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η-pairing ground states in the non-Hermitian Hubbard model
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The introduction of non-Hermiticity has greatly enriched the research field of traditional condensed matter
physics and eventually led to a series of discoveries of exotic phenomena. We investigate the effect of non-
Hermitian imaginary hoppings on the Hubbard model. The exact bound-pair solution shows that the electron-
electron correlation suppresses the non-Hermiticity, resulting in off-diagonal long-range order (ODLRO) ground
state in the attractive Hubbard model. In a large U limit, such non-Hermiticity contributes an extra minus sign
in the virtual exchange of the particles. As a consequence, the energy of the effective spin model describing
the behavior of the ground state and low energy excitations will be reversed. The corresponding ground state
experiences a transition from antiferromagnetism to ferromagnetism characterized by the appearance of a non-
decaying correlation function. The numerical result indicates that the η-pairing ground state exits in 1D and 2D
systems and is insensitive to the disorder. We further propose a protocol to adiabatically generate the η-pairing
state. Our results provide a promising approach for the non-Hermitian strongly correlated system.
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I. INTRODUCTION

Non-Hermitian Hamiltonian is not only an extension
of standard quantum mechanics, but it can also describe
dissipative systems in a minimalistic fashion. In the last
decade, non-Hermitian systems have gained a great deal of
attention, especially due to rapid progresses in experimen-
tal implementations of non-Hermiticity. Such experiments
include examples from photonics [1–8], acoustics [9], va-
cancy centers in solids [10], and cold atoms [11], where
non-Hermiticity was introduced through judiciously incor-
porating gain and loss [12–16]. It has been revealed that
non-Hermiticity drastically alters the properties of a number
of well-known quantum phenomena that have been estab-
lished in the Hermitian physics, ranging from quantum phase
transitions [17–19], quantum critical behavior [20,21], topo-
logical phases [22–30], to magnetism [31]. However, since
most of these previous studies relied on single-particle or
mean-field descriptions, investigation of many-body physics
in non-Hermitian systems is still in its infancy.

Superconductivity is one of the most striking quantum
many-body phenomena, which has been a subject of intensive
investigation in condensed matter physics. Recent advances
in quantum simulations of the Hubbard model with ultra-
cold atoms have offered a multifunctional platform to unveil
such properties of the strongly correlated system [32–44]. Of
particular interest is the generation of the η-pairing states,
which exhibit off-diagonal long-range order (ODLRO), and
thus are superconducting. This stimulates a plethora of proto-
cols to generate transient nonequilibrium superconductivity in
Hubbard models [45–50]. Inspired by the pioneer work [45],
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a plethora of protocols to generate transient nonequilibrium
superconductivity in repulsive Hubbard models are proposed.
More recently, a Floquet protocol to engineer η-pairing su-
perfluid in attractive Hubbard model is also studied [51]. On
the other hand, most previously studied non-Hermitian Hub-
bard system does possess the inelastic Hubbard interaction
[52–55], in which the bound states possess the complex en-
ergy. From the dynamical perspective, such states, especially
the η-pairing state, are not stable. Then a question arises:
under the non-Hermitian framework, is there a scheme to
prepare bound states with real energy and make the energy
of η-pairing state as low as possible? If yes, what is the
magnetism of such non-Hermitian system? In this work, we
attempt to answer the question by focusing on the Hubbard
model with non-Hermitian imaginary hopping rather than
complex-valued interaction.

A number of findings are in order. (i) The non-Hermitian
imaginary hopping can indeed induce a robust η-pairing
ground state for a wide range of parameters U (particle-
particle interaction) and t (hopping strength), by considering
the bipartite non-Hermitian Hubbard system. An exact solu-
tion of the bound pair is employed to elucidate the underlying
paring mechanism and pave the way to extend the results
to dilute gas. (ii) In the large U limit, the antiferromagnetic
and ferromagnetic states of both physical and η spins always
coexist, but the energy of the two is different. In the Hermitian
Hubbard model, the energy of the antiferromagnetic state is
lower than that of the ferromagnetic state. The presence of
the imaginary hopping leads to a minus sign in the virtual
exchange of the particles and hence reverses the energy of two
such states. The ground state undergoes a transition from an
antiferromagnetic to a ferromagnetic state. Correspondingly,
the correlation function of doublon hopping remains a con-
stant number rather than decaying in terms of the power-law
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form as in the antiferromagnetic ground state. Specifically,
in the repulsive Hubbard model (U > 0), the presence of
imaginary hopping leads to a change from antiferromagnetic
to ferromagnetic correlations of physical spins, whereas in
the attractive Hubbard model (U < 0), the η-pairing state
with ferromagnetic correlation becomes the ground state.
In this sense, the η-pairing state is set to the ground state
through a non-Hermitian setting. These results were absent
in the previously studied non-Hermitian correlated system.
(iii) Numerical results of 1D and 2D systems with corru-
gation patterns indicate that the presence of the η-pairing
ground state is insensitive to the disorder and the strength
of the interaction even though the on-site interaction breaks
the SO(4) symmetry, which suggests a promising scheme in a
real experiment. We further demonstrate that such insensitive
property can be served as the building block to generate a
η-pairing superconducting state. It is hoped that these results
can stimulate further studies of both fundamental aspects and
potential applications of the non-Hermitian correlated system.

