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The multiorbital Hubbard model in the strong-coupling limit is analyzed for the effectively antiferromagnetic
Hund’s coupling relevant to fulleride superconductors with three orbitals per molecule. The localized spin-orbital
model describes the thermodynamics of the half-filled (three electron) state with total spin 1/2, composed
of a singlon and a doublon placed on two of the three orbitals. The model is solved using the mean-field
approximation, and magnetic and electric ordered states are clarified through the temperature dependences
of the order parameters. Combining the model with the band structure from ab initio calculation, we also
semiquantitatively analyze the realistic model and the corresponding physical quantities. In the A15-structure
fulleride model, there is an antiferromagnetic ordered state, and subsequently the two-orbital ordered state
appears at lower temperatures. It is argued that the origin of these orbital orders is related to the Th point-group
symmetry. As for the fcc fulleride model, a time-reversal-broken orbital ordered state is identified. Whereas the
spin degeneracy remains in our treatment for a geometrically frustrated lattice, it is expected to be lifted by some
magnetic ordering or quantum fluctuations, but not by the spin-orbital coupling, which is effectively zero for
fullerides in the strong-coupling regime.
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I. INTRODUCTION

Strongly correlated electron systems with multiple orbital
degrees of freedom show a variety of intriguing phenomena
and are realized in a wide range of materials such as iron pnic-
tides, heavy-electron materials, and molecular-based organic
materials. The alkali-doped fullerides are also the typical
cases where the strong correlation effects with multiorbitals
are relevant. This material has been attracting attention in
recent years for a lot of experimental findings. The super-
conductivity with the high transition temperature ∼40 K is
one of the characteristic features [1–8]. While the mecha-
nism is identified as the electron-phonon interaction [9–11],
the superconducting dome in the temperature-pressure phase
diagram is found to be located near the Mott insulator and
antiferromagnetic phase, featuring the typical behaviors of
strongly correlated superconductors [7,12–14]. In the Mott
insulating phase, the localized electrons form a low-spin state,
and the imbalance of the occupancy in orbitals leads to the
deformation of the fullerene molecule because of the cou-
pling between electrons and anisotropic molecular distortions
(Jahn-Teller phonon). Interestingly, such behavior can also be
seen in the metallic phase near the Mott insulator but is absent
far away from it [15,16]. This anomalous behavior is called a
Jahn-Teller metal where the multiorbital degrees of freedom
play an important role. The fullerides are also crystallized
on the substrate, and the characteristic asymmetry between
electron and hole doping is identified [17,18]. Furthermore, a
possible superconducting state has been discussed under the
excitation by light above the transition temperature [19,20].
Thus the fulleride materials have been providing intriguing
phenomena up until recently.

The alkali-doped fullerides are systems with triply degen-
erate t1u molecular orbitals which resemble atomic p electrons
in nature. There, although the original Hund’s coupling in-
side the fullerene molecule is slightly ferromagnetic, the
anisotropic molecular vibration makes the Hund’s coupling
effectively antiferromagnetic [10,13,21] and is crucial for the
low-temperature physics. This is confirmed also from the
first-principles calculation [13,22]. The multiorbital Hubbard
model with antiferromagnetic Hund’s coupling has been stud-
ied theoretically, and the various phase diagrams are clarified
using the dynamical mean-field theory (DMFT) suitable for
the description of the electronically ordered states [21–29].
The Jahn-Teller metal has been interpreted as a spontaneous
orbital selective Mott state [26,30], which is an unconven-
tional type of orbital order. The orbital asymmetric feature
has also been reported in two-dimensional fullerides using the
many-variable variational Monte Carlo method [31].

With the antiferromagnetic Hund’s coupling, one of the
intramolecular interactions, pair hopping, plays an important
role: It activates the dynamics of the double occupancy in
an orbital (doublon). In order to clarify the characters of the
existing fulleride materials in detail, we focus our attention
on the Mott insulating phase, where the doublon physics can
be tackled with reasonable computational cost even in a re-
alistic situation. As is well known, for a single-orbital case,
the electronic behaviors in the strong-coupling regime are
determined by the Heisenberg model of localized electrons.
The extension of the Heisenberg model to the multiorbital
system is known as the Kugel-Khomskii model, which has
been derived for the ferromagnetic Hund’s coupling [32,33]
and describes the degrees of freedom of the spin and orbital.
The spin-orbital models have been applied to the eg or t2g
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d-orbital system [34–37]. On the other hand, the ful-
lerides have antiferromagnetic Hund’s coupling, so that their
strongly correlated effective model differs from the usual
Kugel-Khomskii model. While the localized model with an-
tiferromagnetic Hund’s coupling has been constructed for a
density-density-type interaction [28], here we deal with more
complicated but realistic situations.

In this paper, we develop the localized spin-orbital model
for a system with antiferromagnetic Hund’s coupling. We
analyze both the symmetric model and the realistic model for
fullerides; the results of the former are easier to interpret and
are useful as a reference. The obtained effective model itself
is exact in the strong-coupling limit. We solve the model by
using the mean-field theory. Since the intersite correlation is
included in the mean-field level in DMFT, our results for the
ordered states are the same as those obtained by DMFT in the
strong-coupling regime. Our method is much more efficient
compared with DMFT in this regime. Hence we can perform
thorough calculations with full on-site interactions and the
complicated hopping in realistic situations.

For the spherical model on a bipartite lattice, we obtain
the staggered magnetic ordered state and also the uniform
orbital ordered state at the lower-temperature regime. This
orbital ordered state is not characterized by the ordinary or-
bital moment but by the doublon’s orbital moment. In the A15
fulleride effective model, which is a bipartite lattice, we reveal
that there are two kinds of orbital ordered states below the
antiferromagnetic transition temperature. The obtained orbital
ordered states are interpreted as related to an effective recov-
ery of the fourfold symmetry at low temperatures in the Th

point group. We also analyze the geometrically frustrated fcc
fulleride model seeking for a spatially uniform ordered state.
We reveal that the fcc model has the time-reversal-symmetry-
broken orbital ordered state, where the spin ordered state is
absent since the spin-orbit coupling on the fullerene molecule
is effectively zero.

This paper is organized as follows. We discuss the con-
struction of strongly correlated effective models and the
theoretical method in Sec. II. In Sec. III, we show numerical
results for the model with isotropic hopping (spherical model
introduced in Sec. III A). Section IV provides numerical re-
sults for the spin-orbital model combined with A15 and fcc
fulleride band structure. We summarize the results in Sec. V.

II. CONSTRUCTION OF MODELS

A. Three-orbital Hubbard model in the strong-coupling limit

Let us begin with the three-orbital Hubbard model

H = Ht + HU , (1)

Ht = −
∑

i �= j,γ ,γ ′,σ

tγ γ ′
i j c†

i,γ ,σ c j,γ ′,σ , (2)

HU = U

2

∑
i,γ ,σ,σ ′

c†
i,γ ,σ c†

i,γ ,σ ′ci,γ ,σ ′ci,γ ,σ

+ U ′

2

∑
i,γ �=γ ′,σ,σ ′

c†
i,γ ,σ c†

i,γ ′,σ ′ci,γ ′,σ ′ci,γ ,σ

+ J

2

∑
i,γ �=γ ′,σ,σ ′

(c†
i,γ ,σ c†

i,γ ′,σ ′ci,γ ,σ ′ci,γ ′,σ

+ c†
i,γ ,σ c†

i,γ ,σ ′ci,γ ′,σ ′ci,γ ′,σ ), (3)

where ci,γ ,σ (c†
i,γ ,σ ) is an annihilation (creation) operator at

site i of fullerenes with the t1u molecular orbital index γ =
x, y, z and spin σ =↑,↓. We deal with the Hilbert space
with a fixed number of electrons. We assume the condition
U ′ = U − 2J for the local interaction part in the following
discussion, which is valid for the spherical limit. Indeed, this
condition is nearly satisfied in the fullerides as confirmed
numerically [38]. In this paper, we consider a strong-coupling
regime (HU � Ht ). When we develop the effective model
in this limit, the presence of the Hund’s coupling J makes
theoretical treatment complicated since it realizes quantum-
mechanically superposed local wave functions. Especially for
the negative (antiferromagnetic) J relevant to fullerides, the
pair hopping plays an important role which creates the dy-
namics of doubly occupied electrons at an orbital (doublon).
As shown in the following, in order to diminish the difficulty,
we use a symbolic expression without elaborating each inter-
mediate process explicitly.

