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Eightfold quantum Hall phases in a time reversal symmetry broken tight binding model
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We consider a time reversal symmetry (TRS) broken Kane-Mele model superimposed with a Haldane model
and chart out the phase diagram using spin Chern number to investigate the fate of the quantum anomalous
Hall insulator (QAHI) and quantum spin Hall insulator (QSHI) phases. Interestingly, in addition to the QSHI
and QAHI phase, the phase diagram unveils a quantum anomalous spin Hall insulator (QASHI) phase where
only one spin sector is topological. We also find multicritical points where three or four topological phase
boundaries coalesce. These topological phases are protected by an effective TRS and a composite antiunitary
particle-hole symmetry leading to remarkable properties of edge modes. We find spin-selective, spin-polarized,
and spin-neutral edge transport in the QASHI, QSHI, and QAHI phases, respectively. Our study indicates that
the robustness of the topological phase mainly depends on the spin gap which does not necessarily vanish at the
Dirac points across a topological phase transition. We believe that our proposals can be tested in the near future
using recent experimental advancements in solid state and cold atomic systems.
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Recently various noninteracting quantum Hall systems
such as the quantum anomalous Hall insulator (QAHI) [1,2]
and quantum spin Hall insulator (QSHI) [3–5] and many
more [6–9] have been investigated in various topological
context. The QAHI and QSHI are best characterized by the
quantized charge and spin current, respectively. This is in-
timately connected with the fact that QAHI [1] breaks time
reversal symmetry (TRS) while QSHI does not [3]. The spin-
orbit coupling serves as a basic ingredient for the QSH effect
to occur. It has been shown that the bulk topological invariant
Chern number [10] (spin Chern number [11]) can successfully
predict the number of edge states (spin polarized channels) in
QAHI (QSHI) phases [12,13]. Another widely used topolog-
ical invariant namely, Z2 index can equivalently classify TR
invariant system [3,14–18]. Thereafter it becomes an impor-
tant question that what would be the fate of the QSHI phase
in the absence of TRS.

In order to search for the answers, TRS breaking terms
such as exchange field [19,20], magnetic doping [21,22],
and staggered magnetic flux [23] are introduced in the QSH
system to obtain a QAH effect. Remarkably, even though
Z2 index fails to characterize the topological nature of the
phase, the spin Chern number persists to be a relevant topo-
logical invariant distinguishing a TRS broken QSHI phase
from a QAHI phase. The QSH [3] and QAH [1] models have
been generalized to various theoretical platforms [24,25] and
realized in experiments [26,27]. All these studies motivate
us to consider a Kane-Mele model infused with a Haldane
model such that the TRS is broken by staggered magnetic
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flux associated with next nearest neighbor (NNN) hopping
and an intrinsic spin-orbit coupling (SOC) term. To be precise,
we ask the following questions: (1). How do the Haldane
and Kane-Mele phase diagrams modify? (2). Are there any
new topological phases apart from QSHI and QAHI phases?
(3). Can the spin Chern number successfully describe all the
phases?

To this end, we first demonstrate how the Haldane (Kane-
Mele) phases evolve with the Rashba and SOC terms (NNN
hopping and magnetic flux) [see Figs. 1, 2, and 3]. The
zeros of bulk energy gap determine the topological phase
boundaries and the finite spin gap [20,28] provides the ro-
bustness of the spin Chern number (C↑,C↓) [14,29] of a
topological phase. The QASHI [QSHI] phases are denoted by
(C↑, 0) and (0,C↓) [(C↑,C↓) with C↑ �= C↓ �= 0] while QAHI
phase is designated by C↑ = C↓ �= 0. In confirmation of bulk-
boundary correspondence, we find spin-selective, -polarized,
and -neutral transport in QASHI, QSHI, and QAHI phases in
the band structure in semi-infinite geometry with zig-zag edge
(see Fig. 4). These findings are further explained by the low
energy version of the model where evolution of spin depen-
dent Haldane gap with various parameters are demonstrated.
These topological phases are protected under emerging antiu-
nitary symmetries that couple with the chirality of the flux.
In essence, considering a simple flux induced TRS broken
QSHI model, our study uncovers many extraordinary features
in a systematic manner and also opens up the possibility of
practical device applications in the future.

