψ ( j) + 2∂xψ ( j)+ higher order terms,
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the mean field Hamiltonian is given by

H = 4i
∫

dx ([α sin(2k′
1) + β cos(2k′

1)] ψ
†
1 ∂xψ1

+ [α sin(2k′
2) + β cos(2k′

2)] ψ
†
2 ∂xψ2

+ [α sin(2k′
3) + β cos(2k′

3)] ψ
†
3 ∂xψ3

+ [α sin(2k′
4) + β cos(2k′

4)] ψ
†
4 ∂xψ4

+ [α cos(2k′
1) − β sin(2k′

1) − μ′] ψ
†
1 ψ1

+ [α cos(2k′
2) − β sin(2k′

2) − μ′] ψ
†
2 ψ2

+ [α cos(2k′
3) − β sin(2k′

3) − μ′] ψ
†
3 ψ3

+ [α cos(2k′
4) − β sin(2k′

4) − μ′] ψ
†
4 ψ4). (32)

This can be simplified by using Eqs. (26), (27), and (30). The
Hamiltonian in Eq. (32) then reduces to

HMF = −iv
∫

dx [ψ†
1 ∂xψ1 − ψ

†
2 ∂xψ2

+ψ
†
3 ∂xψ3 − ψ

†
4 ∂xψ4]. (33)

[Note that the coefficients of ψ
†
1 ψ1, ψ

†
2 ψ2, ψ

†
3 ψ3, and ψ

†
4 ψ4

in Eq. (32) vanish due to Eqs. (26) and (27)].
The Hamiltonian in Eq. (33) can be bosonized using the

usual rules of bosonization. We use the following convention
for the mapping between the fermionic and bosonic fields,
ψ j (x) and φ j (x),

ψ1 = F1
e−i2

√
πφ1

√
2πα

, ψ2 = F2
ei2

√
πφ2

√
2πα

,

ψ3 = F3
e−i2

√
πφ3

√
2πα

, ψ4 = F4
ei2

√
πφ4

√
2πα

, (34)

where α is a short distance cutoff and Fj ( j = 1, 2, 3, 4) are
the Klein factors which ensure the correct anticommutation
relations between the fermionic operators. They have the fol-
lowing properties:

F †
j Fj = FjF

†
j = 1 for j = 1, 2, 3, 4,

{Fj, Fk} = {Fj, F †
k } = 0, for j �= k. (35)

Using bosonization, we find that Eq. (33) turns into

HMF = v

∫
dx [(∂xφ1)2 + (∂xφ2)2

+ (∂xφ3)2 + (∂xφ4)2]. (36)

We will now bosonize the interacting part of the Hamilto-
nian in Eq. (20), namely, : Hint :. The bosonization of this part
is more complicated since there are many nonoscillatory terms
possible with four fermionic fields. (We will ignore all the
rapidly oscillating terms since they average to zero when we
integrate over x.) To examine these terms systematically, we
will divide them into two categories, momentum-conserving
terms where the change in momentum �k = 0, and umklapp
terms where �k = 2π .

We will consider the momentum-conserving terms first.
These terms can be further separated into two groups, in-
teraction terms which involve only one Fermi point (called
diagonal density-density interactions below) and interaction
terms which involve two Fermi points (called off-diagonal
density-density interactions). Using Eqs. (31) and (34), we get
the following diagonal density-density interactions

Hdiag = 4 sin(φ/2)
∫

dx
[(

ρ2
1 + ρ2

3

)
cos(πη − θ )

− (
ρ2

2 + ρ2
4

)
cos(πη + θ )

]
, (37)

where ρ j = ψ
†
j ψ j ( j = 1, 2, 3, 4), is the density operator in

terms of fermionic fields. This Hamiltonian can be bosonized
using the relation between the fermionic and bosonic fields

ρ j = −∂xφ j√
π

, where j = 1, 2, 3, 4. (38)

Equation (37) therefore has the bosonic form

Hdiag = 4 sin(φ/2)

π

∫
dx[((∂xφ1)2 + (∂xφ3)2) cos(πη − θ )

− ((∂xφ2)2 + (∂xφ4)2) cos(πη + θ )]. (39)

Next we consider the off-diagonal density-density interactions
which involve two different fields. There are six terms pos-
sible which are given by ρ1ρ2, ρ3ρ4, ρ1ρ3, ρ2ρ3, ρ1ρ3, and
ρ2ρ4. Using Eq. (31) and the fact that k′

1 + k′
2 = π − θ and

k′
1 − k′

2 = π/2 + πη, we find that the off-diagonal interac-
tions are given by

Hoff-diag = 8 sin(φ/2) sin(θ )
∫

dx ([sin(πη) + 1](ρ1ρ2 + ρ3ρ4) + [sin(πη) − 1](ρ1ρ4 + ρ2ρ3))

+ 16 sin(φ/2)
∫

dx [cos(πη − θ )ρ1ρ3 − cos(πη + θ )ρ2ρ4]. (40)

Using Eq. (38), the bosonized form of Eq. (40) is found to be

Hoff-diag = 8 sin(φ/2) sin(θ )

π

∫
dx([sin(πη) + 1][(∂xφ1)(∂xφ2) + (∂xφ3)(∂xφ4)]

+ [sin(πη) − 1][(∂xφ1)(∂xφ4) + (∂xφ2)(∂xφ3)])

+ 16 sin(φ/2)

π

∫
dx[cos(πη − θ )(∂xφ1)(∂xφ3) − cos(πη + θ )(∂xφ2)(∂xφ4)]. (41)
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There is another kind of momentum-conserving interaction
possible in our system, which is a term involving all the four
Fermi points. In the fermionic language, these are given by

Hfour-Fermi-pt = −4i sin(φ/2)e−iθ
∫

dx [ψ†
1 ψ2ψ

†
4 ψ3

+ψ
†
2 ψ1ψ

†
3 ψ4 + sin(πη)(ψ†

1 ψ3ψ
†
4 ψ2

+ψ
†
2 ψ4ψ

†
3 ψ1)] + H.c. (42)

To convert this into the bosonic language, we use Eq. (34). We
now get products of Klein factors. For instance, the first two
terms in Eq. (42) have the products F †

1 F2F †
4 F3 and F †

2 F1F †
3 F4

respectively. Equations (35) imply that these two products
commute with each other and can therefore be simultaneously
diagonalized. Hence, we can ignore the Klein factor products
in the following [25]. We then find that in the bosonic lan-
guage, Eq. (42) becomes

Hfour-Fermi-pt = 16 sin(φ/2) sin(θ )[sin(πη) − 1]

(2πα)2

×
∫

dx cos[2
√

π (φ1 + φ2 − φ3 − φ4)].

