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Skew scattering—an asymmetric scattering of electrons by impurities—is one of the major mechanisms
causing anomalous/spin Hall effects. Although many microscopic mechanisms for skew scattering are known,
the Hall angle of anomalous Hall effect by these mechanisms is often small, typically θ = 0.1◦ − 1◦. In this
paper, we study the skew scattering by three-spin clusters focusing on the strong Kondo-coupling regime.
Using a T -matrix formalism, we calculate the scattering probability for arbitrary strength of Kondo coupling,
going beyond perturbation theory in previous studies. From a systematic analysis of the scattering probability
for one-, two-, and three-spin clusters, we show that three spins are necessary for the skew scattering in the
absence of spin-orbit interaction. The skew scattering by the three-spin cluster produces a skew angle on
the order of 0.1π rad (∼18◦) when the electron-spin coupling is comparable to the bandwidth. We also study the
relationship between the anomalous/spin Hall effects and the spin chiralities and argue that the anomalous-(spin)
Hall skew angle is approximately proportional to the scalar (net vector) spin chirality even for the strong-coupling
cases. This mechanism is potentially relevant to anomalous/spin Hall effects in noncentrosymmetric and
frustrated magnets.
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I. INTRODUCTION

Anomalous Hall effect (AHE) and spin Hall effects reflect
rich physics related to the quantum nature of electrons, such
as the Berry phase and electron scattering by impurities [1–3].
Traditionally, the microscopic mechanisms of the Hall effects
are classified into two groups: intrinsic and extrinsic mech-
anisms. The intrinsic mechanism of the AHE [4] is related
to the Berry curvature of electronic bands [5]. Later it was
realized that the same mechanism also produces the spin Hall
effect (SHE) [6,7]. More recently, it was pointed out that the
scalar spin chirality of ordered localized spins also contributes
to the AHE [8–10]. This mechanism is thought to be respon-
sible for the intrinsic AHE in ordered phases of magnets with
noncoplanar magnetic order, such as in pyrochlore oxides
[11], kagome [12] magnets, and in chiral magnets [13,14].
On the other hand, the extrinsic mechanisms of the AHE
are related to impurity scattering. Several mechanisms are
known for single nonmagnetic [15,16] or magnetic [17–19]
impurities; they also contribute to the SHE [20,21]. Although
a variety of mechanisms are known, in three-dimensional ma-
terials, the Hall angle of anomalous Hall conductivity σ (AHE)

xy
is usually small compared to the longitudinal conductivity σxx.
Typically σ (AHE)

xy /σxx = 10−3–10−2 regardless of the mecha-
nism [22].

In extrinsic mechanisms, the small Hall angle is related to
the spin-orbit interaction necessary for all extrinsic mecha-
nisms by a single impurity. An example is skew scattering in
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ferromagnets in which the electrons are scattered asymmetri-
cally by the spin-orbit interaction of an impurity. This effect,
however, is often a weak perturbation compared with the
energy scale of the hybridization between the resonance state
and the conduction electrons. Hence, limiting the skew angle.

In contrast, such limitation does not apply to the skew
scattering by multiple spins [8,9,23], which occurs without
spin-orbit interaction. With small Kondo coupling, the AHE
is directly related to the scalar spin chirality of impurity spins
[23],

Si · (S j × Sk ), (1)

where Si, j,k are three spins adjacent to each other. Later, it
was shown that this AHE, in good metals, originates from a
skew scattering by three-spin clusters [24,25]. In addition, a
mechanism related to the vector spin chirality also contributes
to the AHE [26–29]. This mechanism may produce a large
skew angle because the strong coupling between electrons and
spins is often realized in transition-metal materials, e.g., in Mn
compounds [30,31]. However, most theoretical studies so far
focus on the weak-coupling limit except for a few numerical
works [27,32–34].

