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Thermoelectric Hall conductivity of fractional quantum Hall systems on a disk
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For fractional quantum Hall states on a finite disk, we study the thermoelectric transport properties under
the influence of the presence of an edge and its reconstruction. In a recent study on a torus [Phys. Rev. B
101, 241101(R) (2020)], Sheng and Fu found a universal non-Fermi liquid power-law scaling of the thermo-
electric conductivity αxy ∝ T η for the gapless composite Fermi liquid state. The exponent η ∼ 0.5 appears an
independence of the filling factors and the details of the interactions. In the presence of an edge, we find the
properties of the edge spectrum dominants the low-temperature behaviors and a nonuniversal scaling behavior in
low temperature is observed. To consider individually the effect of the edge states, the real space entanglement
spectrum of the model wave function, which contains only the spectrum of edge excitation is employed. Its
spectrum energies could be tuned by varying the radius of the subsystem. In the non-Abelian Moore-Read state,
the Majorana neutral edge mode is found to have more significant effects than that of the charge mode in the low
temperature.
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I. INTRODUCTION

When the strongly interacting two-dimensional electron
gas (2DEG) is exposed in a perpendicular strong magnetic
field and extremely low temperature [1], the formed fractional
quantum Hall (FQH) state reveals the nontrivial topological
properties, such as fractional charge excitations and frac-
tional statistics [2]. Some of the FQH states [3] could have
non-Abelian fractional excitations and relevant edge modes.
In a FQH state, the bulk is a gapped insulator and the
low-lying excitation in the bulk is the neutral magnetoro-
ton excitation [4], which could be described as separating
pairs of the particle-hole excitations [5]. Furthermore, in a
realistic Hall bar sample which is usually applied to mea-
sure the conductance of FQH state, the existence of an open
boundary is usually unavoidable. The edge physics plays
an essential role to uncover the bulk topological properties
due to the so-called bulk-edge correspondence [6,7]. On the
edge of a FQH droplet, the description of Fermi liquid the-
ory is broken down and the interacting electrons prefer to
form a chiral Luttinger liquid (CLL) [8]. For a Laughlin
state at filling factor ν = 1/m, the action of the chiral edge
excitation [8] is

S = m

4π

∫
dtdx(∂t + v∂x )φ∂xφ, (1)

where the φ(x, t ) is the chiral (right moving) bosonic field.
The velocity of edge excitation v is a boundary effect which
is determined by the edge potentials. Therefore, the edge
velocity is actually an external parameter that is not contained
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in the intrinsic topology. It is theoretically predicted that the
current-voltage dependence in the tunneling between a Fermi
liquid and a quantum Hall edge obeys a universal power-law
I ∼ V m [9]. Such universality, however, has not been con-
clusively observed in experiments. A very likely reason is
the occurrence of additional nonchiral edges that are not tied
to the bulk topology [10], namely, the edge reconstruction,
which is a consequence of the competition between the pos-
itive background confinement potential and electron-electron
Coulomb repulsive interaction [11–14]. It induces nonchiral
edge modes and thus breaks the CLL description. In spite
of its nonuniversality, one of us recently found that in the
entanglement spectrum, which represents the virtual edge ex-
citations of the reduced density matrix in a bipartite wave
function, still can be tuned and reconstructed by varying the
radius of the subsystem [15].

Since the edge excitation is gapless and has lower energy
than that of the neutral magnetoroton excitation in the bulk,
intuitively, it dominates the low-lying energy behavior of the
system, regardless of the charge or heat transport experiments.
Moreover, while the back scattering between two nearest
neighboring charged modes occurs, a charged neutral mode
could appear, such an example is the ν = 2/3 state [16,17].
In a non-Abelian FQH state, such as the Moore-Read state at
ν = 5/2, a Majorana neutral mode exists which is the heart
of its non-Abelian topology. Because of the charge neutrality,
these neutral edge modes can not be detected directly by elec-
trical measurements. Then the thermoelectric phenomena that
provides the direct conversion between heat and electricity is
interesting and useful. In a thermoelectric measurement, one
sets up a temperature gradient ∇T , and an electrical current
I is generated by the system to compensate for its effect.
They are related to each other by Ii = −αi j∇ jT where αi j is
the thermoelectric conductivity. Experimentally, one usually
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measures the thermopower Sxx and Nernst coefficient Sxy and
they are related to αi j by Sik = αi jρ jk , in which ρ is resistivity.
It is known that the thermoelectric response is directly related
to thermal entropy per electron [18–21]. Because of the huge
degeneracy of the non-Abelian FQH states with quasiparticle
excitations, it was proposed to probe the non-Abelian statistics
of the quasiparticles and measure their quantum dimension
[22,23]. Very recently, it is shown that two-dimensional quan-
tum Hall systems can reach thermoelectric figure of merit on
the order of unity down to low temperature, as a consequence
of the thermal entropy from the massive Landau level (LL)
degeneracy without considering the Coulomb interaction [24].