(43)

We now discuss the various umklapp terms which appear.
These describe scattering processes in which the momentum
difference between the initial and final states is 2π ; these
terms are allowed in a lattice system since since a momentum
transfer �k = 2π is equivalent to �k = 0. In the bosonization
of a system with two Fermi points (left- and right-moving
points denoted as R and L respectively), umklapp terms of
the form ψ

†
Rψ

†
RψLψL and its Hermitian conjugate are allowed

at half-filling, i.e., with kF = π/2, since 4kF = 2π . In our
system, however, there are two kinds of umklapp terms possi-
ble which are quite different from the umklapp terms which
appear for the case of two Fermi points. The first kind of
umklapp term appears due to scattering between two Fermi
points with the same chirality, both right- or both left-moving
in same direction. This term is given by

Humklapp,1 = 2i sin(φ/2)
∫

dx[e2ik′
3ψ

†
1 ψ3ψ

†
1 ψ3

+ e2ik′
1ψ

†
3 ψ1ψ

†
3 ψ1 + e2ik′

4ψ
†
2 ψ4ψ

†
2 ψ4

+ e2ik′
2ψ

†
4 ψ2ψ

†
4 ψ2]. + H.c. (44)

(Each term in this equation changes the momentum by ±2π .)
When we bosonize this, we again find that the products of
Klein factors [such as (F †

1 )2(F3)2, (F †
3 )2(F1)2, etc.] all com-

mute with each other as well as with the products of Klein
factors which appear in Eq. (43). Hence, we can ignore all
these product terms. We then find that in the bosonic language,
Eq. (44) becomes

Humklapp,1 = −8 sin(φ/2) sin(θ )

(2πα)2

∫
dx(cos[4

√
π (φ1 − φ3)]

+ cos[4
√

π (φ2 − φ4)]). (45)

The second kind of umklapp terms appears due to interaction
among four Fermi points. This interaction is given by

Humklapp,2 = 2i sin(φ/2)
∫

dx[ψ†
1 ψ

†
2 ψ3ψ4(e−i2k′

1 + e−i2k′
2 )

+ ψ
†
3 ψ

†
4 ψ1ψ2(e−2ik′

3 + e−2ik′
4 )] + H.c. (46)

[Each term in Eq. (46) changes the momentum by ±2π , un-
like the terms in Eq. (42) which conserve momentum.] Upon
bosonizing, we again find that the products of Klein factors
for the different terms commute with each other and with all
the products which appeared above; hence, we ignore all these
products. In the bosonic language, Eq. (46) then becomes

Humklapp,2 = 16 sin(φ/2) sin(θ ) sin(πη)

(2πα)2

×
∫

dx cos[2
√

π (φ1 − φ2 − φ3 + φ4)]. (47)

Note that in our system, umklapp terms appear at any filling
due to Eq. (28), unlike systems with two Fermi points where
umklapp terms appear only at half-filling where 4kF = 2π .

The total Hamiltonian of our model is now given by

Htotal = Hdiag + Hoff-diag + Hfour-Fermi-point

+ Humklapp,1 + Humklapp,2. (48)

Next, we use the Bogoliubov transformation to diagonal-
ize the quadratic part of the Hamiltonian given by Hdiag +
Hoff-diag. It is convenient to write the quadratic part of the
Hamiltonian in a matrix form. To do so, we choose the basis
of bosonic fields

 = (φ1 φ2 φ3 φ4)T
, (49)

where the subscript T denotes the transpose of the row, so that
 is a column. In this basis, the quadratic part of Hamiltonian
has the form

Hquad =
∫

dx∂x
T M∂x, (50)

where M is 4 × 4 matrix. We now define

α1 = v + 4

π
sin(φ/2) cos(πη − θ ),

α2 = v − 4

π
sin(φ/2) cos(πη + θ ),

α3 = 4

π
sin(φ/2) sin(θ )[sin(πη) + 1],

α4 = 4

π
sin(φ/2) sin(θ )[sin(πη) − 1],

α5 = 8

π
sin(φ/2) cos(πη − θ ),

α6 = − 8

π
sin(φ/2) cos(πη + θ ). (51)

In terms of these parameters, the matrix M in Eq. (50) is given
by

M =

⎛
⎜⎝

α1 α3 α5 α4

α3 α2 α4 α6

α5 α4 α1 α3

α4 α6 α3 α2

⎞
⎟⎠. (52)

235162-6



BOSONIZATION STUDY OF A GENERALIZED … PHYSICAL REVIEW B 103, 235162 (2021)

We will now choose the following linear combinations of
the bosonic fields,

φR1 = φ1 + φ3√
2

, φR2 = φ1 − φ3√
2

,

φL1 = φ2 + φ4√
2

, φL2 = φ2 − φ4√
2

. (53)

In terms of creation and annihilation operators, the fields in
Eq. (53) are given by

φRi = χRi + χ
†
Ri −

√
πx

L
N̂Ri, i = 1, 2,

φLi = χLi + χ
†
Li −

√
πx

L
N̂Li, i = 1, 2,

χRi = i

2
√

π

∑
q>0

1√
nq

bRi,qeiqx−αq/2,

χ
†
Ri = − i

2
√

π

∑
q>0

1√
nq

b†
Ri,qe−iqx−αq/2,

χLi = − i

2
√

π

∑
q>0

1√
nq

bRi,qe−iqx−αq/2,

χ
†
Li = − i

2
√

π

∑
q>0

1√
nq

b†
Ri,qeiqx−αq/2, (54)

where L denotes the length of system (we are assuming pe-
riodic boundary conditions so that a momentum q can be
defined as q = 2πnq/L, where nq is an integer). We now
define a new basis

′ = (φR1 φL1 φR2 φL2)T
. (55)

In this basis, the quadratic part of the Hamiltonian takes the
form

Hquad =
∫

dx ∂x
′T M ′∂x

′, (56)

where M ′ is given by

M ′ =

⎛
⎜⎝

α1 + α5 α3 + α4 0 0
α3 + α4 α2 + α6 0 0

0 0 α1 − α5 α3 − α4

0 0 α3 − α4 α2 − α6

⎞
⎟⎠. (57)

We see that M ′ has a block diagonal form. We will now
diagonalize each block separately using the Bogoliubov trans-
formation.

A remarkable point to note at this stage is that α3 = α4 = 0
if either the statistical phase φ = 0 or η = 0 (i.e., half-filling).
The matrix M ′ is then diagonal. We therefore have a nontrivial
interacting theory only if both φ and η are nonzero (i.e., away
from half-filling).

A. Diagonalization of Hamiltonian and Luttinger parameters

We begin our analysis by considering the upper block of
the Hamiltonian in Eq. (56). This can be written as

Hquad,1 =
∫

dx ∂x
′T
1 M ′

1∂x
′
1, (58)

where ′
1 is given by

′
1 = (φR1 φL1)T

, (59)
and

M ′
1 =

(
α1 + α5 α3 + α4

α3 + α4 α2 + α6

)
. (60)

Next we define

v
(1)
1 = α1 + α5, v

(1)
2 = α2 + α6, λ(1) = α3 + α4. (61)

We then find that in momentum space, the Hamiltonian in
Eq. (58) is given, up to a constant, by

Hquad,1 =
∑
q>0

q
[
v

(1)
1 b†

q,R1bq,R1 + v
(1)
2 b†

q,L1bq,L1

+ λ(1)(b†
q,R1b†

q,L1 + bq,L1bq,R1)
]
, (62)

where bq,R1 and bq,L1 are bosonic operators obeying the usual
commutation relations. This Hamiltonian can be diagonalized
using the Bogoliubov transformation

b̃q,R1 = bq,R1 + γ1b†
q,L1√

1 − γ 2
1

, b̃q,L1 = bq,L1 + γ1b†
q,R1√

1 − γ 2
1

,

γ1 = 1 − K1

1 + K1
. (63)

The old and new φ fields in this block are related as

φR1 = (1 + K1)φ̃R1 − (1 − K1)φ̃L1

2
√

K1
,

φL1 = (1 + K1)φ̃L1 − (1 − K1)φ̃R1

2
√

K1
. (64)

