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Recent observations of nonlocal transport in ultraclean two-dimensional materials raised the tantalizing
possibility of accessing hydrodynamic correlated transport of a many-electron state. However, it has been
pointed out that nonlocal transport can also arise from impurity scattering rather than interaction. At the
crux of the ambiguity is the focus on linear effects, i.e., Ohm’s law, which cannot easily differentiate among
different modes of transport. Here we propose experiments that can reveal rich hydrodynamic features in the
system by tapping into the nonlinearity of the Navier-Stokes equation. Three experiments we propose will each
manifest a unique phenomenon that is well known in classical fluids: the Bernoulli effect, Eckart streaming, and
Rayleigh streaming. Analysis of known parameters confirms that the proposed experiments are feasible and the
hydrodynamic signatures are within reach of graphene-based devices. Experimental realization of any one of the
three phenomena will provide a stepping stone to formulating and exploring the notions of nonlinear electron
fluid dynamics with an eye to celebrated examples from classical nonlaminar flows, e.g., pattern formation and
turbulence.
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I. INTRODUCTION

Electron hydrodynamics offers a powerful framework to
understand transport in strongly correlated electron sys-
tems [1–16]. The pursuit of electron hydrodynamics gained
new impetus with the advent of recent experiments in a
number of ultraclean two-dimensional (2D) materials [17–26]
making a case for electron hydrodynamics through obser-
vations of nonlocal transport, consistent with viscous flows
familiar in classical fluids. Such observations as vortices,
Poiseuille-like flow profiles, and unconventional channel
width dependencies of resistance are indeed consistent with
viscous effects in a linearized Navier-Stokes equation. How-
ever, these results are all in the linear-response regime, and
they can be ultimately described using a nonlocal variant of
Ohm’s law. Indeed, the linearized Navier-Stokes equation can
be simply recast using a nonlocal conductivity σ (q) [27–29].
While nonlocal transport can certainly be couched in the
formalism of hydrodynamics, it is also clear that inherently
finite length scales of a realistic fermionic system can con-
spire to produce nonlocal transport indistinguishable from that
implied by the Navier-Stokes equation [29]. Other ways of
accessing electron hydrodynamics are of great interest as we
seek to understand and isolate competing effects.

The overarching goal of this paper is to highlight the
existence of nonlinear electron phenomena that may be as-
sociated with an effective hydrodynamic description. With
that in mind, we adapt the Navier-Stokes (NS) equations of
classical fluid dynamics by introducing momentum relaxation
and Coulomb effects to make the discussion of the electron

phenomenology explicit. We do not tackle the important and
difficult question of a proper microscopic derivation of NS—
indeed, there is evidence that many available electron devices
are not quite in the asymptotic hydrodynamic regime [30,31].
We do, however, find strong evidence in known material and
device parameters to support the feasibility of our proposals.
It is worth emphasizing that while the phenomena we focus on
in this work are leading deviations from linear response, the
NS results we obtain also suggest the presence of instabilities
at finite nonlinearity. As in traditional classical hydrodynam-
ics, these different regimes are naturally demarcated using
dimensionless Reynolds numbers.

In Fig. 1, we summarize the three proposals that we discuss
in this paper. The rest of the paper is organized as follows.
Section II sets up the notation and formalism of NS, pay-
ing particular attention to the spectrum of Reynolds numbers
required to quantify nonlinear phenomena. Here, we also
collect Reynolds number estimates from known parameters
for graphene. Section III focuses on the manifestation of
the Bernoulli effect in the nonlinear current-voltage response
of an electron funnel. Section IV derives the generation of
downconverted dc current from a localized finite-frequency
excitation, analogous to Eckart streaming or “quartz wind.”
Section V describes the generation of static electron vortices
(akin to Rayleigh streaming) from an extended ac excitation.
Sections II–V are accompanied by Appendixes A–D contain-
ing complete details of calculations. Finally, we close with
a summary of results and a discussion of open problems,
including the role of interactions.
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FIG. 1. Proposed experimental setups and sketches of their observed effects. (a) The Venturi geometry, comprised of a circular wedge of
the hydrodynamic material in yellow. A nonlinear I-V characteristic with I ∼ √

V0 behavior is expected, marked in blue. The gray dashed
line represents an unstable solution branch, while the gray region represents a possible instability toward turbulent and/or intermittent flow.
(b) Eckart streaming. A voltage oscillation of zero mean is driven on one side of a back-gated device, leading to a rectified dc current I . For
large l , the dc current scales as l−1. For small l , oscillations due to interference with the reflected wave become visible. (c) Rayleigh streaming.
In a similar back-gated geometry of (b), a standing wave of current oscillations of amplitude u0 and of period λ along x is imposed, leading
to an oscillating magnetic field pattern of period λ/2 along x. These magnetic fields arise due to the formation of vortical current cells of size
λ/4 along x and h/2 along y, shown in the lower panel.

II. FORMALISM AND PARAMETERS

A. Equations of fluid dynamics

The hydrodynamics of an electron fluid, as a long-
wavelength effective theory, is described by a set of conser-
vation laws for variables that decay slowly compared to the
coarse-graining scale of the system. Although Galilean in-
variance is not microscopically present in electronic materials
(e.g., graphene), the Navier-Stokes equation has been derived
from kinetic theory when momentum-relaxing processes are
weak [32–34]. The momentum (Navier-Stokes) and density
continuity equations, which will be our primary interest in this
paper, are [35]

∂n

∂t
+ ∇ · (nv) = 0, (1)

∂ (ρv)

∂t
= Fconv − ∇p − ρe∇φ

+
[

4

D
ν + ζ̃

]
ρ∇∇ · v − ρν∇ × ∇ × v − ργ v,

(2)

Fconv ≡ −∇ · (ρv ⊗ v) = −ρv · ∇v − v∇ · (ρv), (3)

where v is the velocity field, n is the number density field with
mass m and charge e (ρ and ρe are the mass and charge den-
sities, respectively), ν and ζ̃ are the kinematic shear and bulk
viscosities, respectively, and we will be working in dimen-
sion D = 2 [36]. For graphene specifically, we remark that
there are quantitative corrections to Eq. (2) (see Ref. [32]).
In particular, the hydrodynamic mass m is not the quasipar-
ticle mass in the case of graphene, but is an effective mass
related to the local energy density m ∼ ε/v2

F Moreover, there
is a multiplicative correction to the convective term. We will
approximate m as a constant and ignore this multiplicative
correction, which we justify in Sec. II B. The convective term

Fconv is written to emphasize that it acts as an effective force;
this will be the primary source of nonlinear behavior. The re-
maining terms may also be thought of as (generalized) forces,
and we can take their ratios for a particular flow pattern to
characterize their relative importance. In addition to the con-
ventional “viscous” Reynolds number Reν corresponding to
shear dissipation, a momentum-relaxation Reynolds number
Reγ will be of interest. For simple nonsingular flow profiles,
these may be expressed as

Reν ≡ ∇ · (ρv ⊗ v)

ρν∇2v
= vL

ν
= IL

ρehν
, (4)

Reγ ≡ ∇ · (ρv ⊗ v)

ργ v
= v

Lγ
= I

ρehLγ
, (5)

with the help of characteristic velocity v, gradient 1/L,
channel width h, and net current I = ρehv. In this pa-
per, we primarily focus on the limit of low Reynolds
numbers Reγ , Reν � 1, i.e., leading corrections to linear re-
sponse [37].

