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Superconductivity, charge density waves, and bipolarons in the Holstein model
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The electron-phonon (e-ph) interaction remains of great interest in condensed matter physics and plays a vital
role in realizing superconductors, charge density waves (CDW), and polarons. We study the two-dimensional
Holstein model for e-ph coupling using determinant quantum Monte Carlo across a wide range of its phase dia-
gram as a function of temperature, electron density, dimensionless e-ph coupling strength, and the adiabatic ratio
of the phonon frequency to the Fermi energy. We describe the behavior of the CDW correlations, the competition
between superconducting and CDW orders and polaron formation, the optimal conditions for superconductivity,
and the transition from the weak-coupling regime to the strong-coupling regime. Superconductivity is optimized
at intermediate e-ph coupling strength and intermediate electron density, and the superconducting correlations
increase monotonically with phonon frequency. The global maximum for superconductivity in the Holstein
model occurs at large phonon frequency, the limit where an attractive Hubbard model effectively describes
the physics.
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I. INTRODUCTION

Electron-phonon (e-ph) coupling is ubiquitous in quantum
materials and leads to superconductivity (SC), charge-density-
wave (CDW) order, and the formation of polarons [1–6]. The
properties of many-body quantum systems with e-ph inter-
actions can be calculated perturbatively in certain limits. For
example, in the limit of weak coupling and small phonon fre-
quency, these systems can be described by Migdal-Eliashberg
(ME) theory [7–12]. Conversely, the strong-coupling limit can
be treated using the Lang-Firsov transformation, which sets up
perturbation theory around the polaronic state [13–15]. Many
materials, however, fall into the intermediate coupling regime
for which no general analytic solution exists. In this context, it
is especially interesting to consider the intermediate coupling
regime because the SC transition temperature Tc tends to zero
in both the weak-coupling and the strong-coupling limits,
implying that it is maximized somewhere in between.

Competition with lattice instabilities arising from CDW
order or polaron formation has important consequences for
SC [10,11,16–24]. Even for materials where strong electron
correlations may play a dominant role, as in unconventional
superconductors such as the cuprates, the presence of signifi-
cant e-ph coupling has been established through the presence
of strong renormalizations in measurements of the band
structure [25–28], phonon lineshape in Raman measurements
[29–31], neutron scattering, [32], and the observation of un-

conventional isotope effects [33,34]. The interplay between
SC and CDW order mediated by e-ph coupling could be
an important effect that limits the SC transition temperature
in the cuprates [35,36], as well as in other materials with
SC and CDW phases such as 2H-TaS2 [37], the bismuthates
BaPb1−xBixO3 and Ba1−xKxBiO3 [38,39], tri-tellurides [40],
and pnictides [41]. This physics may also be relevant to the
A15 compounds, which are close to a lattice instability that is
not a CDW but still another form of charge order [42].

The properties of e-ph-mediated superconductors are of-
ten well described by ME theory, which is nominally valid
when λ h̄�

EF
� 1. (Here, λ is the dimensionless e-ph coupling

strength, h̄� is the phonon energy, and EF is the Fermi energy
[7,8].) But for several novel superconductors including n-type
SrTiO3 [43], monolayer FeSe on SrTiO3 [44], the fullerides
[45], and lightly doped oxides [46], the phonon frequency is
large compared to the Fermi energy. To fully understand these
systems, one must be able to accurately compute the proper-
ties of e-ph systems in the anti-adiabatic limit (h̄� > EF) and
assess the accuracy of ME theory in this regime [24].

The Holstein model is a paradigmatic model of e-ph
coupling, consisting of electrons locally coupled to a sin-
gle dispersionless optical phonon branch [47]. Despite its
simplicity, the model contains the essential physics of e-ph
coupled systems, including SC and CDW orders and po-
laron formation. Here we use determinant quantum Monte
Carlo (DQMC) to obtain numerically exact results for the
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SC and CDW susceptibilities of the two-dimensional Holstein
model, which allows for competition between these orders and
additional polaronic effects. While several previous studies of
the Holstein model have investigated similar questions using
nonperturbative methods [17–23,48,49], most of them (except
for the most recent [49]) were limited to narrow regions of
the phase diagram or were performed in infinite dimensions
using dynamical mean-field theory. Motivated by this, we
have carried out a comprehensive study across a broad region
of the phase diagram spanning weak, intermediate, and strong
e-ph coupling, various phonon frequencies, and a wide range
of doping.