The Hamiltonian we consider here is given as

H = −t1
∑

〈i j〉
c†

i c j + iVR

∑

〈i j〉
c†

i (�σ × �di j )zc j + M
∑

i

c†
i σzci

+ t2
∑

〈〈i j〉〉
eiφi j c†

i c j + iVso√
3

∑

〈〈i j〉〉
eiφi j νi jc

†
i σ

zc j, (1)
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where ci represents the fermion spinor (ci↑, ci↓); Vso and
VR represent the SOC and Rashba interaction strength, re-
spectively. The model incorporates a spin-independent NN
(NNN) hopping denoted by t1 (t2). The phase factor eiφi j

comes due to the staggered magnetic flux as described in
the Haldane model [1]. The factor νi j = (d1

i j × d2
i j )z and the

lattice vectors are same as mentioned in Kane-Mele model [4].
The important point to note here is that the SOC term acts
as the spin dependent NNN hopping of strength Vso where
spin-dependent magnetic fluxes are essentially coupled to the
electron momenta. M represents the inversion breaking mass
term.

Before proceeding further, we emphasize the key features
of the model Hamiltonian as given in Eq. (1) and their physical
implications in detail. We know that in the limit VR = Vso = 0,
the model contains two copies of the Haldane model. In this
case the spin indices are irrelevant. The topological phases
follow the condition M < |3√

3t2 sin φ| [1]. The TRS is bro-
ken there and both the spin sectors have the same spin Chern
number. To understand the phases, obtained in the Kane-Mele
model, we note that they correspond to φ = 0, t2 = 0, but
do contain the next nearest neighbor spin dependent hopping
with complex magnitudes. The fact that the complex NNN
spin dependent hopping changes sign under spin flipping im-
plies the restoration of the TRS. The spin Chern numbers
of opposite spin sectors are opposite. The total spin Chern
number must add up to zero owing to the TRS invariant nature
of the system. As long as TRS is preserved an additional
interaction such as the Rashba spin-orbit interaction is not able
to change the scenario and new phases will not appear. Inter-
estingly when the TRS is broken by introducing a flux in the
same spirit of the Haldane model, one expects new topological
phases to appear. In particular, we introduce the magnetic flux
in the SOC term so that the spin dependent NNN hopping
acquires complex amplitudes. The sum of spin Chern number
over all the spin sectors is no longer constrained to be zero.
This observation opens up the possibility of QASHI phase
where one spin sector is topological and the other is not.

We now discuss in detail the phase diagram obtained by
investigating the Hamiltonian (1) in momentum space. One
can obtain the momentum space Hamiltonian after Fourier
transformation of Eq. (1) as given by

H (k) =
9∑

i=0

ni(k) �i (2)

with �i = σi ⊗ τ0 for i = 1, 2, 3, �i+3 = σi ⊗ τ1 for
i = 1, 2, �i+5 = σi ⊗ τ2 for i = 1, 2, �8 = σ3 ⊗ τ3,
�9 = σ0 ⊗ τ3 and �0 = σ0 ⊗ τ0. Here σ and τ represent
orbital and spin degrees of freedom while writing
the Hamiltonian in the basis (cA↑, cA↓, cB↑, cB↓).
The components ni are given by n0 = 2t2 f (k) cos φ,

n1 = −t1(1 + 2h(k)), n2 = −2t1 sin
√

3ky

2 cos kx
2 , n3 =

M − 2t2 g(k) sin φ, n4 = VR√
3

sin
√

3ky

2 cos kx
2 , n5 = VR√

3
(h(k) −

1), n6 = −VR cos
√

3ky

2 sin kx
2 , n7 = VR sin

√
3ky

2 sin kx
2 ,

n8 = Vso
3 g(k) cos φ, n9 = Vso

3 f (k) sin φ, with f (k) =
2 cos

√
3ky

2 cos kx
2 + cos kx, g(k) = 2 cos

√
3ky

2 sin kx
2 − sin kx,

h(k) = cos
√

3ky

2 cos kx
2 . We note that for VR = Vso = 0, the

model (1) reduces to two copies of the Haldane model [that
breaks TRS, T H (k)T −1 �= H (−k) with T = (I ⊗ τ2)iK, K
being the complex conjugation] with spin up and down block.
On the other hand, for t2 = φ = 0, it reduces to Kane-Mele
model (that preserves TRS).