Following standard practice, we make a further assumption
of local equilibrium to write equations of state for p and
φ, which closes the set of continuity equations above. We
take a back-gated geometry as shown in Fig. 1(b), where
the hydrodynamic metal and the back-gate separated by a dis-
tance d have a capacitance per unit area C = εε0

d . Therefore,
we take the following local relationships:

p =s2
FLρ, (6)

φ =ρe/C, (7)

where sFL is a constant corresponding to the speed of sound
in an uncharged, undamped fluid (i.e., a Fermi liquid). In
Eq. (7), also called the “gradual channel approximation,” the
long-range Coulomb tail is screened by the gate so that the
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longitudinal dispersion is gapless. This approximation is valid
when the distance d between the hydrodynamic metal and
the gate is much smaller than the typical wavelength of os-
cillations [33,38,39]. Therefore, both p and φ obey the same
functional form; if the density ρ = ρ (0) is constant, p can
be absorbed into an effective voltage φeff ≡ φ + p

ρ
(0)
e

in the
momentum equation. In particular, as a result of Eq. (7) there
is also an electronic contribution s2

cap = n(0)e2

Cm to the undamped

speed of sound s0 ≡
√

s2
FL + s2

cap.

B. Parameter estimates

To estimate parameters, as a model system we consider
a graphene-hBN stack with gate-channel separation d = 100
nm and average carrier density n(0) ∼ 1012 cm−2 tuned away
from charge neutrality so that we can consider a single
band. In graphene, the relaxation rate γ ∼ 650 GHz and ν ∼
0.1 m2/s [18], so that the viscous length scale rd =

√
ν
γ

∼
0.4 μm [29]. We will also take ζ̃ ∼ 0 [40,41]. The relative
dielectric constant of hBN is ε ∼ 3.9 [39,42], and we ap-
proximate m and e to be the bare electron mass and charge,
respectively. Therefore, the electronic contribution to sound
is scap ∼ 0.9 × 106 m/s. The speed of sound of Fermi liquids
is sFL ∼ vF [43], and Fermi velocities for metals are gener-
ally vF ∼ 106 m/s [44]. Therefore, we will approximate the
undamped speed of sound s0 ∼ 2 × 106 m/s. Using the dis-
persion relation in Eq. (A1), for ω = 1 THz we have the true
speed of sound s ∼ 1.9 × 106 m/s and attenuation coefficient
α ∼ 1/(6 μm). As a rough estimate, for characteristic lengths
h ∼ L ∼ 5 μm the Reynolds numbers are Reν ∼ I/(160 μA)
and Reγ ∼ I/(26 mA). The ratio Reν / Reγ ∼ L2/r2

d is con-
trolled by the viscous length scale rd ∼ 0.4 μm, so current
micrometer-scale experiments will be in a regime where Reγ

tends to dominate the nonlinear behavior. We remark that
the apparent paradox that hydrodynamic effects could be
dominated by momentum relaxation is due to linear-response
considerations; by tuning the sample width h such that
rd � h, a hydrodynamic description of the material remains
valid but becomes indistinguishable from Ohm’s law in the
absence of convection.

We now justify our assumptions of m constant and convec-
tive correction ξ negligible for the case of graphene. As shown
in Ref. [32], the mass fluctuations δm ∼ m0[O(δn/T ) +
O(u2/v2

F )]. For our parameters, operating at currents I ∼
100 μA and channel widths h ∼ 5 μm at room temperature
T = 300 K, the corrections δm ∼ 0.01m and are perturba-
tively small. Keeping any new nonlinearities introduced by δm
up to second-order, we find that it only introduces quantitative
O(1) corrections to the dissipative terms γ , ν, and ζ . There-
fore, m constant is valid at our level of approximation. For
the multiplicative correction to convection, for our parameters
where μ/T � 1 the multiplicative factor is roughly 1/4; this
is only an O(1) quantitative correction, and it is valid to ignore
it at our level of approximation.

III. ELECTRONIC BERNOULLI EFFECT

We now apply the hydrodynamic formalism to derive a
nonlinear contribution to the I-V characteristic V ∝ I2 in what

FIG. 2. A top view of the Venturi geometry, with inner radius r0,
outer radius r1, and total wedge angle θ0.

we call the “Venturi” geometry (see Fig. 2), first analyti-
cally in the limit ν → 0. For boundary conditions, we fix the
voltage φ(r0) = V0 and φ(r1) = 0 and take no-slip (vanish-
ing velocity) at the side walls θ = ±θ0/2. We find that the
stationary purely radial “plug flow” ansatz v = vr (r)�(θ2

0 −
4θ2)r̂ is a solution (with � the Heaviside step-function).
The absence of viscosity is crucial as it allows for a zero-
thickness boundary layer in this highly symmetric flow [45].
The Navier-Stokes equation [Eq. (2)] reduces to a simple
ordinary differential equation

∂

∂r

[
eφ + 1

2
mv2

r

]
+ mγ vr = 0, (8)

where we have subsumed pressure into φ for simplicity [46].
We further take the divergence-free (“incompressible flow”)
ansatz vr = I

ρ
(0)
e θ0

1
r , where the yet-undetermined constant I

is the total current and ρ (0)
e is the average charge density.

Substituting this ansatz into Eq. (8) and integrating from r0

to r1 (see Fig. 2), we obtain the nonlinear I-V characteristic

V0 = 1

σD

[
l ln(h1/h0)

h1 − h0
I − 1

2

(
1

h2
0

− 1

h2
1

)
I2

ρeγ

]
, (9)

where σD = n(0)e2

mγ
is the Drude conductivity, l = r1 − r0 is

the length, and h0 = θ0r0 and h1 = θ0r1 are the widths at the
contacts. The first term on the right-hand side corresponds to
the Ohmic contribution, while the second term is the nonlinear
I2 contribution from convection. We emphasize that the non-
linear contribution is strongly geometric, vanishing for typical
rectangular geometries [47] where h0 = h1. To further isolate
the nonlinearity, we exploit the parity difference between the
two contributions. Because the nonlinearity is of even parity,
a nonzero symmetrized current Isym(V0) ≡ 1

2 [I (V0) + I (−V0)]
provides a direct signature of the nonlinearity. To estimate
this effect, in Fig. 3 we plot in blue the current fraction
Isym/I and the I-V characteristic of Eq. (9) for wedge angle
θ0 = π/2 with r0 = 5 μm, r1 = 10 μm, and graphene-hBN
parameters as discussed in Sec. II B. To incorporate a finite
shear viscosity, which is difficult to solve analytically (see
Appendix B), we solve the Navier-Stokes equations numeri-
cally and plot the results as points in Fig. 1(a). The exact (ν =
0) result of Eq. (9) matches well with the numerical result, as

expected because the viscous length scale rd ≡
√

ν
γ

� r0θ0

is small for experimentally relevant parameters. As demon-
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FIG. 3. Main: a parametric plot of the voltage-symmetrized cur-
rent Isym(V0) ≡ 1

2 [I (V0) + I (−V0)] against total current I (V0). Inset:
the I-V characteristic. The solid lines are obtained analytically from
Eq. (9) in the ν → 0 limit, and the points are obtained numerically
with finite ν. Fixed-voltage boundary conditions are taken. The inner
and outer radii are 5 and 10 μm, respectively, with wedge angle θ0 =
π/2, with graphene parameters ν = 0.1 m2/s and γ = 650 GHz.
Since rd ∼ 0.4 μm and lengths are ∼10 μm, viscous corrections to
the analytic ν → 0 solution should be ∼5%.

strated by Fig. 1(a), this nonlinear effect (Isym ∼ 400 nA for
I ∼ 200 μA) should be experimentally measurable.

