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Magnetic order and 5d1 multipoles in a rhenate double perovskite Ba2MgReO6
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Structural and magnetic transitions in a double perovskite hosting 5d1 Re ions are discussed in the context
of recently published high-resolution x-ray diffraction patterns [D. Hirai et al., Phys. Rev. Res. 2, 022063(R)
(2020)]. Our symmetry-inspired analysis of a reported structural transition below room temperature, from cubic
to tetragonal symmetry, reveals order of a lone Eg-type charge quadrupole. A magnetic motif at lower temperature
is shown to be composed of two order parameters, with propagation vectors k = (0, 0, 1) and k = (0, 0, 0),
which imply a magnetic space group Pnn′m′ . A concomitant lowering of Re site symmetry adds a T2g type to
permitted quadrupoles. Findings from our studies, for structural and magnetic properties of Ba2MgReO6, surface
in predicted amplitudes for x-ray diffraction at rhenium L2 and L3 absorption edges, and magnetic neutron
Bragg diffraction. Specifically, entanglement of anapole and spatial degrees of freedom creates a quadrupole
in the neutron scattering amplitude. It would be excluded in an unexpected scenario whereby the rhenium
atomic state is adequately described by a single value of the total angular momentum. Quadrupoles in x-ray
and neutron diffraction amplitudes possess different angular symmetries, since the former is purely electronic
and the latter purely magnetic. A chiral signature visible in resonant x-ray diffraction will be one consequence
of predicted chargelike quadrupole and magnetic dipole orders. A model Re wave function consistent with all
current knowledge is a guide to electronic and magnetic multipoles engaged in x-ray and neutron diffraction
investigations.
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I. INTRODUCTION

Electronic and magnetic properties of double perovskites
hosting heavy transitions metal ions are popular topics of
research. Compounds in the news include Ba2MgReO6 [1,2],
Ba2BOsO6 with B = Zn, Mg, Ca [3,4], Ba2YReO6 [5,6], and
Sr2MgReO6 [7]. The spin-orbit coupling in the single-ion
Hamiltonian increases in magnitude as Z4 to a good approxi-
mation, where Z is the atomic number. For 5d systems it is of a
similar order of magnitude to both the Hund’s and crystal field
terms, and a range of behaviors can be realized depending
on the balance between these and the magnetic exchange (the
coupling constant).

The heavy transition ions possess electronic and magnetic
multipoles that deflect beams of neutrons and x rays. In addi-
tion to conventional magnetic dipoles, formed by expectation
values of spin S and orbital L operators, there is evidence
of quadrupoles and octupoles [1–6]. If ions occupy acentric
sites, Dirac multipoles are permitted in both neutron and x-ray
diffraction, e.g., a spin anapole � = (S × R) where R is the
position operator [8–10]. A quadrupole formed from R and �

is capable of deflecting neutrons [11].
The present study of Ba2MgReO6 includes proposals

for additional x-ray diffraction experiments whose signif-
icance might have been overlooked, and calculations of
magnetic neutron scattering amplitudes, again for future ex-
periments. A structural phase transition from cubic to tetrag-
onal as the sample temperature passes through ≈33 K, and

long-range magnetic order below ≈18 K, are conclusions
based on studies of single crystals using conventional (Thom-
son) and resonant x-ray diffraction by Hirai et al. [2]. Notably,
the authors do not include expressions for relevant scattering
amplitudes in their publication. In consequence, associa-
tions between measured intensities of Bragg spots and Re
magnetic dipoles and chargelike quadrupoles—the principal
topic of the publication [2]—are made by inference and
simple arguments. We make good the noted shortcomings
with a comprehensive calculation of all relevant scatter-
ing amplitudes for Ba2MgReO6 using spatial and magnetic
symmetry, and atomic physics. Rhenium ions occupy cen-
trosymmetric sites in tetragonal P42/mnm that supports a
lone quadrupole type, and the experimental evidence is that
magnetic dipoles lie in the basal plane [1,2]. Regarding the
existence and classification of chargelike quadrupoles, we
conclude that one symmetry type is allowed in the tetragonal
structure (P42/mnm) and two types are allowed in the mag-
netic structure (Pnn′m′). Only one symmetry type contributes
to basis-forbidden Bragg spots observed in resonant x-ray
diffraction, however.