In this paper, we study the skew scattering by multiple
spins described by Anderson impurities using a T -matrix
method [Fig. 1(a)]. This method allows calculation beyond the
weak-coupling limit studied in related works [23,29]. Using
this method, we find that the skew angle reaches on the order
of 0.1π rad when the electron-spin coupling is comparable to
the bandwidth; this skew angle is 10–100 times larger than
the typical skew angle. We also argue that the skew angles for
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FIG. 1. Schematic of a three-spin cluster and skew scattering.
(a) Schematic of the electron scattering by a three-spin cluster. The
blue arrows show the incoming (k′) and outgoing (k) electrons,
and the orange curve surrounding the spin cluster is the scattering
rate Wkk′ for the outgoing electrons for k′; we abbreviate the spin
indices of the electrons. The skew scattering makes the scattering
rate asymmetric with respect to the incident direction shown by
the dashed line. θ in (a) is the canting angle of the three spins.
(b) and (c), respectively, are the top views of the three-spin cluster
canted outward (b) and inward (c). See the main text for details.
(d) Schematic of the scaling relation of the anomalous Hall effect.

AHE/SHE behave similarly to the spin chiralities, and, hence,
the chiralities function as an indicator for AHE/SHE at arbi-
trary Kondo coupling [23,29]. On the experimental side, the
large skew angle may modify the scaling plot of the AHE; a
large skew-scattering AHE extends the skew-scattering region
to lower conductivity. In the extreme case, the skew-scattering
region completely mask the intrinsic region as shown by the
red line when the Hall angle reaches 0.1π rad. We also discuss
that the spin-cluster scattering produces a large spin Hall
angle, which is related to the net vector spin chirality of three
pairs of spins consisting the cluster. The T -matrix analysis
implies that the magnetic scattering in the strong-coupling
region can produce a large AHE/SHE by skew scattering
which are approximately proportional to scalar/vector spin
chiralities.

II. MODEL AND METHOD

We study the T matrix of a triangular lattice model
with three impurity sites subject to the Zeeman field. The

Hamiltonian is

H = Hf + Hc + Hf c + Hc f , (2a)

Hf = −J
∑

i=0,1,2

Si · f †
i σ fi, (2b)

Hc =
∑

k

εkc†
kck, (2c)

Hf c = − V√
N

∑
i = 0–2

k, σ

γik f †
iσ ckσ , (2d)

Hc f = − V√
N

∑
i = 0–2

k, σ

γ ∗
ikc†

kσ
fiσ , (2e)

where ckσ and fiσ (c†
kσ

and f †
iσ ), respectively, are the annihila-

tion (creation) operator of itinerant and localized electrons,
σ ≡ (σ x, σ y, σ z ) is the vector of Pauli matrices σ a (a =
x, y, z) ck = (ck↑, ck↓) [ fi = ( fi↑, fi↓)] is the spinor for itin-
erant (localized) electrons,

εk = −2t

[
cos(kx ) + 2 cos

(
kx

2

)
cos

(√
3ky

2

)]
− μ,

∼ −(6t + μ) + 3

2
tk2 (3)

is the eigenenergy of itinerant electrons on the triangular
lattice with momentum k, k ≡ |k|, γik ≡ eik·ri , J > 0 is the
Zeeman splitting of the localized electron, V is the hybridiza-
tion of itinerant (c) and localized ( f ) electrons, ri is the
position of the ith spin, and 
Si is a unit vector parallel to the
localized spin on site i. Here, we assumed the site distance
a = 1. The eigenenergy of electrons are approximated by a
quadratic dispersion. This model corresponds to a mean-field
theory for the Anderson impurity model where the on-site
interaction between the localized electrons are treated by
Hartree-Fock approximation. Note that there is no spin-orbit
interaction in Eq. (2a).