For a Fermi liquid, since the entropy is associated with
the number of thermal excitations within kBT near the Fermi
energy, a linear T dependence has been conjectured [25,26].
While including the Coulomb interaction, the LL degeneracy
is lifted, and FQH states are formed at specific fillings factors.
In that case, the electron system is a non-Fermi liquid and the
ground state has only the degeneracy due to the center of mass
translational symmetry in a translational invariant system. In
Ref. [27], Sheng and Fu calculated the αxy for FQH system
in a torus geometry. A non-Fermi liquid pow-law scaling
αxy ∝ T η with η ∼ 0.5 for composite Fermi liquid states at
ν = 1/2 and ν = 1/4 was found. αxy vanishes exponentially
αxy ∼ exp(−	/kBT ) with a neutral magnetoroton gap for ν =
1/3 Laughlin FQH state while T → 0. However, as we stated
above, the low-lying energies of the FQH system are domi-
nated by the edge states in system with a boundary which was
neglected in the torus geometry. They should naturally have
contributions in the low-temperature transport. In this work,
we consider the thermoelectric conductivity in disk geometry
to see how does the edge state and its reconstruction affect the
thermoelectric conductivity, especially the low-temperature
scaling behavior. To isolate the effect of the edge excitations,
the real space entanglement spectrum of the model wave
function is used to calculate the αxy for considering the virtual
edge excitations along the boundary of the subsystem. We will
show that the edge, and its reconstruction result in a nonuni-
versal non-Fermi liquid scaling behaviors in low temperature.
The Majorana edge mode in Moore-Read state is found to be
important for the low-temperature measurements.

The rest of this paper is organized as following: In Sec. II,
we compare the thermoelectric conductivity results from en-
ergy spectrum with and without edge states. The dipolar
fermions in FQH and trivial phases are also considered. In
Sec. III, the real space entanglement spectrum is used to
analyzing the effect of the edge states. The non-Abelian FQH
state and the dependence of αxy are also considered, and
Sec. IV gives the conclusions and discussions.

II. COMPARING DIFFERENT GEOMETRIES AND PHASES

Since the thermoelectric conductivity is directly related
to the thermal entropy per electron, we perform a full diag-
onalization in a finite system at a given filling factor. The
eigen-energies are used to calculate the partition function Z
at a given temperature T ,

Z =
∑

i

exp(−Ei/kBT ). (2)
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FIG. 1. The energy spectrum for 8 electrons in 24 orbitals with
Coulomb interaction on torus (a) and disk (b). ky is the center-of-
mass momentum in y direction on torus and Mtot is the total angular
momentum in z direction on disk. In panel (b), the positive confine-
ment is set at a distance d = 0.5
B from electron layer. The gapless
edge mode dispersion is labeled by red color. Panels (c) and (d) de-
pict the αxy (in units of kBe/h) versus the thermal energy kBT in units
of e2/ε
B = 1 for 6–8 electrons at ν = 1/3. In the inserted plots in
panel (c), we fit the low-temperature data with αxy ∼ exp(−	/kBT ).
In panel (d), two confinement potentials are used. d = 0.5
B is in the
Laughlin phase and d = 1.5
B is in the edge reconstructed phase.