To understand the physical connection of the TRS breaking
in the presence of intrinsic spin-orbit coupling, we investigate
the following terms deeply: HA↑A↑(k) = n0 + n3 + n8 + n9 =
( f (k)Vso

3 − 2g(k)t2) sin φ + (g(k)Vso
3 − 2 f (k)t2) cos φ + M

and HA↓A↓(k) = n0 + n3 − n8 − n9 = −( f (k)Vso
3 + 2g(k)t2)

sin φ − (g(k)Vso
3 + 2 f (k)t2) cos φ + M. We notice that in the

absence of Vso, HA↑A↑(k) = HA↓A↓(k). The similar line of
argument is also applicable for HB↑B↑(k) and HB↓B↓(k). In
the semiclassical picture this refers to a situation when the
spin degrees of freedom are suppressed and only the orbital /

charge degrees of freedom remain active just as the case for
the Haldane model. The band inversion conditions, estimated
at Dirac points, takes the same form irrespective of their
spin components. However when the spin-orbit interaction
is considered, we observe that it affects the different spin
components in the opposite way. This can be thought of as
a k-dependent Zeeman field splitting between spin up and
down components. Thus we see a competition in energy
scale due to orbital degrees of freedom and spin degrees of
freedom. As a result, the band inversion condition of both
the spin component at the two Dirac points are no longer
interdependent. In the rest of the paper, we consider t1 = 1.0
and t2 = 0.5 without loss of generality.

Now it may be pertinent to digress a little and discuss the
topological characterization of various phases. We may note
that to describe a two-dimensional electronic system involving
explicit spin degrees of freedom, two topological invariants,
namelythe Z2 invariant [4] and spin Chern number [11] were
proposed in close succession. In the present case with TRS
breaking magnetic flux, the spin Chern number continues to
work while the Z2 invariant ceases [14]. We hence use the
spin Chern number C↑ and C↓ to classify different phases of
the Hamiltonian as given in Eq. (2). In order to numerically
compute the spin Chern number, one has to construct the
projector P(k) = |V1(k)〉〈V1(k)| + |V2(k)〉〈V2(k)| with |V1(k)〉
and |V2(k)〉 being the eigenvectors corresponding to two
valence bands with energies E1(k), E2(k) < 0. Now by
diagonalizing the four-dimensional projected spin operator
S̃(k) = P(k)(σ0 ⊗ τ3)P(k), we can obtain four eigenvec-
tors |ψ1,2,3,4(k)〉 corresponding to four eigenvalues ε1,2,3,4(k)
with |ε1(k)| = ε4(k) �= 0, |ε2(k)| = ε3(k) 
 0 (within nu-
merical accuracy) and ε1(k) < ε4(k). We further use the
four-component eigenvectors |ψ1(k)〉 and |ψ4(k)〉, corre-
sponding to two nonzero eigenvalues, to numerically compute
C↑ and C↓, respectively. Here we follow the Fukui’s method
in the k-space to compute them [16]. Instead of constructing
a four-dimensional projected spin operator S̃(k), using the
property of projector operator P(k), a two-dimensional ef-
fective projected spin operator Si j (k) = 〈Vi(k)|σ0 ⊗ τ3|Vj (k)〉
with i, j = 1, 2, can be alternatively used to compute the spin
Chern numbers [20,29].

To begin with, we show the phase diagram in M − φ

plane by keeping Vso = 1.0 fixed as shown in Fig. 1(a) and
1(b) for VR = 0 and 0.5, respectively. As the modification
over Haldane’s phase diagram, we find that a finite Vso in
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FIG. 1. Here we show the effect of VR for a fixed Vso = 1.0 in
M-φ phase diagram. (a) and (b) are plotted with VR = 0.0 and VR =
0.5 respectively. The indices within a given phase refer the values of
(C↑,C↓): C1 = (0, 1), C2 = (1, 0), C3 = (1, 1), C4 = (1,−1) and
Cn = −Cn with n = 1, 2, 3, 4. The phase boundary is obtained by
the zeros of band gap [30] and the color codes refer to the relevant
band gap equations. The spin gap vanishes in critical phase as de-
noted by the assembly of black dots in (a).