In the next section we elucidate the nature of both the
structural and magnetic phase transitions. Thereafter, we
classify electronic and magnetic multipoles. The tetragonal
paramagnetic structure admits two of five possible charge-
like quadrupoles, and the family has an additional member
in lower magnetic symmetry. Our findings about quadrupole
orders differ from speculations that have been reported [2].
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FIG. 1. Ferro- and antiferromagnetic dipole components of the
ordered magnetic structure Ba2MgReO6 (as determined experimen-
tally in Ref. [2]) are depicted by transparent red and green arrows,
respectively. A tetragonal basis labeled (ξ , η, ζ ) is introduced in
Sec. II.

They can be tested to some extent in azimuthal-angle scans
(rotation of the crystal about the reflection vector) using
resonance-enhanced x-ray Bragg diffraction. A chiral sig-
nature exists as a consequence of the specific magnetic
long-range order. Likely, a magnetic quadrupole formed from
R and � is permitted, and we calculate the intensity of mag-
netic neutron scattering to be tested in a future experiment. All
mentioned multipoles are evaluated using a simple, but wholly
feasible, Re atomic wave function. Alternative estimates can
be obtained from a tried and tested package for the simulation
of electronic structure [12].

II. MATERIAL PROPERTIES

The paramagnetic phase of Ba2MgReO6 is described by
a tetragonal space-group P42/mnm (No. 136, crystal class
4/mmm) with Re ions at sites 2a (m.mm site symmetry) [2].
Cell parameters a = b ≈ 5.7136 Å and c ≈ 8.0849 Å. Lattice
vectors and origin of the subgroup with respect to the parent
cubic structure Fm3̄ m (No. 225) are ( 1

2 ,− 1
2 , 0), ( 1

2 , 1
2 , 0),

(0, 0, 1), and (0, 0, 0), respectively. Miller indices for the
subgroup h, k, l are integers. The propagation vector for the
symmetry lowering from cubic to tetragonal is k = (0, 0, 1),
so even if we use the parent cubic cell for indexation, then
some of the indices will violate the F-centring condition, but
they still will be integers.

Magnetic long-range order is a combination of two order
parameters, an antiferro (AFM) associated with k = (0, 0, 1)
and a ferro (FM) associated with k = (0, 0, 0). The two orders
are depicted in Fig. 1, and their individual symmetries are [13]

(AFM) PI nnm (BNS setting, No. 58.404), basis =
{(0, 0, 1), ( 1

2 , 1
2 , 0), (− 1

2 , 1
2 , 0)}, origin at (0, 0, 0), Re use

sites 2a,
(FM) Im′m′m (No. 71.536), basis = {(0, 0,

−1), (− 1
2 , 1

2 , 0), ( 1
2 , 1

2 ,0)}, origin at (0, 0, 0), Re use sites
2a.

The presence of both order parameters implies that the
symmetry of the magnetic phase is Pnn′m′ (No. 58.398,
magnetic crystal-class mm′m′), using a basis ξ = ( 1

2 , 1
2 , 0),

η = (− 1
2 , 1

2 , 0), ζ = (0, 0, 1), origin (0, 0, 0), and Re in sites
2a with symmetry 2′/m′. A spontaneous magnetization is
permitted in the magnetic crystal class. Also, a nonlinear
magnetoelectric effect is due to an invariant of the type HEE
alone. Such symmetry is permitted for rare-earth garnets and
a nonlinear effect has been observed.

An interesting point is that the magnetic space group al-
lows the structural distortions with the P42/mnm symmetry.
This means that there must be a coupling between the AFM,
FM, and these structural distortions. Specifically, there is
a trilinear free-energy invariant which is just a product of
three order parameters � {σ • λ • μ}, with σ -structural
distortions, λ-AFM and μ-FM order parameters. This energy
term indicates that in the presence of the P42/mnm structural
distortions, a condensation of AFM order will induce FM
component and vice versa (FM will necessarily induce AFM).
This makes the scenario to be symmetry consistent.