This nonlinear I-V characteristic in electronic hydrody-
namics is the analog of the Bernoulli effect in classical
hydrodynamics, the prototypical example of convective accel-
eration, which is traditionally demonstrated using a Venturi
tube. The Bernoulli effect is typically demonstrated in an
inviscid fluid of divergence-free (incompressible) flow, anal-
ogous to our assumptions. In fact, the classical Bernoulli
(energy conservation) equation is analogous to Eq. (8); the
term in brackets corresponds to the classical Bernoulli contri-
bution (i.e., when γ = 0), while the γ term accounts for the
additional dissipation from a finite conductivity. As a result,
the nonlinear term of the I-V characteristic Eq. (9) can be
calculated exactly by classical Bernoulli considerations.

We turn to the subtle issue of solving for the total cur-
rent I (V0) given the input voltage V0, i.e., verifying that the
ansatz satisfies the boundary conditions. Because this requires
solving a quadratic equation for I , the solution is generically
multivalued and may not even have a solution. In the limit
of small V0, linear response must provide the correct answer
on physical grounds; this selects the solution branch continu-
ously connected to the solution I = 0 at V0 = 0, where parity
was broken by γ . The opposite branch is therefore expected
to be unstable to θ -dependent perturbations. The region where
the purely radial solution does not exist corresponds to particle
flow in the divergent direction; for classical fluids, it is known
that divergent flow eventually becomes unstable and devel-
ops turbulence [48,49]. To estimate the scale of nonlinearity
at which the radial ansatz fails, one can define a Reynolds
number

Reγ ≡
∫ r1

r0
drFconv,r

− ∫ r1

r0
drργ vr

= −1

2lh0

I

ρeγ

[
h1
h0

− 1

ln h1
h0

(
1 − h2

0

h2
1

)]
,

(10)

which is precisely the ratio of the two terms in Eq. (9). The
instability point occurs at Reγ = −1/2. We summarize the
resolution of these subtleties in Fig. 1(a).

Finally, we now highlight three aspects of the Bernoulli
nonlinearity that should help identify it unambiguously in
experiments. To start, following Eq. (9) we note that the
quadratic term is independent of the momentum relaxation
parameter γ , and hence may be identified by comparing
I-V traces taken at different temperatures or even from dif-
ferent samples of the same material. Secondly, the simple
charge-density dependence may be probed by varying back-
gate voltage. After factoring out the density-dependent Drude
resistivity 1/σD [cf. Eq. (9)], the nonlinear term only has
an inverse dependence on charge density (and its sign de-
pends on the carrier charge). Lastly, Eq. (9) has a distinct
geometric dependence interpolating in a somewhat unusual
way between conventional and ballistic transport. For fixed
aspect ratios h1/h0 and l/h0, we find that the Ohmic resis-
tance contribution scales with the size of the device as 1/h0

while the nonlinear Bernoulli contribution scales as 1/h2
0. In

addition, the Ohmic resistance contribution has conventional
linear scaling with length l , while the nonlinear Bernoulli con-
tribution has the l-independent hallmark of ballistic transport.
This effect, therefore, stands apart from generic nonlineari-
ties, which are expected to be inversion-odd when the crystal
structure is inversion-symmetric (e.g., in graphene), and from
Joule heating effects, which would also provide inversion-odd
nonlinearities and would not have the l-independent ballistic
scaling.

IV. ECKART STREAMING: A “HYDRODYNAMIC
SOLAR CELL”

A dramatic effect of nonlinearity occurs upon applying an
oscillatory drive: down-conversion. In a back-gated device of
length l and width h [see Fig. 1(b)], we consider setting up a
traveling longitudinal (sound) wave by application of a volt-
age oscillation φ(x = 0) = V0 cos ωt at the left contact with
the right contact grounded [φ(x = l ) = 0]. This will result in a
dc current via the down-conversion sourced by the convective
force [Eq. (3)]. Such a device can be described as a “hydrody-
namic solar cell” providing a dc photocurrent if the (localized)
voltage oscillation is driven by EM radiation. For simplicity,
we will focus on bulk dissipation (i.e., attenuation due to
α > 0) contributions to the convective force and neglect those
of boundary dissipation, which only results in a quantitative
underestimate of the dc current (see Appendix C 5). This is
the electronic analog of Eckart streaming in classical hydro-
dynamics, where the convective force is primarily generated
by bulk dissipation [50–53]. To see this, we need to solve
the full Navier-Stokes equation [Eq. (2)], whose nonlinearity
precludes a single-mode ansatz. To handle this, we will seek
a perturbative solution in the input voltage amplitude V0 (see
Appendix C for full mathematical details).

A. Perturbative calculation

We begin by expanding the hydrodynamic variables in a
power series expansion of V0, e.g., ρ = ρ (0) + ρ (1) + ρ (2) +
· · · ; ρ (0) corresponds to the equilibrium mass density, while
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ρ (1) and ρ (2) are the first- and second-order solutions. At lead-
ing (linear) order, the single-mode ansatz φ(1) ∼ V0ei(±kl x−ωt )

along x with wave number kl = k + iα is appropriate. Impos-
ing the fixed-voltage boundary conditions, the solution of φ(1)

is a traveling wave with a reflected component; the grounded
edge acts as a mirror. Because of the back-gate providing a
capacitance per area C, the voltage oscillation of amplitude
V0 sets up a charge-density oscillation ρ (1)

e = Cφ(1) of ampli-
tude CV0 [see Eq. (7)]. Via the density continuity equation
[Eq. (1)], the density oscillations drive a longitudinal velocity
oscillation v(1)

x , schematically written as

v(1)
x ∼ u0Re[e(ik−α)x−iωt + e(ik−α)(2l−x)−iωt ], (11)

where Re denotes the real part and u0 = CV0

ρ
(0)
e

ω
|kl | is the velocity

amplitude. We also take a no-slip boundary condition, which
is not satisfied by v(1)

x . However, as previously stated, we will
neglect the boundary corrections to v(1)

x for simplicity (see
Appendix C 5) [54]. As a result, the leading-order solution v(1)

x
results in a dc convective force [see Eq. (3)]

F (2)
conv,x =ρ (0)u2

0
α sinh[2α(l − x)] − k sin[2k(l − x)]

cosh 2αl − cos 2kl
, (12)

where the overbar denotes time-average. The first term in the
numerator arises from the bulk dissipation α, while the second
term arises from interference effects; in the limit αl 
 1,
where interference effects are small, the right-hand side of
Eq. (12) simplifies to αe−2αx. This rectified dc force will result
in a dc current.