The Hamiltonian now takes the diagonalized form

Hquad,1 =
∑
q>0

q

[(
v

(1)
F + v

(1)
1 − v

(1)
2

2

)
b̃†

q,R1b̃q,R1

+
(

v
(1)
F − v

(1)
1 − v

(1)
2

2

)
b̃†

q,L1b̃q,L1

]
, (65)

up to a constant, and v
(1)
F and K1 are given by

v
(1)
F = v

(1)
1 + v

(1)
2

2

√
1 −

(
2λ(1)

v
(1)
1 + v

(1)
2

)2

,

= 1

2

√(
2v + 24

π
sin(φ/2) sin(πη) sin θ

)2

−
(

16

π
sin(φ/2) sin(πη)

)2

,

K1 =
√

v
(1)
1 + v

(1)
2 − 2λ(1)

v
(1)
1 + v

(1)
2 + 2λ(1)

=
√

2v + 8
π

sin(φ/2) sin(θ ) sin(πη)

2v + 40
π

sin(φ/2) sin(θ ) sin(πη)
. (66)
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We note from Eq. (66) that the right- and left-moving bosonic
fields do not have equal velocities; this is because our model
breaks parity symmetry (x → −x) when φ �= 0. We can also
find the condition for the ground state to be well defined;
as shown in Appendix A, the condition turns out to be
v

(1)
1 v

(1)
2 > (λ(1) )2.

We now consider the lower block of M ′ in Eq. (57), which
leads to the Hamiltonian

Hquad,2 =
∫

dx ∂x
′T
2 M ′

2∂x
′
2, (67)

where

′
2 = (φR2 φL2)T

, (68)

and M ′
2 has the form

M ′
2 =

(
α1 − α5 α3 − α4

α3 − α4 α2 − α6

)
. (69)

We now define

v
(2)
1 = α1 − α5, v

(2)
2 = α2 − α6, λ(2) = α3 − α4. (70)

In momentum space, the Hamiltonian in Eq. (67) takes the
form

Hquad,2 =
∑
q>0

q
[
v

(2)
1 b†

q,R2bq,R2 + v
(2)
2 b†

q,L2bq,L2

+ λ(2)
(
b†

q,R2b†
q,L2 + bq,L2bq,R2

)]
(71)

up to a constant, where bq,R2 and bq,L are bosonic fields obey-
ing the usual commutation relations. We then do a Bogoliubov
transformation to obtain a Hamiltonian in a diagonal form

Hquad,2 =
∑
q>0

q

[(
v

(2)
F + v

(2)
1 − v

(2)
2

2

)
b̃†

q,R2b̃q,R2

+
(

v
(2)
F − v

(2)
1 − v

(2)
2

2

)
b̃†

q,L2b̃q,L2

]
, (72)

up to a constant, where the Bogoliubov transformation is

b̃q,R2 = bq,R2 + γ2b†
q,L2√

1 − γ 2
2

,

b̃q,L2 = bq,L2 + γ2b†
q,R2√

1 − γ 2
2

,

γ2 = 1 − K2

1 + K2
. (73)

The old and new φ fields are related as

φR2 = (1 + K2)φ̃R2 − (1 − K2)φ̃L2

2
√

K2
,

φL2 = (1 + K2)φ̃L2 − (1 − K2)φ̃R2

2
√

K2
, (74)

where

v
(2)
F = v

(2)
1 + v

(2)
2

2

√
1 −

(
2λ(2)

v
(2)
1 + v

(2)
2

)2

,

= 1

2

√(
2v − 8

π
sin(φ/2) sin(πη) sin θ

)2

−
(

16

π
sin(φ/2) sin(πη)

)2

,

K2 =
√

v
(2)
1 + v

(2)
2 − 2λ(2)

v
(2)
1 + v

(2)
2 + 2λ(2)

=
√

2v − 8
π

sin(φ/2) sin(θ )(sin(πη) + 2)

2v − 8
π

sin(φ/2) sin(θ )(sin(πη) − 2)
. (75)

We again see that the right- and left-moving bosonic fields
have unequal velocities. As before the condition for the
ground state to be well-defined turns out to be v

(2)
1 v

(2)
2 >

(λ(2) )2.
Figures 3(a) and 3(b) show K1 and K2 as functions of η

for various values of φ. [We have not shown the values of K1

and K2 very close to η = ±1/2 since the analytical expres-
sions in Eqs. (66) and (75) become singular in that limit. In
particular, v → 0 as η → ±1/2.] We see from the figures that
K1 remains unchanged while K2 → 1/K2 if we flip η → −η.
The reason for these symmetries is discussed in Sec. IV B.
We also see from Fig. 3 that K1 � 1 for all values of η and
φ, while K2 � 1 (� 1) for η � 0 (� 0) for all values of φ.
This is in agreement with the expressions given in Eqs. (66)
and (75).

We conclude that the diagonalization of the quadratic
parts of the bosonized Hamiltonian gives two decoupled
Tomonaga-Luttinger liquids. Since each of this is described

by a conformal field theory with central charge c = 1, the full
system has c = 2.

B. Implications of particle-hole and parity transformations
for K1 and K2

In this section, we will discuss two kinds of transfor-
mations which leave the Hamiltonian in Eq. (8) invariant,
and what these imply for the Luttinger liquid parameters K1

and K2.
The first transformation that we will consider is particle-

hole transformation, keeping the statistical phase φ un-
changed. We find that transforming

c j → e−i jπ/2c†
j (76)

flips the sign of n j+1 − 1/2. This leaves the hopping part of
the Hamiltonian in Eq. (8) invariant but flips the sign of the
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(a)

(b)

FIG. 3. Luttinger parameters K1 and K2 vs η for φ =
0, π/4, π/2, 3π/4 and 0.9π . They satisfy the symmetries
K1(φ,−η) = K1(φ, η) and K2(φ,−η) = 1/K2(φ, η).

chemical potential term, thus transforming the filling from
1/2 + η to 1/2 − η. Looking at Eq. (31), we see that Eq. (76)

transforms the Fermi momenta as

k′
i → −k′

i + π

2
. (77)

Further, η → −η implies that θ → −θ in Eq. (27). Equation
(77) then means that k′

1 and k′
3 get interchanged, and k′

2 and
k′

4 remain as they are. Equations (31) and (34) then imply that
φ1 and φ3 get interchanged, and φ2 and φ4 remain unchanged.
Turning to the parameters v and αi in Eqs. (30) and (51), we
see that v, α1, α2, α5, and α6 remain unchanged, and α3 and
α4 get interchanged. We then see that the matrix M ′

1 remains
unchanged in Eq. (60) while in Eq. (69), the off-diagonal
terms flip sign. Equation (66) then means that K1 remains
unchanged while Eq. (75) means that K2 transforms to 1/K2

under η → −η.
The second transformation we look at is φ → −φ com-

bined with parity, j → − j in Eq. (8) or x → −x in the
continuum, keeping the filling (η) unchanged. This leaves
Eq. (8) unchanged. Equation (27) implies that θ → −θ while
Eq. (26) means that k′

1 and k′
4 get interchanged as do k′

2 and k′
3.