Regarding symmetry of the quadrupoles in the tetragonal
phase, we calculated the subduction frequency (multiplicity)
for the 2a site symmetry irreducible representations (irreps)
in the space group representation X2+ which reduces sym-
metry down to P42/mnm. Such a calculation indicates local
distortions (associated with which site symmetry irreps) in
the global tetragonal distortions. The two-dimensional Eg site
irrep has a nonzero subduction frequency, while the subduc-
tion frequency of the three-dimensional T2g site irrep is zero.
Specifically, T2g-type quadrupoles, defined in the cubic (a, b,
c) basis (Fm3̄ m) depicted in Fig. 1, cannot drive the transition
to P42/mnm. In fact, T2g distortions are secondary and asso-
ciated with k = (0, 0, 0), meaning some ferro ordering of the
T2g-type quadrupoles should be allowed but they cannot drive
the structural transition.

III. MULTIPOLES

Rhenium ions occupy sites with inversion symmetry and
all multipoles 〈tK

Q〉, with rank K and projections −K �
Q � K are axial (parity even). The complex conjugate of
our multipoles satisfy 〈tK −Q〉 = (−1)Q〈tK

Q〉∗ and the diag-
onal 〈tK

0〉 is purely real, with a phase convention 〈tK
Q〉 =

[〈tK
Q〉′ + i〈tK

Q〉′′] for real and imaginary parts labeled by
single and double primes, respectively. Cartesian and spher-
ical components of a dipole R = (x, y, z) are related by
x = (R−1 − R+1)/

√
2, y = i(R−1 + R+1)/

√
2, z = R0. For the

paramagnetic state, contiguous to long-range magnetic or-
der in the phase diagram, we use P42/mnm (No. 136), for
which Q = 2n and (−1)n〈tK −Q〉 = 〈tK

Q〉 with n a whole
integer. Rank K is even for chargelike multipoles viewed
in x-ray diffraction enhanced by electric dipole–electric
dipole (E1−E1; 2p ↔ 5d ) or electric quadrupole–electric
quadrupole (E2−E2; 1s, 2s ↔ 5d ) absorption events, for
which the time signature = (−1)K . Applied to quadrupoles,
K = 2, allowed projections Q = 0 and ±2. Site symmetry
permits the diagonal quadrupole 〈t2

0〉 and one off-diagonal
component that is purely imaginary, 〈t2+2〉 = −〈t2+2〉∗, i.e.,
the quadrupole has ξη-like angular symmetry (�5, t2g). In
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the magnetic phase, sites 2a in Pnn′m′ demand Q + K = 2n.
Thus, allowed Q = 0 and ±2 for K = 2, with no additional
constraint from site symmetry on the off-diagonal 〈t2±2〉. Us-
ing cubic axes (a, b, c) for the moment, an Eg (�3) quadrupole
with (x2 − y2) angular symmetry exists in the paramagnetic
phase in the temperature interval ≈18–33 K, and magnetic
order allows addition of a T2g (�5) quadrupole with xy angular
symmetry.

A plausible rhenium atomic wave function, based on the
configuration 5d1 (Re6+

, S = 1
2 , L = 2), has twofold rotation

symmetry about the crystal c axis, and yields a magnetic
dipole confined to the ξ -η plane, as in Fig. 1. Quadrupoles in
the paramagnetic phase impose an additional constraint. Can-
didate wave functions are linear combinations of d-orbitals
dm, with projections −2 � m � 2 that we define with respect
to a rhombically distorted octahedron with axes parallel to
lines joining the central Re ion to each pair of O ligand ions.
Suitable combinations of orbitals are d0 and d±2, or d+1 and
d−1. We elect to use a minimal model, for more than illustra-
tive purposes, defined by |u〉 = [αd0 + βd+2] with α purely
real, β = (β ′ + iβ ′′) and α2 + |β|2 = 1 for normalization. We
shall find that orbital angular momentum is quenched, and α

is fixed by the spin moment in the ξ -η plane. Off-diagonal,
chargelike quadrupoles arise from an admixture of d orbitals,
while [α2 − |β|2] measures the total strength of the diagonal
quadrupole. In the magnetic phase there are two unknowns, α

and β ′, say, while site symmetry in paramagnetic P42/mnm
requires β ′′ = 0.