Hamiltonian (1) results in two additional topological phases
namely, QSHI [(C↑,C↓) with C↑ = −C↓ = ±1] and QASHI
[(C↑ = 0,C↓ = ±1) or (C↑ = ±1,C↓ = 0)] phases. The size
of QAHI phases, characterized by spin Chern number
(C↑,C↓) with C↑ = C↓ = ±1, gets reduced as compared to
QAHI phases in the Haldane model; (1, 1) and (−1,−1)
phases are, respectively, encapsulated by QASHI phases
(0, 1), (1, 0) and (0,−1), (−1, 0) from below and above.
While the two adjacent QAHI phases are connected by QSHI
phases (1,−1) and (−1, 1). The color coded phase boundaries
are assigned to the zeros of the respective energy gap equa-
tions [30]. It is noteworthy that φ → −φ, implies C↑ → −C↓
and C↓ → −C↑ for the QASHI and QAHI phases. This corre-
spondence holds also for QSHI phase that maps to itself. The
underlying reason could be the helical edge modes are a time
reversed partner of each other in the QSHI phase.

Strikingly, we encounter an extended critical phase, de-
noted by an assembly of black dots, within which the spin gap
vanishes identically as shown in Fig. 1(a) [28]. This caplike
critical phase cannot be characterized by the spin Chern num-
ber. The vertical height (horizontal width) of the critical phase
decreases (increases) with increasing VR (such that VR � Vso)
while the size of QASHI phases reduces without qualitatively
deforming their phase boundaries. The QASHI phases vanish
and the critical phase extends between −π < φ < π when
VR > Vso as depicted in Figs. 2(a) and 2(b). In other words,
the critical phases are bounded by violet phase boundaries
from outside for VR > Vso. This phase becomes the widest
when Vso = 0 [see Fig. 2(a)]. Upon introduction of Vso, the
size of QAHI phases reduces as well as the critical phase
becomes narrower [see Fig. 2(b)]. Finally, when Vso � VR,
QASHI phases start to appear near φ = 0 and ±π . The vio-
let phase boundaries expand with increasing VR and it fully
extends −π < φ < π when VR � Vso. The gapless critical
phase, otherwise bounded from outside, will now be bounded
from inside by the violet phase boundaries as soon as Vso

exceeds VR. The exact relation between Vso and VR can be
found from the gap equation corresponding to the violet phase
boundary [30].

We now investigate the phase diagram in the VR-M plane
to elucidate the modification over Kane-Mele phases namely,

FIG. 2. Here we investigate the effect of Vso for a fixed VR = 1.0
in M-φ phase diagram. (a) and (b) are plotted for Vso = 0.0 and Vso =
0.5, respectively. The definition of Cn and Cn are provided in the
caption of Fig. 1. The spin gap vanishes in the critical phase, denoted
by the assembly of black dots, that gets narrower with increasing Vso.

QSHI phases as shown in Figs. 3(a) and 3(b) for φ = 0 and
−π/4, respectively. The distinctive feature is that finite φ is
able to break the QSHI phase (1,−1) into QASHI phase (1, 0)
and QAHI phase (1, 1), while NNN hopping t2 alone does not
affect the existing phase diagram. Notably, the QAHI phase
originates between the two lobes of the QASHI phase. We
note that TRS breaking uniform exchange field can lead to
QAHI phases [20]. The staggered magnetic flux φ associated
with NNN hopping t2 and spin dependent hopping Vso acts
as a key ingredient to generate all the above phases simul-
taneously. It is to be noted that QASHI phases appear when
VR < Vso. The color coded phase boundaries indicates that
the identical QASHI phases for positive and negative M are
bounded by same gap equations.

Below, we emphasize a few essential conclusions from
these phase diagrams. The QAHI (QSHI) lobes of the Hal-
dane (Kane-Mele) model dismantle into a variety of phases
in the presence of VR and Vso (t2 and φ) giving rise to mul-
ticritical points where multiple topological phase boundaries
coalesce. Across a phase boundary, separating two topologi-
cal phases, |
C↑ + 
C↓| can only become unity where 
C↑
(
C↓) measures the difference in C↑ (C↓) among the two
adjacent topological phases separated by a phase boundary.
This situation no longer holds generically when we encounter
a multicritical point. The most important finding of our work
is the emergence of a QASHI phase where only one spin
component is topologically protected leaving the other to be
trivially gapped out. Even though, this type of phase has been
found in magnetically doped QSHI material [19,21,22], ours
is a tight binding model hosting these phases naturally.