In order to apply the perturbation theory from the strong-
coupling limit, we first consider the ground state of the
unperturbed Hamiltonian HU . Alkali-doped fullerides with
a half-filled situation (three electrons per t1u orbital) have
sixfold degenerate ground states written as

|γ , σ 〉i = 1√
2

c†
i,γ ,σ

∑
γ ′ �=γ

b†
i,γ ′ |0〉 , (4)

where we have defined an orbital-dependent doublon-creation
operator as

b†
i,γ = c†

i,γ ,↓c†
i,γ ,↑. (5)

The vacuum has been expressed as |0〉. These states are
uniquely characterized by the spin and orbital of the electron
at the singly occupied orbital, which is called a “singlon”
to contrast with doublons. A schematic picture of the three-
electron state |γ , σ =↑〉i is given in Fig. 1.

In order to understand the energy level structure for the
n = 3 case, in Fig. 2, we show the Hund’s coupling depen-
dence of the single-site eigenenergies. The line with blue
circles represents the eigenenergy for the spin S = 3/2 states,
which takes 3U − 9J . The line with orange triangles corre-
sponds to the spin singlet with bonding doublon states, and
their energies are 3U − 4J . The line with green diamonds
shows the eigenenergy 3U − 6J for the other types of eigen-
states. These lines cross at J/U = 0. Since the transition
metals have the ferromagnetic Hund’s coupling, the ground
state is the high-spin state, which accords with the region
J/U > 0 in Fig. 2. On the other hand, in the case with J/U <

0, which is realized in the fullerides, the low-spin state is
energetically favored, and the ground state is therefore |γ , σ 〉i

defined in Eq. (4).
Using the above Hamiltonian, the second-order effective

Hamiltonian is written as

Heff = PHt
1

−HU
QHtP, (6)
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FIG. 1. Schematic pictures of the ground-state wave functions
|γ , σ =↑〉i of the local Hamiltonian for n = 3 and n = 1.

where P is a projection operator to a model space described
by Eq. (4) as

P =
∏

i

∑
γ ,σ

|γ , σ 〉i i〈γ , σ | (7)

and Q = 1 − P . We have used [P,HU ] = 0. The energy is
measured from the ground state of HU . The size of our model
space is 6N , where N = ∑

i 1 is the number of lattice sites.
The strategy for obtaining the concrete form of the ef-

fective Hamiltonian is to consider the two-site problem. We
first prepare the 212 × 212 matrix expressions for the annihi-
lation and creation operators for the two-site problem (12 =∑

i,γ ,σ 1) and then define all of the matrix expressions given

FIG. 2. Hund’s coupling dependence of the single-site energies
for the n = 3 model. The insets are schematic pictures of one of the
eigenstates for each energy level. The blue circles and the orange
triangles show the energies for the spin S = 3/2 states and the
spin singlet with bonding doublon states, respectively. The green
diamonds show the energy of the other types of eigenstates, which
never become a ground state.

in Eq. (6). Performing multiplications of such matrices, we
obtain the two-site effective Hamiltonian in the form of the
62 × 62 matrix. We expand the above effective Hamiltonian
by following local operators Oημ

i defined as

Oημ
i =

∑
γ ,γ ′

∑
σ,σ ′

|γ , σ 〉iλ
η

γγ ′σ
μ

σσ ′ i〈γ ′, σ ′|, (8)

in the model Hilbert space. σμ=0,x,y,z is the Pauli matrix

σ 0 =
(

1 0
0 1

)
, σ x =

(
0 1
1 0

)
,

(9)

σ y =
(

0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
,

which represents the degrees of freedom of the spin. Another
matrix λη=0,··· ,8 is given by

λ0 =
√

2

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, λ1 =

⎛
⎝ 0 −1 0

−1 0 0
0 0 0

⎞
⎠,

λ2 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, λ3 =

⎛
⎝−1 0 0

0 1 0
0 0 0

⎞
⎠,

λ4 =
⎛
⎝ 0 0 −1

0 0 0
−1 0 0

⎞
⎠, λ5 =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

λ6 =
⎛
⎝0 0 0

0 0 −1
0 −1 0

⎞
⎠, λ7 =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠,

λ8 =
√

1

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠; (10)

these matrices are slightly different from the ordinary defi-
nition of the Gell-Mann matrices to make them suitable for
p-electron systems. We note that the above local operators
satisfy the orthonormal relation

Tr
[
Oημ

i Oη′μ′
j

] = 4δi jδ
ηη′

δμμ′
. (11)

Thus the set of operators Oημ
i is regarded as a basis set of

the extended Hilbert space (Liouville space). In contrast, the
states |γ , σ 〉i are the basis in the six-component model Hilbert
space. Extending the two-site problem to the full lattice, we
obtain the effective Hamiltonian in the strong-coupling limit

Heff =
∑
i, j

∑
η,η′

∑
μ,μ′

Iημ;η′μ′
i j Oημ

i Oη′μ′
j . (12)

This model is to be analyzed in the rest of this paper. We will
show the explicit form of the coupling constant Iημ;η′μ′

i j for the
case of the spherical model in Secs. III B 1 and III C 1.

We also comment on the orbital moments in the restricted
Hilbert space. In terms of the original Hubbard model, the
local orbital moment is defined by

Li ≡
∑

γ ,γ ′,σ

c†
i,γ ,σ �γ γ ′ci,γ ′,σ , (13)
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where the 3 × 3 matrices are given by �x = λ7, �y = λ5, and
�z = λ2. This angular momentum operator is, however, zero
for the restricted Hilbert space:

PLiP = 0. (14)

This anomalous disappearance of the angular momentum is
due to the composite nature of the ground state [26] and is
very different from a singly occupied state. Then the active
orbital degrees of freedom are not of the original electrons
but of the three-electron composite involving doublons. This
feature also affects the spin-orbit coupling, which takes the
form

HSO = 1

2
λSO

∑
i

∑
γ ,γ ′

∑
σ,σ ′

c†
i,γ ,σ �γ γ ′ · σσσ ′ci,γ ′,σ ′ , (15)

in the language of the original multiorbital Hubbard model.
The spin-orbit coupling for a 2p electron in a carbon atom
is nearly 2 meV, and because of the extended nature of the
fullerene molecule the spin-orbit coupling λSO for t1u orbitals
is 100 times smaller than the atomic value (λSO ∼ 20 μeV)
[39]. Furthermore, for the restricted Hilbert space of n = 3
states, the effect of the spin-orbit coupling enters only through
the second-order perturbation contribution as

H(2)
SO = PHSO

1

−HU
QHSOP (16)

= 1

2
�SO

∑
i

∑
γ ,γ ′

∑
σ,σ ′

|γ , σ 〉i�γ γ ′ · σσσ ′ i〈γ ′, σ ′|,(17)

where �SO = 11λ2
SO

20J for J < 0. Using the value for the an-
tiferromagnetic coupling J ∼ −0.03 eV for fullerides [38],
we obtain �SO ∼ 1 neV, which is tiny. Hence we can safely
neglect the spin-orbit coupling in fullerides.