Saturation values of magnetic multipoles are calculated
with a normalized ground state |g〉 = [|u〉 + exp(iφ)|û〉]/√2,
where |û〉 is the conjugate component of the Kramers doublet,
and the angle φ specifies orientation of dipoles in the ξ -η
plane. Composite spin-orbital states required in |u〉 are best
represented by total angular momenta using j = 3/2, j′ =
5/2, and two projections m = 1/2, m′ = 5/2 (S-L coupling
scheme),

d0 ↑= [
√

2| jm〉 + √
3| j′m〉]/√5, d+2 ↑= | j′m′〉. (1)

Multipoles 〈tK
Q〉 in orthogonal coordinates (ξ , η, ζ ) for the

tetragonal cell are related to 〈T K
Q〉 = 〈g|T K

Q|g〉 by a rotation
about the ζ axis through 45 °, namely, 〈tK

Q〉 = exp(iQπ/4)
〈T K

Q〉. The construction of |g〉 ensures 〈t1
ζ 〉 = 〈t1

0〉 = 0.
In the paramagnetic phase, 〈T 2+2〉 = [αβ〈d+2|T 2+2|d0〉] is
purely real for real coefficients, whereupon 〈t2+2〉 = −〈t2−2〉
as required by site symmetry. The diagonal quadrupole
〈t2

0〉 = [α2〈d0|T 2
0|d0〉 + |β|2〈d+2|T 2

0|d+2〉]. Turning to the
magnetic phase, 〈L〉 = 0, and spin components are 〈Sξ 〉 =
[α2cos(π + 4φ)/8], 〈Sη〉 = [α2sin(π + 4φ)/8], 〈Sζ 〉 = 0. An
observed magnetic moment ≈0.3 μB implies α2 ≈ 0.3 and
α|β| ≈ ±0.46 [1].

Multipoles observed in resonance enhanced x-ray
diffraction have different values at different absorption edges.
Dependence on the total angular momentum of the core
states, 1/2 for L2 and 3/2 for L3, is carried by reduced matrix
elements that obey sum rules [8,14]. For L2 and L3 edges
〈t1〉L3 + 〈t1〉L2 = −〈L〉d/(10

√
2), and 〈t2〉L3 + 〈t2〉L2 =

〈{L ⊗ L}2〉d/30, with {L ⊗ L}2
0 = [3(Lζ )2 − L(L + 1)]/

√
6

for the diagonal element of the standard tensor product.
The dipole 〈T 1+1〉 = [exp(iφ)〈u|T 1+1|û〉/2], and the matrix

element therein for L2 is denied contributions from j’ by
the dipole selection rule. On the other hand, there are
contributions to the matrix element from both atomic states, j
and j’, at L3. Projections Q = 1, 3, 5 are allowed in the matrix
element 〈u|T K

Q|û〉, which contribute to magnetic octupoles
(K = 3) and triakontadipoles (K = 5).

In summary, our model Re atomic wave function yields
the following guides to multipoles observed in diffraction
enhanced by an E1-E1 event,

L2 edge;
〈
T 1+1

〉 = − exp (iφ)(1/45)α2,
〈
T 2

0
〉 = −(15

√
6)−1

α2,
〈
T 2+2

〉 = 0. (2)

L3 edge;
〈
T 1+1

〉 = exp (iφ)(1/45)α2,
〈
T 2

0
〉 = (15

√
6)−1[3 − 5α2],

〈
T 2+2

〉 = (5
√

6)−1
αβ∗.

Dipole results fit with quenched orbital angular momentum
and the aforementioned dipole sum rule. A successful analysis
similar to the one proposed here for strontium iridate uses a
ground state for which 〈t1〉L2 = 0 [15]. Evidently, experimen-
tal results for diffraction at the L2 edge of Re in Ba2MgReO6

would be a valuable asset in determining the atomic ground
state. Corresponding estimates of the dipole and quadrupole
in the amplitude for magnetic neutron diffraction are listed in
Eq. (13).