Then the thermal entropy can be obtained as

S = −
∑

i

ρi ln ρi, (3)

with ρi = exp(−Ei/kBT )/Z the probability for the ith state to
be occupied at temperature T and Ei the eigen-energies. In
the absence of disorder, thermoelectric Hall conductivity αxy

is proportional to the entropy density as

αxy = s

B
= S

Norb
, (4)

where Norb is the number of orbitals for electrons occupying
in a given Landau level and s is S divided by the area of
2DEG which is 2π
2

BNorb. Here 
B is the magnetic length

B = √

h̄c/eB. Suppose the dimension of the Hilbert space is
�, in high temperature limit such that the thermal activation
overwhelms all the energy scale of the many-body system,
such as the neutral gap or quasiparticle excitation gap in the
bulk, namely kBT � 	. Each eigenstate has identical prob-
ability ρi = 1/�, and thus the thermal entropy is classical
S = ln �. In this case, αxy = ln �/Norb is a constant. For a
state with Ne electrons at filling ν = Ne/Norb, the dimension of
the Hilbert space, which is just a binomial � = CNe

Norb
, reaches

its maximum at ν = 1/2 and thus the half filling has the
largest αxy. It has potential to enable thermoelectric cooling
and power generation with unprecedented efficiency [24].

At low temperature, as shown in Fig. 1, we compare the
results on torus with that on disk. For Coulomb interac-
tion at ν = 1/3, the energy spectrum on torus has threefold
degeneracy due to the center-of-mass translational symme-
try. In this case, the threefold degenerated ground states are
gapped by neutral magnetoroton excitation in the bulk [19].
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In disk geometry, mimicking the 2DEG in semiconductor
GaAs-GaAlAs hetero-structure, we diagonalize a Hamilto-
nian which contains the 2DEG and a homogeneous positive
background confinement potential [11,12]. The background
potential origins from the δ-doping layer at a distance d
from the electron layer which is treated as homogeneous with
density σ . Then the electron on the mth orbital feels the con-
finement energy Um = 〈m| eσ√

d2+r2 |m〉. As shown in Fig. 1(b),
the ground state is unique and a chiral gapless edge excita-
tion (its lowest branch are in red) dominates the low-lying
energy spectrum in thermodynamic limit. As a result, the ther-
moelectric Hall conductivity αxy at low temperature exhibits
different behaviors in two cases. In Fig. 1(c) which was also
shown in Ref. [27], the αxy is saturated at a value ln 3/Norb,
while T → 0 due to the threefold ground-state degeneracy.
For a gapped phase on torus, the low-temperature data before
saturation could be fitted by exp(−	/kBT ) as shown in the
inserted plot. 	 is actually the neutral gap which is labeled by
arrow in Fig. 1(a). In disk geometry, as shown in Fig. 1(d), the
αxy for ν = 1/3 FQH state has a similar behavior as that for
the composite Fermi liquid at ν = 1/2 and ν = 1/4 on torus.
It approaches to zero while T → 0. After neglecting the data
below the average energy gap in the spectrum, which origins
from the finite-size effects, we fit the low-temperature data
using αxy ∝ T η with η 	 0.895 for d = 0.5
B and η 	 0.780
for d = 1.5
B. The reason to take these two cases is that the
Laughlin-like ground state which has total angular momen-
tum Mtot = 3Ne(Ne − 1)/2, only survives as the global ground
state in window d ∈ [0, 1.35]
B (for 8 electrons). When d ∼
1.5
B, the ground-state angular momentum is changed and the
edge reconstruction occurs. Here we notice that for a given d ,
the data for different system sizes collapse on to one curve
which demonstrates a small finite-size effect. Therefore, in
the presence of edge, we find varying confinement potential
significantly changes the low-temperature scaling behavior of
the αxy.