We calculate the scattering rate using a T -matrix method.
Here, we summarize the main results used in the rest of this
paper and leave the details to the Appendix. The T matrix for
the spin cluster above reads

Tkσ,k′σ ′ = V 2

N

∑
i, j

γ ∗
ikγ jk′

[
1

ε+iδ+J
∑

l Sl · σ l −�(ε)

]
iσ, jσ ′

,

(4)

where �(ε) is the self-energy whose elements are

�iσ, jσ ′ (ε) = V 2

4π2
δσσ ′

∫
dk

γikγ
∗
jk

ε + iδ − εk
. (5)

Using the T matrix, the scattering rate from a state with k′ and
spin σ ′ to that with k and σ reads

W
kσ,
k′σ ′ = 2πW
kσ,
k′σ ′δ(ε
kσ
− ε
k′σ ′ ), (6)

where W
kσ,
k′σ ′ ≡ |T
kσ,
k′σ ′ |2.
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We study the skew scattering by spin clusters using the average of Wkσ,k′σ ′ over the incident electron directions, defined by

W̄σ,σ ′ (δφ) ≡
∫

dφ′

2π
Wkσ,k′σ ′ ,

= V 4

N2

∑
i, j,m,n

[
1

J
∑

l Sl · σ l − �(ε)

]
iσ, jσ ′

[
1

J
∑

l Sl · σ l − �(ε)

]∗

mσ,nσ ′

× J0
[
k
√

r2
jn + r2

im − 2rim · r jn cos(δφ) + 2(rim × r jn)z sin(δφ)
]
, (7)

where ri j ≡ ri − r j, φ′ ≡ atan(k′
y/k′

x ) is the angle of incident electron, δφ is the difference of angles between the momentum of
incoming and outgoing electrons, 
σl ≡ (σ x

l , σ
y
l , σ z

l ) is a vector of matrix σ a
l ≡ Ell ⊗ σ a (a = x, y, z and Ei j is the matrix unit),

and J0(x) is the n = 0 first Bessel function, J0(x) = ∑∞
n=0

(−1)n

(n!)2 ( x
2 )2n. Using Eq. (7), the averaged scattering rate reads

W̄σ,σ ′ (δφ) = 2πW̄σ,σ ′ (δφ)δ(ε
kσ
− ε
k′σ ′ ). (8)

We first look at skew scattering in one- and two-impurity cases. In the case of one impurity, r11 = 0. Hence, no asymmetry
in W̄kσ,k′σ ′ . To consider the two-impurity case, suppose the impurities are placed with a distance r; ri j = 0 if i = j and ri j = r
otherwise. The cross product in Eq. (7) vanishes in this case, becoming

W̄
kσ,
k′σ ′ = V 4

N2

∑
i, j,m,n

[
1

J
∑

l

Sl · 
σl − �(ε)

]
iσ, jσ ′

[
1

J
∑

l

Sl · 
σl − �(ε)

]∗

mσ,nσ ′
J0

[
k
√

r2
jn + r2

im − 2
rim · 
r jn cos(δφ)
]
. (9)

Therefore, W̄kσ,k′σ ′ = W̄ ′
σ,σ ′ (δφ) is always symmetric with respect to δφ. Hence, we need, at least, three spins for skew

scattering.

III. LARGE SKEW SCATTERING
BY THE THREE-SPIN CLUSTER

Previous studies find a three-spin cluster causes skew scat-
tering [24,25] and the AHE [23–25]. These works use a
perturbation expansion with respect to the Kondo coupling,
which is valid when the Kondo coupling is small compared
to the Fermi energy. In contrast, we here study the behavior
of electron scattering using a formalism valid for arbitrary
strength of electron-spin coupling.