IV. RESONANT X-RAY DIFFRACTION

The photon scattering length is developed in the small
quantity E/mc2, where E is the primary energy (mc2 ≈
0.511MeV). At the second level of smallness in this quantity it
contains resonant processes that may dominate all other con-
tributions should E match an atomic resonance �. Assuming
that virtual intermediate states are spherically symmetric, to
a good approximation, the scattering length ≈{Fνμ/(E−� +
i�/2)} in the region of the resonance, where � is the total
width of the resonance. The numerator Fνμ is a dimensionless
amplitude, or unit-cell structure factor, for Bragg diffraction in
the scattering channel with primary (secondary) polarization
μ (ν). Henceforth, we use (νμ) in place of Fνμ to abbre-
viate notation. By convention, σ labels polarization normal
to the plane of scattering, and π denotes polarization within
the plane. In the nominal setting, axis (x, y, z) in which σ

polarization is parallel to the z axis and the reflection vector is
parallel to − x, coincide with tetragonal cell edges labeled (ξ ,
η, ζ ). The Bragg angle θ for a photon energy E ≈ 10.535 eV
is calculated from sin(θ ) ≈ 0.1030

√
[h2 + k2 + l2/2].

A structure factor for diffraction is �K
Q = [exp(iκ•

d)〈OK
Q〉d], where the Bragg wave vector κ is defined by

integer Miller indices (h, k, l), and the implied sum in �K
Q

is over all Re sites d in a unit cell of the tetragonal structure.
X-ray and neutron diffraction scattering amplitudes are de-
rived from �K

Q with 〈OK
Q〉 replaced by the appropriate type

of multipole. For the paramagnetic and magnetic structures of
interest, P42/mnm and Pnn′m′, we obtain a generic result,

�K
Q = [〈

OK
Q
〉 + (−1)h+k+l (−1)K

〈
OK −Q

〉]
. (3)
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Recall that the time signature of multipoles = (−1)K , and
Re ions are subject to different site symmetries in the param-
agnetic and magnetic structures. Basis allowed reflections (K
even and Q = 0) are indexed by h + k + l even. Consider �K

Q

for the basis-forbidden reflection (1, 0, 0) studied extensively
by Hirai et al. [2]. Site symmetry for Re ions in P42/mnm
yields �2+2 = −�2−2 = 2i〈t2+2〉′′ while �2

0 = 0, and the
first result suggests chargelike intensity is available. Looking
ahead to exact scattering amplitudes in Eq. (7), no signal is
predicted in the unrotated channel (σ ′σ ) in agreement with the
reported null (1, 0, 0) intensity [2]. A magnetic contribution
to an amplitude may arise from Eq. (3) evaluated for K =
1, Q = ±1, with the result �1+1 = �1−1 = −i

√
2〈t1

η〉 for
(1, 0, 0). Explicit results for the structure factor mentioned
here evidently apply to reflections (0, 0, 3) and (0, 0, 5) that
have been observed [2], and we move ahead with our results
for the corresponding scattering amplitudes and azimuthal-
angle scans.

To this end we exploit universal expressions for scattering
amplitudes previously reported [16] and find

(σ ′σ ) = 2 sin (2ψ )
〈
t2+2

〉′′
, (π ′π ) = sin2(θ )(σ ′σ ), (4)

(π ′σ ) = −(σ ′π ) = 2
[−i cos (θ ) cos (ψ )

〈
t1+1

〉′′

+ sin (θ ) cos (2ψ )
〈
t2+2

〉′′]
.

for (0, 0, l) with l odd. In these expressions, ψ is the angle of
rotation about the reflection vector, and the ξ axis is normal
to the plane of scattering at ψ = 0. Intensity in the rotated
channel of polarization, say, is proportional to |(π ′σ )|2, and it
includes a magnetic dipole. The latter, 〈t1+1〉′′ = −〈t1

η〉/
√

2,
is allowed different from zero in the magnetic phase, below
≈18 K. Diffraction in the paramagnetic phase, bracketed by
temperatures ≈18 and ≈33 K [1,2], is usually referred to
as Templeton-Templeton scattering, and it is solely created
by the chargelike quadrupole 〈t2+2〉′′ with ξη-like angular
symmetry.