As another example to see the different low-temperature
behaviors of αxy in gapped and gapless phases, we consider
the dipole-dipole interaction for degenerate quantum gas in a
fast rotating trap [28]:

Vdd (�r, θ ) = r2 − 3(z cos θ + x sin θ )2

r5
, (5)

where θ is the angle between the dipole moment and the z
axis. In a fast rotating limit at which the rotating frequency is
close to that of the harmonic trap potential, the system enters
into the quantum Hall regime [28]. It was found [29–31] that
the Laughlin phase robustly survives while the tilting angle
θ is small. As the θ is increased, the ground-state gap is
gradually reduced and finally closed, then the system enters
into a cluster state [30] because of the anisotropic attractive
interaction in one direction. The interaction in Eq. (5) could
be rearranged as

Vdd (�r, θ ) = 3 cos2 θ − 1

2

r2 − 3z2

r5
+ 3 sin2 θ

2

y2 − x2

r5
. (6)

The first term is isotropic and the second term is anisotropic
in the 2D plane. The magic angle θ = 54.7◦ satisfies the con-
dition 3 cos2 θ − 1 = 0, at which the interaction only contains
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FIG. 2. For fast-rotated dipolar fermions on a torus, finite-size
scalings of the ground energy gap at different titled angles θ for
the dipole moment. The particle number is 8 and the thickness in
z direction is set to q = 0.01 in unit of l = √

h̄/(2μω) where μ

is the effective mass and ω is the frequency of the trap potential.
θ = 54.7◦ is the magic angle at which the dipole-dipole interacting is
purely anisotropic and the system is gapless. More details are in Ref.
[29]. Panels (b) and (c) depict the αxy and fittings for 6–8 particles
at θ = 0◦ and θ = 54.7◦. The gapless phase shows the Fermi liquid
behavior with η 	 1.

the second term. In Fig. 2(a), we plot the energy gap between
the lowest two states via diagonalizing Eq. (6) on torus for
several system sizes. The extrapolation in thermodynamic
limit from finite-size scaling clearly tells us the system is
gapped for θ = 0◦, 30◦ and gapless for θ = 54.7◦, 90◦, re-
spectively. In Figs. 2(b) and 2(c), we plot the αxy for θ = 0◦
and 54.7◦ which are in two different phases. The αxy in FQH
gapped phase is similar to that of the Coulomb Hamilto-
nian in Fig. 1(a) and the low-temperature part still satisfies
αxy ∼ exp(−	/kBT ). However, in a topological trivial gap-
less phase at 1/3 filling, as shown in Fig. 2(c), we find
the low-temperature behavior could be fitted by αxy ∼ T 0.97,
which is very close to the Fermi liquid exponent η = 1. There-
fore, from low-temperature thermoelectric Hall conductivity,
we speculate the phase transition in dipolar fermions is a
topological phase to Fermi liquid transition.

Based on the results of above two cases, we suspect that the
existence of the gapless edge mode or gapless trivial phase
could have different scaling exponent of the thermoelectric
Hall conductivity in low temperature.

III. THE EFFECTS OF PURE EDGE STATES

In previous section, we observe that the presence of an
edge significantly changes the low-temperature behaviors of
the thermoelectric Hall conductivity. In the energy spectrum,
we always have both the bulk states and the edge states. To
individually consider the effect of the edge states, we calculate
αxy for the real space entanglement spectrum [32–34] of a
model wave function. To be precise, a bipartition of a quantum
system is defined when the Hilbert space is divided into two
subsystems, H = HA

⊗
HB. Then a Schmidt decomposition
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is performed to the ground state [35,36]:

|�〉 =
∑

i

e− 1
2 ξi

∣∣ψ i
A

〉⊗ ∣∣ψ i
B

〉
, (7)

where the exp(−ξi ) = λi are the eigenvalues of the reduced
density matrix of subsystem ρA = TrB|�〉〈�|. It is normalized
by

∑
i e−ξi = 1. If ρA has finite dimension, the von Neumann

entanglement entropy is defined as SA = −∑
i λilogλi =∑

i ξi exp(−ξi ). It was known by Haldane [37] that the full
structure of the “entanglement spectrum” (ES), which is the
logarithmic Schmidt spectrum of level ξi, contains much more
information about the entanglement between two halves than
that from SA only. It plays a key role in analyzing the topolog-
ical order of the FQH state. The structure of ES is analogous
to the low energy excitations of a many-body Hamiltonian
[6,7]. Especially, for the model wave function, the ES only
contains the edge state (CFT state). The counting number
per momentum sector of ES is identical to that of the edge
spectrum in CLL theory. Beyond the counting, one of us [15]
recently found that the entanglement spectrum in real space
cut appears the signals of edge reconstruction via tuning the
area of the subsystem. The edge velocity reaches its minimum
when the area of subsystem is equal to that of the correlation
hole. For example, for a subsystem with NA electrons, while
the radius of subsystem RA is changed, the energies of the
ES are changed although the counting numbers are invariant.
The energy with momentum M0 + NA is smaller than that of
the Laughlin state at momentum M0 when RA = √