We now solve for the second-order dc current I (2). The dc
current density J(2) ≡ ρ (0)

e v(2) + ρ
(1)
e v(1) must be divergence-

free to satisfy current conservation [i.e., density continuity

Eq. (1)]. With the ansatz v
(2)
y = 0, this implies that the current

density J(2) = J (2)
x (y)x̂ only varies along y. However, the con-

vective force given by Eq. (12) varies along x. This paradox
is resolved by static screening, where the x-dependence of
convection will be canceled by contributions from the ef-

fective voltage φ
(2)
eff ≡ φ(2) + 1

ρ
(0)
e

p(2). Utilizing separation of

variables in the NS equation [Eq. (2)], we can solve for φ
(2)
eff by

applying the voltage-fixed boundary conditions φ(2)(x = 0) =
φ(2)(x = l ) = 0. Therefore, the “screened” convective force
(which is no longer spatially dependent) becomes

F (2)
conv,x − ρ (0)

e

∂φ
(2)
eff

∂x
=1

l

∫ l

0
dxF (2)

conv. (13)

Solving NS for the current density J (2)
x and integrating across

the channel to get the total current I (2), we get

I (2) = I2
0

ρ
(0)
e h

1

2lγ

[
1 − 2 − 2 cos 2kl

cosh 2αl − cos 2kl

]

×
(

1 − 2rd

h
tanh

h

2rd

)
, (14)

where I0 ≡ ρ (0)
e hu0 is the input current amplitude, and we

have assumed that convection provides the dominant dc force
(see Appendix C 3). The term in parentheses is a viscous
correction, reflecting the y-dependence of the current flow

FIG. 4. Main: A plot of I (2) at fixed input current amplitude I0

for device length l = 30 μm and graphene-hBN parameters stated in

Sec. II B, in units of A0 = I2
0

ρ
(0)
e h

1
2lγ (1 − 2rd

h tanh h
2rd

). We remark that

this is also a scaled plot of the Reynolds number Reγ . Inset: a blowup
of the yellow highlighted portion. At high frequencies, Reγ saturates
to a constant A0 = I0

ρ
(0)
e h

1
2lγ , while at sufficiently low frequencies the

interference oscillations become more visible. The gray box demar-
cates the low-frequency region ω � γ , where perturbation theory in
V0 breaks down for a fixed I0.

due to no-slip [55]. The bracketed terms correspond to dis-
sipation and interference contributions from the convective
force [Eq. (3)], respectively. The effect of these contributions
is demonstrated in Fig. 1(b), where we have schematically
plotted the dependence of dc current on the channel length l .
In the limit αl � 1, the interference term dominates, leading
to oscillatory behavior controlled by kl . In the opposite limit
αl 
 1, the interference term becomes negligible, and the dc
current scales as I (2) ∼ l−1. Other than the device length l , one
could also study the frequency dependence of Eq. (14) [via
kl (ω) = k + iα], which is plotted in Fig. 4 for a fixed I0 [56].
Similarly, interference effects appear at low frequencies and
become negligible at high frequencies.

B. Discussion and estimates

An effect similar to Eckart streaming was previously
discussed by Dyakonov and Shur [57] and extended in
Ref. [39]. They envisaged operating with zero dc current bias
I = 0 instead of zero dc voltage drop, so that one gener-
ates a dc voltage instead of a dc current. These theoretical
treatments [39,57] similarly neglected boundary dissipation,
which only leads to quantitative corrections to dc voltage.
However, for their case, boundary dissipation leads to qual-
itative flow corrections (see Appendix C 5); further discussion
is deferred to Sec. V. We point out that, in either case, if the
voltage oscillation is driven by an impingent EM wave, the
device is a “hydrodynamic solar cell” generating a dc pho-
tocurrent (photovoltage). In contrast to typical solar cells (e.g.,
a p-n junction), the hydrodynamic solar cell does not break
parity by construction; parity is intrinsically broken by dis-
sipation, setting the direction of the photocurrent. Therefore,
Eckart streaming provides a novel mechanism for photocur-
rent (photovoltage) generation. Signatures of down-converted
dc voltage generation by THz radiation have been measured
in ultraclean 2DEGs [58–61].
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One can define Reynolds numbers to estimate the strength
I (2)/I0 of the nonlinearity. The Reynolds number Reγ for this
system can be defined as

Reγ ≡
1
l

∫ l
0 F (2)

conv,x

ρ
(0)
e γ u0

= I0

ρ
(0)
e h

1

2lγ

[
1 − 2 − 2 cos 2kl

cosh 2αl − cos 2kl

]
,

(15)

which explicitly appears in Eq. (14). The viscous Reynolds
number can be similarly defined such that Reν = h2

r2
d

Reγ ,

where we approximate the viscous gradients to have length
scale L = h [see Eq. (4)]. The contribution from Reν is hidden
within rd ; in the limit rd 
 h, where viscous contributions
dominate, Reν can be made manifest by perturbatively ex-
panding Eq. (14) in h/rd . Since rd 
 h for the experimental
systems of interest, the Reynolds number Reγ ∼ I (2)/I0 cor-
responds to the scale of dc current (up to a small viscous
correction).

We now estimate the size the dc current in experiment
(see Appendix A for dispersion relations). We take device
size l = 50 μm and h = 5 μm and operate at ω = 1 THz,
with graphene-hBN parameters from Sec. II B; for these
choices, the interference effects are small since αl ∼ 5. There-
fore, we find Reγ ∼ I0/(312 mA) and therefore I (2)/nA ∼
(I0/24 μA)2. Observing the oscillatory effects is more dif-
ficult, requiring smaller l and more measurement precision.
Despite this, in an optimistically sized device of length l =
20 μm, we plot the frequency dependence of Reγ in Fig. 4.
The oscillations are suppressed by a factor of 0.01; if one
asks for a streaming current I (2) ∼ 1 nA, the oscillations will
be of order 10 pA. We therefore conclude that an Eckart
streaming current should be visible in current experiments,
with interference oscillations being a challenging observable.

V. RAYLEIGH STREAMING

We now turn to the limit where boundary dissipation dom-
inates, i.e., the bulk dissipation α is negligible. Here, the
no-slip condition is critical. In a rectangular back-gated device
of width h [see Fig. 1(c)], we consider setting up a longitudinal
standing wave of wavelength λ 
 α−1 along x. In this case,
the system cannot support a finite dc current due to reflection
symmetry in y. Therefore, down-converted dc current flows
sourced by the convective force [see Eq. (3)] must circulate.
The circulating current leads to a measurable orbital magneti-
zation of wavelength λ/2 along x with reflection-symmetric
modulation along y [see Fig. 1(c)]. This is the analog of
Rayleigh streaming in classical hydrodynamics, where the
convective force is primarily generated by boundary dissipa-
tion [51,52,62]. Remarkably, localized boundary effects lead
to nontrivial flows throughout the bulk (see Appendix D for
full mathematical details).

A. Perturbative calculation

We begin by working perturbatively in the input current
amplitude u0, where at linear order we take the longitudinal
wave ansatz

v
(1)
l,x = u0 sin kx cos ωt . (16)

This is consistent with a current-fixed boundary condition
Jx(x = 0) = 0 (i.e., dc current I = 0). For simplicity, we work
in a semi-infinite strip of width h (i.e., |y| � h/2 and x � 0)
with the above current-fixed boundary condition. To satisfy
no-slip, a transverse mode v(1)

t is necessary to correct the total
flow v(1) = v(1)

l + v(1)
t . This transverse correction disperses

along y with wave number kt = k′
t + ik′′

t , and hence forms
a “boundary layer” of size 1/k′′

t exponentially localized to
the wall. We will work in the thin boundary layer and long-
wavelength limit k′′−1

t � h � λ. In this limit, the resulting
convective force [see Eq. (3)] can be schematically written as

F (2)
conv,x ∼ ρ (0)u2

0 k e−k′′
t y+ sin 2kx + (y ↔ −y), (17)

where y+ = y + h
2 is the distance from the lower bound-

ary [63]. As a result of the quadratic nonlinearity, the
wavelength of the convective force is halved to λ/2. In ad-
dition, the convective force is localized to the boundary layer,
reflecting the fact that convection is driven by boundary dissi-
pation. It is therefore convenient to divide the flow into bulk
and boundary-layer regions, stitched together at the interface.
Despite the localized nature of the convective force, its ef-
fect will persist into the bulk by providing a slip boundary
condition.

Now, we study the second-order dc flow. We first con-
sider the boundary-layer region, assuming that the viscous
length scale rd ≡ ν

γ
� h. The convective force localized to

the boundary layer of size 1/k′′
t leads to a localized flow along

x. Because of the shear viscosity ν, the boundary-layer mo-
mentum propagates into the bulk with the viscous length scale
rd . Therefore, the boundary layer “screens” the no-slip condi-
tion, providing instead a slip velocity for the bulk flow. This
slip velocity can be written as v

(2)
slip sin 2kx, where schemati-

cally v
(2)
slip ∼ u2

0k
4γ

e−1/k′′
t rd . Equipped with the slip boundary, we

now solve the NS equation [Eq. (2)] for the bulk flow where
the convective force vanishes, and we obtain

J (2)
bulk,x = J (2)

slip sin 2kx

[
h

2rd
cosh y

rd
− sinh h

2rd

h
2rd

cosh h
2rd

− sinh h
2rd

]
, (18)

J (2)
bulk,y = J (2)

slip2krd cos 2kx

[− h
2rd

sinh y
2rd

+ y
rd

sinh h
2rd

h
2rd

cosh h
2rd

− sinh h
2rd

]
. (19)

The slip current J (2)
slip ≡ ρ (0)

e v
(2)
slip results from boundary convec-

tion, while the term in brackets is a geometric factor resulting
from satisfying the slip velocity boundary condition. The dc
current flow is plotted in Fig. 1(c), where it is clear that the
current circulates in cells of length λ/4 and width h/2.

B. Discussion and estimates

A previous related proposal by Dyakonov and Shur [57]
and its recent extension [39] discussed down-conversion ef-
fects with a current-fixed boundary J (x = 0) = 0, similar to
this case. However, they instead took a stress-free boundary
condition that has no boundary dissipation. In their case,
there is no circulating current; without boundary-layer con-
tributions, the convective force only leads to an excess of
dc voltage (see Appendix D). Therefore, Rayleigh streaming
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FIG. 5. A plot of the bulk vorticity distribution �
(2)
bulk ≡ ∇ × J(2)

bulk
induced by Rayleigh streaming for h = 5 μm and ω = 2 THz with
graphene-hBN parameters as in Sec. II B. The local bulk vorticity
corresponds to a Coulomb-like point source of magnetic field due to
Ampere’s law.

is qualitatively distinct from previous nonlinear proposals in
electron hydrodynamics.

Since the effect of the convective force is to generate a
slip velocity v

(2)
slip, we can estimate the scale v

(2)
slip/u0 by an

appropriate Reynolds number. The Reynolds number Reγ is
defined in this case to be

Reγ ≡ max F (2)
conv

ρ (0)γ u0
= I0

ρ
(0)
e h

k

4γ
f (ω/γ ), (20)

where f is a dimensionless function of ω/γ described in
Appendix D [64]. We remark that f develops an interest-
ing resonance at ω =

√
5

2 γ where perturbation theory breaks
down, but we operate away from this point and will not
discuss it further. It turns out Reγ e−1/k′′

t rd = v
(2)
slip/u0, i.e., slip

velocity is given by the Reynolds number up to an exponential
factor controlled by the viscous length scale rd . However,
the viscous Reynolds number Reν does not contribute to the
effect; in the limit γ → 0, the scale v

(2)
slip/u0 is instead set by

the Mach number u0k/ω. Despite the necessity of a finite
shear viscosity ν to generate a convective force, Reν does
not set the scale v

(2)
slip of the result; this curious fact was first

remarked by Rayleigh [65] (see Appendix D for additional
discussion).

We propose that the circulating flow profile could be de-
tected via magnetometry. To estimate the effect in realistic
systems, we set ω = 2 THz and channel width h = 5 μm with
graphene-hBN parameters as in Sec. II B (see Appendix A
for dispersion relations). We first verify the assumptions we
made: k′′−1

t � h � λ, rd � h, and α � k. These are k′′
t h ∼

13, h/λ ∼ 0.80, rd/h ∼ 0.08, and α/k ∼ 0.2, so we expect
our solution to be roughly correct. For the scale of the dc
effect, we find Reγ ∼ I0/(23 mA) and k′′

t rd ∼ 1.1, so that
vslip ∼ (I0/71 mA)u0. Since Ampere’s law implies −∇2Bz =
μ0∇ × Jδ(z), the vorticity � ≡ ∇ × J acts as a Coulomb-like
point source of magnetic field. The vorticity is plotted for
these parameters in Fig. 5, where it is concentrated near the
edges since the viscous length scale rd � h is small. To make
a rough estimate of the magnetic field strength, we take Bz ∼
μ0

z

∫
cell ∇ × �

(2)
bulk at a height z from the sample; we approxi-

mate the magnetic field to be sourced by the net circulation in
the nearest vortical cell. This gives Bz ∼ (I0/9.3μA)2

z/μm × 10−10 T.

Therefore, the magnetic fields should be detectable for I0 ∼
9.3 μA by scanning SQUID magnetometers.

VI. SUMMARY AND OUTLOOK

This paper argues for using nonlinear dc transport and
other manifestations of convective nonlinearity to identify
and study electron hydrodynamics. We have laid out three
electronic analogs of nonlinear classical phenomena—the
Bernoulli effect, Eckart streaming, and Rayleigh streaming—
which lead to an experimentally measurable nonlinear I-V
characteristic, down-converted dc current, and dc current vor-
tices, respectively (see Fig. 1). We have opted to derive and
discuss all three effects using the familiar Navier-Stokes for-
malism, leaving a more complete microscopic treatment for
future work. All three effects result from the interplay of
the nondissipative and nonlinear convection force with other
dissipative contributions in Navier-Stokes from viscosity and
momentum relaxation. As the convection force is a nondis-
sipative term that couples nearby velocity fields, it seems
unlikely that such a term could arise without electron-electron
interactions. Therefore, we believe such proposals provide
strong evidence for the emergence of a hydrodynamic regime.

It is interesting to note that interactions do not play an
explicit role in our results—both convection and momen-
tum relaxation (the dominant form of relaxation) are well
understood in the noninteracting limit of the many-electron
problem. Instead, strong electron-electron interactions justify
the coarse-grained effective description, removing the need to
consider the complications of quasiparticle physics. In partic-
ular, local equilibration (assumed throughout) is likely to be
violated in the limit of weak interactions, requiring a more
systematic microscopic treatment. This will be required, for
example, before extrapolating our results to low temperatures.

To obtain stronger nonlinear signatures, one would like to
make the Reynolds numbers Reν and Reγ as large as pos-
sible. Since the viscous length scale r2

d = ν/γ is typically
smaller than the characteristic lengths in experiment, Reγ

is the limiting factor. In addition to reducing the momen-
tum relaxation rate γ , one could also reduce the density n
at fixed current to improve the Reynolds numbers; particles
must move more rapidly to maintain the current. Therefore,
nonlinear effects should be most prominent in clean, low-
density hydrodynamic materials. Our focus has been away
from linear response, which is a bedrock foundation of ex-
perimental condensed-matter physics. Nonlinear phenomena
are comparatively more difficult to interpret and tend to be
less explored, especially with the purpose of extracting basic
information, e.g., where in the phase diagram a given material
happens to be. However, since our primary focus has been on
leading deviations from linear response, we are nonetheless
optimistic that identifying electron hydrodynamics from non-
linear behavior is feasible.

In particular, the detection of the ac-generated static current
described above would provide strong evidence for the pres-
ence of hydrodynamic behavior. Additionally, hydrodynamic
nonlinearities should also generate up-converted 2 f signals,
which we leave to future work. This also tantalizingly sug-
gests the possible utility of hydrodynamic materials as a novel
platform for creating nonlinear electronic devices [38,57].
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The nonlinear I-V characteristic of the Venturi wedge de-
vice clearly displays the onset of instability phenomena far
separated from linear response. Such convective instabilities
are a known route to classical turbulence [48,49], i.e., in the
absence of momentum relaxation. In the electronic system,
where momentum relaxation dominates and viscous length
scale rd is short, we suspect that the behavior may be qualita-
tively distinct from turbulence. Band-structure modifications
to the Navier-Stokes equations, such as a density and flow-
dependent hydrodynamic mass [32–34], and heating effects
going beyond our equation-of-state approximations can also
give rise to novel nonlinear effects, which we leave to future
work. These and other nonlinear phenomena [66–68] pose a
fertile frontier for near-term exploration of electron hydrody-
namics.
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APPENDIX A: OSCILLATORY HYDRODYNAMIC MODES

Here we study the hydrodynamic modes at linear order
(without boundary conditions), where the convective term
Fconv is neglected. Because of linearity, the harmonic modes
will not mix; the linear-order ansatz v(1) ∝ ei(kx−ωt ) is appro-
priate. We eliminate the variables p and φ in Navier-Stokes
[Eq. (2)] by using density continuity [Eq. (1)] as well as the
equations of state [Eqs. (6) and (7)]. The resulting dispersion
relation can be separated in longitudinal (∇ × v(1) = 0) and
transverse (∇ · v(1) = 0) contributions, which are given by

ω2
l = (

s2
0 − iωl [2ν + ζ̃ ]

)
k2

l − iωlγ , (A1)

ωt = iνk2
t − iγ , (A2)

where s2
0 = s2

FL + s2
cap. The longitudinal dispersion describes

a damped sound wave with undamped speed s0; both pressure
and electric forces contribute additively to s0 as a result of
the equations of state. In particular, the electronic contribution
relies on backgate screening of the Coulomb interaction to
achieve this form. The transverse dispersion describes the
propagation of incompressible shear oscillations, whose spa-
tial extent is controlled by the viscous length scale rd ; a finite
shear viscosity is necessary for the transfer of momentum
into adjacent layers. In contrast to the longitudinal case, the
transverse modes do not drive density oscillations and there-
fore do not generate pressure or electric forces. Therefore, the
transverse result is independent of the equations of state, and
in particular it does not depend on the presence of a backgate.

We remark that measuring the attenuation of longitudinal
and transverse oscillations would provide direct, boundary-
independent measures of both shear and bulk viscosity, as op-
posed to dc flow profiles, which require the boundary [20–22]

or inhomogeneous current injection profiles [18,25] to enforce
velocity gradients. A careful experimental study of finite-
frequency behavior of hydrodynamic materials has yet to be
done even at linear order, as far as the authors are aware; in
particular, this could provide new cross-checks of previous
viscosity measurements. A proposal for a shear viscometer
utilizing oscillatory motion was made in Ref. [69].

APPENDIX B: ELECTRONIC VENTURI
EFFECT—TREATING VISCOSITY

The full problem, with both finite (kinematic) shear vis-
cosity ν and momentum relaxation γ , is challenging. Because

viscous effects are controlled by a length scale rd =
√

ν
γ

, one

expects a crossover from viscous-dominated to relaxation-
dominated flow as a function of local channel width h = rθ0.
In particular, the resistance of the thin h � rd region should
scale as 1/h2 (Gurzhi/Poiseuille regime), while the resistance
of the h 
 rd region should scale as 1/h (Ohmic regime).
Even in the viscous-dominated regime γ → 0, a radial flow
assumption is inconsistent with the fixed-voltage boundary
conditions as described in the main text; angular components
of velocity must contribute. Therefore, for finite ν we expect
the exact solution of Eq. (9) to also break down for strong
particle flows in the convergent direction, possibly toward
turbulence.

Purely viscous limit—Jeffrey-Hamel flow

In the purely viscous limit γ → 0, the leading-order flow
is a generalization of Poiseuille flow to nonparallel walls.
This case also admits an exact solution of the Navier-Stokes
equation, known as Jeffrey-Hamel flow [48,49,70]. However,
as we are only interested in low-velocity flows, a perturbative
treatment will suffice. In contrast to fixed-voltage bound-
ary conditions, where one cannot assume purely radial flow,
making it more difficult to solve, we will assume fixed-
current boundary conditions where the θ -dependent radial
flow v = vr (θ )r̂ is a good ansatz. In addition, we take the
divergence-free (incompressible) ansatz v(1)

r = F (θ )/r for an
as yet undetermined function F . Upon substitution and inte-
gration of the θ̂ NS equation [Eq. (2)], we find that the NS
equations give

e

m

∂φ(1)

∂r
= ν

r3

d2F

dθ2
, (B1)

e

m
φ(1) = 2ν

r2
F (θ ) + S(r), (B2)

where S(r) is determined from the boundary conditions. Sub-
stituting for φ(1), we find that S(r) = K ν

2r2 + const for some
constant K by separation of variables. The leading-order solu-
tion is

v(1)
r = I

ne

1

r

1

tan θ0 − θ0

(
cos 2θ

cos θ0
− 1

)
, (B3)

e

m
φ(1) = I

ne

2ν

r2

1

tan θ0 − θ0

cos 2θ

cos θ0
. (B4)
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Since v(2)
r = 0, the pressure gradient must balance the convec-

tive force. Therefore, the total potential is given by

e

m
φ = νI

ne

1

r2

1

tan θ0 − θ0

×
[

cos 2θ

cos θ0
+ I

2neν

1

tan θ0 − θ0

(
cos 2θ

cos θ0
− 1

)2]
.

(B5)

We see that φ(2) is suppressed by a viscous Reynolds number
Reν ∼ I

neν , as expected. Analogous to the purely Ohmic case
discussed in the main text, it is known that divergent Jeffrey-
Hamel flow is unstable toward turbulence [48,49].

APPENDIX C: ECKART STREAMING

In this Appendix, we lay out the mathematical calculation
of Sec. IV in full detail.

1. Leading-order solution

As mentioned in the main text, we take the ansatz that the
leading-order solution is described by a longitudinal sound
mode with wave vector kl = k + iα [see Eq. (A1)]. Applying
the voltage-fixed boundary conditions and using the density
continuity equation [see Eq. (1)], we find

φ(1) = V0Re

[
e(ik−α)x − e(ik−α)(2l−x)

1 − e(ik−α)2l
e−iωt

]
, (C1)

v(1)
x = u0Re

[
e(ik−α)x + e(ik−α)(2l−x)

1 − e(ik−α)2l
e−i arg kl e−iωt

]
, (C2)

where u0 = CV0

ρ
(0)
e

ω
|kl | , and Re denotes the real part. To satisfy

the no-slip boundary, we must also include a divergence-free
(incompressible) contribution to the flow corresponding to a
boundary-layer correction, as is done in Sec. V. We defer
the discussion of this correction to the end of this section,
assuming that its contribution is small.

2. Second-order density continuity equation

We now turn to the time-averaged second-order hydro-

dynamic equations, where we have assumed v
(2)
y = 0. The

density continuity (i.e., current conservation) equation [see
Eq. (1)] gives

∂J (2)
x

∂x
≡ ∂

∂x

[
ρ (0)

e v
(2)
x + ρ

(1)
e v

(1)
x

] = 0, (C3)

which tells us that J (2)
x (y) only depends on y. We remark that

it is crucial that v(2) is not divergence-free (incompressible);

because the “drift” contribution ρ
(1)
e v

(1)
x is nonzero and x-

dependent, divergenceful (compressive) contributions of v(2)
x

are necessary to satisfy current conservation.

3. Second-order Navier-Stokes equation—dc forces
and screening

Replacing v
(2)
x in favor of J (2)

x in the Navier-Stokes equa-
tion [see Eq. (2)], we get

m

e

[
−ν

∂2

∂y2
+ γ

]
J (2)

x = F (2)
eff , (C4)

−ρ (0)
e

∂φ
(2)
eff

∂x
+ F (2)

conv,x + F (2)
elec,x + F (2)

comp,x ≡ F (2)
eff , (C5)

where we used a separation of variables with constant Feff to
split the momentum equation, and ρ (0)

e φ
(2)
eff ≡ ρ (0)

e φ(2) + p(2).
We remark that Eq. (C4) is an Ohmic-Poiseuille equation [12]
describing steady, divergence-free (incompressible) flow in a
rectangular channel, where Feff can be interpreted as the effec-
tive force driving the flow. The convective force is defined in

Eq. (3), while the terms F (2)
elec,x and F (2)

comp,x are given by

F (2)
elec,x = ρ

(1)
e

∂φ(1)

∂x
, (C6)

F (2)
comp,x = (2ν + ζ̃ )

[
ρ (1)

∂2v
(1)
x

∂x2
− ∂2

(
ρ (1)v

(1)
x

)
∂x2

]
, (C7)

where in the second line we have used ∂
∂x (ρ (0)v

(2)
x ) =

− ∂
∂x (ρ (1)v

(1)
x ). These provide nonlinear contributions to F (2)

eff
in addition to the convective force. The first term comes from
the backreaction of the electric force; we remark that the
presence of this nonlinearity was also noted by Ref. [39]. The
second term comes from compressive dissipation. By solving

for φ
(2)
eff with the zero-voltage boundary conditions, we find

the simple result

Feff = 1

l

∫ l

0
dxF (2)

conv,x + F (2)
elec,x + F (2)

comp,x (C8)

The action of the effective voltage is to “screen” all the forces
via a spatial average, rendering the resulting effective force

x-independent. We comment that 1
l

∫ l
0 dx F (2)

elec,x = CV 2
0

4l has no
α or k dependence, and therefore no interference behavior;

the value of F (2)
elec,x is fixed at the ends by the voltage boundary

conditions. By dimensional analysis, these contributions are

small relative to the convective force when
s2

capω
2

|kl |2 � 1 and
(2ν+ζ̃ )|kl |2

ω
� 1, respectively. For parameters as discussed in

the main text, we find that
s2

cap|kl |2
ω2 ∼ 0.24 and (2ν+ζ̃ )|kl |2

ω
∼ 0.06

are small, so that ignoring F (2)
elec,x and F (2)

comp,x is valid.

4. Rectified dc solution

The solution of the Ohmic-Poiseuille equation [Eq. (C4)]
is

J (2)
x = ρ (0)

e u0

[
F (2)

eff

ρ (0)γ u0

](
1 − cosh y

rd

cosh h
2rd

)
, (C9)

I (2) = I0

[
F (2)

eff

ρ (0)γ u0

](
1 − 2rd

h
tanh

h

2rd

)
. (C10)
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The term in square brackets is suggestively written to re-
semble momentum-relaxation Reynolds number Reγ , which
is indeed true when the convective force dominates [see
Eq. (15)]. We remark that the convective contribution to I (2)/I0

is largely α-independent [see Eq. (14)]; in the limit αl 
 1,
where the interference term can be neglected, the result is
surprisingly α-independent even though α was necessary to
generate convective gradients. Instead, the scale of the con-
vective gradient is screened, being controlled by the device
length l−1. This α-independence has an analog in Rayleigh
streaming, where the shear viscosity ν does not set the scale
of the rectified bulk flow even though it was necessary to set
up convective forces.

5. Revisiting boundary dissipation (Rayleigh streaming)

We return to the issue of the no-slip condition and
boundary-layer corrections (i.e., Rayleigh streaming), which
we ignored for the leading-order solution. For simplicity,
we will neglect contributions from the reflected wave (i.e.,
αl 
 1). As discussed in Sec. V, boundary-layer corrections
are described by the transverse mode kt = k′

t + ik′′
t , decaying

exponentially from the wall with length 1/k′′
t . For parameters

as discussed in the main text, we find k′′
t h ∼ 8.2 > 1 so that

it is a good assumption that the boundary layer is thin. There-
fore, boundary dissipation (i.e., Rayleigh streaming) effects
will lead to a nonzero slip velocity for the bulk flow also in
the forward x-direction. Upon solving the Ohmic-Poiseuille
equation [Eq. (C4)] with a voltage-fixed boundary condition
φ(x = l ) = 0 (as in the main text), we get an additional con-
tribution

J (2)
Rayleigh,x = v

(2)
slip

cosh y
rd

cosh h
2rd

, (C11)

I (2)
Rayleigh = v

(2)
slip tanh

h

2rd
. (C12)

Therefore, the no-slip boundary (i.e., Rayleigh streaming)
only provides a quantitative correction to the dc current. By
estimating v

(2)
slip ∼ u0e−1/k′′

t rd I0|kl |
ρ

(0)
e hγ

from the Rayleigh Reynolds

number in Eq. (20) with exponential decay arising from the
viscous length scale rd , we find that boundary dissipation
contributes additively to the bulk dissipation contribution.

If instead one takes the current-fixed boundary condition
J (x = l ) = 0, a rectified dc voltage will develop as discussed
in previous works [39,57]. However, these previous works did
not consider the effect of a no-slip boundary. As a result of
no-slip, we expect only a quantitative change to the dc voltage
analogous to the previous case. However, a qualitative change
occurs in the current flow—a circulating current must develop
in the channel as in Sec. V. The length and width of the circu-
lation will be set by the device dimensions, as opposed to that
of Sec. V where the length is set by the wavelength. Surpris-
ingly, the bulk current density flows in an opposite direction
to that of the convective force; because convective forces are
stronger near the boundary than the bulk, the forward dc flow
along x must be near the boundary while the counterflow is
in the bulk [51]. This reversed bulk counterflow would also
be interesting evidence for hydrodynamic behavior, though
measuring the local current density may prove challenging.