Scattered intensity picked out by circular polarization in
the primary photon beam = P2ϒ with [17,18]

ϒ = {(σ ′π )∗(σ ′σ ) + (π ′π )∗(π ′σ )}′′, (5)

and the Stokes parameter P2 (a purely real pseudoscalar) mea-
sures helicity in the primary x-ray beam. Since intensity is a
scalar quantity, ϒ and P2 possess identical discrete symme-
tries, specifically, both scalars are time-even and parity-odd
(polar). Partial intensity ϒ different from zero is a signature
of a chiral motif of electronic and magnetic multipoles, of
course. From results in Eq. (4),

ϒ(0, 0, l ) = −2
〈
t1+1

〉′′
cos(θ ) cos(ψ )(σ ′σ )[1 + sin2(θ )]. (6)

Notably, ϒ(0, 0, l) is an odd function of the azimuthal angle,
and a nonzero value is specific to long-range magnetic order
permitted by Pnn′m′. Figure 2 depicts ϒ(0, 0, 5) in units of
(〈t2+2〉′′〈t1+1〉′′) as a function of ψ in the sector of positive
values. Bragg spots (0, 0, 3) and (0, 0, 5) have been observed
in resonant x-ray diffraction [2].

Next, space-group forbidden (h, k, 0) with h + k odd.
Let A1

1 = 2icos(δ) 〈t1+1〉′′, B1
1 = −2sin(δ) 〈t1+1〉′′, A2

2 =

FIG. 2. The predicted chiral signature ϒ(0, 0, l) for the Bragg
spot (0, 0, 5) observed by Hirai et al. in resonance-enhanced x-ray
diffraction [2]. Unit (〈t2+2〉′′〈t1+1〉′′) used for ϒ(0, 0, l) is taken to
be positive. Azimuthal angle is in the range 180◦–360◦ where ϒ is
positive. Values are derived from Eq. (6), and ϒ(0, 0, 3) is around
3% smaller than displayed ϒ(0, 0, 5).

−2sin(2δ) 〈t2+2〉′′, B2
2 = 2icos(2δ) 〈t2+2〉′′, where δ is the

angle subtended by the reflection vector and −x, e.g.,
cos(2δ) = (h2 − k2)/(h2 + k2). Amplitudes are

(σ ′σ ) = −sin2(ψ )A2
2, (π ′π ) = [1 − sin (θ )2sin2(ψ )]A2

2,

(7)

(π ′σ ) = cos (θ ) cos (ψ )A1
1 + i sin (θ )B1

1

− (1/2) sin (θ ) sin (2ψ )A2
2 + i cos (θ ) sin (ψ )B2

2.

Intensity of the Bragg spot (4, 1, 0) has been observed in
nonresonant x-ray diffraction [2]. The corresponding intensity
anticipated in resonance-enhanced diffraction in the rotated
channel of polarization |(π ′σ )|2 is depicted in Fig. 3 for three
values of the quadrupole-dipole ratio r = (〈t2+2〉′′/〈t1+1〉′′)2.
The evident sensitivity of |(π ′σ )|2 as a function of ψ to small
changes in r implies that an experiment is well worth trying.

Model multipoles Eq. (2) predict (〈t2+2〉′′/〈t1+1〉′′) = 0 at
the L2 absorption edge, and (〈t2+2〉′′/〈t1+1〉′′) is proportional
to (β ′/α) at the L3 edge. As already noted, the observed mag-
netic moment is consistent with (β ′/α) ∼ 1 [1]. Recall that
the parameter β is restricted to purely real values (β ′′ = 0) in
P42/mnm.