The rest paper is organized as follows. Section II discusses
the non-Hermitian Hubbard model, wherein the exact two-
particle solution and effective spin Hamiltonian in large U
limit are investigated. The underlying mechanism of the for-
mation of the η-pairing ground state is discussed. Section III
shows the numerical results and the analytical understanding
of superconductive η-pairing ground state. Section IV demon-
strates the transition from a conventional paring to η-pairing
superconductive ground state. Section V concludes this paper.
Some details of our calculations are placed in Appendixes.

II. MODEL

We consider a non-Hermitian Hubbard model on a bipartite
lattice

H = i
∑

j,l

∑
σ=↑,↓

t jl (c
†
j,σ cl,σ + c†

l,σ c j,σ ) + U
∑

j

n j,↑n j,↓, (1)

with the following notation: the operator c j,σ (c†
j,σ ) is the

usual annihilation (creation) operator of a fermion with spin
σ ∈ {↑,↓} at site j, and n j,σ = c†

j,σ c j,σ is the number oper-

ator for a particle of spin σ on site j; the symbol i = √−1
represents an imaginary number; U and t jl are required to be
real and play the role of interaction and kinetic energy scales,
respectively; the system can be divided into two sublattices
A and B such that t jl = 0 whenever j ∈ {A} and l ∈ {A} or
j ∈ {B} and l ∈ {B}. For convenience and clarity, the number
of the sites and the particles are denoted by N and M, respec-
tively. The non-Hermiticity of H stems from the imaginary
hopping it jl that can be realized by the judicious design of
the loss and the magnetic flux [56,57] which are within the
reach of cold atom experiments [31,58]. Notice that such
non-Hermiticity is distinct from the complex particle-particle
interaction adopted to describe the inelastic collision of two
particles [53,55], wherein the second-order process mediates a
complex spin-exchange interaction. Evidently, the imaginary
hopping inevitably competes with the interaction leading to
the unique properties of the considered system. Specifically,
the effective spin Hamiltonian of Eq. (1) is Hermitian in large
U limit. It can be expected that the introduction of such

non-Hermiticity will significantly alter the magnetic cor-
relation of the parent Hermitian system, which will be
demonstrated in the following section.

In this paper, we focus on whether the system can favor
the ground state with η-pairing superconductivity in this non-
Hermitian setting. To gain physical insight into this system,
we first investigate the symmetry of the considered model. It
has two sets of commuting SU(2) symmetries. The first is the
spin symmetry characterized by the generators

s+ = (s−)† =
∑

j

s+
j , (2)

sz =
∑

j

sz
j, (3)

where the local operators s+
j = c†

j,↑c j,↓ and sz
j = (n j,↑ −

n j,↓)/2 obey the Lie algebra, i.e., [s+
j , s−

j ] = 2sz
j , and

[sz
j, s±

j ] = ±s±
j . The spin quantum number sc is related to the

eigenvalues of the operator s2 = (sz )2 + (s+s− + s−s+)/2,
i.e., sc(sc + 1). Large values of sc corresponds to ferromag-
netism. The second often referred to as η-symmetry has the
generators

η+ = (η−)† =
∑

j

η+
j , (4)

ηz =
∑

j

ηz
j, (5)

with η+
j = λc†

j,↑c†
j,↓ and ηz

j = (n j,↑ + n j,↓ − 1)/2 satisfying
commutation relation, i.e., [η+

j , η−
j ] = 2ηz

j , and [ηz
j, η±

j ] =
±η±

j . Again, the quantum number ηc is related to the operator
η2 = (ηz )2 + (η+η − +η−η+)/2, with eigenvalues ηc(ηc +
1). Here we assume a bipartite lattice and λ = 1 for j ∈ {A}
and −1 for j ∈ {B}. Notice that under a particle-hole trans-
formation, c j,↓ → λc†

j,↓, which maps the attractive Hubbard
model to a repulsive one in the parent Hermitian Hamiltonian
(1), the role of the two sets of SU(2) generators is inter-
changed. Straightforward algebra shows that