For concreteness, we consider a three-spin cluster consist-
ing of three nearest-neighbor sites on the triangular lattice.
The scattering rate for an umbrella configuration with the
canting angle θ = π/4 [Fig. 1(a)] is shown in Fig. 2(a). The
result is asymmetric with respect to δφ, indicating skew scat-
tering. As a measure of skewness, we calculate the skew angle
defined by

δφ̄σ =
∫ π

−π

d (δφ)


σ

δφ W̄σ,σ (δφ), (10)

where 
σ = ∫ π

−π
d (δφ) W̄σ,σ (δφ). Figures 2(b) and 2(c) show

the Fermi wave-number kF dependence of δφ̄σ for J = V
cases. The results for δφ̄↑ and δφ̄↓ looks alike when the
coupling is weak (J/t = V/t = 1), i.e., the sign of δφ̄σ is
negative and the minimum is at around kF ∼ 1.5. This behav-
ior is approximately consistent with the perturbation theory
in Ref. [25] in which W̄↑,↑(δφ) = W̄↓,↓(δφ). On the other
hand, δφ̄↑ and δφ̄↓ behaves differently for large J/t,V/t . For
instance, the sign of δφ̄↑ is positive, and δφ̄↓ is negative when
J/t = V/t = 10, resembling the fictitious magnetic-field ar-
gument in the double-exchange limit [8,9].

The average skew angle reaches δφ̄σ = O(0.1π ) in be-
tween the weak- and the strong-coupling limits, such as
in J/t,V/t � 5. This is 10–100 times larger than the typ-

ical skew angle δφ̄σ ∼ 10−3π − 10−2π rad [1]. Such a
large skew angle appears for a wide range of canting
angle π/5 � θ � 4π/5 as in Fig. 3, demonstrating that
a large skew angle appears generally with strong Kondo
coupling.

To connect the skew angle to the AHE, we look at the spin-
configuration dependence of the average of δφ̄↑,↓, δφ̄+ ≡
(δφ̄↑ + δφ̄↓)/2. The result is shown in Fig. 4(a), where θ

and ϕ correspond to the angles in Figs. 4(c) and 4(d). The
contour plot resembles scalar spin chirality in Fig. 4(b);
they are both antisymmetric about θ = 1/2 and ϕ = π lines,
and the maximum in each quadrant is approximately at the
same point. The resemblance implies a close relation be-
tween the scalar spin chirality and the AHE even for a large
J/t,V/t .

We next turn to the magnitude of |δφ̄σ |, which shows the
maximum at kF ∼ 1. The position of the maximum resembles
magnon scattering by skyrmions in which the maximum is
at a wave number comparable to the inverse of the skyrmion
diameter [35]. Reference [35] also points out that a theory
for electron scattering by Aharonov-Bohm flux [36–38] re-
produces the numerical simulation of magnon scattering. Our
model shares a similar aspect to the magnon scattering prob-
lem; the coupling of electrons to localized moments reduces to
a fictitious magnetic field in the strong Kondo-coupling limit
[8,9]. Hence, the peak at kF ∼ 1 is likely to be related to the
spin cluster size.

In the last, we discuss the impact of the large skew angle
on the scaling plot. Figure 1(d) is the schematic of the scal-
ing plot of the anomalous Hall effect. In ferromagnets, the
Hall conductivity shows three distinct behaviors depending
on the longitudinal conductivity [22,39]. The conventional
skew scattering is seen only in the clean limit with con-
ductivity σxx � 105 
−1 cm−1 [the right region in Fig. 1(d)],
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FIG. 2. Scattering rate and skew angle for three-spin cluster.
(a) δφ dependence of W̄↑,↑(δφ) and W̄↓,↓(δφ) for J = V = 6, kF =
1, and θ = π/4. (b) and (c) kF dependence of (b) δφ̄↑ and (c) δφ̄↓ for
θ = π/4. Different curves are for different J’s and V ’s. The unit of
kF is the inverse of the bond length a, and the cutoff is � = π .

whereas the intrinsic Hall effect is dominant for 103 � σxx �
105 
−1 cm−1. This crossover is a consequence of two differ-
ent scaling behaviors. When the skew scattering is dominant,
σxy obeys the skew-scattering scaling relation σxy ∝ (σxx )1,
whereas the scaling becomes σxy = (σxx )0 when the intrinsic
one is dominant. This crossover often takes place at σxx ∼
105 
−1 cm−1 [22,39] because σxy for the intrinsic AHE is
σxy ∼ 103 
−1 cm−1 whereas the Hall angle for skew scat-
tering is σxy/σxx = 0.01–0.001. For a large skew-scattering
Hall effect, the skew-scattering region extends to the lower
σxx owing to a larger Hall angle, see the Supplemental
Material [40]. As the intrinsic region spans between 103 �
σxx � 105 
−1 cm−1, the skew scattering may completely
mask the intrinsic region if the magnitude increases more than
an order of magnitude [Fig. 1(d)].