The (h, k, 0) chiral signature,

ϒ(h, k, 0) = A2
2
(
cos(θ ) cos(ψ ){1 − [1 + sin2(θ )]sin2(ψ )}

× A1
1
′′+ sin(θ )[1 + cos2(θ )sin2(ψ )]B1

1
)
, (8)

is proportional to [〈t1
η〉〈t2+2〉′′], and it is the same as ϒ(0, 0,

l) in this respect. However, the two signals differ as functions
of the azimuthal angle, with ϒ(h, k, 0) an even function
of ψ .
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FIG. 3. Intensity |(π ′σ )|2 of the Bragg spot (4, 1, 0) observed
by Hirai et al. in nonresonant x-ray diffraction, cf. Fig. 2(d) [2],
calculated using Eq. (7). Azimuthal angle ψ in the range 0◦–180◦.
Intensity scale is set by (〈t1+1〉′′)2, and results are given for three
values of the quadrupole-dipole ratio r = (〈t2+2〉′′

/〈t1+1〉′′)2, namely,
r = 0.0 (blue), 0.2 (red), and 0.4 (black).

V. MAGNETIC NEUTRON DIFFRACTION

All multipoles are time-odd (magnetic), and rank K = 1, 2,
…, 5 for a d state. Even rank multipoles arise from a mixture
of j = 3/2 and j′ = 5/2 in Eq. (1) alone [9,11]. The present
calculation retains dipoles and quadrupoles in the intermedi-
ate scattering amplitude 〈Q〉 for Bragg diffraction. Multipoles
for neutron scattering 〈τK〉 have a strong dependence on the
magnitude of the scattering wave vector imparted through
spherical Bessel functions 〈 jn(κ )〉 averaged over a radial wave
function. The dipole 〈τ1〉 is a sum of 〈 j0(κ )〉 and 〈 j2(κ )〉, and
〈τ 2〉 ∝ 〈 j2(κ )〉. By definition, 〈 j0(0)〉 = 1 while 〈 jn(0)〉 = 0
for n � 2, and 〈 j2(κ )〉 is a maximum near κ ≈ 3.8 Å−1 just
short of the first zero in 〈 j0(κ )〉, cf. Fig. 4 [19].

Intensity of a Bragg spot = |〈Q⊥〉|2, where the operator
Q⊥ = {κ−2[κ × (Q × κ)]} with

Q = exp (iR j • κ)[S j − κ−2(i/ћ)(κ × p j )], (9)

and the implied sum is over all unpaired electrons. In
Eq. (9), R and p are conjugate operators for electronic
position and linear momentum, respectively. Even rank mul-
tipoles are created by the first, spin-dependent contribution,
and they represent entanglement of R and the spin anapole
� [9,11]. Amplitudes for basis forbidden reflections, h +
k + l odd, depend on two purely real combinations of
multipoles A = −i[〈τ 1+1〉 + 〈τ 1−1〉] = −√

2〈τ 1
η〉, and B =

[〈τ 2+1〉−〈τ 2−1〉] = 2〈τ 2+1〉′ with ξζ -like angular symmetry.
In terms of a unit vector (p, q, r) = κ/κ ,

〈Qξ 〉 ≈ −pq
√

3B, 〈Qη〉 ≈ −(3/
√

2)A + (
p2 − r2

)√
3B,

〈Qζ 〉 ≈ qr
√

3B. (10)

The purely magnetic contribution to a Bragg diffraction
pattern can be recognized by a nonzero spin-flip intensity

FIG. 4. Radial integrals for Re6+
(5d1) as a function of

sin(θ )/λ = κ/4π in the range 0–0.7 Å−1 [19]. Blue curve 〈 j2(κ )〉,
red curve [〈 j0(κ )〉 − (1/7)〈 j2(κ )〉].

[5,20,21],

SF = |〈Q⊥〉 − P (P • 〈Q⊥〉)|2, (11)

where P = (Pξ ,Pη,Pζ ) is a unit vector in the direction of
the polarization in the primary neutron beam. For P parallel
to the Bragg wave vector κ the result is SF = |〈Q⊥〉|2. We
shall consider the opposite extreme P⊥κ [21].