Equations (31) and (34) then imply that φ1 ↔ −φ4 and φ2 ↔
−φ3. Further, the parameters v, α3, and α4 remain unchanged,
and α1 and α2 get interchanged as do α5 and α6. Equations
(60) and (69) then show that the diagonal entries of M ′

1 get
interchanged while the off-diagonal entries do not change, and
similarly for M ′

2. This means that K1 and K2 remain unchanged
under φ → −φ as we can see from Eqs. (66) and (75).

C. Scaling dimensions of the various
four-fermion interaction terms

In Sec. IV A, we diagonalized the quadratic part of the
Hamiltonian and found the relation between the old and new
bosonic fields. We will now discuss the scaling dimension of
the various terms involving cosines of the bosonic fields (aris-
ing from four-fermion interacting terms) with respect to the
new vacuum obtained after the Bogoliubov transformations.

In general, two-point correlation functions of exponentials
of bosonic fields decay as power laws,

〈0̃|Tei2
√

πβφ̃R1 e−i2
√

πβφ̃R1 |0̃〉 ∼
(

α

v
(1)
R t − x − iαsgn(t )

)β2

,

〈0̃|Tei2
√

πβφ̃R2 e−i2
√

πβφ̃R2 |0̃〉 ∼
(

α

v
(2)
R t − x − iαsgn(t )

)β2

,

〈0̃|Tei2
√

πβφ̃L1 e−i2
√

πβφ̃L1 |0̃〉 ∼
(

α

v
(1)
L t + x − iαsgn(t )

)β2

,

〈0̃|Tei2
√

πβφ̃L2 e−i2
√

πβφ̃L2 |0̃〉 ∼
(

α

v
(2)
L t + x − iαsgn(t )

)β2

,

where v
(1)
R = v

(1)
F + v

(1)
1 − v

(1)
2

2
, v

(2)
R = v

(2)
F + v

(2)
1 − v

(2)
2

2
,

v
(1)
L = v

(1)
F − v

(1)
1 − v

(1)
2

2
, v

(2)
L = v

(2)
F − v

(2)
1 − v

(2)
2

2
. (78)
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Here φ̃Ri and φ̃Li are the new fields obtained after the Bogoli-
ubov transformation and |0̃〉 denotes the new vacuum.

We first consider the operator in Eq. (43) given by

A1 = cos[2
√

2π (φR2 + φL2)]. (79)

Equation (74) implies that

φR2 + φL2 = √
K2(φ̃R2 + φ̃L2). (80)

We find the scaling dimension of the operator in Eq. (79)
by calculating the correlation function 〈0̃|Tei2

√
2π (φR2+φL2 )

e−i2
√

2π (φR2+φL2 )|0̃〉. Using Eq. (78), we find that

〈0̃|Tei2
√

2π (φR2+φL2 )e−i2
√

2π (φR2+φL2 )|0̃〉
= 〈0̃|Tei2

√
2πK2(φ̃R2+φ̃L2 )e−i2

√
2πK2(φ̃R2+φ̃L2 )|0̃〉,

∼
(

α

v
(2)
R t − x − iαsgn(t )

)2K2
(

α

v
(2)
L t + x − iαsgn(t )

)2K2

.

(81)

Setting t = 0, we conclude that at large spatial separation the
correlation function falls off as (α/x)4K2 . This means that the
operator in Eq. (79) has scaling dimension 2K2. This term is
relevant in the renormalization group (RG) sense if the scaling
dimension is less than 2 which requires K2 < 1.

Next, we find the scaling dimension of the umklapp terms
from the appropriate correlation functions. The operators in
the first umklapp term in Eq. (45) are

A2 = cos(4
√

2πφR2) + cos(4
√

2πφL2). (82)

To find the scaling dimension of these operators, we calcu-
late the correlation functions 〈0̃|Tei4

√
2πφR2 e−i4

√
2πφR2 |0̃〉 and

〈0̃|Tei4
√

2πφL2 e−i4
√

2πφL2 |0̃〉 respectively. We find that

〈0̃|Tei4
√

2πφR2 e−i4
√

2πφR2 |0̃〉

∼
(

α

v
(2)
R t − x − iαsgn(t )

) 2(1+K2 )2

K2

×
(

α

v
(2)
L t + x − iαsgn(t )

) 2(1−K2 )2

K2

,

〈0̃|Tei4
√

2πφL2 e−i4
√

2πφL2 |0̃〉

∼
(

α

v
(2)
L t + x − iαsgn(t )

) 2(1+K2 )2

K2 2

×
(

α

v
(2)
R t − x − iαsgn(t )

) 2(1−K2 )2

K2

. (83)

So both the operators in Eq. (82) have the scaling dimension
2(K2 + 1

K2
). Since this is equal to or larger than 4 for all values

of K2, this term is always irrelevant in the RG sense.
Similarly we can calculate the scaling dimension of the

operator in the second umklapp term in Eq. (47) given by

A3 = cos[2
√

2π (φR2 − φL2)], (84)

by looking at the correlation function
〈0̃|Tei2

√
2π (φR2−φL2 )e−i2

√
2π (φR2−φL2 )|0̃〉. This is given by

〈0̃|Tei2
√

2π (φR2−φL2 )e−i2
√

2π (φR2−φL2 )|0̃〉

∼
(

α

v
(2)
R t − x − iαsgn(t )

) 2
K2

(
α

v
(2)
L t + x − iαsgn(t )

) 2
K2

.

(85)

The scaling dimension of this umklapp term is therefore 2/K2.
This term is relevant if the dimension is less than 2 which
requires K2 > 1.

Given the scaling dimensions of the three operators A1,
A2, and A3, we can use RG equations to examine the effect
that they would have on the long-distance properties of the
model. Note that all of them involve fields belonging to only
the second block given in Eq. (67). Following Eqs. (43), (45),
and (47), we can write the contributions of these operators to
the Hamiltonian as

δH =
∫

dx[λ1A1 + λ2A2 + λ3A3],

λ1 = 16 sin(φ/2) sin(θ )[sin(πη) − 1]

(2πα)2
,

λ2 = −8 sin(φ/2) sin(θ )

(2πα)2
,

λ3 = 16 sin(φ/2) sin(θ ) sin(πη)

(2πα)2
. (86)

Given the scaling dimensions 2K2, 2(K2 + 1/K2), and 2/K2

of the operators A1, A2, and A3, we find that the coefficients λi

in Eq. (86) effectively become functions of the length scale L
and satisfy the RG equations

dλ1

dl
= (2 − 2K2)λ1,

dλ2

dl
=

(
2 − 2K2 − 2

K2

)
λ2,

dλ3

dl
=

(
2 − 2

K2

)
λ3 (87)

to first order in the λi’s, where l = ln(L/a) and a is the lattice
spacing. These equations have to be solved with the initial
values of the λi’s at l = 0 (i.e., L = a) given in Eq. (86).
Equation (87) implies that the operator A2 is always irrelevant,
i.e., λ2 → 0 as L → ∞ for any value of K2. The operator A1

is relevant if K2 < 1, i.e., if η > 0, while the operator A3 is
relevant if K2 > 1, i.e., if η < 0. Hence, depending on the sign
of η, either λ1 → ∞ and λ3 → 0 or vice versa, as L → ∞.
Correspondingly, one of the operators, A1 or A3, would get
pinned to its minimum value, and small oscillations around
that pinned value would then describe excitations with a gap
[26].

If either φ or η is close to zero (the latter means that we
are close to half-filling), then we see from Eqs. (75) and (86)
that K2 is close to 1 and the λi’s are close to zero. Then the
RG equations in Eq. (87) imply that the relevant coupling will
grow and become of order 1 only at enormous values of the
length scale L/a. For instance, suppose that K2 is less than but
close to 1. Then the first equation in Eq. (87) along with the
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value of λ1(0) given in Eq. (86) would imply that λ(l ) ∼ 1
will occur at a length scale of the order of

L

a
∼

(
1

λ1(0)

)1/(2−2K2 )

, (88)

which will be very large number if λ1(0) and 1 − K2 are small.
However, all the above statements about RG flows are

based only on the first-order RG equations in Eq. (87). When
the relevant coupling grows, one should consider second-
order terms and see if those can lead to a nontrivial but gapless
fixed point. More accurately, one should consider all the three
operators A1, A2, A3, derive RG equations up to second order
in λ1, λ2, λ3, and K2, and then study what these equations
imply about the fate of the second block at long distances
[27–29]. We note, however, that there are no perturbations
in the first block of Tomonaga-Luttinger liquids. Hence, this
block is expected to remain gapless and be described by a
c = 1 conformal field theory.

D. Scaling dimensions of charge density and superconducting
order parameters

In this section, we will calculate the two-point correlation
functions of charge density and superconducting order pa-
rameters and thereby find their scaling dimensions. We first

discuss the charge density order parameter; this corresponds
to the oscillating part of the density ρ = c†c. In systems
with two Fermi points, the charge density wave (CDW) order
parameter has the form

OCDW = ψ
†
RψL, (89)

where ψR and ψL are the right- and left-moving fermions.
In our model, the CDW order parameter is more compli-
cated since we have four Fermi points which implies that
ρ = ∑

lm ψ
†
l ψmei(k′

m−k′
l )x has oscillating terms whenever l �=

m. The CDW order parameter is therefore given by a sum of
six terms,

OCDW = O1 + O2 + O3 + O4 + O5 + O6,

O1 = ψ
†
1 ψ2, O2 = ψ

†
1 ψ4,

O3 = ψ
†
3 ψ2, O4 = ψ

†
3 ψ4,

O5 = ψ
†
1 ψ3, O6 = ψ

†
2 ψ4, (90)

where ψ1, ψ3 are right-moving fermions and ψ2, ψ4 are
left-moving fermions. We need to calculate six correlation
functions to find the scaling dimensions of O1, . . . , O6. We
find that the correlation functions 〈0̃|O†

1(x, t )O1(0, 0)|0̃〉, . . . ,
〈0̃|O†

6(x, t )O6(0, 0)|0̃〉 are given by

〈0̃|T O†
1(x, t )O1(0, 0)|0̃〉 ∼ 〈0̃|T O†

4(x, t )O4(0, 0)|0̃〉

∼
(

α

v
(1)
L t + x − iαsgn(t )

) K1
2
(

α

v
(1)
R t − x − iαsgn(t )

) K1
2

×
(

α

v
(2)
L t + x − iαsgn(t )

) K2
2
(

α

v
(2)
R t − x − iαsgn(t )

) K2
2

,

〈0̃|T O†
2(x, t )O2(0, 0)|0̃〉 ∼ 〈0̃|T O†

3(x, t )O3(0, 0)|0̃〉

∼
(

α

v
(1)
L t + x − iαsgn(t )

) K1
2
(

α

v
(1)
R t − x − iαsgn(t )

) K1
2

×
(

α

v
(2)
L t + x − iαsgn(t )

) 1
2K2

(
α

v
(2)
R t − x − iαsgn(t )

) 1
2K2

,

〈0̃|T O†
5(x, t )O5(0, 0)|0̃〉 ∼

(
α

v
(2)
L t + x − iαsgn(t )

) (1−K2 )2

2K2
(

α

v
(2)
R t − x − iαsgn(t )

) (1+K2 )2

2K2

,

〈0̃|T O†
6(x, t )O6(0, 0)|0̃〉 ∼

(
α

v
(2)
L t + x − iαsgn(t )

) (1+K2 )2

2K2
(

α

v
(2)
R t − x − iαsgn(t )

) (1−K2 )2

2K2

. (91)

From the power law fall-offs at large spatial separations (setting t = 0), we see that O1 and O4 have scaling dimension K1
2 + K2

2

and are relevant if K1 + K2 < 4, O2 and O3 have scaling dimension K1
2 + 1

2K2
and are relevant if K1 + 1

K2
< 4, and O5 and O6

have scaling dimension K2
2 + 1

2K2
and are relevant if K2 + 1

K2
< 4.

We now discuss the superconducting order parameters and their scaling dimensions. In our model, there are six such terms
whose sum is given by

OSC = O′
1 + O′

2 + O′
3 + O′

4 + O′
5 + O′

6,

O′
1 = ψ

†
1 ψ

†
2 , O′

2 = ψ
†
1 ψ

†
4 ,

O′
3 = ψ

†
3 ψ

†
2 , O′

4 = ψ
†
3 ψ

†
4 ,

O′
5 = ψ

†
1 ψ

†
3 , O′

6 = ψ
†
2 ψ

†
4 . (92)
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Calculating the correlation functions of these order parameters similarly, we find that

〈0̃|T O′†
1 (x, t )O′

1(0, 0)|0̃〉 ∼ 〈0̃|T O′†
3 (x, t )O′

3(0, 0)|0̃〉

∼
(

α

v
(1)
L t + x − iαsgn(t )

) 1
2K1

(
α

v
(1)
R t − x − iαsgn(t )

) 1
2K1

×
(

α

v
(2)
L t + x − iαsgn(t )

) 1
2K2

(
α

v
(2)
R t − x − iαsgn(t )

) 1
2K2

,

〈0̃|T O′†
2 (x, t )O′

2(0, 0)|0̃〉 ∼ 〈0̃|T O′†
4 (x, t )O′

4(0, 0)|0̃〉

∼
(

α

v
(1)
L t + x − iαsgn(t )

) 1
2K1

(
α

v
(1)
R t − x − iαsgn(t )

) 1
2K1

×
(

α

v
(2)
L t + x − iαsgn(t )

) K2
2
(

α

v
(2)
R t − x − iαsgn(t )

) K2
2

,

〈0̃|T O′†
5 (x, t )O′

5(0, 0)|0̃〉 ∼
(

α

v
(1)
L t + x − iαsgn(t )

) (1−K1 )2

2K1
(

α

v
(1)
R t − x − iαsgn(t )

) (1+K1 )2

2K1

,

〈0̃|T O′†
6 (x, t )O′

6(0, 0)|0̃〉 ∼
(

α

v
(1)
L t + x − iαsgn(t )

) (1+K1 )2

2K1
(

α

v
(1)
R t − x − iαsgn(t )

) (1−K1 )2

2K1

. (93)

The power law fall-offs at large spatial separations imply that
O′

1 and O′
3 have scaling dimension 1

2K1
+ 1

2K2
and are relevant

if 1
K1

+ 1
K2

< 4, O′
2 and O′

4 have scaling dimension 1
2K1

+ K2
2

and are relevant if 1
K1

+ K2 < 4, and O′
5 and O′

6 have scaling

dimension K1
2 + 1

2K1
and are relevant if K1 + 1

K1
< 4.

When both K1 and K2 are close to 1, all six order param-
eters (three charge density and three superconducting) have
scaling dimension close to 1 and are therefore relevant. How-
ever, it is interesting to see which of them has the smallest
scaling dimension (i.e., the two-point correlation function de-
cays with the smallest power) and is thus the most relevant. In
Fig. 4, we plot the six scaling dimensions as functions of η for

FIG. 4. Plots of scaling dimensions of the charge density and
superconducting order parameters vs η for φ = π/2. We see that the
most relevant operator is one of the charge density order parameters
with scaling dimension K1

2 + 1
2K2

for η < 0 and K1
2 + K2

2 for η > 0.

φ = π/2. We find that in this case, one of the charge density
order parameters has the smallest scaling dimension for all
values of η: for η < 0, the most relevant order parameter is
ψ

†
1 ψ4 and ψ

†
3 ψ2 with scaling dimension K1

2 + 1
2K2

, while for

η > 0, the most relevant order parameter is ψ
†
1 ψ2 and ψ

†
3 ψ4

with scaling dimension K1
2 + K2

2 .

V. TWO-PARTICLE BOUND STATES

In this section, we will study what happens if the system
has only two particles, in particular, if there are two-particle
bound states. From Eq. (8), it is clear that there are no in-
teractions between the two particles if they are on the same
sublattice (i.e., both have j even or j odd). We will therefore
consider the case where one particle is at site n1 which is odd
and the other particle is at site n2 which is even. We will define
two-particle states as

|n1, n2〉 = c†
n1

c†
n2

|vacuum〉, (94)

regardless of whether n1 < n2 or n1 > n2. Next, we consider
states of the form

|ψ〉 =
∑
n1odd

∑
n2even

ψ (n1, n2)|n1, n2〉. (95)

Since the center of mass is insensitive to interactions, we will
consider wave functions of the form

ψ (n1, n2) = eiP(n1+n2 )/2 f (n2 − n1), (96)

where P is the center-of-mass momentum, and the relative
coordinate wave function f (n2 − n1) can depend on P. Since
the wave function only changes by a minus sign if P is shifted
by 2π (since n1 + n2 is an odd integer), we can take P to lie
in the range [−π, π ].
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Given the Hamiltonian in Eq. (8) (we will set μ = 0 in this
section), we find that the eigenvalue condition H |ψ〉 = E |ψ〉
implies that the wave function f (n) (where n = n2 − n1 is an
odd integer) must satisfy

−2t2 cos

(
P − φ

2

)
[ f (n − 2) + f (n + 2)]

= E f (n) for |n| � 3,

−2t2

[
cos

(
P − φ

2

)
f (3) + cos

(
P + φ

2

)
f (−1)

]
= E f (1),

−2t2

[
cos

(
P − φ

2

)
f (−3) + cos

(
P + φ

2

)
f (1)

]
= E f (−1). (97)

Equations (97) describe a particle moving on a lattice with
only odd-numbered sites, where the hopping amplitude be-
tween sites labeled −1 and +1 is −2t2 cos(P + φ/2) and
the hopping amplitude between all other neighboring sites is
−2t2 cos(P − φ/2). This system clearly has scattering states
for which

f (n2 − n1) = eik(n2−n1 )/2 (98)

for |n2 − n1| � 1, where k lies in the range [−π, π ]. The
energy of such a state is

E (P, k) = −4t2 cos

(
P − φ

2

)
cos k, (99)

which is simply the sum of the energies E (k1) =
−2t2 cos(2k1 − φ/2) and E (k2) = −2t2 cos(2k2 − φ/2) of
two particles moving independently on odd- and even-
numbered sites with momenta

k1 = P − k

2
and k2 = P − k

2
(100)

respectively. These form a band with energies going from
−|4t2 cos(P − φ/2)| to +|4t2 cos(P − φ/2)|.

We now examine if this relative coordinate also has bound
states in addition to the continuum of scattering states dis-
cussed above. The wave function of such states must go to
zero exponentially as |n2 − n1| → ∞. We therefore make the
ansatz that the bound state wave function and energy are given
by

f (n2 − n1) = e−χ (n2−n1 )/2 for n2 − n1 � 1,

= ±eχ (n2−n1 )/2 for n2 − n1 � −1,

and E (P, χ ) = −4t2 cos

(
P − φ

2

)
cosh χ, (101)

where the real part of χ is positive. We then find that such
bound states exist if ∣∣∣∣cos

(
P + φ

2

)
cos

(
P − φ

2

) ∣∣∣∣ > 1, (102)

in which case χ is equal to either r or r + iπ , where r is a
positive real number in both cases, i.e., cosh χ is >0 or <0,

and

er =
∣∣∣∣cos

(
P + φ

2

)
cos

(
P − φ

2

) ∣∣∣∣. (103)

Further, if bound states exist, they appear in pairs with equal
and opposite energies given by

E = ±4t2 cos(P − φ/2) cosh r. (104)

The ± sign in the second line of Eq. (101) and the sign of
cosh χ depend on the signs of cos(P + φ/2), cos(P − φ/2)
and E .

The condition in Eq. (102) implies that there are no bound
states if φ = 0 or π . If 0 < φ < π , Eq. (102) means that there
are bound states if either −π/2 < P < 0 or π/2 < P < π .

Figures 5(a)–5(e) shows the energy levels of a system with
50 sites (for the relative coordinate problem) as a function
of P for various values of φ, with t2 = −1. In each of the
figures, we see a continuum of states lying in the range
[−|4 cos(P − φ/2)|, |4 cos(P − φ/2)|], in agreement with the
discussion above. We also see pairs of bound states with
opposite energies given by the isolated black solid lines; these
appear in the regions given by Eq. (102). Figure 5(f) shows
the maximum value of the inverse participation ratio (IPR) as
a function of P for different values of φ. Given a normalized
eigenstate ψa(n2 − n1) of the Hamiltonian, the IPR is defined
as

∑
n2−n1

|ψa(n2 − n1)|4. It is known that this is a useful
diagnostic for the presence of bound states. As the system size
is taken to infinity, the IPRs of extended states (whose energies
form a continuum) go to zero, while the IPRs of localized
states (i.e., bound states) remain finite. We indeed see that the
ranges of P in Fig. 5(f) where the maximum value of the IPR
is large coincides precisely with the ranges in Figs. 5(a)–5(e)
where there are bound states.

It is interesting to consider what happens if we shift P →
P + π ; this changes the center-of-mass wave function by a
factor of eiπ (n1+n2 )/2. We then see from the discussion follow-
ing Eq. (97) that all the hoppings of the relative coordinate
problem flip sign. We then find that the energies of both
continuum and bound states remain the same but the relative
coordinate wave functions change by a factor of eiπ (n2−n1 )/2

(we recall that n2 − n1 can only change by multiples of 2
when the particle hop). Combining the changes in the center-
of-mass and relative coordinate wave functions, we see that
the total wave function changes by eiπn2 which is equal to
+1 since n2 is even. We therefore see that the wave functions
remain the same for all values of n1 and n2. Thus, the energy
spectrum and eigenstates do not change if P is shifted by π .
Both the energy levels and IPR values shown in Fig. 5 are
consistent with this observation.