[H, η±] = ±Uη±, (6)

[H, ηz] = 0, (7)

which indicates that one can construct many exact eigenstates

H |ψc(m)〉 = mU |ψc(m)〉 (m = M/2 = 0, 1, . . . ), (8)

where |ψc(m)〉 = �−1(η+)m|Vac〉, with |Vac〉 being the vac-
uum state of fermion c j,σ and renormalization coefficient � =√

Cm
N . What makes the state is special is the fact that it has

been shown to have ODLRO in the form of doublon-doublon
correlations, 〈ψc(m)|η+

i η−
j |ψc(m)〉 = const, (i 	= j). This re-

lation provides a possible definition of superconductivity, as
a finite value of this quantity can be shown to imply both the
Meissner effect and flux quantization [59]. Correspondingly,
the large values of the ηc quantum number are related to a
staggered ODLRO and superconductivity [60,61]. It is worth
pointing out that the imaginary hopping does not change the
η-pairing state, only the variation of U will alter its energy.
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A. η-pairing state in two-particle subspace

Based on the symmetry of the system, we first elucidate
the paring mechanism through the exact solution within the
two-particle subspace. Supposing that the Hamiltonian (1)
describes a 1D homogeneous ring system in which it jl =
itδl, j+1. Owing to the translation symmetry, the basis of such
invariant subspace can be constructed as follow:

|φ−
0 (K )〉 = 1√

N

∑
j

eiK jc†
j,↑c†

j,↓|Vac〉, (9)

|φ±
r (K )〉 = 1√

2N
eiKr/2

∑
j

eiK j (c†
j,↑c†

j+r,↓ (10)

±c†
j,↓c†

j+r,↑)|Vac〉, (11)

and

s±
√

2
|φ+

r (K )〉 = 1√
N

eiKr/2
∑

j

eiK jc†
j,±↑c†

j+r,±↑|Vac〉, (12)

where N is an even number and K = 2nπ/N is the momentum
vector indexing the subspace. r represents the relative distance
between the two particles. These bases are eigenvectors of the
operators s2 and sz, which satisfies

s2|φ−
r (K )〉 = 0, (13)

sz|φ−
r (K )〉 = 0, (14)

s2|φ+
r (K )〉 = 2|φ+

r (K )〉, (15)

sz|φ+
r (K )〉 = |φ+

r (K )〉. (16)

Evidently, each subspace labeled by K can be further decom-
posed into four subspaces with (s, sz ) = (0, 0), (1, 0) and
(1, ±1) in term of spin symmetry. Aiding by the detailed
calculation in Appendix, the bound pair emerges in the (0, 0)
subspace with eigenenergy being εK = sgn(U )

√
U 2 + 4λ2

K
in which λK = 2it cos(K/2). The bound pair state is |ϕb

K〉 =∑
r f −

K (r)|φ−
r (K )〉 with

f −
K ( j) =

{
1/

√
2, j = 0

e−β j , j 	= 0
, (17)

where β = ln[(−U ±
√

U 2 + 4λ2
K )/2λK ]. Here ± denotes

negative and positive U , respectively. In the absence of on-site
interaction U , only the scattering eigenstate with imaginary
eigenenergy presents and the system does not accommodate
the bound pair state. The nonzero interaction U leads to the
emergence of the bound pair. When |U | > |4t |, the system
possesses the full real bound pair spectrum. However, a small
U results in the appearance of the imaginary bound pair
energy. The corresponding eigenstate is in the form of an
oscillation damping wave rather than a monotonic damping
wave of the Hermitian parent system. Notice that if |U | �
|4t |, then an exceptional point (EP) |U | = |2λKc | presents, at
which the coalescent eigenstate approaches to a unidirectional
plane wave with β = 0 or π corresponding to K = 0 or 2π .
In this sense, the non-Hermiticity of the system is suppressed
through the pairing mechanism. The emergence of real energy
is the consequence of the competition between the on-site in-
teraction and imaginary hopping. Furthermore, when U < 0,

FIG. 1. Comparison of the two-particle spectrum within the
subspace (0,0) between the non-Hermitian setting and its parent
Hermitian system for (a) U = −0.8t , (b) −2t , and (c) −4.5t , re-
spectively. The upper and lower panels present the spectrum of the
Hermitian and non-Hermitian system, respectively. The red circle
and gray shading denote the bound pair and scattering state. The
parent Hermitian system can be obtained by assuming it → t . For
the Hermitian system, the bound pair with the lowest energy lies
in the K = 0 subspace while the ground state of two-particle non-
Hermitian setting locates on the subspace indexed by K = π . It is
shown that the presence of the imaginary hopping not only makes all
scattering energy bands imaginary but also reverses the whole bound
band. In the condition of small U , there can exist an EP characterized
by the divergence of ∂εK/∂K . Such non-Hermiticity alters signifi-
cantly the paring mechanism and hence favors superconductivity.