We find that SC is generally optimized at intermediate
values of the e-ph coupling strength and electron density. We
also find that the strength of the SC correlations increases
monotonically with phonon frequency until saturating in the
extreme anti-adiabatic limit, where the model is equivalent to
the attractive Hubbard model. Since our results are obtained in
the absence of any Coulomb repulsion, they should be viewed
as reflecting limits on the Holstein interaction in an ideal-
ized setting. Additional interactions, especially the Coulomb
interaction, that are omnipresent in real materials, will place
further constraints on the SC Tc ultimately realized.

II. MODEL AND METHODS

A. Model

The Hamiltonian for the Holstein model [47] linearly cou-
ples the electron density at each lattice site to the displacement
of an independent harmonic oscillator at that site and is
given by

H = −t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) − μ

∑
iσ

c†
iσ ciσ

+
∑

i

(
p2

i

2M
+ 1

2
M�2x2

i

)
− g

∑
i

nixi. (1)

Here, c†
iσ creates an electron on site i with spin σ =↑,↓, 〈·〉

denotes a sum over nearest neighbor sites, t is the nearest-
neighbor hopping integral, ni = c†

i↑ci↑ + c†
i↓ci↓ is the local

electronic density, μ is the chemical potential, xi and pi are the
position and momentum operators of independent harmonic
oscillators with mass M and frequency �, and g is the e-ph
coupling constant. Throughout this work, we take units in
which h̄ = kB = M = a = t = 1 and consider the system on a
two-dimensional square lattice. The dimensionless parameters
for the Holstein model are the dimensionless e-ph coupling λ,
the adiabatic ratio �/EF, and the average electron density 〈n〉.
Two common definitions of the dimensionless e-ph coupling
can be found in the literature. The first is λ = g2

M�2W , where

W = 8t is the bandwidth. The second is λ0 = g2N (0)
M�2 , where

N (0) is the density of states at the Fermi level. The former
is more commonly used in QMC calculations while the latter
frequently appears in the context of ME calculations. We will
discuss our results in terms of both definitions to facilitate
connections to previous works using either one.

B. Methods

We study the Holstein model using DQMC, which is
a nonperturbative method that stochastically evaluates fi-
nite temperature expectation values in imaginary time [50].
Details of the DQMC algorithm, including the explanation
of local and global phonon field updates, can be found in
Ref. [51]. DQMC is sign problem-free for the Holstein model,
but it suffers from long phonon autocorrelation times in the
regimes of large e-ph coupling, low phonon frequency, or low
temperature. In our simulations, we access temperatures down
to T = β−1 = t/16 for 8 × 8 lattices with periodic boundary
conditions. A typical Markov chain for importance sampling
in the Monte Carlo process consists of approximately 20k
warm-up sweeps for equilibration and 100k measurement
sweeps, which at the lowest temperatures (largest β) takes
approximately 8 h. As an estimate for the computational cost
at the lowest temperature for most of the data presented here,
20 Markov chains were run for 9 values of the phonon fre-
quency �, 20 electron densities 〈n〉 between 0 and 1, and 12
values of λ between 0 and 0.6 spaced by �λ = 0.05, requiring
approximately 350k CPU hours.