A. Implications for low-density limit

The existence of two-particle bound states may have sig-
nificant implications for the nature of the ground state in the
thermodynamic limit, i.e., the limit in which the number of
particles N and the number of sites L are both taken to infinity,
keeping the particle density ρ = N/L = 1/2 + η fixed. For
simplicity, we consider the low-density limit where ρ � 1,
so that interactions between more than two particles can be
ignored (hence we are ignoring the possibility of bound states
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(a) (b) (c)

(d) (e) (f)

FIG. 5. [(a)–(e)] Energy levels of two-particle states vs the center-of-mass momentum P for φ = 0, π/4, π/2, 3π/4, and π , found
numerically for a relative coordinate system with 50 sites, t2 = −1 and μ = 0. The isolated lines (black solid) correspond to two-particle
bound states, while all the other lines correspond to the two-particle continuum of states. There are no bound states for φ = 0 and π . (f)
Maximum IPR vs P for the same values of φ for a relative coordinate system with 100 sites. Whenever the maximum IPR is nonzero (for an
infinitely large system), it corresponds to a two-particle bound state.

of three or more particles). In this limit, it may be preferable
for pairs of particles to occupy the two-particle bound states
with negative energy (which lie below the two-particle con-
tinuum as shown in Fig. 5) rather than for the particles to
occupy single-particle states independently of each other. We
will now briefly examine the values of density and φ where
this is likely to happen.

In the low-density limit, pairs of particles will only occupy
states near the minima of the energy levels shown in Eq. (99),
namely, near P − φ/2 = 0 and k = 0 or near P − φ/2 = π

and k = π , i.e., near P = φ/2 or π + φ/2. On the other
hand, Eq. (102) shows that bound states can appear only if
−π/2 < P < 0 or π/2 < P < π . Thus, P must deviate from
the minima at φ/2 or π + φ/2 by at least −φ/2 for bound
states to start appearing. As a result, the single-particle mo-
menta k1 and k2 must deviate from their minimum possible
value by −φ/4, following Eq. (100). Now, since particles on
a particular sublattice can only move in multiple of two sites,
the ranges of k1 and k2 are equal to π and they are quantized in
units of 2π/L (hence each of them can take L/2 values). Thus,
a deviation of φ/4 from the minimum of the energy means
that the system must have at least (φ/4)/(2π/L) = φL/(8π )
particles on each sublattice occupying the range of φ/4 near
P = 0 and an equal number of particles occupying the same
range near P = π . Hence, the total number of particles must
be equal to at least φL/(2π ), implying that the particle density
must be at least φ/(2π ) before bound states start appearing in
the ground state. To be consistent with the low-density limit,
we see that φ should be much smaller than π . We therefore
see that if φ is small, we require the density to be of the order
of φ/(2π ) before bound states can start playing a role in the

ground states of the system. When the density is larger than
this amount, we may have to reanalyze the mean field theory
done in Sec. III to take the bound states into account.

In conclusion, the possible effects of two-particle bound
states on the ground state may be an interesting problem for
detailed studies in the future.

VI. DISCUSSION

We first summarize our results. We have studied a one-
dimensional model of spinless fermions in which particles
have only next-nearest-neighbor hoppings, where the phase of
the hopping depends on a statistical phase φ and the number
of fermions (0 or 1) on the intermediate site. (This model is
related, by a unitary transformation, to a model of particles
which satisfy a generalized statistics which is governed by
the parameter φ.) This kind of hopping leads to four-fermion
interactions between particles living on the even and odd
sublattices. We looked at the properties of the model under
particle-hole, parity, and time-reversal transformations. We
find that the model is not invariant under P and T separately
but is invariant under the product PT . We then studied a mean
field theory of the model and found that, for a range of values
of the chemical potential, there are four Fermi points; the
locations of these points depend on φ and the filling which
is described by a parameter η. The Fermi points correspond to
two right-moving and two left-moving points.

We then developed a bosonized theory of the excitations
involving modes near the Fermi points; this theory involves
four bosonic fields. We find that the theory has nontrivial in-
teractions only if φ �= 0 and, more remarkably, only if we are
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away from half-filling (i.e., if η �= 0). The original fermionic
theory turns out to lead to a variety of terms in the bosonic
language. Some of the terms are quadratic in the bosonic
fields while others involve cosines of linear combinations of
the bosonic fields. We diagonalized the quadratic terms using
Bogoliubov transformations. It turns out that the four bosonic
fields decouple into two sets of pairs of bosonic fields, thus
giving rise to two separate Tomonaga-Luttinger liquids with
different Luttinger parameters K1 and K2 and different veloci-
ties. (The right- and left-moving bosonic fields turn out to have
different velocities because of the lack of parity symmetry.)
In terms of these parameters, we found the scaling dimen-
sions of the cosine terms mentioned above and the regimes
of parameters φ and η where they are relevant or irrelevant.
Based on these scaling dimensions and RG flow arguments
to first order in the couplings, we found that in one of the
Tomonaga-Luttinger liquids, one of the couplings may grow
at long distances and may thereby produce a gap. However,
we need to examine the effects of higher order terms in the
RG equations to understand if this really occurs. The other
Tomonaga-Luttinger liquid always remains gapless. Next, we
calculated the correlation functions of the 12 different charge
density and superconducting order parameters that exist in
this model, and found that they all decay as power laws.
As a function of φ and η, we found which of these order
parameters is the most relevant (i.e., has the smallest scaling
dimension) and therefore will dominate the correlations in the
long-distance limit. We emphasize that exactly at half-filling
(η = 0), the system is noninteracting for all values of φ and
is described by two Tomonaga-Luttinger liquids which form a
conformal field theory with c = 2.

Finally, we studied the energy spectrum of two particles,
one living on each sublattice. We found that there can be a
bound state of the two particles depending on the value of
their center-of-mass momentum P and φ. Interestingly, the
energies of some of the bound states, when they exist, lie
below the two-particle continuum. This implies that these
bound states can play a role in the form of the ground state
in the thermodynamic limit, and we made an estimate of the
minimum particle density when this might occur.

We now list some problems which may be useful to study
in the future.

(i) In the second block of the two Tomonaga-Luttinger
liquids, the RG equations for λ1, λ2, λ3, and K2 need to be
found up to second order to obtain a better understanding of
the fixed point that the system may reach at long distances
[26–29]. In particular, we would like to know if the fixed point
is gapless or gapped.

(ii) It may be interesting to examine what happens if the
fillings in the even and odd sublattice are not the same. This
would require us to take the chemical potentials to be different
on the two sublattices in order to develop a mean field theory
followed by bosonization.

(iii) The effect of the two-particle bound states on the
ground state of the system in the thermodynamic limit needs
to be understood [30,31]. For example, we can investigate if
the ground state is a condensate of pairs of particles.

(iv) We can study if there are bound states of three or more
particles for some values of the center-of-mass momentum
and φ.

(v) We may ask what happens when a nearest-neighbor
hopping t1 is present in addition to the next-nearest-neighbor
hopping t2 [see Eq. (4)]. Such a model is considerably more
complicated to analyze since it does not conserve the number
of particles on the two sublattices separately, and the models
with filling fractions 1/2 + η and 1/2 − η are no longer re-
lated to each other by a particle-hole transformation. We find
that for small values of t1/t2, there is no significant change
in the results, either for the bosonization analysis or the two-
particle bound states, compared to the results for t1 = 0 that
we have presented in this paper. For |t1/t2| > 2, however, a
different phase appears in which there are only two Fermi
points. This phase has been studied in detail at half-filling in
Ref. [13].