It is convenient to recognize that the above three-electron
state is similar to the singly occupied state

|n = 1, γ , σ 〉i = c†
i,γ ,σ |0〉, (18)

which is the eigenstate with ni = ∑
γ ,σ c†

i,γ ,σ ci,γ ,σ = 1 re-
gardless of the sign of J (see the right column of Fig. 1). In
this paper, the number of electrons is fixed at each site, and ni

is sometimes simply written as n. In Eq. (18), we explicitly
write “n = 1,” and if it is dropped, the state represents the
n = 3 state defined in Eq. (4). The ground state for n = 3 is
obtained by filling the empty orbital in the n = 1 state with
the doublons as in Eq. (4).

We will consider the n = 1 case for reference to illuminate
the characteristics of n = 3 relevant to fullerides. When we
deal with the second-order effective Hamiltonian for the n = 1
states, we just replace |γ , σ 〉i with |n = 1, γ , σ 〉i defined in
Eq. (18). We note that, in this case, the angular momentum
does not vanish as distinct from the n = 3 multiplet. For
the usual ferromagnetic Hund’s coupling (J > 0), the system
corresponds to the spin-orbital model considered for the t2g

orbitals of d electrons [37].

B. Mean-field approximations

In this paper, we utilize the mean-field approximation
(MFA) for the obtained effective Hamiltonian. We apply the

external field for convenience, and the full Hamiltonian is
written as

Heff = 1

2

∑
i, j

�OT
i Îi j �Oj −

∑
i

�HT
i

�Oi (19)

≈ −
∑
i, j

[
�HT

i δi j 1̂ − 1

2
�MT

i

(
Îi j + ÎT

ji

)] �Oj

− 1

2

∑
i, j

�MT
i Îi j �M j ≡ HMF, (20)

where the hat and arrow symbols represent the matrix and
vector, respectively, with respect to the intrasite degrees of
freedom (η,μ). The vector �Oi is the operator for the order
parameter at site i, whose matrix representation is given in
Eq. (8). Namely, it is a column vector having 35 compo-
nents, each of which is a 6 × 6 matrix where the identity is
eliminated. The statistical average �Mi = 〈 �Oi〉 is the order pa-
rameter. In this paper, the coupling constant Îi j connects only
nearest-neighbor (NN) sites for the spherical model (Sec. III)
and NN and next-nearest-neighbor (NNN) sites for the A15
and fcc fulleride models (Sec. IV). In the rest of this sec-
tion, we concentrate on the bipartite lattice, such as the A15
structure. Then we introduce two kinds of AB sublattice to
describe staggered orders. For a nonbipartite lattice (i.e., fcc),
on the other hand, we consider only the uniform solution, and
a similar formula can easily be obtained by regarding the two
sublattices as identical.

The mean-field Hamiltonian is then rewritten as

HMF = −
∑

α

[
�HT
α − 1

2

∑
δ∈NN

�MT
ᾱ

(
Îδ,0 + ÎT

0,δ

)

− 1

2

∑
δ∈NNN

�MT
α

(
Îδ,0 + ÎT

0,δ

)] N/2∑
i∈α

�Oi

− 1

2

N

2

∑
α

[ ∑
δ∈NN

�MT
ᾱ Îδ,0 �Mα +

∑
δ∈NNN

�MT
α Îδ,0 �Mα

]
,

(21)

where α = A, B is the sublattice index and ᾱ is a comple-
mentary component of α, i.e., Ā = B and B̄ = A. N is the
number of sites. The number of δ ∈ NN is z, 8, or 12 for the
spherical, A15, or fcc model, respectively. As for δ ∈ NNN,
both the A15 case and the fcc case have six sites. We have
used the fact that the NN-connected sites belong to different
sublattices and the NNN-connected sites belong to the same
sublattice. Since the coupling constants are dependent only
on the direction of the vector connecting two sites, we write
the interaction parameter as Îδ,0, where the index 0 represents
the site which we focus on.

For the bipartite lattice, we introduce the uniform and stag-
gered moments as( �Mu

�Ms

)
= 1√

2

(
1̂ 1̂
1̂ −1̂

)( �MA

�MB

)
. (22)

This expression is useful in analyzing the mean-field solutions
shown later.
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Now we explain the method of numerical calculation. The
solutions are obtained by renewing the order parameters itera-
tively using the self-consistent equation. The free energy and
the self-consistent equation are given by

F = −T ln Z, (23)

�Mα = − ∂F
∂ �Hα

, (24)

where Z = Tr e−βHMF is the partition function made of
the mean-field Hamiltonian. For the derivation of the self-
consistent equation, the parameters �H and �M must be
regarded as independent variables.

The system with the present effective Hamiltonian has
35 kinds of order parameters per site, and there may exist
several solutions which take the same free energy as they are
connected by symmetries. In the next sections, we show the
simplest form of the order parameters among those energeti-
cally degenerate solutions.

C. Response functions

In this subsection, we consider the response function to the
weak static field. We expand the mean-field Hamiltonian up
to first order of the field

HMF = H(0) + H(1) + O(H2), (25)

H(0) =
∑
i, j

( �M(0)
i

)T
Îi j �Oj, (26)

H(1) = −
∑
i, j

[
�HT

i δi j − ( �M(1)
i

)T
Îi j

]
�Oj, (27)

where the superscript represents the perturbative order of the
field and we have neglected the constant term. When we define

the effective field as �̃Hi = �Hi − ∑
j ÎT

ji
�M(1)

j and treat H(1)

as the perturbation, we obtain the following linear response
relation:

�M(1)
i =

∑
j

χ̂
(0)
i j

�̃Hj =
∑

j

χ̂i j �Hj, (28)

where χ̂ is the full susceptibility for the bare external field �Hi.
According to linear response theory, the zeroth-order suscep-
tibility is obtained by

χ̂
(0)
i j =

∫ 1/T

0
dτ

[〈
Tτ �Oi �OT

j (τ )
〉
0
− �M(0)

i

( �M(0)
j

)T]
, (29)

where τ is an imaginary time and Tτ is the imaginary time
ordering operator. The Heisenberg picture at an imaginary
time is expressed as

�Oi(τ ) = eτH(0) �Oie
−τH(0)

. (30)

〈· · ·〉0 represents the statistical average with H(0). The suscep-
tibility matrix χ̂

(0)
i j has only the intrasite component since each

site is independent under the MFA. Substituting the concrete
expression into the effective field in Eq. (28), we obtain

∑
j

[
δi j 1̂ +

∑
k

χ̂
(0)
ik ÎT

k j

]
�M(1)

j =
∑

j

χ̂
(0)
i j

�Hj . (31)

Then, taking the matrix inverse of the left-hand side and com-
bining it with Eq. (28), we obtain the susceptibility matrix χ̂i j .
For a bipartite lattice, we introduce the uniform and staggered
susceptibilities by

χ̂u = 1

N

∑
i, j

χ̂i j, (32)

χ̂s = 1

N

∑
i, j

sis jχ̂i j, (33)

where si = +1 for i ∈ A and si = −1 for i ∈ B. This quantity
will be shown in the next section. Although we focus on the
static response functions in this paper, the above argument can
easily be generalized to the dynamical susceptibility, which
captures the magnetic and electric dynamics of the localized
model.