the lowest real eigenenergy appears in the K = π subspace no
matter whether the system possesses the full real spectrum.
The corresponding ground state is η-pairing state with the
form

|φ−
0 (K )〉 = (η+)/

√
N |Vac〉. (18)

Here the ground state refers to the steady eigenstate with
the lowest eigenenergy, where the so-called steady eigenstate
means that its Dirac probability does not change with time.
From the dynamical perspective, all the eigenstates with real
eigenenrgy belong to this class except for the coalescent state,
since the Dirac probability of such state increases over time
in power law according to the order of coalescence [44]. In
the current non-Hermitian setting, the energies of η-pairing
states are real rather than complex that appears in the non-
Hermitian Hubbard system with complex interaction. Under
the long-term time evolution, the η-pairing state exhibits dis-
tinct dynamic behaviors in two such non-Hermitian systems.
Note in passing that the behavior of the ground state is in stark
difference from the Hermitian system, i.e., it → t . In that
case, the ground state of the two-particle system locates on the
K = 0 rather than the K = π subspace such that the η-pairing
state has the highest eigenenergy than the other bound pair
state, which can be clearly seen by comparing Figs. 1(c1)–
1(c2). It also demonstrates that the imaginary hopping flips
the bound pair spectrum of the parent Hermitian spectrum
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so that the steady ground state experiences a transition from
conventional paring (K = 0) to η-paring (K = π ) state.

B. η-pairing state in the large U limit

Now we turn to investigate the situation with arbitrary
filling but in the large U limit system. Following the standard
step of quantum mechanics, the system can be divided into the
kinetic part H ′ and interaction part H0, where

H ′ = i
∑

j,l

∑
σ=↑,↓

t jl (c
†
j,σ cl,σ + c†

l,σ c j,σ ), (19)

H0 = U
∑

j

n j,↑n j,↓. (20)

Here the imaginary hopping is assumed to be homogeneous
it jl = itδl, j+1. In the strongly correlated regime |U | � t , the
kinetic term H ′ can be treated as a perturbation and one can
derive an effective Hamiltonian for the degenerate space. The
second-order perturbation theory gives the effective η-spin
Hamiltonian regarding the doublon-hole creation and recom-
bination process as

Heff = mU + 4t2

U

∑
j

(
η j · η j+1 − 1

4

)
, (21)

where η j = (ηx
j , η

y
j, ηz

j ). In Appendix, a simple two-site
case is provided to elucidate this mechanism. This indicates
that the non-Hermitian virtual exchange mediates an interac-
tion between the pseudo spins. The eigenstate of the lowest
eigenenergy within each doublon subspace is the η-pairing
state with different pair numbers when U < 0. Similarly, for
the case of repulsive Hubbard model at half filling, the effec-
tive Heisenberg Hamiltonian describing the behavior of the
ground state and low energy excitations can be given as

H l
eff = −4t2

U

∑
j

(
s j · s j+1 − 1

4

)
. (22)

Evidently, the non-Hermitian imaginary hopping contributes
an extra minus sign in the second order perturbation theory.
For U < 0, this leads to a change from antiferromagnetic to
ferromagnetic correlations of η spins. For U > 0, this leads to
a change from antiferromagnetic to ferromagnetic correlations
of real spins s.

III. η-PAIRING STATE IN SYSTEM
WITH MIXED HOPPINGS

Reference [62] states that the ground state is unique with
s = 0 (M is even) if the attractive Hubbard model (U < 0)
is considered, and the η-pairing state is not the ground state
[59]. Hence, many efforts have been done to seek the strongly
correlated electronic models with superconducting η-pairing
ground state [63–66]. In the aforementioned sections, we have
demonstrated that the η -pairing state can be either the ground
state of the system under the large U limit, or the ground
state of the two-particle subspace with nonzero U . Then a
natural question arises: (i) for any nonzero U , is the η-pairing
state still the ground state of the system in the subspace of
other particle numbers? (ii) If yes, can the existing 1D results
be extended to 2D or higher dimensional system? (iii) If the

FIG. 2. Plot of the fidelity F as a function of the interaction
strength U for the homogeneous 1D systems: (a) four-site system
with filled particle pairs m = 2, and 4; (b) six-site system with filled
particle pairs m = 2, 4, and 6; (c) eight-site system with filled particle
pairs m = 2, 4, 6, and 8; and (d) ten-site system with filled particle
pairs m = 2, 4, 6, 8, and 10. It is shown that the system possesses the
η-pairing ground state as long as U is switched on.

disorder is introduced, does the property of ground state be
changed?