The SC and CDW correlations in the system can be ac-
cessed by measuring their respective susceptibilities. The SC
pair-field susceptibility is defined as

χSC =
∫ β

0
dτ 〈�(τ )�†(0)〉, (2)

where

�† = 1

L

∑
i

c†
i↑c†

i↓ (3)

and L = 8 is the linear size of the system. The charge suscep-
tibility is

χCDW(q) =
∫ β

0
dτ 〈ρq(τ )ρ†

q(0)〉, (4)

where

ρ†
q = 1

L

∑
iσ

eiq·Ri c†
iσ ciσ . (5)

In the thermodynamic limit, the temperature at which the
charge and SC pair-field susceptibilities diverge determines
the CDW and SC transition temperatures, respectively. While
we do not access sufficiently low temperatures and sufficiently
large lattice sizes to observe transitions to either a SC or
a CDW phase, we do access temperatures low enough to
identify a significant growth of the corresponding suscepti-
bilities. We can, therefore, determine the dominant ordering
tendencies of the system. We also note that our choice for
the operator � assumes that pairing occurs between electrons
in the s-wave channel. This definition will have finite over-
lap with the SC state that forms when the quasiparticles are
polarons, provided that the polaron’s quasiparticle weight is
nonzero.
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FIG. 1. All panels show the momentum dependence of the CDW susceptibility for an 8 × 8 lattice at a filling of 〈n〉 = 0.6. The first row
shows the behavior of the susceptibility as a function of λ also for a fixed phonon frequency of � = 2.8t and fixed temperature of βt = 16.
The second row shows the temperature dependence of the susceptibility for a phonon frequency � = 2.8t and an e-ph coupling λ = 0.6. The
third row shows the � dependence of the susceptibility for a fixed e-ph coupling λ = 0.6 and for a fixed temperature of βt = 16.

III. RESULTS

CDW susceptibility

We first discuss the momentum dependence of the CDW
susceptibility χCDW(q) as a function of λ0, temperature, and
�. To this end, Fig. 1 plots the momentum dependence
of the CDW susceptibility as a function of λ0 at fixed
filling 〈n〉 = 0.6.

In the limit of λ0 → 0, the charge response is determined
by the Lindhard function and governed mainly by the Fermi
surface’s shape. At weak e-ph coupling, the CDW ordering
wave vector remains tied to the shape of the Fermi surface
and closely resembles the Lindhard response, as seen in the
first two panels of the first row in Fig. 1.

As λ increases, a crossover occurs to the strong-coupling
limit. Here, the susceptibility becomes strongly peaked at
q = (π, π ) and disconnected from the shape of the Fermi
surface, even though the filling 〈n〉 = 0.6 is far from half
filling. In other words, the CDW correlations are dominated
by (π, π ) ordering tendencies at low temperatures in the
strong-coupling limit, even away from half filling, where
a weak-coupling picture would predict an incommensurate
CDW ordering wave vector [11]. This occurs even though
the density is not naturally high enough to place two electrons
on every other site in a checkerboard pattern corresponding to

the (π, π ) wave vector. Generally, the ordering wave vector
will depend on the details of the model, such as the electronic
and phononic band structure and the momentum dependence
of the e-ph coupling.

The expected behavior in the strong-coupling limit can
be understood using a bipolaron picture and a Lang-Firsov
transformation, which shifts the equilibrium position of each
oscillator to −gni/M�2 and creates an effective attractive in-
teraction between electrons that encourages double occupancy
at each site. Such a double occupation with an associated
lattice distortion is known as a bipolaron and has a binding
energy of −g2/M�2 = −λW [14]. In the strong-coupling
limit at higher temperatures, as shown in the second row of
Fig. 1, the susceptibility is still peaked at (π, π ). Still, the
peak is broader, which is a signature of bipolaron formation
despite the lack of long-range CDW order. In this case, the
peak in χCDW(π, π ) is due to the presence of fluctuating short-
range charge order. Bipolaron formation is a generic feature
of e-ph systems in the strong-coupling regime, independent
of the model details [52,53].