From the viewpoint of Landau theory, we can also discuss
the stability of the solution based on the susceptibilities. We
write down the Landau free energy with an order parameter
up to second order as

FL = 1

2

∑
i, j

�MT
i âi j �M j −

∑
i

�HT
i

�Mi, (34)

where âi j is a coefficient of the quadratic term. Note that, here,
�M is defined as the deviation from its equilibrium point. Then

we obtain the following equation of states:

∑
j

âi j �M j = �Hi. (35)

Comparing the linear response function, we find that the Hes-
sian matrix is identical to the inverse susceptibility:

∂2FL

∂ �Mi∂ �M j

= âi j = (χ̂−1)i j . (36)

We can consider the necessary and sufficient condition for the
stable solution. Let εn be the nth eigenvalue of the matrix âi j .
Each energy corresponds to the eigenenergy of the excitation
modes. We must have the condition

εn � 0, (37)

for all n, if the system is thermodynamically stable. If εn = 0
is obtained, it indicates the presence of the Nambu-Goldstone
mode. With the use of Eq. (36), in the actual calculations, we
obtain εn by diagonalizing the inverse susceptibility matrix.

III. NUMERICAL RESULTS FOR SPHERICAL MODELS

In the rest of this paper, we will encounter the successive
phase transitions with decreasing temperature. There, we de-
note each transition temperature as Tc1 > Tc2 > · · · . If only
one transition temperature is identified, we use Tc to denote it.
Note that we use the same symbol for the transition tempera-
tures in different models.

235145-5



RYUTA IWAZAKI AND SHINTARO HOSHINO PHYSICAL REVIEW B 103, 235145 (2021)

A. Spherical spin-orbital model

First we consider the model in the spherical limit. Namely,
we assume the hopping matrix given in Eq. (2) to be

t̂i j =
⎛
⎝t 0 0

0 t 0
0 0 t

⎞
⎠, (38)

for a bipartite lattice with coordination number z. Using the
spin-orbital operator Oημ

i defined in the previous section, we
obtain the spherical model as

Heff = −
∑
〈i j〉

[
ISSi · S j + ILLi · L j + IQ

∑
η

Qη
i Qη

j

+ IR

∑
μ

∑
ν

Rν,μ
i Rν,μ

j + IT

∑
μ

∑
η

T η,μ
i T η,μ

j + I0

]
,

(39)

where the sum with 〈i j〉 is taken over the pairs of the
NN sites. The superscript μ, ν (= x, y, z) and η (= x2 −
y2, z2, xy, yz, zx) are the indices for the polynomials, which
represent the component of the spin, rank 1 orbital, and rank
2 orbital, respectively. We have rewritten the operators in
accordance with their symmetries as

Sμ
i = 1

2 O0μ
i , (40)

Lx
i = 1

2 O70
i , Ly

i = 1
2 O50

i , Lz
i = 1

2 O20
i , (41)

Qx2−y2

i = 1
2 O30

i , Qz2

i = 1
2 O80

i ,

Qxy
i = 1

2 O10
i , Qyz

i = 1
2 O60

i , Qzx
i = 1

2 O40
i , (42)

Rx,μ
i = 1

2 O7μ
i , Ry,μ

i = 1
2 O5μ

i , Rz,μ
i = 1

2 O2μ
i , (43)

T x2−y2,μ

i = 1
2 O3μ

i , T z2,μ
i = 1

2 O8μ
i ,

T xy,μ
i = 1

2 O1μ
i , T yz,μ

i = 1
2 O6μ

i , T zx,μ
i = 1

2 O4μ
i . (44)

The physical meaning of each order parameter now becomes
clearer with this notation. We call Sμ

i a magnetic spin (MS
or S), Lμ

i a magnetic orbital (MO or L), Qμ
i an electric

orbital (EO or Q), Rν,μ
i an electric spin-orbital (ESO or

R), and T η,μ
i a magnetic spin-orbital (MSO or T ) moment.

I0 represents energy gain by the second-order perturbation
process. Obviously, Eq. (39) satisfies SU(2) × SO(3) symme-
try in spin-orbital space.

We will show the numerical results of the n = 1 and n = 3
spherical models under the MFA, both of which have the six
states per site in the model space as discussed in Sec. II A. We
beforehand introduce the following notation with regard to the
coupling constants defined in Eq. (39):

Iξ = −
∑

n

Aξn
t2

�En
, (45)

for ξ = S, L, Q, R, T, 0, where �En represents all possible
excitation energies. Its energy corresponds to the denominator
of Eq. (6). The coefficient A is summarized in Tables I and II
(see Secs. III B and III C).

Before we show the mean-field results, we discuss the
ground-state wave function for the two-site problem. Using

TABLE I. Coefficients A defined in Eq. (45) for the n = 1 spher-
ical model. The ground-state energy is zero. We add the details for
the intermediate state in the main text. We also list the number of the
degeneracy of the excited two-site states.

�En

U − 3J U − J U + 2J

Degeneracy 18 10 2
ξ = S −2 10/3 2/3
ξ = L 3 −5/3 2/3
ξ = Q 3 −1/3 −2/3
ξ = R 1 5/3 −2/3
ξ = T 1 1/3 2/3
ξ = 0 −6 −10/3 −2/3

the single-site state defined in Eq. (4) or (18), we obtain the
two-site (i.e., sites at i and j) ground state as

|gs〉 =
∑
γi,σi

∑
γ j ,σ j

Cγiσi,γ jσ j |γi, σi〉i |γ j, σ j〉 j . (46)

The explicit form of the matrix C is written as

Ĉ = λ0 ⊗ (−iσ y). (47)

This shows that the ground-state wave function is spin singlet
and symmetric on the orbital. This is valid for all the spherical
cases considered in this section. For an infinite lattice, as in the
single-orbital Hubbard model, the intersite spin singlet state
may favor the antiferromagnetic state in the ground state for a
bipartite lattice.

B. n = 1 model

First of all, we consider the results for the n = 1 model.
Although the results are not relevant to the alkali-doped ful-
lerides, this knowledge is useful in interpreting the more
complicated model for the spherical n = 3 model (Sec. III C)
and the realistic A15- (Sec. IV A) and fcc-structure fullerides
(Sec. IV B).

1. Coupling constant

We begin with the analysis of the intermediate states rel-
evant to the second-order perturbation theory. We show the
coefficients A defined in Eq. (45) in Table I. We have the three
kinds of excited states, whose energy is determined by the
local Coulomb interaction. For �En = U − 3J , the inter-
mediate states are ninefold degenerate spin triplet states,
as expressed, e.g., by c†

i,y,↑c†
i,x,↑|0〉 and 1√

2
(c†

i,y,↓c†
i,x,↑ +

c†
i,y,↑c†

i,x,↓)|0〉. For �En = U − J , the intermediate states are

the interorbital spin singlet states, such as 1√
2
(c†

i,y,↓c†
i,x,↑ −

c†
i,y,↑c†

i,x,↓)|0〉, and the intraorbital spin singlet states with an-

tibonding orbitals written as
√

2
3 (2b†

i,z − b†
i,x − b†

i,y )|0〉. These
two kinds of states take the same energy since there is the
spherically symmetric condition U ′ = U − 2J . For �En =
U + 2J , there is only one intermediate state, which is the
intraorbital spin singlet and bonding state written as 1√

3
(b†

i,x +
b†

i,y + b†
i,z )|0〉. For example, we can obtain the spin coupling
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FIG. 3. Hund’s coupling ratio J/U dependence of the coupling
constants for the n = 1 spherical model. The vertical axis is normal-
ized by E0 = t2/U .