APPENDIX D: RAYLEIGH STREAMING

In this Appendix, we fill out the mathematical details of
Sec. V.

1. Leading-order solution—Boundary corrections

Recall that we work in the limit k′′−1
t � h � λ of a thin

boundary layer and long wavelength. In this limit, we can
separate the flow into bulk and boundary regions, stitching the
flow together at the interface. We first focus on the boundary-
layer region, concentrating on the lower boundary layer near
y = −h/2; flow at the upper boundary layer is given by re-
flection symmetry about y = 0. In the lower boundary layer,
the leading-order longitudinal (irrotational) and transverse
(incompressible) velocity components of v(1)

wall are

v
(1)
wall,l,x = v

(1)
l,x = u0 sin kx Reeiωt , (D1)

v
(1)
wall,t,x = −u0 sin kx Re

[
eikt y+e−iωt

]
, (D2)

v
(1)
wall,t,y = −u0k cos kx Re

[(
1 − eikt y+

)e−iωt

ikt

]
, (D3)

where y+ = y + h
2 is the distance from the lower wall, we take

k′′
t > 0, and Re denotes the real part. Although v

(1)
wall,y is small

compared to v
(1)
wall,x, the y-gradients of v

(1)
wall,y are large and must

be included when computing the convective force. The longi-
tudinal contribution v

(1)
wall,l,x is inherited from the longitudinal

ansatz of Eq. (16). We remark that we have not assumed that
v

(1)
wall is divergence-free (incompressible), unlike classic dis-

cussions [48,62,65]; that the divergence-free (incompressible)
ansatz is not correct has been previously pointed out [51,71],
though it has no consequence in the limit γ → 0. In the
limit k′′

t y+ 
 1, we find that vwall,x returns to our longitudinal
ansatz v

(1)
l,x as the boundary-layer corrections exponentially

vanish. However, v
(1)
wall,t,y is nonzero in this limit and requires

correction in the bulk. We will not concern ourselves with the
bulk corrections to v(1)

y , as they are small and do not contribute
substantially to the convective force [51].

Therefore, the convective force in the bulk and boundary
layers is

F (2)
conv, bulk,x = ρ (0)u2

0k 1
4 sin 2kx(−2), (D4)

F (2)
conv, wall,x = ρ (0)u2

0k 1
4 sin 2kx

×[−2 + (3 + e2iθt )eikt y+ − 2e−2k′′
t y+ cos2 θt ],

(D5)

where θt ≡ arg kt .

2. Second-order Navier-Stokes

We now study the dc second-order flow. We begin by not-
ing that the assumption k′′−1

t � h � λ implies that vy � vx,
i.e., flow is primarily along x because the channel is thin.
By using the NS equations [Eq. (2)], this implies that the
effective voltage φeff = φ + 1

ρ
(0)
e

p satisfies ∂φeff

∂y � ∂φeff

∂x , i.e.,
voltage gradients (and density gradients) are also primarily
along x.
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Next, we simplify the NS equation [Eq. (2)]. First, we

note that the back-reactive electric force F(2)
elec ≡ ρ

(1)
e ∇φ(1) =

0. We will also assume that compressional dissipation
Fcomp ≡ (2ν + ζ̃ )ρ∇∇ · v is negligible, which is consistent
with our assumption that the longitudinal attenuation α

is small. Finally, for simplicity we neglect the additional

term νρ
(1)
e ∇ × ∇ × v(1) as is done in classical treatments of

Rayleigh streaming [48,51,62,65,71]; this term depends on
the density dependence of ν, where classical works assumed
that the dynamic viscosity μ ≡ ρν is constant. Therefore, the
NS equation becomes

m

e

[
−ν

∂2

∂y2
+ γ

]
J (2)

x = F (2)
conv,x − ρ (0)

e

∂φ
(2)
eff

∂x
, (D6)

where we have used k′′−1
t � h � λ to drop the x-derivatives

[cf. Eqs. (C4) and (C5)]. Note that this form is equivalent to
assuming that v(2) is divergence-free (incompressible).

Since the convective force is only x-dependent in the bulk,
we must have

ρ (0)
e

∂φ
(2)
eff

∂x
= Fconv,bulk,x (D7)

upon imposing I = 0 [i.e., Jx(x = 0) = 0]. More concretely,

the boundary conditions for v
(2)
x (y = ±h/2) will fix the y-

dependent homogeneous solutions of Eq. (D6), leaving φ
(2)
eff to

enforce I (2) = 0. Since ∂φ
(2)
eff

∂y is small, this expression for φ
(2)
eff is

also valid in the boundary layer. Therefore, after “screening”
from the effective voltage, the resultant force is only nonzero
in the boundary layer.

3. Second-order boundary-layer solution

We first solve Eq. (D6) in the boundary layer, where the
“screened” convective force is not negligible. Assuming rd �
h, the solution for the lower boundary layer is

J (2)
wall,x = ρ (0)

e u0 sin 2kx Re

[
vslip

u0
− u0k

4γ

(
− (3 + e2iθt )eikt y+

k2
t r2

d + 1
− (2 cos2 θt )e−2k′′

t y+

4k′′2
t r2

d − 1

)]
, (D8)

v
(2)
slip = u2

0k

4γ
e− y+

rd Re

[
− (3 + e2iθt )(iω̃ + 2)

4 + ω̃2
− 2 cos2 θt

−3 + 2
√

1 + ω̃2

]
, (D9)

where v
(2)
slip enforces the no-slip boundary conditions, and

we have rewritten k2
t r2

d in terms of ω̃ = ω/γ using Eq. (A2).
Away from the wall where the convective force vanishes, the
velocity v

(2)
wall,x → v

(2)
slip sin 2kx achieves a nonzero limiting

value if k′′
t rd is sufficiently large; the boundary layer sets up

a slip boundary for the bulk flow. In the main text, we (opti-
mistically) approximate the size of the boundary to be 1/k′′

t so
that we evaluate v

(2)
slip at y+/rd = 1/(k′′

t rd ). The resulting bulk
flow is solved from Eq. (D6) with a vanishing right-hand side
and with the slip boundary generated from the boundary layer;
the solution is given in the main text [Eqs. (18) and (19)].

We make three remarks on vslip. First, in the limit ν → 0,
the flow becomes increasingly singular at the walls so

the boundary layer will no longer by described by hydro-
dynamics. Second is the surprising fact that ν is largely
ν-independent. In the limit γ → 0, we recover the classi-
cal result vslip = − 3u0

8
u0k
ω

, which is ν-independent, despite
the necessity of ν to set up convective gradients. Instead
of the viscous Reynolds number Reν , the slip velocity is
controlled by the Mach number u0ω/k. This was first noted
by Rayleigh in the classical situation [65]. Finally, vslip

has a resonance at ω =
√

5
2 γ corresponding to −4k′′2

t r2
d +

1 = 0. We leave further study of this interesting convec-
tive instability to future work; for this paper, we only
work in the limit vslip � u0 where perturbation theory is
valid.
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