To answer these questions, we first investigate the 1D non-
Hermitian homogeneous system by setting it jl = itδl, j+1. The
fidelity F defined as

F = |〈ψg(m)|ψc(m)〉|, (23)

is introduced to measure the similarity between the ground
state in the subspace with m particle pairs and the η-pairing
state. Although the formal eigen solution of the 1D Hubbard
model can be obtained through the Bethe ansatz method, it
is difficult to identify the property of the ground state in
the non-Hermitian setting theoretically. Hence, we perform
the numerical simulation to check such quantity. Figure 2
shows that the ground state is the η-pairing state in the sub-
spaces with different particle numbers even though a small U
presents. Combining with the conclusions of two-particle and
large U cases, we can infer that the η-pairing state has the low-
est energy comparing with other bound pairs for any even M.

Now we turn to examine the second and the third ques-
tions by introducing the disordered imaginary hopping and
interaction, which always presents in real experiments. The
corresponding disordered Hamiltonian can be obtained by
taking two sets of random numbers {t j,l} and {Uj,l} around t
and U in Eq. (1). The random number parameter can be taken
as

t j,l = t + rand(−a, a), Uj,l = U + rand(−b, b), (24)

where rand(−a, a) denotes a uniform random number within
(−a, a). Again, we employ F to identify the similarity
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FIG. 3. Plots of the overlap F and correlator Cj as a function
of the strength of interaction disorder b for (a) t = 1, a = 0.1t ,
U = −0.5t (b) t = 1, a = 0.3t , U = −1.5t (c) t = 1, a = 0, U =
−4t , and (d) t = 1, a = 0.2t , U = −4t . The numerical simulation
is performed for the 6 site 1D Hubbard model at half filling and
sz = 0. Here the strength of the hopping disorder a is set to be
constant for each subfigure and the correlator Cj is averaged over
all sites separated by a distance j. When b = 0, no matter what
value a takes, as long as U is nonzero, one can always get a perfect
η-pairing ground state. The variation of Cj indicates that the increase
of b will not result in the significant change of the η-pairing ground
state; the coexistence of hopping and interaction disorders does not
cause the ground state to deviate from the perfect η-pairing state,
which can be seen from (c) and (d). Therefore the performance of
the correlator is the consequence of the interplay between two such
disorders, which provides a scheme to prepare η-pairing ground state
in the experiment.

between the ground state and η-pairing state, where the over-
line indicates the disorder average. Figure 3 shows that if
U is homogeneous (b = 0) then the ground state is the η-
pairing state in the subspace with particle numbers M = 2,
4, 6, and 6 for each subfigure. The corresponding energies
are U , 2U , 3U , and 3U respectively. It indicates that the
formation of the η-pairing ground state is immune to the
hopping disorder. However, the introduction of disordered U
will cause the ground state of the system to deviate from
the η-pairing state. The underlying mechanism is clear, that
is, the system fulfills the η symmetry even in the presence
of the hopping disorder, but if one introduces disorder into
the interaction, this symmetry will be destroyed leading to
such deviation. One may think that the disorder of interaction
scrambles the background spin configuration and disturb the
spin correlation. Then a question arises: to what extent does
the ground state maintain the superconductivity? To capture
superconductivity, the doublon-doublon correlator

Cj =
∑

i

〈η+
i η−

i+ j〉/N (25)

is introduced. It is averaged over all sites separated by a
distance j. For the target state |ψc(m)〉, the expectation value
can be given as

〈ψc(m)|η+
i η−

i+ j |ψc(m)〉 =
{

m(N−m)
N (N−1) , for j 	= 0

m
N , for j = 0

. (26)

Notice that it is irrelative to the distance j and hence the
correlator Cj obeys the same law such that Cj = m(N −
m)/[N (N − 1)] for j 	= 0 or Cj = m/N for j = 0. In Fig. 3,
the correlator of the ground state Cj and the fidelity F are
calculated and averaged over 100 disorder configurations. It
demonstrates that F is around 0.9 and the correlator Cj stays
at a nonzero value ensuring the ground state of the system
possesses the superconductivity even though the strong inho-
mogeneity of interaction presents.

Now we switch gears to the cases of the 2D system. In
Fig. 4, the disordered 2D system is sketched. For simplicity,
we fix the strength of the hopping disorder a and examine two
quantities F and C2. It is shown that the system still possesses
the η-pairing state even though the small homogeneous U
and the disordered imaginary hopping present, which is simi-
lar to that of the 1D system. Although the disorder U affects
the correlation of ground state, the correlator C2 has a small
fluctuation around the value of uniform case supporting the
η-pairing superconducting ground state. Therefore one can
conclude that all the results of 1D can be extended to 2D
lattice system. It can be expected that this conclusion is still
valid for the higher dimensional bipartite system.