FIG. 3. We here demonstrate that how a QSHI phase gives rise
to QAHI and QASHI phase by varying φ in M- VR plane keeping
Vso = 1.0 fixed. (a) and (b)correspond to φ = 0.0 and φ = −π/4,
respectively. The definition of Cn and Cn are provided in the caption
of Fig. 1.
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FIG. 4. Here we display the edge modes for various topological
phases: QASHI phase in (a), (b), (c), (d) for (1, 0), (−1, 0), (0, 1)
and (0, −1), respectively; QSHI phases in (e) and (f) for (1, −1)
and (−1, 1), respectively; QAHI phases in (g) and (h) for (1, 1) and
(−1, −1), respectively. The red line (green) refers to the localization
of edge modes at top (bottom) part of the semi-infinite zig-zag chain.

We now describe the edge state in the zig-zag edge
ribbon geometry (periodic in x direction and finite in y di-
rection) and its connection to the bulk invariant as a probe
to understand the bulk-boundary correspondence [31]. In
Figs. 4(a), 4(b), 4(c), and 4(d), we depict the edge modes for
(1, 0), (−1, 0), (0, 1) and (0,−1), respectively. To this end we
generalize the bulk-boundary correspondence for QAHI and
QSHI [1,4] to QASHI: Cσ = Nσ

RM − Nσ
LM, where Nσ

RM (Nσ
LM)

represents the number of right (left) moving edge modes for
spin σ =↑,↓. We note that edge modes are not completely
spin polarized as far as their numerical calculations are con-
cerned. We assign an edge state to be spin up (down) if it is
maximally populated by spin up (down) states. Turning to the
helical edge states in the QSHI phase, as shown in Figs. 4(e)
and 4(f), the spin dependent chiral motion is clearly captured
where up (down) spin traverses in a clockwise (anticlockwise)
manner along the edges of the system. This results in two
types of QSHI phases with spin Chern number (1,−1) and
(−1, 1) depending on the chirality of the spin-polarized edge
state. Finally, we show the chiral edge states of (1, 1) and
(−1,−1) QAHI phases, respectively, in Figs. 4(g) and 4(h).
In this case, both the spin up and down edge states share same
chirality while traversing along the boundaries of the system.
Therefore, using the bulk-boundary correspondence, we can
successfully explain that the spin dependent edge states in
different phases are related by the spin Chern number of the
underlying phases.

Another very intriguing fact that we notice is except for
φ = ±π/2, where the QAHI phases host zero energy chiral
edge states as shown in Figs. 4(g) and 4(h), all the other
values of φ �= ±π/2 support finite energy edge states if there
exists a topological phase. The edge modes do not show any
avoided level crossing structures that are observed for QSHI in
presence of magnetically doping and exchange field [20–22].
Therefore, staggered flux induced topological phases are in-
trinsically different from the above cases even though the TRS
is broken in both the situations. An effective TRS emerges im-
plying E (π − k, φ) = E (π + k,−φ) in our case. Even more
surprisingly, edge modes are further protected by a composite
antiunitary symmetry ensuring E (π − k, π − φ) = −E (π +
k, π + φ). Thus the twin effect of these antiunitary sym-
metries allows one the mapping C↑ → −C↓ and C↓ → −C↑
under φ → −φ. This further guarantees the existence of zero
energy chiral edge modes for any topological phase obtained
at φ = ±π/2.