IS by combining Eq. (45) with Table I as

IS = − −2t2

U − 3J
−

10
3 t2

U − J
−

2
3 t2

U + 2J
. (48)

In Table I, we also show the number of the degeneracy of
the excited states. We show the Hund’s coupling dependence
of the coupling constants in Fig. 3. The perturbation theory
is justified for −1/2 < J/U < 1/3 where the ground states
are written in the form of Eq. (18). Taking J = 0, the cou-
pling constants become identical. This reflects that the system
has SU(6) symmetry and the degrees of freedom of the spin
and orbital are equivalent in the absence of Hund’s coupling.
The largest coupling constant is |IS| for the antiferromagnetic
case (J < 0) and |IQ| for the ferromagnetic Hund’s coupling
(J > 0). This shows that the system tends to have antiferro-
magnetic (AFM) or antiferro-orbital (AFO) order depending
on the sign of the Hund’s coupling. This is understood from
the intermediate state.

In the case of J > 0, which is relevant to the usual
t2g-orbital d-electron systems with n = 1 per atom, the
energetically favorable intermediate two-electron state is in-
terorbital spin triplet. To realize this intermediate state, the
initial state needs to occupy a parallel spin configuration with
different orbitals such as c†

i,x,↑c†
j,y,↑|0〉. Therefore the orbital

order should be dominant for J > 0 as a leading-order order-
ing instability. If we take J/U � 0.2, IS takes a ferromagnetic
coupling constant, which favors parallel spins at two sites.

As for J < 0, on the other hand, the intermediate state
tends to be an intraorbital spin singlet and bonding state. The
corresponding initial state must be antiparallel spin with the
same orbital such as c†

i,x,↑c†
j,x,↓|0〉. Thus the magnetic order

should be dominant for J < 0.

2. Mean-field solutions for antiferromagnetic Hund’s coupling
(J < 0)

Let us turn our attention to the numerical results using
the MFA in the spherical model. We take the NN coordina-
tion number z = 6 in the numerical calculation by assuming

FIG. 4. Temperature dependence of (a) the order parameter,
(b) the decomposed internal energy and total free energy density,
(c) the entropy, and (d) the specific heat for the n = 1, J/U = −0.1
bipartite spherical model. The inset in (c) is an enlarged plot around
Tc2. The energy unit of these plots is E0 = t2/U .

a simple cubic lattice in three dimensions. Figure 4 shows
the temperature dependence of the physical quantities in
the bipartite lattice model at J/U = −0.1 (antiferromagnetic
Hund’s coupling). We take E0 ≡ t2/U as the unit of en-
ergy. The uniform and staggered order parameters are shown
in Fig. 4(a), where the antiferromagnetic spin (AF-S) order
appears first with decreasing temperature from the high-
temperature limit. This corresponds to the largest coupling
constant |IS| in Fig. 3. At lower temperatures, the ferro (F)-
orbital Q moment of z2 type appears together with the AF-T
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(MSO) moments. In order to clarify which is the primary order
parameter of the second phase transition at Tc2, we show in
Fig. 4(b) the internal energy and free energy per site, where
the internal energy is decomposed into each contribution as

US = IS〈SA〉 · 〈SB〉, (49)

UL = IL〈LA〉 · 〈LB〉, (50)

UQ = IQ

∑
η

〈
Qη

A

〉〈
Qη

B

〉
, (51)

UR = IR

∑
μ

∑
ν

〈
Rν,μ

A

〉〈
Rν,μ

B

〉
, (52)

UT = IT

∑
μ

∑
η

〈
T η,μ

A

〉〈
T η,μ

B

〉
. (53)

The total internal energy is given by U = ∑
ξ Uξ for ξ =

S, L, Q, R, T , where the energy is measured from I0. We see
from Fig. 4(b) that the energy UT is gained below Tc2 but UQ is
not. Hence the AF-T should be the primary order parameter,
and F-Q is just induced by the combination of AF-S plus
AF-T moments. The results are consistent with the magnitude
relation |IT | > |IQ| seen in Fig. 3, where the energy gain
obtained from the T moment is larger than the energy loss
from Q.

Figure 4(c) shows the temperature dependence of the en-
tropy, where all the entropy is released in the ground state.
With increasing temperature, the entropy shows a kink at
T/E0 � 0.84, at which the value of the entropy is close to
ln 3, meaning that the orbital degeneracy is lifted below this
transition temperature. The inset of Fig. 4(c) shows a magni-
fied picture of the entropy near Tc2, indicating the first-order
transition. The specific heat C = ∂U/∂T is also shown in
Fig. 4(d). There are two discontinuities corresponding to the
spin and orbital orders.

Next we show in Fig. 5 the inverse of the diagonal sus-
ceptibilities χ

ημ;ημ
u (uniform) and χ

ημ;ημ
s (staggered) which

are defined in Eqs. (32) and (33). First, we observe that the
susceptibilities shown here are all positive, indicating a stable
solution. The AF-S susceptibility of x, y, z type diverges at
T/E0 � 2.3 signaling the onset of the antiferromagnetic order.
Below this transition temperature, the longitudinal z compo-
nent is decreased, while the perpendicular x, y components
remain divergent. This behavior indicates the presence of the
Goldstone mode, where the excitations are induced by rotating
the z component into the xy plane, as in the standard Heisen-
berg model. Inside this magnetic phase, the orbital (F-Q) and
spin-orbital (AF-T ) susceptibilities, which are z2 type in the
orbital part, continue to grow and tend to diverge at a lower
transition point (Tc2). As shown in Fig. 5(a), the “perpen-
dicular” components, i.e., F-Qyz and F-Qzx, remain divergent
below Tc2, indicating the presence of the Goldstone mode even
for the orbital order in the spherical model. Namely, because
of the symmetry of the spin-orbital space, energetically equiv-
alent solutions exist and are obtained by rotating the order
parameters.

Next we discuss the ground-state wave function, which
includes the information of the order parameter at the zero-
temperature limit. As is evident from the zero entropy at
T = 0, we have a nondegenerate ground state. In the present

FIG. 5. Temperature dependence of the inverse of the (a) uniform
and (b) staggered components of the diagonal susceptibilities. The
energy unit is E0 = t2/U .

case, the ground-state wave function is very simple and is
given using Eq. (4) by

|ψA〉 = |n = 1, z,↓〉A, (54)

|ψB〉 = |n = 1, z,↑〉B (55)

for each sublattice. This corresponds to the staggered spin
ordered and uniform orbital ordered state, as is consistent
with Fig. 4(a). More specifically, we can construct the order
parameters from the direct product of the wave functions. In
the present case, we obtain, at sublattice α,

|ψα〉〈ψα| = ∓ 1√
6

Sz
α − 1√

3
Qz2

α ± 1√
3

T z2,z
α + 1

6
, (56)

where the operators are defined in Eqs. (40)–(44). The upper
(lower) sign is chosen for α = A (α = B). The quantities
that appear on the right-hand side are identical to the order
parameters shown in Fig. 4(a).

3. Mean-field solutions for ferromagnetic
Hund’s coupling (J > 0)

We show the results for the J/U = 0.1 case, where the
model is now relevant to materials with d electrons, to contrast
with behaviors of the systems with antiferromagnetic Hund’s
coupling. Figure 6(a) shows the temperature evolution of the
order parameters. As seen in Fig. 3, the largest coupling con-
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FIG. 6. Temperature dependence of (a) the order parameter,
(b) the decomposed internal energy and total free energy density,
(c) the single-site entropy (left axis) and the specific heat (right axis),
and (d) the eigenvalues of the Hessian matrix â calculated from
Eq. (36) for the bipartite spherical model with n = 1, J/U = 0.1.

stant is |IQ| which is antiferromagnetic (IQ < 0), and therefore
the AF-Q order of z2 type appears at the highest transition
temperature (Tc1). The F-Q order of the same z2 type is simul-
taneously induced. The rise of the order parameters near the
transition temperature behaves as ∼√

Tc1 − T for AF-Q and
∼(Tc1 − T ) for F-Q. Hence the AF-Q is the primary order.
From the symmetry argument, it can be shown that the F-Q
order arises from AF-Q order since the coupling term in the
Landau free energy has the form Qz2

u (Qz2

s )2. The existence of
such a third-order term can be understood if one considers
the symmetry in the plane of Qz2

-Qx2−y2
[26]. At lower tem-

peratures, the magnetic F-S order appears, where T moments

of T z2,z type are also finite. From the internal-energy analysis
shown in Fig. 6(b), the relevant ordering at Tc2 is induced from
the interaction IT while IS is energetically unfavorable. Thus,
comparing with the J/U = −0.1 case, the roles of magnetic
order and electric (orbital) order are switched. This switching
of the magnetic and orbital ordered states depending on the
sign of J has also been reported in the two-orbital model [25].