2NA/ν.
We called it ES reconstruction since the similar phenomena
happens in the real edge density reconstruction as shown in
Refs. [11,12].

We consider the ν = 1/3 Laughlin wave function for 10
electrons on a disk which can be obtained either from diag-
onalizing a V1 pseudopotential hamiltonian [38] or from the
Jacks polynomial recipe [39,40]. Because the bipartition we
used conserves the rotational symmetry, the ES for a given
number of electrons in subsystem NA and radius of the circular
cut RA are shown in Figs. 3(a) and 3(b). Here we consider
the subsystem contains four particles and the radius of the
subsystem RA is a parameter we tuned. It shows that the
ES for the same NA and different RA have different spectra.
Consequently, their thermoelectric Hall coefficient αxy have
different behaviors at low temperature as shown in Figs. 3(c)
and 3(d), respectively. To eliminating the finite-size effect, we
still fit the low-temperature data above the typical average
energy interval. The exponent are η 	 0.973 and η 	 0.753
for two cases, both of which are larger than η 	 0.5 on torus
and smaller than that of the Fermi liquid value. Therefore, the
FQH edge states still possess non-Fermi liquid characteristics,
but its scaling exponent could be changed by tuning the edge
velocity (slope of the dispersion near k ∼ 0) and thus nonuni-
versal.

Now let us move to the non-Abelian FQH state which has
a more complicate edge structure. One prominent example
is the Moore-Read state [41] which is one of the candidate
ground-state description for ν = 5/2 filling in the second
Landau level. Its model wave function could be obtained
from diagonalizing a three-body V3 pseudopotential [42]
Hamiltonian or Jack polynomials. The subscript 3 is the rel-
ative angular momentum of three-body interacting particles.
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FIG. 3. The real space ES for subsystem of NA = 4, RA =
4.0
B(a) and RA = 4.9
B(b) for a 10-electron Laughlin state. NA

and RA is number of electrons and radius of the subsystem. The
typical energy level spacing is defined as the gap between the low-
est two states. 	M is the angular momentum difference between
the excited and ground state. Panels (c) and (d) depict the αxy

and low-temperature fittings from the spectrum panel (a) and panel
(b) correspondingly.

Figure 4(a) depicts the ES for 12-electron Moore-Read state.
Unlike the Laughlin state, the counting numbers of edge spec-
trum becomes to be 1, 1, 3, 5 . . . . This is due to the existence
of a neutral Majorana mode in addition to the bosonic charge
mode [43]. Figure 4(b) depicts the energy spectrum of a mixed
Hamiltonian

H = (λ − 1)H2B + λH3B, (8)

with λ = 0.5 for 12 electrons with different confinements.
We label the edge states (blue) and bulk states (green) in
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FIG. 4. (a) ES for NA = 6 and RA = 3.5 in a 12-electron
Moore-Read state. (b) The low-lying energy spectrum of a mixed
Hamiltonian Eq. (8) with λ = 0.5 for 12 electrons with d = 0.5
B.
The lowest branch of Majorana mode which has one order lower
energy than that of the bosonic charge mode has been labeled in red.
In panels (c) and (d), we plot the αxy versus kBT for panels (a) and
(b), respectively, with different parameters.
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FIG. 5. The ground-state quantum number Mtot and low tem-
perature αxy as varying d/
B for 8 electrons at ν = 1/3. The peak
of αxy corresponds to the ground-state phase transition or the edge
reconstruction.