IV. DYNAMICAL TRANSITION FROM NORMAL TO
η-PAIRING GROUND STATES

In this section, we focus on how does the η-paring state
can be generated from a normal paring state. To observe such
a transition, we consider a 1D Hubbard system. The corre-
sponding Hamiltonian can be given as

H = −
∑

j,σ=↑,↓
it (c†

j,σ c j+1,σ + H.c.)

+U
∑

j

n j,↑n j,↓ +
∑

j,σ=↑,↓
μ j,σ n j,σ , (27)

where the term μ j,σ represents spin-dependent local poten-
tials. Here the hopping and local potential are chosen to have
the forms t (τ ) = λtτ and μ j,σ (τ ) = μ j,σ (0)e−λμτ , which are
varied with time τ so as to generate η-paring state. We
prepare the initial state |ϕ(0)〉 = c†

1,↑c†
1,↓c†

2,↑c†
2,↓|Vac〉 as the

ground state of an noninteracting Hamiltonian H (0) by set-
ting t (0) = 0, and μ1,σ (0) = μ2,σ (0) = −2 otherwise μ j =
0. The introduction of the inhomogeneous μ j,σ is to break the
degeneracy of the ground state when the imaginary potential
is switched off at the very beginning. And the exponential
form of μ1(2),σ (τ ) = μ1(2),σ (0)e−λμτ ensures that the final
Hamiltonian H (τ f ) possesses a η-paring state whose energy
is the minimum value of the real part of the energy spectrum.
Figures 5(a) and 5(b) shows the variation of the instantaneous
eigen spectrum of H (τ ) when the system parameters vary.
Evidently, the lowest eigenenergy has neither experienced
the level crossing nor level coalescent so that it is always a
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FIG. 4. Numerical simulation of 2D corrugation pattern for (a1) eight-site Hubbard model with four filled particles, (b1) nine-site Hubbard
model with 6 filled particles, and (c1) 13 site Hubbard model with four filled particles. The different sizes of solid circles and different lengths
of red edges denote the disorder of the interaction strength Uj and hopping strength t j of Eq. (24). (a2)–(c2) Plots of F and C2 as function
of disorder strength b. The system parameters are (a) t = 1, a = 0, U = −0.8t (b) t = 1, a = 0.2t , U = −0.8t and (c) t = 1, a = 0.2t ,
U = −0.5t . Similar with 1D system, the induced fluctuation of C2 is minor in comparison with disorder free case (b = 0) indicating that the
existing result of 1D can be extended to 2D or higher dimensional system.

real number. As such, one can envisage that the system can
drive adiabatically the initial state |ϕ(0)〉 towards the η-paring
state. To verify and demonstrate the above analysis, numerical
simulations are performed to investigate the dynamics of the
adiabatic evolution. We compute the time evolution of an
eigenstate by using a uniform mesh in the time discretization
for the time-dependent Hamiltonian H (τ ). The parameters λt

and λμ are chosen to be a small number such that the evolved
state remains in the eigenstate denoted by the red line in
Figs. 5(a) and 5(b). The fidelity Fg defined as

Fg = |〈ψc(m)|T exp

[
−i

∫ τ

0
H (τ ′)dτ ′

]
|ϕ(0)〉|, (28)

is employed to witnesses the formation of the η-pairing state.
The plot in Fig. 5 shows that the final evolved state approaches
to the η-pairing state, which agrees with our prediction.

Before ending this section, we want to point out that the
imaginary hopping plays the key to achieve the η-paring
ground state, however, it does not mean that the system must
have the η-pairing ground state as long as the imaginary
hopping is applied. The transition of the conventional pairing
(zero momentum) to η pairing (finite momentum K = π )
always requires a process. Although the parent Hermitian
system (it → t ) favors the superconductivity when large −U
is assumed, the presence of the imaginary hopping can lead
to a unique η -pairing state with lower energy due to the
additional minus sign of the virtual exchange of particles.
The conclusion still holds even though a small −U applies.
On the other hand, the proposed dynamic scheme does not
apply to the non-Hermitian Hubbard model with inelastic
Hubbard interaction, that is U 	= U ∗. Although the spectrum
of inelastic Hubbard model can be obtained by changing
U → −U and swapping real/imaginary components of the

eigenvalues of H , the dynamic behavior of the two Hamilto-
nians is completely different. In the latter case, the η -pairing
state possesses the complex eigenenergy such that one can-
not design an adiabatic process to generate such state and
make it lie at the lowest energy of the bound states. In other
words, the mechanism for preparing η-pairing state is differ-
ent for the two non-Hermitian settings. These findings pave
the way to understand the η-spin ferromagnetic state of the
non-Hermitian strongly correlated system.