We next show the temperature dependence of the entropy
and specific heat in Fig. 6(c), where we have defined the
sublattice-dependent entropy (Shannon entropy) by

Sα = −
∑

n

pα
n ln pα

n , (57)

where pα
n is the probability for the nth state as calculated

from the local partition function Zα = ∑
n exp(−βEα

n ) =∑
n pα

nZα . Since the entropy at zero temperature is zero at the
A sublattice and is finite at the B sublattice, the two sublattices
are inequivalent and are not simply connected by symmetry
operations. This is due to the presence of both uniform and
staggered orbital order parameters in Fig. 6(a). Indeed, the
wave function in the ground state is written for each sublattice
as

|ψA〉 = |n = 1, z,↓〉A, (58)

∣∣ �ψB
〉 =

(|n = 1, x,↓〉B
|n = 1, y,↓〉B

)
. (59)

The remaining degeneracy at the B sublattice is because the x
and y orbital components are equivalent. Namely, the triply
degenerate state at each sublattice splits depending on the
sublattice: The z orbital becomes energetically higher at the
A sublattice and lower at the B sublattice. Thus the anti-
ferromagnetic order of this type cannot lift the degeneracy
completely.

Usually, the degeneracy is lifted by the interaction effects,
and a unique ground state is expected. Then, one may suspect
that the remaining degeneracy might indicate the instability
of the solutions. In order to show that our degenerate ground
states are really stable, we show the energy spectra of the
Hessian matrix discussed in Sec. II C. As shown in Fig. 6(d),
the excitation energies in terms of Landau theory are all pos-
itive or zero, and the system is thus stable. The degeneracy
at T = 0 is due to the absence of the relevant interactions
and will be resolved once the other types of interaction are
included in more realistic situations.

We comment on the case where we allow only for uniform
solutions, by having the geometrical frustration effect in mind,
which does not favor simple staggered orders. Actually, the
n = 1 uniform spherical model around J = 0 has no solu-
tion at any temperature because all of the coupling constants
are negative (antiferromagnetic) in the spherical model (see
Fig. 3). On the other hand, for a relatively large |J| region
the uniform solutions can exist. However, since the typical
value of Hund’s coupling is |J|/U ∼ 0.1 or less, we do not
enter the regime with larger |J| in this paper.

C. n = 3 model

Here, we consider the model with three electrons per
molecule and with antiferromagnetic Hund’s coupling (J <

235145-9



RYUTA IWAZAKI AND SHINTARO HOSHINO PHYSICAL REVIEW B 103, 235145 (2021)

0). This model is more relevant to the existing fullerides with
half-filled t1u molecular orbitals.

1. Coupling constants

We show the coefficients A [A being defined by Eq. (45)]
in Table II. Since we consider the half-filled model, the initial
and intermediate states for the two-site problem at the sites i
and j relevant to Ii j are (ni, n j ) = (3, 3) and (ni, n j ) = (2, 4),
respectively. Here, ni = 2 and ni = 4 states are connected
with each other by the particle-hole (PH) transformation. The
explicit form for the ni = 2 state is the same as those given in
Sec. III B, and thereby the n = 4 state can also be constructed
from n = 2 accordingly. Below, we list the types of the inter-
mediate states and their energies, specifically focusing on the
n j = 4 state.

The intermediate states with the excited energy �En =
U − 8J are nine kinds of interorbital spin triplet state
for ni = 2 and the PH-transformed states for n j = 4 such
as b†

j,zc
†
j,y,↑c†

j,x,↑|0〉. For �En = U − 6J , the intermediate
states are the interorbital spin triplet states for ni = 2
and the PH-transformed states which have interorbital spin
singlet states such as 1√

2
b†

j,z(c†
j,y,↓c†

j,x,↑ − c†
j,y,↑c†

j,x,↓)|0〉 or
intraorbital spin singlet with antibonding states such as√

2
3 (2b†

j,zb
†
j,y − b†

j,zb
†
j,x − b†

j,yb†
j,x )|0〉. For �En = U − 4J , the

intermediate states are the interorbital spin singlet or in-
traorbital spin singlet with antibonding states for ni = 2 and
their PH-transformed versions for the j site. For �En = U −
3J , the intermediate states are the intraorbital spin singlet
and bonding states for ni = 2 and the states which have an
interorbital spin triplet for n j = 4. For �En = U − J , the in-
termediate states are the interorbital spin singlet or intraorbital
spin singlet with antibonding states (ni = 2) and the intraor-
bital spin singlet and bonding state such as 1√

3
(b†

j,zb
†
j,y +

b†
j,zb

†
j,x + b†

j,yb†
j,x )|0〉 for n j = 4. Finally, for �En = U + 2J ,

which is the lowest among the excited states for J < 0, the
intermediate state is nondegenerate and is written as the in-
traorbital spin singlet with bonding state for ni = 2 and its
PH-transformed states for nj = 4. In Table II, we also sum-
marize the number of the degeneracy for each �En as in
Table I.

Figure 7 shows the Hund’s coupling dependence of the
coupling constants. The perturbation theory is justified for
−1/2 < J/U < 0 where any level cross for the unperturbed

FIG. 7. Hund’s coupling ratio J/U dependence of the coupling
constants for the n = 3 spherical model.

Hamiltonian does not occur. If we consider J > 0, the ground
state is a total spin S = 3/2 state (e.g., c†

i,z,↑c†
i,y,↑c†

i,x,↑|0〉i)
and is different from J < 0 (see Fig. 2). This point is in
contrast with the n = 1 case, where the ground state of the
local Hamiltonian is not dependent on the sign of J as shown
in Fig. 3. It is notable that the coupling constants for n = 3
case are similar to those of the n = 1 spherical model in the
region near J/U = −0.5, where the same physical behavior is
expected.

2. Mean-field solutions for the bipartite lattice

We show in Fig. 8(a) the order parameters for the bipartite
lattice model with n = 3 and J/U = −0.1. At Tc1 � 2.3E0,
the system shows antiferromagnetic order, which is consis-
tent with the largest coupling constant shown in Fig. 7. With
decreasing temperature, the second-order transition at Tc2 ap-
pears, where the F-Qz2

and AF-T z2,z order parameters are
additionally induced. We emphasize that this orbital order is
not of the ordinary orbital moment of electrons, but of the
doublons relevant to the antiferromagnetic Hund’s coupling
as discussed in Sec. II A.

Figure 8(b) shows the temperature dependences of the
internal energies and free energy. We show the order-
parameter-resolved energies, and all the components decrease

TABLE II. Coefficients A in Eq. (45) for the n = 3 spherical model. The ground state is written as |γi, σi〉i|γ j, σ j〉 j , and its energy is
2(3U − 4J ). We add the details for the intermediate state in the main text. We also show the number of the degeneracy for each energy level
of the intermediate two-site state.