IV. SPIN-HALL EFFECT BY SPIN-CLUSTER SCATTERING

We next discuss the staggered skew angle defined by
δφ̄− ≡ (δφ̄↑ − δφ̄↓)/2 which relates to the SHE. Figure 5(a)
is the contour plot of δφ̄− when the three spins lie on the xy
plane. The result resembles that of the net vector spin chirality
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FIG. 3. Canting dependence of the skew angle. kF dependence of
(a) δφ̄↑ and (b) δφ̄↓ for different canting angle θ ’s with J/t = V/t =
5. The transverse axis is the Fermi wave-number kF .
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FIG. 4. Spin-configuration dependence of the average skew an-
gle δφ̄+. (a) Contour plot of δφ̄+/π calculated using Eq. (7) and
(b) the net scalar spin chirality with ϕ2 = π/2. (a) is the result for
J/t = V/t = 6, kF = 1/2, and θ = π/4. θ is the canting angle as
shown in (c). (d) shows the top view of (c); ϕ is the rotation of the
in-plane component from the y axis.
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FIG. 5. Spin-configuration dependence of the spin-dependent
skew angle δφ̄− when all spins lie on the xy plane. (a) Contour plot of
δφ̄−/π calculated using Eq. (7) for J/t = V/t = 6, kF = 1, and θ =
π/2. (b) The net vector chirality χv in Eq. (11) with ϕ2 = π/2. ϕ1

and ϕ3 define the relative angle of spins as in (c).

of three spins,

χv = z · (S1 × S2 + S2 × S3 + S3 × S1),

= sin(ϕ2 − ϕ1) + sin(ϕ3 − ϕ2) + sin(ϕ1 − ϕ3), (11)

where z is the unit vector along the z axis [Fig. 5(b)]. Although
the result implies a relation between δφ̄− and χv , we note that
a sum of two-spin scattering cannot produce a finite δφ̄− as
we discussed at the end of Sec. II. Hence, we cannot simply
attribute the skew scattering to the sum of two-spin scattering
proportional to the vector spin chirality.

To gain more insight into the relation between δφ̄− and
spin chirality, we rewrite

1

J
∑

l

Sl · 
σl − �(ε)

=
∞∑

n=0

(−GzHf )nGz, (12)

which is an expansion valid in the V/t, J/t � 1 limit.
When Sz

i = 0, the leading order in asymmetric scattering rate
W̄−


k,
k′ = (W̄
k↑,
k′↑ − W̄
k↓,
k′↓)/2 appears from the n = 3 term

(∝J3),

W̄−

k,
k′

∼ 2V 4

N2

∑
i,m,n

Im[�ii�
∗
mn](Sm × Sn)zJ0

× [
k
√

r2
im+r2

in − 2rim · rin cos(δφ) + 2(rim×rin )z sin(δφ)
]
.

(13)
Here, we used Si · Si = 1. This term corresponds to the
eighth order in V in which the electrons are scattered
twice by Si and once by S j and Sk . Hence, the skew
scattering requires, at least, three spins whereas the skew
angle is proportional to the net vector spin chirality, simi-
lar to a mechanism involving both spins and nonmagnetic
impurity [29].

For the three-spin cluster with �11 = �22 = �33 = �d

and �12 = �23 = �31 = �od , the above formula
becomes

W̄−

k,
k′ ∼ 2V 4

N2
Im[�d�

∗
od ]

∑
m,n

(Sm × Sn)z

∑
i

J0
[
k
√

r2
im + r2

in − 2rim · rin cos(δφ) + 2(rim × rin )z sin(δφ)
]
, (14)

with the sum over i being independent of m and n. This
equation supports the observation in Fig. 5, which relates δφ̄−
to vector spin chirality.

V. SPIN-CLUSTER SCATTERING AND SPIN CHIRALITY

To make the observation about skew angles and spin chi-
rality more rigorous, we next look at how the scattering rate
W̄σ,σ ′ (δφ) changes by changing the canting angle and permut-
ing spins. In particular, we look at how W̄σ,σ ′ (δφ) transforms
under the following three cases:

(1) W̄σ,σ ′ (δφ)|θ = W̄σ,σ ′ (δφ)|−θ . Here, W̄σ,σ ′ (δφ)|θ is the
scattering rate for a three-spin cluster with canting angle θ ; the

spins cant outward when θ > 0 [Fig. 1(b)] and inward when
θ < 0 [Fig. 1(c)]. We can show this property by rewriting
Eq. (7) using an expansion,

1

J
∑

l

Sl · 
σl −�(ε)

=
∞∑

n=0

(GzH
′)2nGz−

∞∑
n=0

(GzH
′)2nGzH

′Gz,

(15)

where Gz = [J
∑

l Sz
l σ

z
l − �(0)]−1 and H ′ = ∑

l Sx
l σ

x
l +

Sy
l σ

y
l . The first term of this equation is diagonal in the spin

index, whereas the diagonal elements in the second term are
zero. Substituting this formula into Eq. (7), we find

W̄
kσ,
k′σ ′ = V 4

N2

∑
i, j,m,n

[(GzH
′)2nGz]iσ, jσ ′ [(GzH

′)2nGz]
∗
mσ,nσ ′J0

[
k
√

r2
jn + r2

im − 2
rim · 
r jn cos(δφ) + 2(
rim × 
r jn)z sin(δφ)
]

(16a)
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for σ = σ ′ and

W̄
kσ,
k′σ ′ = V 4

N2

∑
i, j,m,n

[ ∞∑
n=0

(GzH
′)2nGzH

′Gz

]
iσ, jσ ′

[ ∞∑
n=0

(GzH
′)2nGzH

′Gz

]∗

mσ,nσ ′

× J0
[√

r2
jn + r2

im − 2
rim · 
r jn cos(δφ) + 2(
rim × 
r jn)z sin(δφ)
]

(16b)

for σ �= σ ′. As Gz → Gz and H ′ → −H ′ under the transformation θ → −θ , the scattering rate transforms W̄σ,σ ′ (δφ) →
W̄σ,σ ′ (δφ). This property holds for both scalar and vector spin chiralities.

(2) W̄σ,σ ′ (δφ)|c = W̄σ,σ ′ (−δφ)|cc. Here, W̄σ,σ ′ (δφ)|c and W̄σ,σ ′ (−δφ)|cc, respectively, are the scattering rates for clockwise and
counterclockwise configurations. Formally, the clockwise to counterclockwise transformations are equivalent to permuting two
sites, e.g., r1 ↔ r3. We define the switched positions by r′

l ,

r1 = r′
3, r2 = r′

2, r3 = r′
1. (17)

To make the argument concrete, we set r1 = (−1/2, 0), r2 = (0,
√

3/2), and r3 = (1/2, 0). In this notation, ri → r′
i is equivalent

to the mirror operation about the x axis: x → −x and y → y. Therefore, ri j · rnm = r′
i j · r′

nm, ri j × rnm = −r′
i j × r′

nm. Therefore,
the scattering rate after the transformation reads

W̄ ′
σ,σ ′ (δφ) = V 4

N2

∑
i, j,m,n

[
1

J
∑

l Sl · σ l − �(ε)

]
iσ, jσ ′

[
1

J
∑

l Sl · σ l − �(ε)

]∗

mσ,nσ ′

× J0
[
k
√

r2
jn + r2

im − 2rim · r jn cos(−δφ) + 2(rim × r jn)z sin(−δφ)
] = W̄σ,σ ′ (−δφ). (18)

This transformation changes the sign of scalar and vector spin
chiralities. In view of δφ̄±, this property changes the sign of
δφ̄+ and δφ̄− by transforming the counterclockwise configu-
ration to clockwise configuration (see the table in Fig. 6).

(3) W̄σ,σ ′ (δφ)|θ = W̄σ̄ ,σ̄ ′ (−δφ)|π−θ . Here, σ̄ =↓,↑ for
σ =↑,↓. We can show this from the π rotation about the
incident momentum k′ [Fig. 1(b)]. Suppose k′ is parallel to
the solid line in Fig. 1(b). Then, the π rotation about this
axis and ϕR rotation about the axis perpendicular to the plane
transforms the spin cluster with θ to that with π − θ . As
the π rotation changes δφ → −δφ, we find W̄σ,σ ′ (δφ)|θ =
W̄σ̄ ,σ̄ ′ (−δφ)|π−θ . This transformation changes scalar spin chi-
rality but not vector spin chirality. Regarding δφ̄±, the above
transformation changes the sign of δφ̄+ whereas it leaves δφ̄−
invariant (see the table in Fig. 6).

The sign of δφ̄± is summarized in the table in Fig. 6. From
the table, we see that δφ̄+ has the same property as scalar spin
chirality whereas δφ̄− follows that of the vector spin chirality.
The same symmetry properties between chirality and δφ̄±
support using the chiralities as an indicator for the anomalous
Hall effect even with a strong Kondo coupling.

VI. DISCUSSIONS

To summarize, in this paper, we studied the skew scattering
of electrons by three-spin clusters using a T -matrix method,
going beyond the perturbation limit studied in Refs. [23,29].
Using an Anderson impurity model and the Green’s-function
method, we calculated the scattering rate of the spin clusters
for the arbitrary strength of Kondo coupling. We find that the
spin cluster causes a skew scattering with a large skew angle,
reaching the order of 0.1π rad. This skew angle is 10–100
times larger than other skew-scattering mechanisms. Hence,
it potentially produces large anomalous and spin Hall effects
related to the local spin correlation. The T -matrix formula
for the scattering rate also shows that the skew angle for the

AHE and SHE has the same symmetry properties as scalar
and vector spin chiralities, respectively. Hence, the chiralities

(a) (b)

(c) (d)

−

(a) (b)

(c) (d)

FIG. 6. The relation of the sign of average (δφ̄+) and staggered
(δφ̄−) to the spin configuration. (a)–(d) Examples of spin configu-
rations we consider: The clockwise (a) and (b) or counterclockwise
(c) and (d) orientation and the canting angle θ (a) and (c) or π − θ

(b) and (d). The sign of δφ̄± for each configuration is summarized
in the bottom table. The upper sign in each block is for δφ̄+, and the
lower one is for δφ̄−. The alphabet in each cell shows the correspond-
ing spin configuration in (a)–(d).
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function as an indicator for the Hall effects even for a large
Kondo coupling.

We note that a Kondo resonance mechanism can also
produce a large spin Hall angle [41,42]. This phenomenon,
however, is unique to the SHE in paramagnetic metals because
both the magnetism and the magnetic field suppress Kondo
resonance. Therefore, the large AHE/SHE in magnetically
ordered phases or under the magnetic field is unlikely by the
Kondo resonance.