Intensities of Bragg spots indexed by (0, 0, l) with l odd are
|〈Q⊥〉|2 = 〈Qη〉2, while SF = [Pξ 〈Qη〉]2 for Pζ = 0, and 〈Qη〉
in Eq. (10) is a simple sum of the dipole and quadrupole. For
the second class of basis forbidden Bragg spots κ = κ(p, q, 0)
we obtain

|〈Q⊥〉|2 = p2{√3B − 3A/
√

2}2
. (12)

Intensity is zero for κ parallel to the crystal η axis. Since
〈Qζ 〉 = 0 for r = 0 one has P • 〈Q⊥〉 = 0 and SF = |〈Q⊥〉|2
for P = (0, 0, 1).

Our minimal model of the Re atomic wave function dis-
cussed in Sec. III yields the estimates

A = −(2
√

2/3)〈Sη〉[〈 j0(κ )〉 − (1/7)〈 j2(κ )〉],
B = [10/(7

√
3)]〈Sη〉〈 j2(κ )〉. (13)

In this model, the dipole A ∝ 〈τ 1
η〉 and quadrupole B ∝

〈τ 2+1〉′ are proportional to the η component of the mag-
netic moment. Radial integrals [〈 j0(κ )〉 − (1/7)〈 j2(κ )〉] and
〈 j2(κ )〉, appearing in A and B are displayed in Fig. 4 [19]. Note
that, use of A in Eq. (12) returns the standard result, whereby
|〈Q⊥〉|2 is proportional to the square of the magnetic moment
in the forward direction of scattering, where 〈 j2(κ )〉 ≈ 0.

VI. DISCUSSION AND CONCLUSIONS

In summary, we have studied consequences of a cubic-
to-tetragonal structural transition and magnetic long-range
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order reported at temperatures ≈33 and ≈18 K, respectively,
in Ba2MgReO6 [1,2]. Our analysis of the structural tran-
sition and site symmetries reveals order of a lone Eg-type
quadrupole, while Eg and T2g types are permitted with on-
set of long-range magnetic order. Rhenium site symmetry
remains centrosymmetric, and Dirac multipoles are thereby
forbidden. The magnetic motif, illustrated in Fig. 1, is com-
posed of ferro- and antiferromagnetic orders of conventional
magnetic dipoles. Notably, the corresponding space-group
Pnn′m′ (No. 58.398) allows the structural distortions with the
tetragonal P42/mnm symmetry, i.e., there must be a coupling
between the two magnetic orders and structural distortion.
The foregoing essential properties and classifications of struc-
tural and magnetic orders in Ba2MgReO6 are absent in a
published report of high-resolution x-ray Bragg diffraction
patterns [2].

Furthermore, our magnetic space-group allows a chiral
signature caused by interference between a magnetic dipole
and an electronic quadrupole in resonant x-ray Bragg diffrac-
tion (intensity enhanced by an electric dipole–electric dipole
(E1-E1) absorption event). Amplitudes in all four channels
of polarization contribute to the chiral signature, and cor-
responding individual intensities are shown to carry useful
information that merit experimental investigation. X-ray data
to hand were gathered at the L3 absorption edge [2]. Exper-
imental studies of other compounds hosting heavy transition

ions have encountered very different intensities between L2

and L3 absorption edges.
Contributions to Bragg spots in magnetic neutron diffrac-

tion that violate the F-centring condition include a quadrupole
exclusive to mixing of 5d1 Re manifolds. Based on current
knowledge of heavy transition metal ions in an almost oc-
tahedral environment, this result is expected. Physically, the
quadrupole hallmarks entanglement of anapole and spatial
degrees of freedom. Magnetic intensity picked out in neu-
tron polarization analysis is here calculated for all allowed
dipoles and quadrupoles. Quadrupoles in x-ray and neutron
diffraction amplitudes are predicted to have different angular
symmetries, since the former is purely electronic and the latter
purely magnetic.

A plausible rhenium atomic wave function introduced in
Sec. III is used to estimate saturation values of all multipoles
in our amplitudes for x-ray and neutron scattering. The pre-
viously measured magnetic moment is a guide to values of
the two unknowns in the wave function [2]. Site symmetry
demands a null value for one of the unknowns in the param-
agnetic phase defined by P42/mnm.
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