The dominant wave vector in χCDW(q) also depends
on the phonon frequency, as shown in the third row of
Fig. 1. Even with λ fixed, large phonon energies produce
weaker (π, π ) CDW correlations, as evidenced by the de-
crease in magnitude and the shift in ordering wave vector
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(a) (b)

(c) (d)

(e) (f )

FIG. 2. All panels are DQMC results for an 8 × 8 lattice for a
phonon frequency of � = 2t . Each panel shows the SC or maximum
of the CDW susceptibility as a function of λ0 for several different
temperatures. Shaded regions represent the standard error of the data.
(a, c, e) CDW susceptibility for fillings of 〈n〉 = 0.2, 0.5, and 0.9
respectively. (b, d, f) The maximum of the SC susceptibilities for
fillings of 〈n〉 = 0.2, 0.5, and 0.9 respectively.

of the susceptibility away from (π, π ). The tendency to-
ward CDW order is weaker in the large phonon frequency
(anti-adiabatic) limit, as the lattice responds more quickly to
electronic hopping. The lattice deformations that form po-
tential wells trapping electrons in place become weaker as
a result.

With the general behavior of the momentum dependence of
χCDW(q) established, we now focus on the magnitude of the
CDW susceptibility as a function of temperature, λ, �, and
filling. Since the CDW susceptibility is a function of wave
vector q, we choose the q = qmax at which the susceptibility
is maximized when reporting the magnitude. In Figs. 2(a),
2(c) and 2(e), the magnitude (maximum) of the χCDW(qmax)
is shown as a function of λ0 for different temperatures and
fillings. The magnitude of the CDW susceptibility is small
and relatively featureless at high temperature but exhibits a
rapid increase at low temperatures as λ0 increases. In gen-
eral, we find that the CDW correlations can be significant,
even at dilute concentrations [Fig. 2(a)]; however, we also
observe a dramatic increase in χCDW(qmax) as the density
approaches half filling [Fig. 2(e)]. This behavior may reflect
that the Fermi surface provides better nesting for the (π, π )
wave vector, which naturally enhances the CDW tendencies.
We also generally find that the CDW susceptibility exhibits
faster growth with increasing filling. Nevertheless, at strong
enough coupling and low temperature, there is a tendency
toward CDW order and/or phase separation even at low
filling [49,52].

(a)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

(b)

FIG. 3. All panels are DQMC results for an 8 × 8 lattice for
βt = 16. Each panel is for a different phonon frequency determined
across 12 values of λ, equally spaced by �λ = 0.05 between 0 and
0.6, and 20 values of the filling 〈n〉, spaced approximately equally
between 0 and 1. The “heat map” plots are obtained by linearly
interpolating the susceptibility onto a regular two-dimensional grid
using Python’s scipy.interpolate.griddata function [54].
Divergences in the dotted line in (b) are calculated by taking the
derivative of the filling with respect to the chemical potential for
the noninteracting band structure. Infinite phonon frequency implies
simulations of the negative-U Hubbard model. (a, c, e, g, i) Maximum
(over all momenta) of the CDW susceptibility for phonon frequencies
� = 0.4t, 2.0t, 6.8t, 15.0t, ∞. (b, d, f, h, j) SC susceptibility for
the same phonon frequencies.

To demonstrate the effect of phonon frequency, and to
better visualize the behavior of the susceptibility smoothly
as a function of filling and λ0, we plot the magnitude of
χCDW(qmax) at the lowest temperature (βt = 16) as a function
of both filling and λ0 in Figs. 3(a), 3(c) 3(e), 3(g), and 3(i).
Increasing the phonon frequency suppresses the CDW corre-
lations, which is apparent from the decrease in the magnitude
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of χCDW(qmax) and its weakened influence in regions of lower
λ0 and away from half filling.

In summary, the CDW tendencies are enhanced for values
of large λ, near half filling, and at small phonon frequency.
Next, we will discuss the behavior of the SC correlations in
the context of the CDW correlations. We will see that SC order
is overshadowed by the CDW order in the regimes where the
CDW correlations are strongest. In other words, the SC order
is confined to intermediate values of λ and intermediate filling
and becomes stronger with increasing phonon frequency.