Having extensively explored the lattice model, we now
resort to the low energy model for better understanding
behind the emergence of different phases. Expanding around
the Dirac points α = ±1, we obtain n1 = −α

√
3t1kx/2,

n2 = √
3t1ky/2, n3 = M + α3

√
3t2 sin φθ (k), n4 = −VRky/4,

n5 = −VR/
√

3 + αVRkx/4, n6 = αVR/
√

3 + VRkx/4,
n7 = −α3VRky/4, n8 = −α(

√
3/2)Vso cos φθ (k), n9 =

−(Vso/2) sin φθ (k) with θ (k) = (1 − |k|2/4). At the
Dirac points, the eigenenergies take the following form:
E1,4 = (w1 +w4 ± λ14

1 )/2, E2,3 = (w2 +w3 ± λ23
2 )/2 with

w1 = n3 + n8 + n9, w2 = n3 − n8 − n9, w3 = −n3 − n8 +
n9, w4 = −n3 + n8 − n9, r1 = −n5 − n6 and r2 = n6 − n5,

λ
jk
i =

√
4r2

i + (w j − wk )2 . Let us now start with a
simple case VR = 0 leading to the energy gap for spin
up 
E↑

AB = w1 − w3, and spin down 
E↓
AB = w2 − w4.

In this case, the low energy model closely follows the
Bernevig-Hughes-Zhang model for a HgTe quantum well [32]
enabling us investigate different phases in a similar spirit. A
topological phase is ensured by opposite signs of the gap at
two Dirac points k1 and k2: 
E↑(↓)

AB (k1)
E↑(↓)
AB (k2) < 0. The

different combination of the above product can, in principle,
determine various topological phases.

For the QASHI phases with (C↑, 0) [(0,C↓)], one can find
that the spin up [down] sector is only topologically gapped
out leaving the other spin sector to be trivial. For the QSHI
phase with (C↑ = ±1,C↓ = ∓1), one can find different com-
binations of topological gap in both the spin sectors. In the
case of QAHI phase with (C↑ = ±1,C↓ = ±1), the same
combination of topological gap occurs in both the spin sec-
tors. Denoting xζ ,ξ = M + ζ3

√
3t2 sin φ + ξ (Vso/2) sin φ, we

find that for the topological spin up channel with C↑ �= 0,
x+−x−+ < 0; on the other hand, for the topological spin down
channel with C↓ �= 0, x++x−− < 0. The phase boundaries
across which C↑ (C↓) changes are obtained by solving for
M from x±∓ (x±±)=0. This further explains the observation
that C↑ and C↓ can only jump by unity across a phase bound-
ary separating two different topological phases. However,
there exist multicritical points in the phase diagram where
more than two phases converge including nontopological
phases. At these points, the spin Chern number can jump by
more than unity. Without Rasbha interaction VR = 0, one can
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observe QAHI, QSHI, and QASHI phases in various parame-
ter regimes as shown in Figs. 1 and 3, can be explained by the
above low energy analysis.

Now, we extend our analysis for finite VR �= 0 using the
low energy formulation. We note that phase boundaries
are modified without altering the topological nature of the
phases in the presence of VR provided Vso �= 0 and φ �= 0.
This suggests that phases, present in the absence of VR,
are adiabatically connected while Rashba interaction is
turned on. The principle for a phase being topological
remains unaltered, however, their explicit forms are modified.
Denoting yη = η

√
3(Vso/2) cos φ and zζ ,ξ =

√
4V 2

R /3 + x2
ζ ,ξ ,

we find 
E↑↓
AB (k1) = ±y− + |x+,−|sgn(x+,−) + z+,+,


E↑↓
AB (k2) = ±y+ + |x−,+|sgn(x−,+) + z−,−. For spin up

(down) sector to be topological, the following condition
needs to be satisfied [y− + |x+,−|sgn(x+,−) + z+,+][y+ +
|x−,+|sgn(x−,+) + z−,−] < 0 ([y+ + |x+,−|sgn(x+,−) +
z+,+][y− + |x−,+|sgn(x−,+) + z−,−] < 0). In order to obtain
physical phase boundaries z2

ζ ,ξ has to be positive, which yields
the modification of phase boundaries in presence of VR [30].
It is important to note that in addition to the VR = 0 case, the
relative strength between Vso sin φ and

√
3VR/2 terms also

play an important role in determining the phase boundaries.
For example, the phase boundary is substantially modified
with a new topological phase once φ becomes nonzero (i.e.,
TRS is broken) as shown in Figs. 3(a) and 3(b). Relying
on the structure of topological gap at Dirac points, one can
define the spin Chern number in an effective manner as
follows:

Cσ = 1
2

[
sgn

(

Eσ

AB(k2)
) − sgn

(

Eσ

AB(k1)
)]

, (3)

with σ =↑,↓. Now we elaborate the role of the spin gap
defined as 
E↑↓

A = E↑
A − E↓

A , and 
E↑↓
B = E↑

B − E↓
B at two

Dirac points in examining the underlying stability for topo-
logical transitions. It is indeed necessary to have finite spin
gap 
E↑↓

A ,
E↑↓
B �= 0, in order to characterize a phase with

(C↑,C↓) [28]. Therefore, the robustness and stability of the
topological invariant is determined by the finiteness of the
spin gap. Interestingly, our numerical calculation with lattice
model suggests that spin gap can vanish at any arbitrary point
inside the momentum Brillouin zone for φ �= 0. This is in
contrast to the energy gap, obtained from the lattice model,
that only vanishes at Dirac points.

In conclusion, we consider the TRS broken Kane-Mele
model merged with the Haldane model where intrinsic SOC
is coupled with staggered magnetic flux to investigate the
fate of QSHI phases. We remarkably find new topological
phases namely, the QASHI phase and extended critical region
in addition to the QAHI and QSHI phase while studying the
spin Chern number (C↑,C↓). The QASHI phase, characterized
by (0,C↓) and (C↑, 0), supports spin-selective transport where
one spin channel is topologically gapped out leaving the other
component trivially gapped. The other two topological phases
namely, QSHI and QAHI phases exhibit spin-polarized and
spin-neutral edge transport in accordance with spin Chern
number. In short, superimposing the Haldane model with
the Kane-Mele model, we can successfully unify all possi-
ble types of QH phases for two-dimensional noninteracting
system in a single phase diagram. The topological phases in

this model are preserved by an effective TRS and a composite
particle-hole symmetry. We show that the findings from the
lattice model can be understood from a low energy model
around the Dirac point. We also provide an effective descrip-
tion of spin Chern number, based on the low energy model,
that corroborates with the lattice calculation. Surprisingly, the
band gap turns out to be decisive in the topological char-
acterization while stability and robustness is determined by
the finiteness of the spin gap. In terms of the future appli-
cations, our study can become useful in exploring the spin
entanglement in different phase [33,34] and disorder induced
Anderson QSHI phases [35].

Before ending we shall discuss the connection of work to
recent experimental advancements. We note that in optical
lattice platform SOC is theoretically proposed [36–40] and
experimentally realized [41–44]. In particular, the method
of producing complex next-nearest neighbor hopping, which
was employed earlier to realize the Haldane model, can be
utilized further to the case of spin dependent hopping with
complex amplitudes [26]. The suggested procedure involves
the application of spin-dependent force that is caused by an
oscillating magnetic field gradient. By adjusting the oscillat-
ing field and the mirror position together, the complex phase
factor, appearing for the opposite spin component, may be
engineered. As far as the real materials are concerned there
have been several proposals and experimental realizations of
the QAH effect which include the magnetic-ion-doped HgTe
quantum well [21], topological insulator surfaces [45], transi-
tion metal oxides [46,47], and engineered graphene [19,48].
The Haldane-like complex next nearest hopping amplitude
was found in a series of Fe-based honeycomb ferro-
magnetic insulators, AFe(PO4)2(A = Ba, Cs, K, La) which
possess Chern bands [49]. The spin dependent hopping
can be engineered in the materials such as, AFe(PO4)2,
graphene with magnetic impurity [19,50], magnetically or-
dered two-dimensional materials [51,52], transition metal
oxide heterostructures [46], Skyrmion lattice [53–56] and
magnetic insulators MnTe, MnSe that could then serve as the
potential candidates to realize our model in principle. On the
other hand, the materials with intrinsic spin-orbit coupling
that host the QAH effect [24,57] may be promising candidates
if the spin-orbit interaction is controlled by using the methods
outlined before. Moreover the external pressure could be a
useful way to control the Rashba spin interaction [58] whereas
the intrinsic spin orbit interaction can be manipulated by
suitable doping and other interactions [59–61]. Though the
quantitative prescription of such schemes is beyond the scope
of present study and will be presented elsewhere, we expect
that with the state of the art experiments in the near future
such a controlled spin-dependent hopping can be realized.
Apart from the possible experimental realizations, our work
has a significant amount of technological relevance in the
context of spintronics within modern electronics, spin field ef-
fect transistors, and magnetic field sensors of hard disk drives
[62–64].
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