V. SUMMARY

In summary, we have systematically studied the effect of
the non-Hermitian imaginary hopping on the low-lying en-
ergy spectrum of the Hubbard model. The analytical solution
within the two-particle subspace shows that the introduction
of the imaginary hopping results in a full imaginary scattering
spectrum and a flip of the bound pair spectrum comparing
to its Hermitian parent model. It indicates that the particle-
particle correlation suppresses the non-Hermiticity making
the ground state to be η-pairing state with ODLRO. In the
large U limit, the magnetism of the Hubbard model is altered
fundamentally due to the interplay between the particle-
particle interaction and non-Hermitian imaginary hopping. In
particular, a change from antiferromagnetic to ferromagnetic
correlations of η spins occurs. When the η-spin ferromag-
netic ground state presents, the total spin of any two points
is 〈(ηi + η j )

2〉 = 1 (i 	= j ), and is irrelevant to the distance
between two η spins. As a consequence, the correlation func-
tions 〈η†

i η
−
j 〉 and 〈ηz

i η
z
j〉 are connected with each other because

〈ηi · η j〉 = 1/4 (〈η†
i η

−
j 〉 = 1/4 − 〈ηz

i η
z
j〉 for any i 	= j). In the

thermodynamic limit, such constant does not approach 0 sug-
gesting that η-spin ferromagnetic state has ODLRO and thus
favors the superconductivity. What needs to be emphasized
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FIG. 5. Dynamical generation of the η-pairing superconducting
ground state. [(a) and (b)] depict the variation of the instantaneous
energy spectrum with respect to time τ , and (c) presents the fidelity
Fg. The numerical simulation is performed for the six-site Hubbard
model with four filled particles. The other system parameters are
λt = 0.01, λμ = 0.05, and μ1(2),σ (0) = 0.5. The time τ is in units
of t−1, where t is the energy scale of the Hamiltonian. The adiabatic
path denoted by red line is chosen to avoid the level crossing and
coalescing such that the evolved state stay at the ground state. The
variation of Fg indicates that the ground state undergoes a transition
from conventional paring to η paring.

here is that although the considered system only has the
nearest-neighbor interaction, the expectation values of both

〈ηz
i η

z
j〉 and 〈η†

i η
−
j 〉 in the ferromagnetic state exhibit long-

range correlation. However, for the η-spin antiferromagnetic
ground state, the correlation function will decay with the
increase of the relative distance between the two η spins in
terms of the power-law form since the low-lying spectrum
is gapless in the thermodynamic limit. The transition of the
ground state holds for any pair filled, that is, the ground state
in each invariant subspace is (η+)m|Vac〉 with m being the
pairs of particles. Through numerical simulation of 1D and
2D non-Hermitian Hubbard system, we demonstrate that the
η-pairing ground state can still survival albeit a small negative
U presents. This evidence is robust against disorder even if
the system does not fulfill the SO(4) symmetry. Our results
open a new avenue toward populating a η-pairing ground state
and suppressing antiferromagnetic correlation of η spins in the
attractive Hubbard model.
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APPENDIX A: TWO-PARTICLE SOLUTIONS

In this section, we show the detailed calculation for the
two-particle solution in each invariant subspace. For the sim-
plicity, we only focus on the solutions in subspaces (0, 0)
and (1, 0), since the solution in subspace (1, ± 1) can be
obtained directly from that in subspace (1, 0) by operator s±.
A two-particle state can be given as

|ϕ±
K 〉 =

∑
r

f ±
K,k (r)|φ±

r (K )〉, ( f +
K (0) = f −

K,k (−1) = 0), (A1)

where r denotes the relative distance between the two particles
and the wave function f ±

K,k (r) obeys the Schrödinger equations

QK
r f +

K,k (r + 1) + QK
r−1 f +

K,k (r − 1)

+ [
(−1)nQK

r δr,N0 − εK
]

f +
K,k (r) = 0 (A2)

and

QK
r f −

K,k (r + 1) + QK
r−1 f −

K,k (r − 1)

+[
Uδr,0 + (−1)nQK

r δr,N0 − εK
]

f −
K,k (r) = 0, (A3)

with N0 = (N − 1)/2 and the eigen energy εK in the invariant
subspace indexed by K . Here factor QK

r = −2
√

2it cos(K/2)
for r = 0 and −2it cos(K/2) for r 	= 0, respectively. U ap-
pears in the (0,0) subspace and therefore admits the bound pair
solution. In the large N limit, we can neglect the effect of on-
site potential (−1)n+12it cos(K/2) at N0th site. The solution
of (A3) is equivalent to that of the single-particle semi-infinite
tight-binding chain system with nearest-neighbor (NN) hop-
ping amplitude QK

j , and on-site potentials U at 0th site,
respectively. Moreover the solution of (A2) corresponds to
the same chain with infinite U . In this scenario, the bound
state solution |ϕb

K〉 = ∑
r f −

K (r)|φ−
r (K )〉 can be determined by
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substituting the ansatz

f −
K ( j) =

{
1/

√
2, j = 0

e−β j , j 	= 0
(A4)

into the following equivalent Hamiltonian:

HK
eq = U |0〉〈0| +

∞∑
i=0

(
QK

i |i〉〈i + 1| + H.c.
)
. (A5)

Straightforward algebra shows that β = ln[(−U ±√
U 2 + 4λ2

K )/2λK ] where λK = 2it cos(K/2) and ± denotes
negative and positive U , respectively. Correspondingly, the
energy of the bound pair is

εK = sgn(U )
√

U 2 − 16t2 cos2 (K/2). (A6)

For the case of negative U , the lowest energy of bound
pair is επ = −U locating on the subspace with K = π . As
such the corresponding eigenstate is |φ−

0 (K )〉 that represents
a η-pairing state in the coordinate space with the form of
(η+)/

√
N |Vac〉.

APPENDIX B: SIMPLE EXAMPLE OF A TWO-SITE CASE
FOR THE EFFECTIVE HAMILTONIAN Heff

To second order in perturbation theory, the effective Hamil-
tonian is given by

H2
eff = P0H0P0 + P0H ′P1

1

E0 − H0
P1H ′P0 + O

(
t3

U 2

)
, (B1)

where P0 is a projector onto the Hilbert subspace in which
there are m lattice sites occupied by two particles with oppo-
site spin orientation, and P1 = 1 − P0 is the complementary
projection. Here the energy E0 of the unperturbed state is set
to E0 = mU , where m denotes the number of doublons. Since
H ′ acting on states in P0 annihilates only one double occupied
site, all states in P1H ′P0 have exactly m − 1 doubly occupied
sites. Now we provide a detailed calculation of the two-site
case for the effective Hamiltonian H2

eff which may shed light
to obtain the effective Hamiltonian (21). In the simplest two-
site case, P0 = ∑

α∈d.o. |α〉〈α| is the projection operator to the

doublon subspace spanned by the configuration {|x0〉, |0x〉},
and P1 = 1 − P0 = ∑

a/∈d.o. |a〉〈a| is the complementary pro-
jection. Here the abbreviation d.o. means the doubly occupied
subspace and |x0〉 = c†

1,↑c†
1,↓| Vac〉, |0x〉 = c†

2,↑c†
2,↓|Vac〉. The

first term of Eq. (B1) clear gives P0H0P0 = U . The second
term can be simplified by noting: (i) the unperturbed energy
E0 is U ; (ii) P1H ′P0 annihilates the doubly occupied site. Then
Heff can be written as

H2
eff = U +

∑
α,β∈d.o.

∑
a,b/∈d.o.

|α〉〈α|H ′|a〉〈a|

× 1

U − H0
|b〉〈b|H ′|β〉〈β|

= U + 1

U

∑
α,β∈d.o.

〈α|(H ′)2|β〉|α〉〈β|. (B2)

The second term describes the virtual exchange of the
fermions. The non-Hermitian imaginary hopping brings about
an additional sign to this process yielding that

Heff = U − 2t2

U
(|x0〉〈0x| + |0x〉〈x0| + |x0〉〈x0| + |0x〉〈0x|).

(B3)
Combining the cases in the subspaces of |xx〉 and |Vac〉, the
pseudo spin Hamiltonian can be given by the non-Hermitian
Heisenberg-like model

Heff = U + 4t2

U

(
η1 · η2 − 1

4

)
, (B4)

where η j = (ηx
j , η

y
j, ηz

j ), and m can be 0, 1, and 2 denoting
the number of pairs of the doublon subspace. Evidently, the
ground state of Heff is the η -spin ferromagnetic state with the
form of (η+)2|Vac〉. One can extend the result to the system
with N sites, the corresponding effective Hamiltonian is given
as

Heff = mU + 4t2

U

∑
j

(
η j · η j+1 − 1

4

)
. (B5)

Hence, the ferromagnetic state of η spins aligned on the x-y
plane is the η-pairing superconducting state.
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