�En

U − 8J U − 6J U − 4J U − 3J U − J U + 2J

Degeneracy 162 180 50 36 20 2
ξ = S 1/2 −5/3 25/18 −4/3 20/9 8/9
ξ = L 9/8 −5/4 25/72 2 −10/9 8/9
ξ = Q −9/8 1/4 −1/72 2 −2/9 −8/9
ξ = R −1/8 −5/12 −25/72 2/3 10/9 −8/9
ξ = T 1/8 1/12 1/72 2/3 2/9 8/9
ξ = 0 −9/2 −5 −25/18 −4 −20/9 −8/9
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FIG. 8. Temperature dependence of (a) the order parameter,
(b) the decomposed internal energy and total free energy density,
and (c) the entropy (left axis) and the specific heat (right axis) for
the n = 3 bipartite spherical model with J/U = −0.1. The horizontal
axis is normalized by E0 = t2/U .

upon entering the ordered phase. While this is in contrast to
the n = 1 cases shown in the previous sections, the largest
energy gain arises from the AF-T order.

We show in Fig. 8(c) the entropy and specific heat. The
clear jump in the specific heat at Tc1 indicates the second-
order phase transition, and the jump in the entropy at Tc2 is
the fingerprint of the first-order phase transition. The wave
function in the ground state is

|ψA〉 = |z,↓〉A, (60)

|ψB〉 = |z,↑〉B. (61)

The ground state is thus nondegenerate as is consistent with
the zero entropy at T = 0.

3. Single-sublattice solution

Having the geometrically frustrated lattice in mind, we
assume that the spatially modulated solutions are not realized.
Then we seek for the spatially uniform solutions (single sub-
lattice) only.

FIG. 9. Temperature dependence of (a) the order parameter and
(b) the entropy (left axis) and the specific heat (right axis) for the
n = 3 uniform spherical model with J/U = −0.1. (c) Similar order-
parameter plots for the n = 3 single-sublattice model with coupling
constant ratio r = −0.4. The energy unit is E0 = t2/U .

Figure 9(a) shows the order parameter for the single-
sublattice model with n = 3, J/U = −0.1. The system shows
the Qz2

order at Tc/E0 � 0.28, which is consistent with the
magnitude of the coupling constant shown in Fig. 7. The
entropy and specific heat are shown in Fig. 9(b) with the
left and right axis, respectively. The residual entropy S = ln 2
remains, which is in accordance with the degeneracy of spin
in the absence of the sublattice degrees of freedom. Namely,
the wave function of the ground state is degenerated and is
written as ∣∣ �ψ 〉 =

(|z,↑〉
|z,↓〉

)
. (62)

We have confirmed that the eigenvalues of â in Eq. (36) are all
non-negative (not shown) and thus the ordered state is stable.

We also point out other interesting possibilities. The above
orbital order is induced by the coupling constant IQ > 0 in
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Fig. 7. In this figure, it is notable that the values of IQ and IR

are very close to each other. Then we try to search for other
solutions by introducing the modified coupling constants de-
fined as

ĨQ = (1 + r)IQ, (63)

ĨR = (1 − r)IR, (64)

where the original spherical model corresponds to r = 0.
We show the order parameters for the n = 3, J/U = −0.1

uniform model with the coupling constant ratio r = −0.4
in Fig. 9(c). Since the magnitude of the modified coupling
constants satisfies ĨR > ĨQ in the present condition, we obtain
the solution for Rμ,μ moments. Recalling the definition of the
R moment, we may rewrite the order parameter as Rμ,μ ∼
LμSμ symbolically. Therefore it is interpreted that the system
has the effective spin-orbit coupling spontaneously. The wave
function is written as∣∣ �ψ 〉 = 1√

3

( |x,↑〉 − i|y,↑〉 − |z,↓〉
−|x,↓〉 − i|y,↓〉 − |z,↑〉

)
, (65)

which indicates that the ground state is entangled with respect
to spin and orbital. These doubly degenerate ground states are
connected with each other by the time-reversal symmetry.

This “spontaneous spin-orbit coupling” splits the sixfold
degeneracy into twofold and fourfold multiplets, and which
is realized in the ground state is dependent on the sign of the
order parameters. Our solutions show that the ground state is
always doubly degenerate, and this should be related to the
minimization of the entropy at low temperatures.

Thus, although the system at the original parameter shows
the doublon-orbital ordering (Q), the system is located near
the parameter range where the intriguing R order occurs. As
discussed in Sec. II A the original spin-orbit coupling �SO

is tiny, but it might enter through the R-type ordering. Such
a situation is realized only for the n = 3 model with the
antiferromagnetic Hund’s coupling.

IV. NUMERICAL RESULTS FOR FULLERIDES

We show the numerical results for the fulleride in the
strong-coupling regime by using the hopping parameters ob-
tained by the first-principles calculation [40]. We take the
intraorbital Coulomb interaction U = 1 eV and the Hund’s
coupling J/U = −0.1 in the following.

A. A15 structure

First of all, we show in Fig. 10(a) the temperature depen-
dence of order parameters for the strong-coupling-limit model
of the realistic fulleride material with the A15 structure. The
hopping parameters for Cs3C60 are chosen {A15-Cs(V opt−P

SC )
in Ref. [40]}. The lattice structure is a bipartite lattice, and
A and B sublattices are connected with each other by screw
transformation (i.e., translation plus fourfold rotation). As
shown in Fig. 10(a), at Tc1 � 80 K, the antiferromagnetic mo-
ment (AF-S) appears by the second-order phase transition. At
lower temperatures, we identify the two successive phase tran-
sitions (Tc2,3) with orbital moment Q and spin-orbital moment
T . These two Q, T moments share the same symmetry in the

FIG. 10. Temperature dependence of (a) the order parameter and
(b) the eigenvalues of the matrix â calculated from Eq. (36) for the
A15-fulleride model. The solid blue circles in (b) correspond to the
solution given in (a). The open red circles in (b) represent the solution
without the phase transition at Tc3.

presence of AF-Sz order. We cannot simply conclude which
one is the primary order parameter, because the interaction
has a complicated form for the realistic model and cannot be
decomposed into each contribution as in the spherical model.
We also note that our choice of parameter is not fine-tuned
to reproduce correctly the transition temperature in the actual
materials, although our results can be compared with the ex-
periments semiquantitatively.

We show in Fig. 10(b) the eigenvalues (solid blue circles)
of the Hessian matrix defined in Eq. (36). All the values are
non-negative, and therefore the system is stable. On the other
hand, we can also calculate the low-temperature solutions by
suppressing the ordering at Tc3. The results are plotted as the
open red circles in Fig. 10(b). In this case, the eigenvalues
become partially negative, and hence the system is not stable
although the entropy goes to zero even in this case. Thus the
emergence of the order at Tc3 is essential in order to reach the
stable ground state.

We discuss the origin of the second orbital order at Tc3

in more detail. Below, we concentrate on the properties of Q
moments to make the discussion simple, since the symmetry
of Q is the same as that of T below the transition tempera-
ture Tc1. Figure 11(a) shows the orbital order parameters for
sublattice A (left panel) and B (right panel) slightly below the
transition temperature Tc2 (but above Tc3). The three patterns
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FIG. 11. (a) Sublattice-dependent order parameters in the plane
of Qz2

-Qx2−y2
for A (left) and B (right) sublattices at T = 40.4 K

(<Tc2). (b) Similar plots at the low-temperature limit without the
transition at Tc3. The dashed circles in (a) and (b) correspond to the
solutions in the system with fourfold symmetries. Each color shows
a different kind of solution, all of which share the same free energy.
The gray arrows with Qx2

or Qy2
are the guide for taking the other

quantization axis. Specifically, the solution given in Fig. 10(a) cor-
responds to the red triangles in (a). The angle φ in the left panel of
(a) is the deviation from the horizontal axis.

are obtained depending on the initial condition and hence
are degenerate solutions. It is seen from Fig. 11(a) that the
plane of Xα = Qz2

α and Yα = Qx2−y2

α has a threefold rotational
symmetry and the equilateral-triangle points, where the free
energy minima are located, are tilted from the X axis. This tilt
angle remains finite at low temperatures below Tc3.