Experimentally, magnetic materials with strong Kondo
coupling are known in transition-metal compounds. For ex-
ample, the double-exchange limit of the Kondo lattice model
is considered as the effective model for manganese oxides
[8,30,31] and chiral magnets forming magnetic skyrmions
[43]. In the latter, small-radius skyrmions are expected to
appear as the low-energy excitations in the field-induced
ferromagnetic state above a skyrmion crystal phase. The cant-
ing angle between the neighboring spins at the skyrmion
becomes large due to a small radius. We also note that a
recent experiment on a MgZnO/ZnO interface finds a large
AHE with Hall angle >0.1π rad and skew-scattering-like
scaling [44]. Defects spins are the likely origin of ferromag-
netism in ZnO [45–47], which may form a canted spin state
due to the interfacial Dzyaloshinskii-Moriya interaction. In
a different experiment, a large spin Hall effect was reported
in Pd- and Au-based metallic spin glasses [48]. Exchange
interactions between the spins are often mediated by the long-
range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[49–51] with the length scale 1/kF . As the RKKY interaction
often forms a structure with a typical length of 1/kF , skew
scattering might be enhanced in metallic spin glasses. These
materials are potential candidates for studying skew scattering
in magnetic materials with strong Kondo coupling.

Note. Soon after releasing a preprint of this paper, two
experimental papers claiming the observation of a large Hall
angle by spin-cluster scattering [52,53].
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APPENDIX: T MATRIX OF THE
MAGNETIC-IMPURITY MODEL

We here review a Green’s function formula for calcu-
lating the T matrix, which is convenient for our paper. A
similar technique was used to study Anderson impurity mod-
els [54]. The formula applies to a general system with two
subspaces A and B; the size of the Hilbert spaces are NA

and NB for A and B, respectively. For the sake of conve-
nience, we note the NA × NA matrix Green’s function for A
subspace as GA and that for B as GB; the NA × NB matrix

corresponding to the intersubspace Green’s function elements
of A and B is GAB, and the other intersubspace elements
is GBA.

We calculate the T matrix from the Green’s function. The
Dyson equation for the Green’s function reads

(ε ± iδ − HA)G±
A − H ′

ABG±
BA = 1, (A1)

(ε ± iδ − HB)G±
B − H ′

BAG±
AB = 1, (A2)

(ε ± iδ − HA)G±
AB − H ′

ABG±
B = 0, (A3)

(ε ± iδ − HB)G±
BA − H ′

BAG±
A = 0. (A4)

Here, HA and HB are the Hamiltonian matrix within each
subspace, and H ′

AB and H ′
BA are the Hamiltonian elements

that connect A and B subspaces. The last equation im-
plies G±

BA = G0±
B H ′

BAG±
A , where G0±

B = 1/(ε ± iδ − HB) is
the Green’s function for the decoupled B subspace (when
H ′

AB = H ′
BA = 0). Substituting this result in Eq. (A1), GA

reads

G±
A = 1(

G0±
A

)−1 − H ′
ABG0±

B H ′
BA

, (A5)

and, hence,

G±
BA = G0±

B H ′
BA

1(
G0±

A

)−1 − H ′
ABG0±

B H ′
BA

. (A6)

Similarly, we find

G±
B = 1(

G0±
B

)−1 − H ′
BAG0±

A H ′
AB

, (A7)

and

G±
AB = G0±

A H ′
AB

1(
G0±

B

)−1 − H ′
BAG0±

A H ′
AB

. (A8)

Using the general property of adjoint matrices, (A†)−1 =
(A−1)†, G±

AB reads

G±
AB = 1(

G0±
A

)−1 − H ′
ABG0±

B H ′
BA

H ′
ABG0±

B , (A9)

and

G±
B = G0±

B + G0±
B H ′

BA

1(
G0±

A

)−1 − H ′
ABG0±

B H ′
BA

H ′
ABG0±

B .

(A10)
Here, we defined the decoupled Green’s function for
A (G0

A) in a similar manner to G0
B. The comparison of

Eq. (A10) to the T -matrix representation GB = G0
B + G0

BT G0
B

implies

T = H ′
BA

1(
G0±

A

)−1 − H ′
ABG0±

B H ′
BA

H ′
AB. (A11)

This is the general formula for the T matrix of the B subspace
treating A as the scatterer.
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