IV. SC SUSCEPTIBILITY

The weak-coupling limit is associated with the existence of
a Fermi surface with well-defined quasiparticles, a picture that
breaks down at large λ due to (bi)polaron formation and/or
lattice instability. In the weak-coupling, adiabatic limit, a BCS
SC state is formed at low temperature, where the transition
temperature is expected to behave as Tc ∼ �e− 1

λ [3]. The
rate of growth of the SC susceptibility with temperature in
Figs. 2(b), 2(d) and 2(f) shows an initial increase with λ0

consistent with this expectation. The suppression of the SC
susceptibility at large values of λ0 for three different values
of the electron density, as shown in Figs. 2(b), 2(d) and 2(f),
indicates a breakdown of the weak-coupling BCS prediction.
The region where this occurs corresponds precisely to the
region where the CDW correlations begin to grow rapidly with
temperature, as seen in Figs. 2(a), 2(c) and 2(e).

From Fig. 2, we infer that the suppression of SC in the
large λ regime occurs as a result of competition with CDW
order and a tendency toward bipolaron formation, which in
turn generates short-range (π, π ) CDW correlations, even in
the absence of charge order. This competition occurs even at a
low filling (see 〈n〉 = 0.2) well away from the strongest CDW
tendencies. Comparing the SC susceptibility at three selected
fillings shown in Fig. 2, the strongest rate of increase in χSC

occurs at intermediate filling (〈n〉 = 0.5). A low filling is not
favorable to SC as there are fewer electrons available to form
a condensate. Conversely, a strong tendency toward (π, π )
CDW order dominates the tendency toward SC order near
half filling. Moreover, we observe a peak in the SC suscep-
tibility around λ0 ≈ 0.4 across all three fillings. We remark
that λ0, defined from the bare microscopic parameters in the
Hamiltonian, is in general different from the physical coupling
strength, λphys, extracted from, e.g., tunneling experiments
[55]. In general, phonon softening will tend to increase the
coupling strength, so that λphys > λ0. In numerical calcula-
tions, λphys may be extracted from the fully dressed phonon
propagator [12,24]. We estimate that λ0 ≈ 0.4 corresponds
roughly to λphys ≈ 1 − 2, depending on other parameters,
which is a range compatible with coupling strengths known
from the study of strongly coupled e-ph superconductors.

These observations suggest that the optimal regime for SC
at this particular phonon frequency (� = 2.8t) occurs at an
intermediate filling and λ. As the phonon frequency increases,
as shown in Figs. 3(b), 3(d) 3(f), 3(h), and 3(j), the strength of
the CDW susceptibility decreases and the magnitude of the SC
susceptibility increases and the optimal filling shifts closer to
half filling. For the largest phonon frequency used in our sim-
ulation (� = 15t), the SC and CDW susceptibilities shown in

Figs. 3(g) and 3(h) quantitatively and qualitatively approach
DQMC results for the attractive Hubbard model shown in
Figs. 3(i) and 3(j). In the limit that the phonon frequency
approaches infinity, the Holstein model can be mapped onto
an attractive Hubbard model with an on-site attraction U =
−λW , and the SC tendency is optimized at an intermediate
filling [56]. Note that nonsmooth features in the susceptibili-
ties arise from the finite-size effects associated with the 8 × 8
cluster used for the simulation. The divergences of the dotted
line in Fig. 3(b) indicate special fillings due to the discrete
sampling of momentum space. They roughly correspond to
the fillings at which finite-size effects are expected to be more
noticeable.

Figure 4 explicitly shows χSC as a function of temperature.
As described above, the result generally indicates that SC
is optimized at an intermediate λ. Moreover, the rate of in-
crease of the SC susceptibility grows with increasing phonon
frequency, and the optimal value of λ moves toward larger
coupling strengths.

We now make a statement about the behavior of the global
maximum of the SC Tc in the Holstein model by investi-
gating the maximum value of the SC susceptibility across a
wide range of electron densities and e-ph coupling strengths.
Figure 5 shows that the maximum value of χSC increases
monotonically as a function of � all the way to � = 15t .
We previously showed that the DQMC results at � = 15t
closely resemble the infinite phonon frequency limit described
by the attractive Hubbard model, so the monotonic increase in
χSC with � effectively extends to infinite phonon frequencies.
From its temperature dependence, it is further apparent that
the rate of χSC’s growth increases as a function of temperature,
implying that the SC transition temperature also increases
monotonically as a function of phonon frequency. Reference
[57] has argued that the upper bound on the SC Tc in the
Holstein model is set by Tc ≈ 0.1� in the adiabatic limit.
In the opposite limit of infinite phonon frequency, Ref. [58]
has shown that the maximum SC transition temperature is
Tc ≈ 0.2t based on studies of the attractive Hubbard model.
The known behavior in these two limits, together with our
results in Fig. 5, then imply that the maximal Tc in the
Holstein model must increase monotonically as a function
of �, behaving linearly at small � (based on the predictions
of BCS and ME theory) and then plateauing at the maximal
Tc ≈ 0.2t of the attractive Hubbard model.

It would be interesting in future work to study the transition
between the linear regime in the adiabatic limit and the plateau
in the anti-adiabatic limit. This transition will occur around
� ≈ 2t , a regime where maximal Tc is likely accessible in
DQMC simulations. We expect that optimizing the details of
the band structure (such as including the effect of next-nearest
neighbor hopping) will not qualitatively change these conclu-
sions because the optimal densities for SC occur away from
half filling, where the particular shape of the Fermi surface
avoids any special nesting conditions. So, one should expect
the suppression of SC at strong coupling due to competition
with CDW order or bipolaron formation, regardless of the
details of the band structure.

Finally, we remark that we have neglected the Coulomb
repulsion entirely in the current study. In the adiabatic limit of
small phonon frequency, we expect our conclusions to remain
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FIG. 4. All panels are DQMC results for an 8 × 8 lattice.
Each panel shows the SC susceptibility for different values of the
phonon frequency as a function of temperature and λ for a filling
of 〈n〉 = 0.85.

qualitatively unchanged, as the dimensionless Coulomb repul-
sion μC is renormalized down μC → μ∗

C < μC in this limit,
and the pairing tendencies of the system will be determined
by the combination λ0 − μ∗

C � λ0 [55]. Retardation becomes
less effective in suppressing the Coulomb repulsion in the
limit of large phonon frequency, however. In the particular
case that the repulsion is modeled by an on-site Hubbard
U > 0, the behavior in the antiadiabatic limit � → ∞ will be
that of an effective Hubbard model with Ueff = U − λ0/N (0).
In general, Ueff > 0, so one expects the tendency toward SC
to be suppressed in this regime. These considerations suggest
SC is optimized at an intermediate value of the phonon fre-
quency once Coulomb repulsion is taken into account. (An

FIG. 5. Maximum of SC susceptibility across electron density
and λ as a function of phonon frequency and temperature for an
8 × 8 lattice.

interested reader is referred to Refs. [51,59–66] and references
therein for further discussion of the single-band Hubbard-
Holstein model.)

V. COMPARISON WITH ME THEORY

ME theory provides a foundation for our understanding
of conventional superconductors [7,8]. As we have discussed,
significant CDW correlations and bipolaron formation emerge
at strong e-ph coupling that suppresses the SC correlations.
Previous work [24,67] in the adiabatic limit indeed shows
quantitative agreement between ME theory and DQMC in
terms of single-particle properties, at least up to a critical
value of λ beyond which ME theory quickly breaks down.
This result demonstrates that while ME theory does not cap-
ture the polaronic effects at strong coupling, it does provide
an accurate description of the Holstein model’s SC state in
the adiabatic limit. It is not expected that ME theory will
remain valid in the antiadiabatic limit, as vertex corrections
proportional to λ�/EF are not included in the theory. In this
section, we investigate this expectation and also study the
effect of filling on the agreement of ME theory and DQMC.

We compare DQMC to two different versions of ME
theory. The unrenormalized version uses a bare phonon propa-
gator for an Einstein mode, whereas the renormalized version
self-consistently includes the lowest-order phonon self-energy
diagram [10]. Here, the χCDW(q) is computed within the
Migdal approximation by summing the series of particle-hole
ring diagrams. Similarly, χSC is computed by summing the
series particle-particle ladder diagrams.

Figure 6 compares our DQMC results with ME theory
for various values of the phonon frequency. We find that
ME theory qualitatively captures the trends in the SC and
CDW susceptibilities for weak coupling and breaks down at
larger couplings, consistent with previous studies. Looking
more closely at the quantitative agreement, we generally see
that renormalized ME theory provides a better agreement
with DQMC with one exception—the anti-adiabatic limit with
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FIG. 6. Comparison of SC and (CDW susceptibilities from ME
and determinant DQMC for an 8 × 8 lattice and βt = 8. The value
of the χCDW(q) represents its value at the wave vector for which it is
maximized. Solid lines represent unrenormalized ME theory, dotted
lines represent renormalized ME theory, and points represent DQMC
data. SC susceptibilities are shown in blue and SC susceptibilities are
shown in orange. The relation between λ0 and λ is λ0 = N (0)W λ.
For 〈n〉 = 0.4, λ0 = 0.90λ and for 〈n〉 = 0.8, λ0 = 1.5λ.

〈n〉 = 0.8 suggests that the unrenormalized ME theory does
a better job at capturing the SC susceptibility than the un-
renormalized ME theory. However, neither renormalized nor
unrenormalized ME theory captures both the SC and the CDW

susceptibilities in this limit. This result is not surprising given
ME theory is not excepted to work in the anti-adiabatic limit.

The bottom panel of Fig. 6 shows the anti-adiabatic limit
at low filling (〈n〉 = 0.4). In this case, we observe a surpris-
ingly good agreement between the renormalized ME theory
and DQMC up to λ0 ≈ 0.2. For this limit we have chosen
�/EF = 10, which means the breakdown around λ0 ≈ 0.2
corresponds to a Migdal parameter of λ0�/EF ≈ 2, well out-
side the regime of validity typically quoted for ME theory.
This observation is interesting as it suggests that renormalized
ME theory could be applicable as long as the e-ph coupling
falls within the weak-coupling regime even for materials such
as n-type SrTiO3, monolayer FeSe on SrTiO3, the fullerides,
and lightly doped oxides where the phonon frequency is large
compared to the Fermi energy.

VI. CONCLUSIONS

We have studied the behavior of the SC and CDW
susceptibilities across a wide range of parameters for the two-
dimensional Holstein model using DQMC, an exact numerical
method. The competition between SC, CDW order, and po-
laronic tendencies is an important aspect of the physics of
e-ph coupled systems in the intermediate and strong-coupling
regimes. The strong tendency toward CDW order at half
filling, and the vanishing Tc expected with vanishing carrier
concentration, implies that SC is optimized at intermediate
carrier densities. On the other hand, the tendency toward bipo-
laron formation and/or CDW order for large coupling implies
the optimal regime for SC is at intermediate coupling strength.
Moreover, we find that larger phonon frequencies favor SC
as the CDW correlations are suppressed with increasing �

and the behavior of χSC and χCDW(q) approaches that of an
effective attractive Hubbard model, as expected in the anti-
adiabatic limit [56]. Our results suggest that the maximal
SC Tc in the Holstein model also increases monotonically
with phonon frequency, going as Tc ≈ 0.1� in the adiabatic
limit and saturating to a value Tc ≈ 0.2t in the anti-adiabatic
limit. We stress, however, that the inclusion of the Coulomb
interactions leads to significant suppression of Tc unless �/t
is very small. Finally, we have found that ME theory breaks
down at a critical value of e-ph coupling λ ∼ 1, regardless of
the adiabatic ratio �/EF or filling, consistent with previous
results [24,67–72]. However, we find evidence that renormal-
ized ME theory is possibly valid for weak coupling and low
electron densities, even when the phonon frequency exceeds
the Fermi energy. This result defies the conventional wisdom
that Migdal’s theorem is only valid when �/EF < 1.
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