This result can be understood from the Landau theory: We
can show that, without fourfold rotational symmetry as in Th

point-group symmetry in fulleride materials, the Landau free
energy is written in the restricted order-parameter space as

FL =
∑

α=A,B

[
c1Xα

(
X 2

α − 3Y 2
α

) + c2sαYα

(
3X 2

α − Y 2
α

)]
, (66)

where sα=A = +1 and sα=B = −1. We have considered only
the third-order term for our purpose. This is consistent with
the numerical results, and the tilt of the angle is due to the
presence of c2 term. The tilt angle is estimated with the polar
coordinates X = r cos θ and Y = r sin θ , leading to another
expression of the free energy FL ∝ cos(3θ + φ), with φ =
tan−1 c2/c1 being the tilt angle. For example, one can estimate
this angle from Fig. 11(a) as φ = 6.76◦. The A15 structure has
screw symmetry, i.e., the combination of the translation along
[111] and fourfold rotation around the x, y, z axes, which
relates the order parameters at the A and B sublattices. Indeed,

TABLE III. Remaining symmetries in several temperature
regimes. �, Cx,y,z

4 , T, and C3 represent the time-reversal, fourfold
rotation, partial translation, and threefold rotation operations, re-
spectively. This table originates from the solution with red triangles
shown in Fig. 10(a). N/A, not applicable.

Temperature Remaining symmetries

Tc1 < T �,Cx,y,z
4 × T,C3

Tc2 < T < Tc1 Cx,y,z
4 × T,C3

Tc3 < T < Tc2 Cz
4 × T

T < Tc3 N/A

the above Landau free energy is invariant under the threefold
rotation and screw transformations.

If the fourfold symmetry is present, the condition c2 = 0
or φ = 0 is required. In Fig. 11(b), we show the order pa-
rameters at T → 0 without the second orbital ordering below
Tc3, where the fourfold symmetry seems to be effectively
recovered since the tilt angle goes to zero when T → 0. Hence
the origin of the second orbital order in Fig. 10(a) below Tc3

is interpreted as being induced from this emergent symmetry
at low temperatures which provides an additional free energy
gain.

Let us further discuss the orbital ordered state of the A15
fulleride from a symmetry point of view. First we summarize
the symmetries in the disordered state at high temperatures.
There are the time-reversal symmetry � and the three-fold
rotational symmetry C3 along the [111] direction. We also
have the screw symmetry denoted by Cx,y,z

4 × T, where Cx,y,z
4

is the fourfold rotation around the x, y, z axes and T is the
partial translation that exchanges A and B sublattices of the
A15 lattice. We note that Cx,y,z

4 and T themselves are not a
symmetry operation of fullerides.

Below Tc1, the system spontaneously breaks the time-
reversal symmetry due to the spin ordering. In the intermedi-
ate temperatures Tc3 < T < Tc2, the doublon’s orbital ordered
state with Qz2

and Qx2−y2
breaks the threefold rotational sym-

metry C3 and some of the screw symmetries spontaneously.
Notably, there is a still-remaining screw symmetry which can
be seen from, e.g., the red triangles of Fig. 11(a): The trans-
formation Cz

4 × T keeps the orbital ordered system invariant.
This remaining symmetry causes another phase transition at
Tc3, where the order parameter Qxy appears and breaks the
remaining screw symmetry. We summarize the above relations
between the temperature range and the remaining symmetries
in Table III.

B. fcc structure

Finally, we consider the fulleride material with the fcc
structure. The spin-orbital model in the strong-coupling limit
is obtained by using the hopping parameters for Rb3C60 in
Ref. [40]. Because of the geometrically frustrated nature of the
fcc lattice, we here seek for only the spatially uniform ordered
states.

Figure 12(a) shows the temperature evolution of the order
parameters. Here, the primary order parameter is the uni-
form Lz moment, which breaks the time-reversal symmetry.
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FIG. 12. Temperature dependence of (a) the order parameter and
(b) the inverse of the diagonal susceptibility for the uniform fcc
fulleride model with J/U = −0.1.

The Lz order arises as (Tc − T )1/2, and the Qz2
order is also

induced simultaneously with the linear temperature depen-
dence ∝ (Tc − T ). The latter Q moment is induced from the
coupling term with the form (Lz )2Qz2

in the Landau free
energy. We note that Lz is not induced when Qz2

is a pri-
mary order parameter from that coupling, since Lz and Qz2

have different time-reversal symmetry [(Lz )2 and Qz2
are the

same]. The ground-state wave function is written in a simple
form as

∣∣ �ψ 〉 = 1√
2

(|x,↑〉 − i|y,↑〉
|x,↓〉 − i|y,↓〉

)
, (67)

where the complex wave function clearly shows the time-
reversal symmetry breaking. We note that this orbital moment
is not a simple orbital motion around the fullerene molecule,
but a complex motion of the three-electron state given in
Eq. (4). In our calculations the spin S order does not occur, and
the ground state is doubly degenerate at each site. The stability
of the solution is checked by the non-negative eigenvalues of
the Hessian matrix.

The results found here are different from the spherical
case discussed in Sec. III C 3. The difference is due to the
specific form of the tight-binding hopping parameters. We
show one of the coupling constants IL for the nearest-neighbor

sites as ⎛
⎝I1 I2 0

I2 −I3 0
0 0 I4

⎞
⎠, R =

(a

2
,

a

2
, 0

)
, (68)

where R is the direction of the NN molecules and a is the
lattice constant for the fcc fulleride. The information for the
other NN pairs is constructed from the symmetry operations.
The values of the matrix element are I1 = 12.5, I2 = 9.77,
I3 = 0.511, and I4 = 20.1 in units of K in the present models.
The coupling constant has the same symmetry as the hopping
parameters in Ref. [40] as required by the space-group sym-
metry. The nearest-neighbor coupling constant is largest and
is positive, which favors the uniform magnetic orbital moment
L. As for the next-nearest-neighbor site, the coupling constant
matrices are diagonal, and every component of them is smaller
than the nearest-neighbor ones.

Since the spin S moment has the same symmetry as L, it
can in general be simultaneously induced under the small but
finite spin-orbit coupling. However, as discussed in Sec. II A,
the magnitude of the effective spin-orbit coupling for the
doublon orbital is �SO ∼ 10−9 eV, which can be regarded
as zero in practice. Hence the spin order can occur indepen-
dently at low temperatures. The absence of the spin S order
is interpreted from the point of view of the coupling constant.
Figure 12(b) shows the temperature dependence of the inverse
of the diagonal susceptibilities. The blue lines represent the
magnetic susceptibility (S), which indicates that the coupling
constants of S are antiferromagnetic owing to the negative
Curie-Weiss temperature. In this case, the transition temper-
ature should be very low due to the geometrical frustration
of the fcc lattice, but finally the system should show some
magnetic ordering [41].

C. Discussion

The models in this section are based on band struc-
ture calculation results. Furthermore, the fulleride materials
can be located in the Mott insulator regime depending on
the pressure. Hence our results are potentially applicable to
real materials. In fulleride materials, antiferromagnetic or-
ders have been experimentally identified at low temperatures,
while orbital orders have not yet been reported. