
PHYSICAL REVIEW B 103, 235150 (2021)

Competing electronic orders on a heavily doped honeycomb lattice with enhanced exchange coupling
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Motivated by a recent discovery of correlated insulating and superconducting behavior in twisted bilayer
graphene, we revisit graphene’s honeycomb lattice doped close to the van Hove singularity, using the truncated
unity functional renormalization group approach. We consider an extended Hubbard model on the honeycomb
lattice including on-site and nearest-neighbor Coulomb repulsions, and nearest-neighbor ferromagnetic exchange
and pair hopping interactions. By varying the strength of the nearest-neighbor exchange coupling and Coulomb
repulsion as free parameters, we present rich ground-state phase diagrams which contain the spin-triplet f -wave
and spin-singlet chiral d-wave superconducting phases, the commensurate and incommensurate spin- and
charge-density-wave phases, and the ferromagnetic phase. In the absence of the exchange coupling and for
the small value of the nearest-neighbor repulsion, the four-sublattice spin-density-wave phase is generated
right around the van Hove filling, while the chiral d-wave superconductivity emerges slightly away from it.
Surprisingly, the chiral d-wave superconductivity is strongly suppressed by a weak nearest-neighbor exchange
coupling in our calculations. We argue that this suppression might be one of the reasons why the chiral
superconductivity proposed for doped graphene has not yet been observed experimentally.
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I. INTRODUCTION

The recent discoveries of correlated insulating and su-
perconducting behaviors in twisted bilayer graphene (TBG)
[1–3] have generated great interest in the study of graphene-
based systems. Since this two-dimensional heterostructure
has an unprecedented tunability, the TBG can serve as a
new platform to study the correlated electron systems like
high-temperature superconductors. A considerable theoretical
effort has been devoted to the study on the pairing mechanism
and symmetry for the superconducting state of TBG. Many of
them have pointed to a chiral d-wave superconductivity (SC)
supporting the nontrivial topology as the leading instability
in the pairing channel [4–14]. The discovery of SC in TBG
has motivated us to revisit the issue of the possibility of
unconventional SC in a doped single layer graphene.

Chiral SC is characterized by the phase of the supercon-
ducting order parameter winding by multiples of 2π around
the Fermi surface (FS), breaking parity and time-reversal sym-
metry [15,16]. Generally it is formed by a complex linear
combination of two order parameters belonging to a two-
dimensional irreducible representation of the point group of
the crystal. For example, the chiral d-wave superconducting
state (SC state) predicted for the honeycomb lattice originates
from two nodal d-wave states that are degenerate by C6v

symmetry of the lattice. Those two degenerate states can con-
struct the chiral d-wave SC via a complex linear combination,
thus giving a full gap and the energy gain (for a review, see
Ref. [16]).

*sj.o@ryongnamsan.edu.kp

The chiral d-wave SC driven by the electron-electron
interaction has been theoretically proposed for graphene’s
honeycomb lattice near half-filling [17–21]. However, unre-
alistically high values of predicted transition temperatures
[17,19,21], and large value of the antiferromagnetic exchange
coupling needed for the emergence of the SC state [18], imply
that these results are either unreliable or not appropriate for
graphene. It has been argued that the SC state can be de-
stroyed by quantum fluctuations in charge or spin channel for
the Hubbard model on the honeycomb lattice [18,20]. Small
electronic density of states near half-filling and weak phonon
effect are disadvantageous for developing the superconducting
order (SC order) in weakly doped graphene.

In the case of graphene, the electron-driven SC state is
most likely realized when doped to the vicinity of the van
Hove singularity (VHS). Near the VHS, a combination of
the logarithmically divergent density of states and the ap-
proximate nesting of the FS strongly enhances the effect of
interactions [22–24], which can lead to the emergence of a
variety of ordered states [25] at relatively high temperatures.
In previous works on graphene near the VHS filling, various
electronic instabilities were analyzed using the mean-field
theory [26–28], random phase approximation [29,30], quan-
tum Monte Carlo (QMC) [31,32], variational [33,34], and
renormalization group (RG) [15,35,36] approaches.

Both the random phase approximation [29] and the pertur-
bative RG studies [15] have predicted that the electron-driven
chiral d-wave SC could emerge upon doping graphene to-
wards or onto the VHS. Several calculation results using
the N-patch functional renormalization group (FRG) [35],
Grassmann tensor product state [33], and finite-temperature
determinantal QMC [31] approaches also support the chiral
d-wave SC in the vicinity of the VHS, while the singular-
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mode FRG calculation [36] reports it for doping away from
the VHS. Another instability towards the spin-triplet p-wave
SC near the VHS filling has been found in a study us-
ing variational cluster approximation and cellular dynamical
mean-field theory [34], and a dynamic cluster approximation
calculation [37].

The charge and magnetic instabilities have also been ana-
lyzed in previous works on graphene doped close to the VHS.
A Pomeranchuk instability has been reported in the calcula-
tions by mean-field theory [26] and generalized Pomeranchuk
method [38]. There have been several works that found a
topologically nontrivial chiral spin-density-wave (SDW) or-
der at the VHS filling by using the mean-field theory [27], the
singular-mode FRG [36], the finite-temperature determinantal
QMC [31], and a combination of exact diagonalization, den-
sity matrix RG, and variational Monte Carlo methods [32].
The random phase approximation [30] and the mean-field
theory [28] have reported another SDW order for doping at the
VHS. Thus, there exist remarkable diversity and discrepancy
regarding predicted electronic instabilities for the honeycomb
lattice near the VHS filling.

On the other hand, in the studies above, the electrons on
the graphene’s honeycomb lattice are mostly described by
both the Hubbard model with on-site and nearest-neighbor
Coulomb interactions and the t-J model which is derived
from the Hubbard model with strong on-site repulsion. A
FRG study [18] employed the Hubbard model with additional
antiferromagnetic exchange interaction, but to our knowledge,
there have been no previous studies on the doped honey-
comb lattice where the ferromagnetic exchange interaction
was taken into account. It is well known that the expansion of
the Coulomb interaction Hamiltonian in the localized Wannier
orbitals produces the ferromagnetic exchange couplings and
pair-hopping terms between neighboring sites (the detailed
description of it can be found in Appendix A). We argue
that the combination of ferromagnetic exchange and pair hop-
ping should be involved in the bare interaction, though it
is very weak and may be canceled by the antiferromagnetic
exchange couple generated by virtual hopping processes for
strong on-site repulsion. A rich ground-state phase diagram
for a half-filled honeycomb lattice has been created by the ex-
tended Hubbard model involving the ferromagnetic exchange
interaction [39].

The above-mentioned facts show that a consistent picture
of possible electronic instabilities on the honeycomb lattice
described by the Hubbard model is still lacking, probably
due to competition between several ordering tendencies upon
varying the interaction parameters or the doping. Hence, it
appears promising and necessary to investigate the system
using a reliable and unbiased method that allows us to alter
these parameters over a wide range.

Here we employ the recently developed truncated unity
functional renormalization group (TUFRG) approach [40]
with a high momentum resolution to study the competing
electronic orders on the honeycomb lattice near the VHS
filling with a focus on the effect of the nearest-neighbor ex-
change interaction. Taking into account the exponential decay
of the ferromagnetic exchange coupling with the interatomic
distance and the strong screening of the density-density in-
teraction due to large value of the density of states near

the VHS, we consider the Hubbard model including the on-
site repulsion U , the nearest-neighbor repulsion V , and the
nearest-neighbor ferromagnetic exchange coupling J . Based
on it, we build the tentative phase diagrams in the space of
the nearest-neighbor repulsion V and the doping level δ for
the fixed value of U and several typical values of J , which
would provide a comprehensive picture of possible ordered
ground states and a reasonable description for the effects of
the interaction parameters on the ordering tendencies.

Our main result are summarized as follows. In the absence
of the exchange coupling J and for small nearest-neighbor
repulsion V , the four-sublattice SDW phase is generated right
around the VHS, while the chiral d-wave SC emerges slightly
away from it, which is similar to the result in Ref. [36]. Upon
increasing V , the spin-triplet f -wave SC becomes dominant
below the VHS. If V is further increased, the charge-density-
wave (CDW) state with broken π/3-rotation symmetry and
a charge transfer from sublattice A to B (or vice versa) will
be favored for all doping levels studied. The incommensurate
SDW and CDW orders are also found in some regions of the
phase diagram. Remarkably, upon involving weak exchange
coupling of J ≈ 0.14 eV, the chiral d-wave SC completely
disappears from our phase diagram. For an artificially large
value of J , the phase diagrams have simple structures consist-
ing of both the CDW and the ferromagnetic phases.

This paper is organized as follows. In Sec. II we spec-
ify the model Hamiltonian and give a description of the
TUFRG scheme. In Sec. III we present and analyze the
schematic phase diagrams for electrons subjected to the on-
site repulsion, the nearest-neighbor repulsion, and exchange
interaction. Finally, in Sec. IV we draw our conclusions.

II. MODEL AND METHOD

A. Extended Hubbard model

We study spin-1/2 electrons on the honeycomb lattice
doped close to the VHS which are described by an extended
Hubbard model including ferromagnetic exchange interac-
tion. The noninteracting part of the model is represented by
a tight-binding Hamiltonian with nearest-neighbor and next-
nearest-neighbor hoppings,

H0 = −t
∑

〈iA, jB〉,σ
(c†

iAσ c jBσ + H.c.)

− t ′ ∑
〈〈io, jo〉〉,o,σ

(c†
ioσ c joσ + H.c.) − μNe, (1)

where the operator c†
ioσ (cioσ ) creates (annihilates) an elec-

tron at lattice site i with spin polarity σ in sublattice o,
〈iA, jB〉 (〈〈io, jo〉〉) denotes nearest-neighbor (next-nearest-
neighbor) bonds, μ is the chemical potential, and Ne is the
total electron number operator. The doping level is con-
trolled by the chemical potential and defined by δ = ne − 1
where ne is the number of electrons per site. These pa-
rameters have the values of μVHS = t + 2t ′, δVHS = 0.25 at
the VHS filling. The interaction part of the model is given
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by

Hint = U
∑
i,o

nio↑nio↓ + V
∑

〈iA, jB〉

∑
σ,σ ′

niAσ n jBσ ′

+ J
∑

〈iA, jB〉

∑
σ,σ ′

c†
iAσ c†

jBσ ′ciAσ ′c jBσ

+ J
∑

〈iA, jB〉
(c†

iA↑c†
iA↓c jB↓c jB↑ + H.c.), (2)

where nioσ = c†
ioσ cioσ is the local electron density operator

for spin polarity σ , and the terms in Eq. (2) represent the
on-site and nearest-neighbor density-density interactions, the
nearest-neighbor ferromagnetic exchange interaction, and the
nearest-neighbor pair hopping. The derivation of this interac-
tion Hamiltonian is presented in Appendix A.

We allow the extended ranges of the parameters V and J
to investigate their effects on the ground state of the heavily
doped honeycomb lattice, but not constrained by the actual
values of graphene. We take t = 2.8 eV, t ′ = 0.1 eV, U =
3.6t , as suggested in Ref. [41] and used in Ref. [36]. In our
calculations we have considered the parameters δ and V in the
ranges of [0.19,0.31] and [0, 3t], respectively.

B. Truncated unity functional renormalization group method

Since graphene has the bandwidth (∼17 eV) of the order of
the interaction scale (∼10 eV) and does not exhibit any Mott
insulating behavior at half-filling, it can be thought to be in
the intermediate coupling regime. The FRG method [42–44]
is known to operate most reliably for intermediate coupling. It
serves as an unbiased tool for investigating correlated electron
systems and accounts for the competition and mutual interplay
between different channels because it takes into account an
infinite sum of all possible one-loop diagrams including the
vertex corrections between the particle-particle and particle-
hole channels, on equal footing [44,45]. In fact, it has already
been used to investigate the FS instability in doped graphene
[35,36].

As a modified version of the FRG, the TUFRG approach
[40] is based on the exchange parametrization FRG [46] and
the singular-mode FRG [36] approaches. It has the advan-
tages that it allows for a high speed calculation with high
momentum resolution and an efficient parallelization on a
large number of computer nodes [47]. The TUFRG method
has been applied to the analysis of the electronic instabili-
ties for the half-filled honeycomb lattice [39,48] and strained
graphene [49]. We consider the system with spin-SU(2) sym-
metry and calculate the effective interactions in the orbital
picture of TUFRG. As the regulator for infrared divergences,
the � scheme [46] is employed, in which the bare propagator
G0

oo′ (ω, k) for orbital indices o, o′ is modified by energy scale
� as

G0
oo′ (ω, k) → G0,�

oo′ (ω, k) = ω2

ω2 + �2
G0

oo′ (ω, k).

The regulated propagator G0,� leads the generating functional
of one-particle-irreducible vertex functions to be scale depen-
dent as well, � → ��. By differentiating �� with respect
to �, one can obtain the functional flow equation which is
then Taylor expanded to produce an infinite hierarchy of flow
equations for the vertex functions.

In numerical implementation, the hierarchy has to be trun-
cated at a certain order. In the study of ground-state properties,
one generally use a truncation in which all n-point vertices
with n � 6 are set to zero, and the self-energy correction and
the frequency dependence of the 4-point vertex function are
neglected. Such an approximation has proven to provide re-
liable results for many two-dimensional systems [43,44], and
the truncation can be justified by the reasoning of Salmhofer
and Honerkamp [50]. Assuming a weak to moderate 4-point
vertex and the absence of higher-order, i.e., n-point (n � 6)
vertices at a bare level, it was shown that for high-energy
scales of renormalization, where the 4-point vertex γ (4) (or
the effective interaction V in this paper) is still relatively
small, the contributions of higher-order vertices are likewise
small as they are developed by higher-order terms of γ (4). At
intermediate scales, the contributions of higher-order vertices
remain small for the case of sufficiently smooth and curved
FS, even though the scale-dependent γ (4) is no longer small,
according to a phase-space argument. Only at low-energy
scales, where γ (4) gets diverged, the smallness of relevant
phase space cannot suppress the higher-order contributions,
and the RG flow has to be stopped [44]. So the FRG with this
truncation is expected to be appropriate to identify the many-
particle instabilities for systems in the intermediate-coupling
regime like graphene. For further discussion we refer to the
articles [43,45].

Within this approximation the 4-point part of the gen-
erating functional for spin-SU(2)-invariant systems can be
represented by the effective interactions V � and the Grass-
mann variables ψ̄, ψ as

��,(4)[ψ̄, ψ] = 1

2

∫
dξ1 · · · dξ4 V �

o1o2,o3o4
(k1, k2; k3, k4)

× δ(k1 + k2 − k3 − k4)

×
∑
σ,σ ′

ψ̄σ (ξ1)ψ̄σ ′ (ξ2)ψσ ′ (ξ4)ψσ (ξ3). (3)

Here ki = (ωi, ki ) and ξi = (ωi, ki, oi ) are multi-indices com-
prising a Matsubara frequency ωi, wave vector ki, and orbital
(sublattice) index oi and we have introduced the abbreviation∫

dξi = ∫ dki
SBZ

1
β

∑
ωi

∑
oi

with the Brillouin zone (BZ) area
SBZ and inverse temperature β. The flow equation of the
effective interaction reads [50,51]

d

d�
V � = Jpp(�) + Jph,cr (�) + Jph,d(�), (4)

where the expressions for Jpp(�), Jph,cr (�) [52], and Jph,d(�)
are

Jpp(�)
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = −
∑
μ,μ′

∑
ν,ν ′

∫
d p

d

d�

[
G0,�

μν (ω, p + k′
1 + k′

2)G0,�
μ′ν ′ (−ω,−p)

]
×V �

o′
1o′

2,μμ′ (k′
1, k′

2; p + k′
1 + k′

2,−p)V �
νν ′,o1o2

(p + k′
1 + k′

2,−p; k1, k2), (5)
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Jph,cr(�)
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = −
∑
μ,μ′

∑
ν,ν ′

∫
d p

d

d�

[
G0,�

μν (ω, p + k′
1 − k2)G0,�

ν ′μ′ (ω, p)
]

×V �
o′

1μ
′,μo2

(k′
1, p; p + k′

1 − k2, k2)V �
νo′

2,o1ν ′ (p + k′
1 − k2, k′

2; k1, p), (6)

Jph,d(�)
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = −
∑
μ,μ′

∑
ν,ν ′

∫
d p

d

d�

[
G0,�

μν (ω, p + k′
1 − k1)G0,�

ν ′μ′ (ω, p)
]

× [
V �

o′
1μ

′,μo1
(k′

1, p; p + k′
1 − k1, k1)V �

νo′
2,ν

′o2
(p + k′

1 − k1, k′
2; p, k2)

+V �
o′

1μ
′,o1μ

(k′
1, p; k1, p + k′

1 − k1)V �
νo′

2,o2ν ′ (p + k′
1 − k1, k′

2; k2, p)

− 2V �
o′

1μ
′,o1μ

(k′
1, p; k1, p + k′

1 − k1)V �
νo′

2,ν
′o2

(p + k′
1 − k1, k′

2; p, k2)
]
, (7)

with the shorthand notation
∫

d p = ∫ dp
SBZ

1
β

∑
ω and implicit

constraint k′
1 + k′

1 = k1 + k2. The effective interaction is ob-
tained by integrating Eq. (4) with respect to energy scale �:

V � = V (0) +
∫ �

�0

d�′Jpp(�′)

+
∫ �

�0

d�′Jph,cr (�′) +
∫ �

�0

d�′Jph,d(�′)

= V (0) + pp(�) + ph,cr (�) + ph,d(�). (8)

Here �0 is the initial value of �, V (0) ≡ V �0 is the initial bare
interaction, and, e.g., pp(�) = ∫ �

�0
d�′Jpp(�′) is the single-

channel coupling function.
Three bosonic propagators are defined by projecting three

single-channel coupling functions onto three channels, i.e.,
the particle-particle, crossed particle-hole, and direct particle-
hole channels (a more detailed description of these projections
is contained in Appendix B):

P� = P̂[pp(�)],

C� = Ĉ[ph,cr (�)], D� = D̂[ph,d(�)]. (9)

They have matrix structures and depend only on one mo-
mentum in contrast to the effective interaction depending on
three momenta. For example, the bosonic propagator P� is a
matrix that depends on the momentum transfer q and contains
the elements P�

o1o2m,o3o4n(q) with sublattice indices o1–o4 and
basis indices m, n. Since the projections lead to the truncation
in expansion of the single-channel coupling functions, the in-
verse projections of Eq. (9) can only give approximate results
for the coupling functions:

pp(�) ≈ P̂−1[P�],

ph,cr (�) ≈ Ĉ−1[C�],

ph,d(�) ≈ D̂−1[D�]. (10)