We conclude by discussing possible realizations of the
model considered in this paper. Apart from theoretical
ideas for realizing generalized statistics in one dimension
[16–20], systems of fermionic or bosonic atoms with density-
dependent hoppings have been proposed theoretically [32–40]
and realized experimentally [21,41]. The system studied in
Ref. [21] is particularly promising since the phase of the
hopping of spin-1/2 fermions in one spin state is dependent on
the density of fermions in the opposite spin state, analogous
to our model where sublattice plays the role of spin.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION OF
BOSONS WITH OPPOSITE CHIRALITIES AND

UNEQUAL VELOCITIES

In this Appendix, we will discuss the Bogoliubov trans-
formation which was used to diagonalize the Hamiltonians in
Eqs. (62) and (71). We consider a model with two bosonic
fields with opposite chiralities and unequal velocities v1 and
v2 and a coupling λ between them. The Hamiltonian of this
system is given by

H =
∑
q>0

q[v1b†
q,Rbq,R + v2b†

q,Lbq,L

+ λ(b†
q,Rb†

q,L + bq,Lbq,R)], (A1)

where bq and b†
q are bosonic annihilation and creation opera-

tors which satisfy

[bq,ν , b†
q′,ν ′ ] = δq,q′δν,ν ′ ,

[bq,ν , bq′,ν ′ ] = 0,

[b†
q,ν , b†

q′,ν ′ ] = 0, (A2)

where ν, ν ′ = R, L. We will discuss the diagonalization of
the Hamiltonian in Eq. (A1) by a Bogoliubov transformation
for a particular value of q. The Bogoliubov transformation is
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given by

bq,R = αb̃q,R + βb̃†
q,L,

bq,L = αb̃q,L + βb̃†
q,R,

α = cosh θ, β = sinh θ. (A3)

We have chosen α and β to have these forms to satisfy the
commutation relations given in Eq. (A2) for the b̃ operators
also. The Hamiltonian for a particular q is then given by

H = q
(v1 + v2

2
(α2 + β2) + 2αβλ

)
(b̃†

q,Rbq,R + b̃†
q,Lb̃q,L )

+ q
v1 − v2

2
(b̃†

q,Rbq,R − b̃†
q,Lb̃q,L ) + q[(v1 + v2)αβ

+ λ(α2 + β2)](b̃†
q,Rb̃†

q,L + b̃q,Lbq,R). (A4)

To have a diagonal Hamiltonian, α and β must satisfy (v1 +
v2)αβ + λ(α2 + β2) = 0 which implies

tanh(2θ ) = − 2λ

v1 + v2
. (A5)

Using this in Eq. (A4), we obtain

H = q
(
v + v1 − v2

2

)
b̃†

q,Rbq,R

+q
(
v − v1 − v2

2

)
b̃†

q,Lb̃q,L,

v = v1 + v2

2

√
1 − 4λ2

(v1 + v2)2
. (A6)

From Eq. (A6), we see that the system has a well-defined
ground state if v is real and larger than |v1 − v2|/2. We find
that these conditions hold if

v1v2 > λ2. (A7)

The new bosonic fields have the forms

b̃q,R = bq,R + γ b†
q,L√

1 − γ 2
,

b̃q,L = bq,L + γ b†
q,R√

1 − γ 2
,

γ = 1 − K

1 + K
, (A8)

where

K =
√

v1 + v2 − 2λ

v1 + v2 + 2λ
. (A9)

We note that the parameters v and K in Eqs. (A6) and (A9) do
not depend on the value of q.

APPENDIX B: MAPPING BETWEEN φ AND π + φ

In this Appendix, we will show that the systems defined
by Eq. (8) for φ and π + φ can be mapped to each other by
transforming the fermionic operators in a particular way. We
will first consider an infinite system since the transformation

is easier to discuss in that case. We consider the Hamiltonian
H given in Eq. (20), which we rewrite as

H =
∑

j

[cos(φ/2)(c†
j c j+2 + c†

j+2c j ) + i sin(φ/2)(2n j+1−1)

× (c†
j c j+2 − c†

j+2c j ) − μc†
j c j]. (B1)

We now use the fact that 2n j − 1 is a Hermitian operator with
eigenvalues equal to ±1; further, it anticommutes with c j and
c†

j but commutes with ck and c†
k for all k �= j. We define new

fermionic operators

c̃ j = c j

∞∏
l=0

(2n j+1+2l − 1) if j is even,

c̃ j = c j

∞∏
l=0

(2n j−1−2l − 1) if j is odd. (B2)

In words, c̃ j is equal to c j multiplied by a string of 2nk − 1
on its right on all the sites of the odd sublattice if j lies on
the even sublattice and by a string of 2nk − 1 on its left on
all the sites of the even sublattice if j lies on the odd sublat-
tice. The crucial point to note is that the transformations in
Eq. (B2) maintain the anticommutation relations {c̃ j, c̃k} = 0
and {c̃ j, c̃†

k} = δ jk for all values of j, k, and c̃†
j c̃ j = c†

j c j = n j .
In terms of the new operators, the Hamiltonian in Eq. (B1)
takes the form

H =
∑

j

[cos(φ/2)(2n j+1 − 1)(c̃†
j c̃ j+2 + c̃†

j+2c̃ j )

+ i sin(φ/2)(c̃†
j c̃ j+2 − c̃†

j+2c̃ j ) − μc̃†
j c̃ j]. (B3)

Next, we do another transformation

c̃ j → ei jπ/4c̃ j and c̃†
j → e−i jπ/4c̃†

j . (B4)

Then Eq. (B3) turns into

H =
∑

j

[− sin(φ/2)(c̃†
j c̃ j+2 + c̃†

j+2c̃ j ) + i cos(φ/2)

× (2nj+1 − 1)(c̃†
j c̃ j+2 − c̃†

j+2c̃ j ) − μc̃†
j c̃ j]. (B5)

Comparing Eqs. (B1) and (B5), we see that φ has effec-
tively changed to π + φ so that cos(φ/2) → − sin(φ/2) and
sin(φ/2) → cos(φ/2).

We now discuss how the above transformations work for
a finite-sized system with periodic boundary conditions. We
assume that the total number of sites N is even so that each
sublattice has N/2 sites and the site indices in Eq. (B1) can
only go from 1 to N . Then the string of 2nk − 1 in the first
line of Eq. (B2) ends on the right at k = N − 1 and the string
in the second line ends on the left at k = 2. Then if we look
at the hopping between sites 1 and N − 1 or between 2 and
N , we find that they will satisfy periodic boundary conditions
only if

N/2∏
l=1

(2n2l−1 − 1) = 1 and
N/2∏
l=1

(2n2l − 1) = 1. (B6)

These conditions imply that the number of unoccupied sites
(which have nk = 0) must be even on both even and odd
sublattices, namely, N/2 minus the number of particles must
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be even on both sublattices. Next, we see that the transfor-
mation in Eq. (B4) will satisfy periodic boundary conditions
if eiNπ/4 = 1, i.e., if N is a multiple of 8. Hence, N/2 is an
even number and therefore the previous condition implies that
the number of particles on each sublattice should be even so
that the mapping from φ to π + φ can work with periodic
boundary conditions.

We note that the transformations given in Eq. (B2) between
the old and new fermionic operators are highly nonlocal.
Perhaps for this reason, the symmetry between φ and π + φ

is not evident in the results obtained by bosonization. Namely,
the expressions for various quantities in Sec. IV, such as θ , v,
K1, and K2 in Eqs. (27), (30), (66), and (75), are not invariant
under φ → π + φ.
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