different colors. In Eq. (8), H2B contains the electron-electron
Coulomb interaction and confinement potential and H3B is the
three-body model Hamiltonian. The reason of mixing H3B is to
separate the ground state and edge states from bulk states since
the edge mode has zero energy in pure three-body Hamilto-
nian (λ = 1). The lowest branch of Majorana mode is labeled
in red color. Figures 4(c) and 4(d) show their correspond-
ing αxy in low temperature. For the ES, we have η 	 0.834
and η 	 0.774 for RA = 3.5 and 4.5, respectively. Just like
the case of Laughlin state, tuning the area of the subsystem
or the edge velocities changes the scaling exponent η. For
the energy spectrum, we plot the αxy for d = 0.5
B in the
Moore-Read phase and d = 0.8
B in the reconstructed phase
according to Ref. [43]. Their fitting exponents are η 	 0.658
and η 	 0.599, respectively. In all cases, the η decreases
as decreasing the strength of the confinement potential (in-
creasing d in energy spectrum or increasing RA in ES before
reconstruction). However, it is known [44,45] that the neutral
edge mode has one order lower velocity or excitation energy
than that of charge mode. From the αxy as labeled by arrow in
Fig. 4(d), the low-temperature behaviors are dominated near
the scale kBT ∼ 0.01, which has the same order of the excited
energy for neutral mode as labeled in Fig. 4(b). Therefore,
for the non-Abelian FQH state, the Majorana neutral edge
mode has much more significant contribution in thermoelec-
tric conductivity and could be more easy to be detected in the
low-temperature thermal Hall experiments [22,23].

In addition to the scaling behavior in low temperature, the
edge confinement also has effects on the value of αxy itself.
In Fig. 5, we plot the ground-state angular momentum and
αxy as a function of the confinement parameter d/
B. Two
temperatures are considered. The Mtot is the total angular
momentum of the ground state which is 3Ne(Ne − 1)/2 for
Laughlin state. While increasing d , the electrons firstly stay
stably in FQH phase and then form stripes at the edge which

is accompanied with a jump of Mtot [8,11]. If we treat the Mtot

as the ground state quantum number, the jumps in Mtot corre-
spond to ground-state phase transitions and each Mtot could be
treated as a phase. It is interesting to see that in the Laughlin
phase for d < 1.35
B, thermoelectric Hall conductivity αxy is
smaller than that of the reconstructed phase. This is because
the edge reconstruction d > 1.35
B induces more edge modes
and thus make more contributions to the thermal transport.
Moreover, the αxy has maximum at the phase transition and
minimum at the center of each phases. As the temperature
increasing, the structure of αxy is gradually erased by thermal
excitations.

IV. DISCUSSIONS AND CONCLUSIONS

In this work, we study the thermoelectric Hall conduc-
tivity of the FQH system in disk geometry, especially its
low-temperature behaviors. Because of the presence of gap-
less edge mode, the low-temperature behaviors of αxy in disk
geometry are similar to that of the gapless composite Fermi
liquid state on a torus. Because the edge spectrum could be
changed by tuning the strength of the background confinement
in energy spectrum or the area of subsystem in the bipartition
ES, the scaling exponent η of αxy ∼ T η in low temperature has
a strong dependence on the system parameters. Comparing
to the results on torus, we find η decreases as decreasing
the strength of the confinement potential (increasing d in en-
ergy spectrum or increasing RA in ES before reconstruction).
For the dipolar fermions at the magic angle, we verify the
Fermi liquid behavior with η ∼ 1.0 after gap closing. For
non-Abelian Moore-Read state, we find the Majorana neutral
edge mode has more significant contribution to the thermo-
electric Hall conductivity and dominates the low-temperature
behavior, explaining the reason of the non-Abelian signals
appear in the low-temperature thermal Hall experiments.

In conclusion, comparing to the results of the composite
Fermi liquids on torus, we find the edge excitations of the
FQH states dominate the low-temperature scaling behavior
of the αxy ∼ T η. Both the αxy and its scaling exponent η are
strongly affected by the edge potential which makes the scal-
ing nonuniversal in low temperature. Introducing more edge
modes or the neutral mode with lower excitation energy con-
tributes significantly to αxy at low-temperature thermal Hall
transport. In case of the edge reconstruction occurring, the
thermoelectric Hall conductivity has a peak which probably
could be observed in future experiments.
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