One can also project the effective interaction V � onto the three
channels as

V P(�) = P̂[V �], V C(�) = Ĉ[V �], V D(�) = D̂[V �],

(11)

whose inverse projections are (a more detailed description of
these projection matrices is found in Appendix C)

V � ≈ P̂−1[V P(�)] ≈ Ĉ−1[V C(�)] ≈ D̂−1[V D(�)]. (12)

Taking the derivative of P�, C�, and D� with respect to �

one can derive the flow equations for the bosonic propagators:

d

d�
P� = d

d�
P̂[pp(�)] = P̂

[
d

d�
pp(�)

]

= P̂[Jpp(�)],

d

d�
C� = Ĉ[Jph,cr (�)],

d

d�
D� = D̂[Jph,d(�)]. (13)

Plugging Eqs. (5)–(7) into Eq. (13), and representing V �

in terms of projection matrices V P(�), V C(�), and V D(�)
according to Eq. (12), we arrive at the ultimate flow equations
for the bosonic propagators [40]:

dP�(q)

d�
= V P(�)(q)χ̇pp(q)V P(�)(q),

dC�(q)

d�
= V C(�)(q)χ̇ph(q)V C(�)(q),

dD�(q)

d�
= [V C(�)(q) − V D(�)(q)]χ̇ph(q)V D(�)(q)

+V D(�)(q)χ̇ph(q)[V C(�)(q) − V D(�)(q)], (14)

with

χ̇
pp
o′

1o′
2m,o1o2n(q)

= −
∫

dk fm(k) f ∗
n (k)

d

d�

[
G0,�

o′
1o1

(ω, k + q)G0,�

o′
2o2

(−ω,−k)
]
,

χ̇
ph
o′

1o′
2m,o1o2n(q)

= −
∫

dk fm(k) f ∗
n (k)

d

d�

[
G0,�

o′
1o1

(ω, k + q)G0,�

o2o′
2
(ω, k)

]
. (15)

C. Symmetries and order parameters

The honeycomb lattice has C6v point-group symmetry. This
symmetry leads to symmetry relations for the Bloch states
and the effective interaction, yielding the relations between
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the bosonic propagators with different momentum arguments.
By these relations, the bosonic propagators in the whole BZ
can be obtained from those within the irreducible region of
the BZ, which reduces the computational effort to 1/12. In our
calculation we use the plane-wave basis fm(k) = eiRm·k for the
expansion of the single-channel coupling functions in terms
of the bosonic propagators. Then we can derive the explicit
symmetry relations for the bosonic propagators.

Let us consider a symmetry operation Ĝ = (Q|t), i.e., a
rotation Q followed by shift t. Under this operation the atom
of sublattice o in the unit cell at the origin is moved to the
site of sublattice õ in the unit cell at the position uo. It can be
represented by

Qdo + t = uo + dõ, (16)

where do is the relative position of the sublattice o and uo is
one of the Bravais lattice vectors. The symmetry operation
Ĝ yields the following symmetry relations for three bosonic
propagators [39]:

P(or C, D)�õ1,õ2,QRm+uo1 −uo2 ;õ3,õ4,QRn+uo3 −uo4
(Qq)

= e−iQq·(uo1 −uo3 )P(or C, D)�o1o2m,o3o4n(q). (17)

In addition, the effective interactions have another sym-
metries, i.e., the particle-hole symmetry and the remnant of
antisymmetry of Grassmann variables [46], which lead to the
following relations [39]:

P(or C, D)�o1o2m,o3o4n(q) = [
P(or C, D)�o3o4n,o1o2m(q)

]∗
(18)

for the particle-hole symmetry and

P�
o1o2m,o3o4n(q) = eiq·(Rn−Rm )P�

o2o1m̄,o4o3n̄(q),

C(or D)�o1o2m,o3o4n(q) = eiq·(Rn−Rm )

×C(or D)�o4o3n̄,o2o1m̄(−q) (19)

for the remnant of antisymmetry of Grassmann variables. In
Eq. (19) the index m̄ is associated with the Bravais lattice
vector −Rm.

In order for the relation (17) to be exactly satisfied, some
kind of filtering process is needed in each step of integration
of the flow equations (14). From Eq. (17) we obtain∣∣X �

õ1,õ2,QRm+uo1 −uo2 ;õ3,õ4,QRn+uo3 −uo4
(Qq)

∣∣
= ∣∣X �

o1o2m,o3o4n(q)
∣∣ (20)

for the bosonic propagator X (X can be P, C, or D). From
the point of view of numerical implementation, only a limited
number of bases are involved in real calculation. In this work
we use only 13 plane-wave bases with the Bravais lattice
vectors shown in Fig. 1(a).

To be specific, we take 2π/3 rotation about the origin as an
example. It is easy to see that, in this case, the vector uo and
the sublattice õ are

uA = R0, uB = R5; Ã = A, B̃ = B.

According to Eq. (20), the row (column) index
(AB6) = (A, B, R6) is related to the row (column)
index (Ã, B̃, QR6 + uA − uB) = (A, B, R2 + R0 − R5) =
(A, B, R2 + R2), as shown in Fig. 1(b):

(A, B, R6) ↔ (A, B, R2 + R2).

(a)

O
R0 R1

R2R3

R4

R5 R6

R7

R8

R9

R10

R11

R12

R2 R2+

(b)

R6

R2 R2+

O

FIG. 1. (a) Bravais lattice vectors R0–R12 in the 13 plane-wave
bases fm(p) = eiRm ·p used by us. Only the bases with the Bravais
lattice vectors (small red disks) inside the large blue circle are con-
sidered in our calculation. (b) Illustration of 2π/3 rotation of a pair
of atoms in the sublattice A and B. Small red (blue) disks denote
the sites in the sublattice A (B). The index (oo′m) represents a pair
of atoms with one in the sublattice o of the unit cell at the origin
and other in the sublattice o′ of the unit cell at the position −Rm.
By 2π/3 rotation, the atom in the sublattice B of the unit cell at
the position −R6 is transferred to the one of the unit cell at the
position −(R2 + R2), which implies the symmetry relation between
the indices (A, B, R6) and (A, B, R2 + R2 ).

Since the vector R2 + R2 is outside of the region of our
consideration [see Fig. 1(a)], all the matrix elements with the
row or column index of (o, o′, R2 + R2) are approximated
to zero. This means that, according to Eq. (20), the matrix
elements X �

AB6,oo′m(q) and X �
oo′m,AB6(q) have to vanish for all

(oo′m) and q. Similarly, if the index (oo′m) is related, under
any symmetry operation, to the index (õõ′m̃) with Rm̃ outside
of the region of our consideration, then all the matrix elements
in the row and the column associated with the index (oo′m)
have to be eliminated.

Table I shows the row or column indices (oo′m) =
(o, o′, Rm) that have to be eliminated by the symmetry relation
in our filtering process. Furthermore, this constraint should
also be applied to the projection matrices V P(�), V C(�), and
V D(�). Thus, in each step of integration of the flow equations
(14), the matrices P�, C�, D�, V P(�), V C(�), and V D(�)
should be filtered, namely, all the elements with the row or
column indices shown in Table I have to be set to zero.

On the other hand, the TUFRG approach provides an
unbiased analysis of possible many-body instabilities in in-
teracting electron systems. Several methods for determining
the leading instabilities and corresponding order parameters
are suggested. In many FRG studies addressing multiband
systems, the final effective interaction at a critical scale �C

TABLE I. The row or column indices (oo′m) = (o, o′, Rm ) that
should be eliminated in the filtering process.

Sublattice indices Bravais lattice vectors Rm

o, o′ of the plane-wave bases

A, B R5, R6, R7, R9, R10, R11, R12

B, A R2, R3, R7, R8, R9, R10, R12
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has been plugged into the mean-field equations. Wang et al.
[53] proposed an efficient FRG+MF procedure for computing
order parameters in the systems with competing instabilities,
in which only the irreducible part of the effective interaction
entered the mean-field equations. Some of the authors have
proposed a linear-response-based approach for identifying the
type of order [39], which has been applied to the half-filled
honeycomb lattice. The approach supports a high speed esti-
mation of the form factors of the order parameters, so we will
use it in the present work to determine the leading instabilities
and build the phase diagrams. In the following we briefly
outline the approach.

One can identify the leading instability of the system by
introducing infinitesimal test fields that are coupled to the
fermion bilinears corresponding to various types of order and
have the strength of λ. The form factors of the order parame-
ters can be determined by considering the linear responses of
the system to the test fields. For the singlet pairing, the triplet
pairing, the spin and the charge channels, the order parameters
in real space are defined as follows, respectively:

�sSC
oo′ (Ri, Ri − Rα ) = lim

λ→+0

∑
σ

σ
〈
c†

Ri,o,σ
c†

Ri−Rα,o′,−σ

〉
λ
,

�tSC
oo′ (Ri, Ri − Rα ) = lim

λ→+0

∑
σ

〈
c†

Ri,o,σ
c†

Ri−Rα,o′,−σ

〉
λ
,

�SPN
oo′ (Ri, Ri − Rα ) = lim

λ→+0

∑
σ

σ
〈
c†

Ri,o,σ
cRi−Rα,o′,σ

〉
λ
,

�CHG
oo′ (Ri, Ri − Rα ) = lim

λ→+0

∑
σ

〈
c†

Ri,o,σ
cRi−Rα,o′,σ

〉
λ
. (21)

Here 〈·〉λ means the ensemble average in the presence of
corresponding test fields with coupling strength λ. All the
order parameters above, except for the charge channel, vanish
in the system without any spontaneous symmetry break-
ing. For the charge channel it exhibits the same symmetry
as the system. However, if the system approaches a criti-
cal point, the corresponding susceptibility diverges and the
order parameter could take a finite value. The fluctuation-
dissipation theorem tells us that the divergent susceptibility
leads to the divergence of related correlation function, which
is, in the TUFRG calculation, represented by the divergence
of the effective interaction and the bosonic propagator in a
corresponding channel. By Taylor expanding the ensemble
averages in Eq. (21) with respect to λ and analyzing their
divergence, we can find the expressions for the order param-
eters and identify the type of order. If only one type of order
with a momentum transfer Q emerges in the system, the order
parameter is expressed as [39]

�X
oo′ (Ri, Ri − Rα ) = Ce−iQ·Ri

[
φ1

oo′α (Q)
]∗

for X = sSC or tSC,

�X
oo′ (Ri, Ri − Rα ) = Ce−iQ·Ri

[
φ1

oo′α (Q)
]∗

+ C∗eiQ·(Ri−Rα )φ1
o′oᾱ (Q)

for X = SPN or CHG. (22)

Here the constants φ1
oo′α (Q) are the elements of the eigen-

vectors, associated with the most positive eigenvalues, of the

following matrices:

W sSC(Q) = W tSC(Q) = χpp(Q)[−V P(Q)]χpp(Q),

W SPN(Q) = χph(Q)V C(Q)χph(Q),

W CHG(Q) = χph(Q)[V C(Q) − 2V D(Q)]χph(Q), (23)

with the particle-particle and particle-hole susceptibility ma-
trices,

χ
pp
o′

1o′
2m,o1o2n(q) = − 1

SBZ

∫
dk fm(k) f ∗

n (k)

×
[

1

β

∑
ω

G0
o′

1o1
(ω, k + q)G0

o′
2o2

(−ω,−k)

]
,

χ
ph
o′

1o′
2m,o1o2n(q) = − 1

SBZ

∫
dk fm(k) f ∗

n (k)

×
[

1

β

∑
ω

G0
o′

1o1
(ω, k + q)G0

o2o′
2
(ω, k)

]
.

(24)

For numeric implementation we discretize the irreducible
region of the BZ by sampling points. The more sampling
points involved, the more reliable results are expected, but the
more computational effort is needed. This is true for the form-
factor truncation. As mentioned above, we use 13 form-factor
bases in the TUFRG calculation. If we increase the number
of bases to 19 (up to third intrasublattice nearest neighbors),
the truncation error would be reduced, however, the required
CPU time would become more than twice longer. So it is
important to control the balance between both the reliability of
the result and the computational effort. The choice of 13 bases
truncation is justified by the fact that, in this case, the bare
interaction is projected exactly onto three channels without
any loss and the orbital picture used in this work ensures much
faster convergence than the band picture in an expansion of the
single-channel coupling functions in the bosonic propagators.
This truncation has also been applied in previous work based
on the band picture of TUFRG [48]. For discretizing the BZ
we use a mesh of the momentum transfers of Nq = 74 points
for the particle-particle channel and a mesh of Nq = 98 points
for the particle-hole channel, as described in the following
section. When Fourier transforming the bosonic propagators
[it is needed to calculate the crossed contributions to the
projection matrices, see Eqs. (C8)–(C11) in Appendix C], we
introduce a linear fitting of the propagators in each triangle
segments of the BZ while taking exactly the exponential func-
tions to integrate analytically, which improves the quality of
calculation. The resulting instabilities are robust with respect
to further inclusion of the bases or introducing the denser
meshes. The convergence tests for several points in parameter
space, with truncation up to third neighbors or with doubly
increased mesh points, have shown moderate variations in the
resultant critical scales.

III. RESULTS AND DISCUSSION

The projection matrices V P(�), V C(�), and V D(�) enter
the flow equations for the bosonic propagators, so they should
be found to integrate out the flow equation. Since the effective
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interaction is represented via the bosonic propagators,

V � = V (0) + pp(�) + ph,cr (�) + ph,d(�)

≈ V (0) + P̂−1[P�] + Ĉ−1[C�] + D̂−1[D�], (25)

the projection matrices can also be expressed in terms of
P�, C�, and D� [the detailed expressions for the projection
matrices are given in Eqs. (C8)–(C10) in Appendix C]:

V P(�) ≈ P̂[V (0)] + P�

+ P̂{Ĉ−1
[C�]} + P̂{D̂−1

[D�]},
V C(�) ≈ Ĉ[V (0)] + C�

+ Ĉ{P̂−1
[P�]} + Ĉ{D̂−1

[D�]},
V D(�) ≈ D̂[V (0)] + D�

+ D̂{P̂−1
[P�]} + D̂{Ĉ−1

[C�]}. (26)

By substituting this into Eq. (14) we obtain a closed system of
differential equations for the matrices P�, C�, and D�. These
matrices have vanishing initial values, and the initial val-
ues of V P(�), V C(�), and V D(�), namely, V P,(0) ≡ P̂[V (0)],
V C,(0) ≡ Ĉ[V (0)], and V D,(0) ≡ D̂[V (0)] are needed for solving
the system of equations. These are determined by Fourier
transforming Eq. (2) and projecting it onto three channels. The
results are as follows:

V P(C,D),(0)
AA0,AA0 (q) = V P(C,D),(0)

BB0,BB0 (q) = U,

V P(C),(0)
ABm,ABm(q) = V (m = 0, 2, 3),

V P(C),(0)
BAm,BAm(q) = V (m = 0, 5, 6),

V D,(0)
ABm,ABm(q) = J (m = 0, 2, 3),

V D,(0)
BAm,BAm(q) = J (m = 0, 5, 6),

V P(C,D),(0)
AB0,BA0 (q) = V P(C,D),(0)

BA0,AB0 (q) = J,

V P(C,D),(0)
ABm,BAm̄ (q) = [

V P(C,D),(0)
BAm̄,ABm (q)

]∗

= Je−iRm ·q (m = 2, 3),

V P(C),(0)
AA0,BB0 (q) = [

V P(C),(0)
BB0,AA0 (q)

]∗

= J (1 + e−iR2·q + e−iR3·q),

V D,(0)
AA0,BB0(q) = [

V D,(0)
BB0,AA0(q)

]∗

= V (1 + e−iR2·q + e−iR3·q),

All other elements = 0. (27)

In our calculation the matrices P�, C�, D�, V P(�), V C(�),
V D(�), χpp, and χph have ND × ND structures with ND = 2 ×
2 × 13 − 14 = 38 reduced via the filtering process. The flow
equations for the bosonic propagators, Eq. (14), are solved
only for the momentum transfers in the irreducible region of
the BZ which are shown in Figs. 2(a) and 2(b). The mesh
of the momentum transfers (q mesh) are constructed such
that the discretized momentum transfers, i.e., q vectors, are
distributed more densely near the high-symmetry points that
are most likely candidates for the possible ordering vectors.
In each step of integration of the equations, the bosonic prop-
agators outside of the region are generated by the symmetry
relations (17) and then plugged into Eq. (26) to produce the

(a)                                     (b)
Γ

KM

Γ

KM

(c)

1 0.5 0 0.5 1

1

0.5

0

0.5

1

k  a / πx

k  
a 

/ π
y

FIG. 2. (a) Mesh of Nq = 74 points for momentum transfers
within the irreducible region of BZ in the particle-particle channel.
The points are distributed more densely near the � point. The bosonic
propagator P(q) is calculated for these points. (b) Mesh of Nq = 98
points for momentum transfers within the irreducible region of BZ
in the particle-hole channel. The points are distributed more densely
near the � and M points. The bosonic propagators C(q) and D(q)
are calculated for these points. (c) Mesh of Nk = 40 320 points for
sampling momenta used in the integration of χ̇ pp and χ̇ ph for the
doping level at the VHS (δ = 0.25). Here the points are distributed
more densely near the FS, while a ≈ 2.46 Å is the lattice constant,
namely, the distance between next-nearest-neighbor sites.

projection matrices. Figure 2(c) shows the sampling momenta
used in the integration of χ̇pp and χ̇ph in Eq. (15) for the
doping level at the VHS (δ = 0.25), which are denser near
the FS.

The ordering tendencies towards diverse symmetry-broken
ground states are analyzed by means of the linear-response-
based approach described in Sec. II C. We have investigated
these tendencies by varying the parameters δ and V , while
fixing J and U . The results for small and moderate values
of J are summarized in tentative phase diagrams shown in
Fig. 3, while those for large values of J in Fig. 4. The critical
scales �C , at which a divergence of corresponding bosonic
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χ-dSC iSDW SDW4 iCDW fSC CDW FM Metal

Coexistence of strong iSDW and weak χ-dSC Coexistence of strong iSDW and weak fSC

Coexistence of iSDW and pSC, with similar strengths, and weak fSC

Coexistence of fSC and iSDW with similar strengths (The left one is slightly stronger than the right.)

FIG. 3. Schematic phase diagrams for small and moderate values of J . The color bars indicate values of critical scales �C at which the
corresponding transitions may occur. In the region denoted as Metal, there is no divergence of any bosonic propagator in the RG flow down to
the stopping scale �∗ = 1.3 × 10−4 eV. In the coexistence regions, there are two or three dominant eigenmodes of several bosonic propagators.
Here different orders could coexist or exclude the others, or even may compete with each other leading to common suppression. The notation
pSC is a shorthand notation for the p-wave SC.

propagator is observed, are also provided using the color bars.
We outline some features of the phase diagrams below.

In the absence of the ferromagnetic exchange (J = 0.0t)
and for small values of the nearest-neighbor repulsion (V =
0–t), a four-sublattice spin-density-wave (SDW4) phase oc-
curs at and close to the VHS filling, while the chiral d-wave
superconducting (χ -dSC) phase away from it. An incommen-
surate spin-density-wave (iSDW) phase occupies the regions
between the SDW4 and the χ -dSC. This configuration is very
similar to that in Ref. [36]. For moderate values of V (V ≈
1.5t), the SDW4 is found again in the vicinity of the VHS,
while two χ -dSC regions flank it. Two additional phases,

namely, a spin-triplet f -wave superconducting (fSC) and an
incommensurate charge-density-wave (iCDW) phases occur
at lower doping levels (δ ≈ 0.19 for iCDW and δ ≈ 0.21 for
fSC). For large values of V (V = 2t–3t), a charge-density-
wave phase with broken π/3-rotation symmetry and a charge
transfer from sublattice A to B (or vice versa), which is de-
noted as CDW in Figs. 3 and 4, is found for all doping levels
considered. The associated critical scales are considerably
increased.

When a weak exchange coupling (J = 0.1t) is involved,
the structure of the phase diagram exhibits a remarkable
change. The χ -dSC phase, found for J = 0, V = 0–1.5t ,
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FIG. 4. Schematic phase diagrams for large values of J . The
color bars indicate values of critical scales �C . The phase diagrams
have simple structures consisting only of two phases, namely, a π/3-
rotation-symmetry-broken charge-density-wave (CDW) phase and a
ferromagnetic (FM) phase.

completely disappears from our phase diagram. The phase
turns into a metallic phase for V = 0–t , while into the fSC for
V ≈ 1.5t, δ = 0.29–0.31 and a coexistence phase of strong
iSDW and weak fSC orders for V ≈ 1.5t, δ ≈ 0.23. In the
coexistence phase, the two orders, i.e., the iSDW and fSC,
could coexist or exclude the other, or even may compete
with each other leading to common suppression. Since we
have not performed the mean-field calculation, we cannot
determine whether these orders really coexist or not, as well
as, the relative strength of corresponding order parameters, if
they coexist [54]. The iCDW at V ≈ 1.5t, δ ≈ 0.19 changes
to the fSC. The whole SDW4 region and main part of the
iSDW region survive with decreased critical scales. The fSC
at V ≈ 1.5t, δ ≈ 0.21 and the CDW for V = 2t–3t are also
retained.

It is very interesting that the metallic phase is induced by
involving exchange coupling. This behavior can be attributed
to competition effect, as evidenced by the suppression of
critical scales near the boundaries between different phases.
The present TUFRG scheme is apparently more sensitive to
competition effects due to its high momentum resolution.
Although the current version of TUFRG, as an approach from
the weak-coupling perspective, is not certainly exact and is
on its development, the physically plausible observation of a
metallic state being stabilized by competition effects deserves
to be considered thoroughly and compared with other meth-
ods. This interesting result has also been obtained in previous
TUFRG studies on a half-filled honeycomb lattice [39,48], in
which a semimetallic state was recovered by increasing some
interaction parameters.

If the exchange coupling is further increased (J = 0.2t),
then the iSDW for V = 0.5t–1.5t, δ ≈ 0.23 turns into the
fSC, while it develops in the region of V = 0–1.5t, δ ≈ 0.29.
The SDW4 changes to a ferromagnetic (FM) phase for δ ≈
0.25 and the iSDW for δ ≈ 0.27. In the case of relatively
large value of J (J = 0.5t), the FM phase occupies a large
part of the region for V = 0–1.5t . Both sides of the region are
occupied by the fSC (left) and the iSDW (right). The CDW
region remains unchanged in the case of J = 0–0.5t .

When the ferromagnetic exchange interaction is further en-
hanced, the phase diagrams have simple structures consisting
only of two phases, i.e., the CDW and FM phases. For J = t ,
a transition from the FM to the CDW is found at V ≈ 2.25t ,
independently on the doping level. The transition point is
moved to V ≈ 2.75t for J = 2t , and finally, for J = 3t , the
whole parameter space of the phase diagram is covered by the
FM phase.

From Fig. 3 we see that the chiral d-wave SC is destroyed
upon increasing J while the f -wave SC is developed. This
can be explained by the Kohn-Luttinger mechanism [55] in
which the fluctuations in the particle-hole channel (mostly
spin channel) have a cross contribution to the particle-particle
channel, finally resulting in an attractive interaction in some
pairing channel. More specifically, in our case, the spin chan-
nel develops gradually in the high-energy scale followed by a
pairing channel (mainly s wave). In the intermediate RG stage
the incommensurate SDW, with momentum transfer equal
to the near-nesting vector of the FS geometry, develops fast
and dominantly, which prevents the growth of s wave but
promotes an attractive d wave and f wave. In the absence of
exchange coupling, the d-wave channel grows fast and con-
structs a positive mutual feedback with the incommensurate
SDW at the lower-energy scale. At the low-energy scale the
d-wave SC flows faster and diverges eventually at the critical
scale. However, if the exchange coupling is involved, it is
supposed that the d-wave channel gets an additional repulsive
interaction while the f wave gets attractive. This behavior is
originated from the tendency of ferromagnetic exchange to
align spins in favor of spin-triplet pairing. So in the interme-
diate stage the f wave develops faster than d wave and then
builds a negative feedback with the SDW which suppresses
the growths of both the f wave and SDW instabilities. But
the larger nearest-neighbor repulsion also provides the f wave
with attractive interaction, so that the f wave can grow fast
and diverge before making the negative feedback. Of course
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(a) d            − wave

+

x   − y 2        2

(b) d    − wavexy

+

FIG. 5. Form factors of the spin-singlet SC order parameters
�sSC

Ao (0, Rm ) (o = A, B), for J = 0, V = 0.5t, δ = 0.21 in the
dx2−y2 -wave (a) and the dxy-wave (b) states. The red (blue) sticks
indicate the positive (negative) values of the SC order parameters,
while the widths of sticks measure magnitudes of the order parame-
ters. The order parameters �sSC

BB (0, Rm ) have the same form factors
as �sSC

AA (0, Rm ), and �sSC
BA (0, Rm ) can be obtained using the relation

�sSC
BA (0, Rm ) = �sSC

AB (0, −Rm ). The form factors for these two states
can make a linear combination of dx2−y2 ± idxy to form the chiral
d-wave SC.

this scenario has to be verified further by a more detailed
analysis and comparison with other results. Now we describe
concretely some exotic phases among those mentioned above.

Chiral d-wave superconducting phase (χ -dSC): The chiral
d-wave SC phase manifests itself in the RG flow as two domi-
nantly divergent and degenerate eigenmodes of W sSC(Q = 0)
that obey the two-dimensional E2 representation of C6v sym-
metry [16,44]. These two modes can make a complex linear
combination to form the chiral d-wave SC. In order to deter-
mine whether it is really formed or not, one needs to perform
the mean-field calculation using the effective interaction, but
this is beyond the scope of the present work. Many previous
works support a formation of the chiral SC. The form factors
of two kinds of the SC order parameters, which are associ-
ated with those two dominant modes and have dx2−y2 and dxy

symmetries, are depicted in Fig. 5.
What is most surprising is the annihilation of this intriguing

order by a weak exchange coupling. As mentioned above, the
chiral d-wave SC has completely disappeared from our phase
diagram upon including the exchange coupling of J = 0.1t .
The investigation by a fine tuning of the parameter J shows
that the phase is fully suppressed by weak exchange coupling

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.4

0.8

1.2

1.6

2.0
x 10−3

J / t

Ω
C / 

t

V / t = 0.5 , δ = 0.21
V / t = 1.0 , δ = 0.21

FIG. 6. Critical scales �C of the SC transitions as function of
exchange coupling J . The plots are given for V = 0.5t, δ = 0.21
(solid) and V = 1.0t, δ = 0.21 (dotted). The SC order is suppressed
at J ≈ 0.05t .

of J ≈ 0.05t = 0.14 eV (see Fig. 6). Although we are not able
to give an exact value of J for graphene, our rough estimation
presented in Appendix A shows that the above value of J is
inside the range of the expectation value for the exchange
coupling, namely 0.10–0.28 eV. Thus, our results demonstrate
possible destruction of the chiral SC in single layer graphene,
which is consistent with a failure in experimental effort to
search for it in the system.

Four-sublattice spin-density-wave phase (SDW4): The
four-sublattice SDW phase manifests itself in our RG flow as
a dominantly divergent eigenmode of W SPN(Q = M1) which
has real numbers φAA0 = φBB0 as its largest components. It is
driven by nearly perfect nesting of the FS. The momentum
transfer M1 has two other partners, M2 and M3, to which it
can be transformed by symmetry operations. The spin dis-
tributions for the phases with three inequivalent momentum
transfers M1,2,3 are shown in Fig. 7. In general, the spin
distribution in the system is realized by superposition of those
patterns and can be represented by following equation:

〈ŜAi〉 = S1 cos(M1 · Ri )

+ S2 cos(M2 · Ri ) + S3 cos(M3 · Ri ),

〈ŜBi〉 = S1 cos(M1 · Ri )

− S2 cos(M2 · Ri ) − S3 cos(M3 · Ri ), (28)

with three nesting vectors,

M1 = 2π√
3a

(0, 1),

M2 = π√
3a

(−
√

3,−1), M3 = π√
3a

(
√

3,−1).

Various patterns can be generated by arbitrary selection of
three amplitudes S1–S3. If one selects as S1 = S2 = S3, the
collinear SDW phase emerges as suggested in Ref. [28] [see
Fig. 8(a)]. The chiral SDW phase [27,31,32,36] is generated
by setting S1, S2, and S3 as three mutually orthogonal vectors
[see Fig. 8(b)]. It is argued that the chiral SDW order is
only developed at the lowest temperatures and turns into the
collinear SDW phase at higher temperatures [28]. Again, the
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Q=M1 Q=M2 Q=M3

FIG. 7. Spin distributions for the four-sublattice SDW phases with three inequivalent momentum transfers M1,2,3. The shaded area indicates
the unit cell common to these spin patterns.

mean-field calculation is needed to determine which of these
phases is favored, but this is beyond the scope of this paper.

Spin-triplet f-wave superconducting phase (fSC): The
ferromagnetic exchange coupling and the nearest-neighbor
repulsion favor the spin-triplet f -wave SC phase. It is rep-
resented by a predominant eigenmode of W tSC(Q = 0) that
follows the one-dimensional B1 representation of C6v sym-
metry [35,44]. All the fSC phase in our phase diagrams have
the same form factor of the SC order parameter, as shown in
Fig. 9. This form factor is expressed as

�tSC
oo (0, R1) = �tSC

oo (0, R3) = �tSC
oo (0, R5) = 1,

�tSC
oo (0, R2) = �tSC

oo (0, R4) = �tSC
oo (0, R6) = −1,

which, by a Fourier transformation, presents the following
order parameter in momentum space:

lim
λ→+0

∑
σ

〈c†
k,o,σ c†

−k,o,−σ 〉λ

=
∑

m

�tSC
oo (0, Rm)e−iRm·k

= −2

[
sin(kxa) − 2 sin

(
kxa

2

)
cos

(√
3kya

2

)]
. (29)

The above expression leads to nodal gap which has nodes
on the nodal lines kx = 0 and kx = ±√

3ky. For doping lev-

els lower than the VHS filling, the FS is disconnected and
the nodes of the gap do not intersect with the FSs. In
this case the f -wave SC state could become fully gapped.
In our calculation we have not found the f -wave gap
that has been suggested in Ref. [35] and obeys the B2

representation.
Incommensurate spin-density-wave phase (iSDW): The in-

commensurate SDW phase manifests itself in the RG flow as
a dominant eigenmode of W SPN(Q = Q0) which has complex
numbers φAA0 and φBB0 with the relation |φAA0| = |φBB0| as
its largest components. For several parameter sets within the
SDW4 and iSDW regions, the maximum absolute values of the
projection matrix V C(Q), denoted as |V C(Q)|max, are plotted
as function of momentum transfer Q in Fig. 10. They have
strong peaks at some ordering vectors which depend on the
values of δ and J , but not on V . The plot has three peaks at the
vectors M1,2,3 for the SDW4 phase [see Fig. 10(a)]. When the
parameter J is small, the plot for the iSDW phase has six peaks
near the vectors M1,2,3 [Figs. 10(b) and 10(c)]. The variation
in the peak positions (ordering vectors) is related to the change
in the FS shape. However, if J is further increased, the peak
positions are moved to around the � point [Fig. 10(d)] which
is far from the nesting vectors of the near-nested FS. This no-
ticeable change can be attributed to the competition between
both ordering tendencies toward the ferromagnetic phase by
increased J and toward the SDW4 due to near nesting of
the FS.

(a)
Top view                                   Enlarged side view

(b)

FIG. 8. Spin distributions for the collinear SDW phase (a) and the chiral SDW phase (b). The shaded area indicates the unit cell of the
phases.
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(a)                                           (b)

+1

+1
+1

+1

+1
+1

−1

−1

−1
−1

−1

−1

FIG. 9. (a) Form factor of the spin-triplet SC order parameters
�tSC

AA (0, Rm ) and �tSC
BB (0, Rm ) for the f -wave SC phase. The outward

(inward) arrows indicate positive (negative) values of the order pa-
rameters. (b) Spin-triplet SC order pattern in the phase, denoted by
arrows. The arrow from the site m to n in the sublattice o corresponds
to the order parameter �tSC

oo (Rm, Rn) = −�tSC
oo (Rn, Rm ) = 1.

IV. CONCLUSION

This work has addressed the effect of enhanced exchange
interaction on the ground-state orderings of electrons on
the honeycomb lattice doped to the vicinity of the VHS.
An extended Hubbard model, including the on-site and
nearest-neighbor Coulomb repulsions, and nearest-neighbor
ferromagnetic exchange and pair hopping interactions, has
been considered. The effective interactions have been cal-
culated by using the TUFRG allowing for high momentum
resolution, while the ground states of the system have been
analyzed employing the linear-response-based approach for
identifying the type of order. The ground-state phase diagrams
in the space of doping level and nearest-neighbor repul-
sion were obtained for several values of the nearest-neighbor
exchange integral. Inclusion of small and moderate ferromag-
netic exchange coupling yields the phase diagram with diverse
ordering tendencies, while for the large value of the coupling
the phase diagram has a relatively simple constitution.

In the absence of the exchange coupling J and for small
nearest-neighbor repulsion V , the competition between the
chiral d-wave SC and the SDW becomes a main ingredient
of the phase diagram. The former emerges slightly away from
the VHS, while the latter right around it. More specifically, the
four-sublattice SDW phase occurs very near the VHS filling,
flanked by the incommensurate SDW. When increasing V ,
the spin-triplet f -wave SC and the incommensurate CDW
phases occur at lower doping levels. If V is further increased,
the CDW phase, with broken π/3-rotation symmetry and a
charge transfer between two sublattices, is preferred for all
doping levels considered. The associated critical scales are
considerably increased. When a weak exchange coupling is
included, the structure of the phase diagram changes a lot.
The chiral d-wave SC, found in the absence of J , completely
disappears from our phase diagram and the region of the
f -wave SC is extended. If the exchange coupling is further in-
creased, the four-sublattice SDW turns into the ferromagnetic
or incommensurate SDW phases. When the ferromagnetic
exchange interaction is further enhanced, the phase diagrams

FIG. 10. Maximum absolute values of the projection matrices
V C(Q) in the momentum space for the SDW4 and iSDW phases. The
color bars indicate the relative values |V C(Q)|max/|V C(Qmax)|max.
(a) Plot for J = 0.1t, V = 0.5t, δ = 0.25 (SDW4). It has three
peaks at the vectors M1, M2, and M3. (b) Plot for J = 0, V =
1.0t, δ = 0.29 (iSDW). (c) Plot for J = 0.1t, V = 0.5t, δ = 0.23
(iSDW). (b) and (c) have six peaks near the vectors M1,2,3. (d) Plot
for J = 0.2t, V = 0, δ = 0.27 (iSDW). It has six peaks around the
� point.

have simple structures consisting only of two phases, namely,
the CDW and FM phases. With increasing J , the region of the
ferromagnetic phase gets extended more and more, ultimately
leading to the whole phase diagram covered by the phase.

From the experimental point of view, some previous works
have reported the experimental observations of SC in single
layer graphene by doping it with Li adatoms [56] or interca-
lating graphene laminates with Ca [57]. However, those are
different from the unconventional SC addressed in this work,
because the doping levels are much lower than the VHS filling
and they are the conventional BCS superconductors medi-
ated by dopant-enhanced electron-phonon coupling. Another
works on graphene have also found the conventional SC obey-
ing the BCS mechanism [58] and a p-wave unconventional
SC [59], triggered by placing graphene on a superconductor.
These proximity-induced SCs are far away from the present
context. Thus, the unconventional SC, which was predicted
theoretically more than a decade ago for graphene doped close
to the VHS, has not yet been found experimentally. Our the-
oretical finding that demonstrates a strong suppression of the
chiral d-wave SC by weak exchange coupling of J ≈ 0.14 eV
might help to present a key to explain the reason for a failure
of the experimental effort for finding the chiral SC in single
layer graphene.
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Lastly, we give a brief comment on the relevance of our
results to the TBG. As mentioned in the Introduction of
the present paper, a number of studies on TBG [4–14] have
pointed to the chiral d-wave SC as the nature of the SC state
observed in the system. Due to the large lattice constant in
TBG, it is expected that the ratio between the radius of the
maximally localized Wannier orbitals (α) and the nearest-
neighbor distance (R) for the system would be much smaller
than that for single layer graphene. On the other hand, the ratio
between the exchange integral and the hopping parameter J/t
decays exponentially with ξ = α/R, as shown in Fig. 11 of

Appendix A. Thus, the effect of the ferromagnetic exchange
on the many-body instabilities can be neglected, and the the-
oretically predicted chiral d-wave SC may survive in TBG,
unlike in single layer graphene.
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APPENDIX A: ESTIMATION OF EXCHANGE INTERACTION

We present a rough estimate of the strength of the exchange interaction for graphene. The Coulomb interaction Hamiltonian
can be expanded in terms of the Wannier orbitals.

Hint = 1

2

∫
dr1

∫
dr2

∑
σ,σ ′

ψ†
σ (r1)ψ†

σ ′ (r2)ψσ ′ (r2)ψσ (r1)
e2

|r1 − r2|

= 1

2

∑
i′ j′,i j

∑
o′ p′,op

∑
σ,σ ′

c†
i′o′σ c†

j′ p′σ ′c j pσ ′cioσ (i′o′, j′ p′|io, j p),

(i′o′, j′ p′|io, j p) ≡
∫

dr
∫

dr′ϕ∗
i′o′ (r)ϕ∗

j′ p′ (r′)ϕ j p(r′)ϕio(r)
e2

|r − r′| . (A1)

Here ϕio(r) is the maximally localized Wannier function centered at the atom of the sublattice o in the unit cell i. Among the
integrals (i′o′, j′ p′|io, j p), the following terms have relatively large values:

U = (io, io|io, io) =
∫

dr
∫

dr′|ϕio(r)|2 e2

|r − r′| |ϕio(r′)|2 (on-site repulsion),

Vio, j p = (io, j p|io, j p) =
∫

dr
∫

dr′|ϕio(r)|2 e2

|r − r′| |ϕ j p(r′)|2 (repulsion between neighbors),

Jio, j p = (io, j p| j p, io) =
∫

dr
∫

dr′[ϕ∗
j p(r)ϕio(r)]∗

e2

|r − r′| [ϕ∗
j p(r′)ϕio(r′)] (direct exchange interaction),

Kio, j p = (io, io| j p, j p) =
∫

dr
∫

dr′[ϕ∗
io(r)ϕ j p(r)]

e2

|r − r′| [ϕ∗
io(r′)ϕ j p(r′)] (pair hopping).

One can take real functions as the Wannier orbitals for graphene’s π -electron system, which gives the relation of Jio, j p = Kio, j p.
In general, many of the above terms are neglected, except for the following parameters:

on-site repulsion U, nearest-neighbor Coulomb repulsion V〈iA, jB〉 = V〈 jB,iA〉 = V,

nearest-neighbor exchange coupling J〈iA, jB〉 = J〈 jB,iA〉 = J,

nearest-neighbor pair hopping K〈iA, jB〉 = K〈 jB,iA〉 = J.

In this case the Hamiltonian Hint is approximated as

Hint ≈ U
∑
i,o

nio↑nio↓ + V
∑

〈iA, jB〉

∑
σ,σ ′

niAσ n jBσ ′

+ J
∑

〈iA, jB〉

∑
σ,σ ′

c†
iAσ c†

jBσ ′ciAσ ′c jBσ

+ J
∑

〈iA, jB〉
(c†

iA↑c†
iA↓c jB↓c jB↑ + H.c.), (A2)

where nioσ = c†
ioσ cioσ is the local electron density operator for

spin polarity σ .

It is easy to prove that the nearest-neighbor exchange cou-
pling J is always positive. The coupling is expressed using a
real function F (r) = ϕ jB(r)ϕiA(r) as

J = J〈iA, jB〉 =
∫

dr
∫

dr′F (r)
e2

|r − r′|F (r′). (A3)

The Fourier transforms of F (r) and e2

|r−r′ | are given by

F (r) = 1

(2π )3

∫
dkF̃ (k)eik·r,

e2

|r − r′| = 1

(2π )3

∫
dk

4πe2

k2
eik·(r−r′ ).
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By substituting these into Eq. (A3) we obtain

J = 1

(2π )3

∫
dkF̃ (−k)

4πe2

k2
F̃ (k)

= 1

(2π )3

∫
dk

4πe2

k2
|F̃ (k)|2 > 0. (A4)

Here we used the relation for any real function F (r), given by
F̃ (−k) = [F̃ (k)]∗. Thus, the exchange integral J has always
positive value.

The third term in Eq. (A2) can be represented in the fol-
lowing form:

Hexc ≡ J
∑

〈iA, jB〉

∑
σ,σ ′

c†
iAσ c†

jBσ ′ciAσ ′c jBσ

= −J

2

∑
〈iA, jB〉

niAn jB − 2J
∑

〈iA, jB〉
SiA · S jB. (A5)

The first term can be added to the nearest-neighbor Coulomb
repulsion, while the second one is just the ferromagnetic (J >

0) exchange interaction with the tendency to align the spin
orientations.

Now we consider graphene’s π electrons that move in the
effective field produced by ion cores and σ electrons. As a
crude approximation we assume that this effective field is

identical with the one produced by an array (the honeycomb
lattice) of effective point charges of strength +Qe. The param-
eter Q has a value in the range of 1 (complete screening by σ

electrons) to 4 (no screening). The 2pz orbital of an electron
moving in the Coulomb attraction of a point charge Qe at the
origin reads

f (r) = 1√
πα3

z

α
e−r/α, α = 2aB

Q
, (A6)

where aB = 0.53 Å is the Bohr radius.
On the other hand, in the case of graphene’s π electrons,

the maximally localized Wannier orbital centered at the site
i, which should be orthogonal to the others, can be approxi-
mately written as

ϕi(r) ≈ 1√
1 − 9

4 S2

[
f (r − Ri ) − S

2

3∑
j=1

f (r − R j )

]
. (A7)

Here S = 〈 fA | fB〉 = ∫
dr f (r − RA) f (r − RB) is the overlap

between the nearest-neighboring atomic orbitals, Ri is the
position vector of the site i, and the sites j = 1, 2, 3 are
three nearest neighbors of the site i. In deriving Eq. (A7) we
assumed the smallness of the overlap S and took into account
the equivalence of all atoms. By using Eqs. (A6) and (A7) one
can obtain the exchange coupling J:

J =
∫

dr
∫

dr′ϕA(r)ϕB(r)
e2

|r − r′|ϕA(r′)ϕB(r′)

≈ 1(
1 − 9

4 S2
)2

[(
1 + S2

4

)2

JAB + S2

2
(U + VAB) − 2S

(
1 + S2

4

)
XAB−A

]

≈
(

1 + 9

4
S2

)2
[(

1 + S2

4

)2

JAB + S2

2
(U + VAB) − 2S

(
1 + S2

4

)
XAB−A

]
. (A8)

In the above equation the integrals JAB, U, VAB, and XAB−A are defined by atomic orbitals fA = f (r − RA) and fB = f (r − RB)
as follows:

JAB ≡
∫

dr
∫

dr′ fA(r) fB(r)
e2

|r − r′| fA(r′) fB(r′), U ≡
∫

dr
∫

dr′ f 2(r)
e2

|r − r′| f 2(r′),

VAB ≡
∫

dr
∫

dr′ f 2
A (r)

e2

|r − r′| f 2
B (r′), XAB−A ≡

∫
dr

∫
dr′ fA(r) fB(r)

e2

|r − r′| f 2
A (r′). (A9)

For the distance between nearest neighbors of R, the overlap S is given by

S = e−R/α

(
1 + R

α
+ 2

5

R2

α2
+ 1

15

R3

α3

)
. (A10)

The hopping amplitude between two nearest-neighboring Wannier orbitals is written, to first order in S, as

t = −〈ϕA|Ĥ |ϕB〉 ≈ −〈 fA|Ĥ | fB〉 + S〈 fA|Ĥ | fA〉
≈ −1

2

∫
dr f (r − RA)[VA(r) + VB(r)] f (r − RB) + S

∫
drVB(r) f 2(r − RA)

≈ Q
e2

2α
e−R/α

(
1 + R

α
+ 1

3

R2

α2

)
− SQ

e2

R

(
1 − 3

2

α2

R2

)
, (A11)

with the potential by the effective point charge Qe at the
position Ri, Vi(r) ≡ −Q e2

|r−Ri| .
The on-site repulsion U for an atomic orbital in Eq. (A9)

is approximately equal to that for a Wannier orbital. So we
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TABLE II. The calculation results of the hopping parameters and
the exchange couplings for three values of on-site repulsions.

U (eV) α (Å) ξ = R/α Q S t (eV) J (eV)

9.3 0.61 2.33 1.74 0.62 2.39 0.28
10.1 0.56 2.54 1.89 0.57 2.56 0.25
17.0 0.33 4.30 3.21 0.24 3.58 0.10

can extract the parameters α and Q from U , from which the
exchange coupling J and the hopping parameter t are calcu-
lated using Eqs. (A8) and (A11). In Ref. [60] two values of
on-site repulsions Ubare = 17.0 eV and UcRPA = 9.3 eV have
been obtained using both the bare Coulomb interaction and
the screened interaction from the constrained random phase
approximation (cRPA), respectively, while in this paper we
used the parameter, Uused = 3.6t = 3.6 × 2.8 eV ≈ 10.1 eV.
Since graphene has the C-C distance of R = 1.42 Å, we get
the results for these three values of U as shown in Table II.

As a consequence, we anticipate the strength of exchange
coupling to be 0.10–0.28 eV, from the estimation using three

FIG. 11. The dependence of the exchange coupling J and the
hopping amplitude t on the parameter ξ = R/α (ξ0 = 2.5).

legitimate values of the parameter U . Figure 11 demonstrates
the dependence of J , t , and J/t on the parameter ξ = R/α.
One can easily see from the figure that the quantity J/t decays
exponentially with ξ , implying a negligible effect of the ex-
change interaction in the case of the superlattices with large
lattice constants.

APPENDIX B: PROJECTIONS ONTO THREE CHANNELS

Three bosonic propagators are defined by projecting three single-channel coupling functions onto three associated channels
[see Eq. (9)]:

P� = P̂[pp(�)], C� = Ĉ[ph,cr (�)], D� = D̂[ph,d(�)]. (B1)

Their detailed expressions are given by

P�
o′

1o′
2m,o1o2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)pp(�)
o′

1o′
2,o1o2

(p + q,−p; p′ + q,−p′),

C�
o′

1o2m,o1o′
2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)ph,cr(�)
o′

1o′
2,o1o2

(p + q, p′; p′ + q, p),

D�
o′

1o1m,o2o′
2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)ph,d(�)
o′

1o′
2,o1o2

(p + q, p′; p, p′ + q). (B2)

The inverse transformations of above equation read as follows:


pp(�)
o′

1o′
2,o1o2

(p + q,−p; k + q,−k) =
∑

m,n(infinit sum)

P�
o′

1o′
2m,o1o2n(q) f ∗

m(p) fn(k),


ph,cr(�)
o′

1o′
2,o1o2

(p + q, k; k + q, p) =
∑

m,n(infinit sum)

C�
o′

1o2m,o1o′
2n(q) f ∗

m(p) fn(k),


ph,d(�)
o′

1o′
2,o1o2

(p + q, k; p, k + q) =
∑

m,n(infinit sum)

D�
o′

1o1m,o2o′
2n(q) f ∗

m(p) fn(k), (B3)

which can be shortly represented as

pp(�) = P̂−1[P�], ph,cr (�) = Ĉ−1[C�], ph,d(�) = D̂−1[D�]. (B4)

If the range of the indices m and n (i.e., Rm and Rn) extend to infinity, Eqs. (B3) and (B4) would be exact. However, the real
calculation will necessarily introduce the truncation in the range of Rm and Rn [see Fig. 1(a)], thus making these equations to be
approximate. More specifically, since the bosonic propagators for |Rm| > Rcut or |Rn| > Rcut are neglected,

P�
o′

1o′
2m,o1o2n(q) = C�

o′
1o′

2m,o1o2n(q) = D�
o′

1o′
2m,o1o2n(q) = 0 (|Rm| > Rcut or |Rn| > Rcut ).
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Equations (B3) and (B4) become the following approximations:


pp(�)
o′

1o′
2,o1o2

(p + q,−p; k + q,−k) ≈
∑

m,n(truncated sum)

P�
o′

1o′
2m,o1o2n(q) f ∗

m(p) fn(k),


ph,cr(�)
o′

1o′
2,o1o2

(p + q, k; k + q, p) ≈
∑

m,n(truncated sum)

C�
o′

1o2m,o1o′
2n(q) f ∗

m(p) fn(k),


ph,d(�)
o′

1o′
2,o1o2

(p + q, k; p, k + q) ≈
∑

m,n(truncated sum)

D�
o′

1o1m,o2o′
2n(q) f ∗

m(p) fn(k), (B5)

pp(�) ≈ P̂−1[P�], ph,cr (�) ≈ Ĉ−1[C�], ph,d(�) ≈ D̂−1[D�]. (B6)

In Eq. (B5) the sum
∑

m,n(truncated sum) means
∑

m(|Rm|�Rcut )

∑
n(|Rn|�Rcut ).

APPENDIX C: CROSSED CONTRIBUTIONS TO THREE PROJECTION MATRICES

The projection matrices are defined by [see Eq. (11)]

V P(�) = P̂[V �], V C(�) = Ĉ[V �], V D(�) = D̂[V �], (C1)

which can be represented in detail as

V P(�)
o′

1o′
2m,o1o2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)V �
o′

1o′
2,o1o2

(p + q,−p; p′ + q,−p′),

V C(�)
o′

1o2m,o1o′
2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)V �
o′

1o′
2,o1o2

(p + q, p′; p′ + q, p),

V D(�)
o′

1o1m,o2o′
2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)V �
o′

1o′
2,o1o2

(p + q, p′; p, p′ + q). (C2)

The inverse transformations of above equation read as follows:

V �
o′

1o′
2,o1o2

(p + q,−p; k + q,−k) ≈
∑

m,n(truncated sum)

V P(�)
o′

1o′
2m,o1o2n(q) f ∗

m(p) fn(k),

V �
o′

1o′
2,o1o2

(p + q, k; k + q, p) ≈
∑

m,n(truncated sum)

V C(�)
o′

1o2m,o1o′
2n(q) f ∗

m(p) fn(k),

V �
o′

1o′
2,o1o2

(p + q, k; p, k + q) ≈
∑

m,n(truncated sum)

V D(�)
o′

1o1m,o2o′
2n(q) f ∗

m(p) fn(k), (C3)

which can be briefly represented as

V � ≈ P̂−1[V P(�)] ≈ Ĉ−1[V C(�)] ≈ D̂−1[V D(�)]. (C4)

On the other hand, the effective interaction is represented via the bosonic propagators as [see Eq. (25)]

V � = V (0) + pp(�) + ph,cr (�) + ph,d(�) ≈ V (0) + P̂−1[P�] + Ĉ−1[C�] + D̂−1[D�], (C5)

from which the projection matrices are obtained:

V P(�) = P̂[V (0)] + P̂[pp(�)] + P̂[ph,cr (�)] + P̂[ph,d(�)] = V P,(0) + P� + V P←C(�) + V P←D(�),

V C(�) = Ĉ[V (0)] + Ĉ[pp(�)] + Ĉ[ph,cr (�)] + Ĉ[ph,d(�)] = V C,(0) + V C←P(�) + C� + V C←D(�),

V D(�) = D̂[V (0)] + D̂[pp(�)] + D̂[ph,cr (�)] + D̂[ph,d(�)] = V D,(0) + V D←P(�) + V D←C(�) + D�. (C6)

Here V P,(0), V C,(0), V D,(0), V P←C, V P←D, V C←P, V C←D, V D←P, and V D←C are defined by

V P,(0) ≡ P̂[V (0)], V C,(0) ≡ Ĉ[V (0)], V D,(0) ≡ D̂[V (0)],

V P←C(�) ≡ P̂[ph,cr (�)] ≈ P̂{Ĉ−1[C�]}, V P←D(�) ≡ P̂[ph,d(�)] ≈ P̂{D̂−1[D�]},
V C←P(�) ≡ Ĉ[pp(�)] ≈ Ĉ{P̂−1[P�]}, V C←D(�) ≡ Ĉ[ph,d(�)] ≈ Ĉ{D̂−1[D�]},
V D←P(�) ≡ D̂[pp(�)] ≈ D̂{P̂−1[P�]}, V D←C(�) ≡ D̂[ph,cr (�)] ≈ D̂{Ĉ−1[C�]}. (C7)

The crossed contributions to the projection matrices can be expressed in terms of P�, C�, and D�. As an example we can
represent the crossed contribution V P←C(�) via the bosonic propagators. From the relation V P←C(�) = P̂[ph,cr (�)], we have

V P←C(�)
o′

1o′
2m,o1o2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)ph,cr(�)
o′

1o′
2,o1o2

(p + q,−p; p′ + q,−p′).
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Substituting Eq. (B5) into the above equation we obtain the following equation:

V P←C(�)
o′

1o′
2m,o1o2n(q) ≈ 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)
∑
m′,n′

C�
o′

1o2m′,o1o′
2n′ (p + p′ + q) f ∗

m′ (−p′) fn′ (−p)

=
∑
m′,n′

1

S2
BZ

∫
dp

∫
dp′′eiRm·pe−iRn·(p′′−p−q)C�

o′
1o2m′,o1o′

2n′ (p′′)eiRm′ ·(p′′−p−q)e−iRn′ ·p

=
∑
l,n′

ei(Rn−Rl )·qδm+n,l+n′
1

SBZ

∫
dp′′C�

o′
1o2l,o1o′

2n′ (p′′)e−i(Rn−Rl )·p′′

=
∑

l

C̃�
o′

1,o2,Rl ;o1,o′
2,Rm+Rn−Rl

(Rn − Rl )e
i(Rn−Rl )·q.

The expressions for other crossed contributions can also be derived in a similar way. The results are summarized as follows:

V P(�) = V P,(0) + P� + V P←C(�) + V P←D(�),

V P←C(�)
o′

1o′
2m,o1o2n(q) =

∑
l

C̃�
o′

1,o2,Rl ;o1,o′
2,Rm+Rn−Rl

(Rn − Rl )e
i(Rn−Rl )·q,

V P←D(�)
o′

1o′
2m,o1o2n(q) =

∑
l

D̃�
o′

1,o1,Rl ;o2,o′
2,Rm−Rn−Rl

(−Rn − Rl )e
−iRl ·q, (C8)

V C(�) = V C,(0) + C� + V C←P(�) + V C←D(�),

V C←P(�)
o′

1o2m,o1o′
2n(q) =

∑
l

P̃�
o′

1,o
′
2,Rl ;o1,o2,Rm+Rn−Rl

(Rn − Rl )e
i(Rn−Rl )·q,

V C←D(�)
o′

1o2m,o1o′
2n(q) =

∑
l

D̃�
o′

1,o1,Rl ;o2,o′
2,Rn+Rl −Rm

(−Rm)e−iRl ·q, (C9)

V D(�) = V D,(0) + D� + V D←P(�) + V D←C(�),

V D←P(�)
o′

1o1m,o2o′
2n(q) =

∑
l

P̃�
o′

1,o
′
2,Rl ;o1,o2,Rl −Rm−Rn

(−Rm)ei(Rn−Rl )·q,

V D←C(�)
o′

1o1m,o2o′
2n(q) =

∑
l

C̃�
o′

1,o2,Rl ;o1,o′
2,Rn+Rl −Rm

(−Rm)e−iRl ·q, (C10)

with the Fourier transforms of the bosonic propagators,

P̃�(Rm) ≡ 1

SBZ

∫
dqP�(q)e−iRm·q,

C̃�(Rm) ≡ 1

SBZ

∫
dqC�(q)e−iRm·q, D̃�(Rm) ≡ 1

SBZ

∫
dqD�(q)e−iRm·q. (C11)
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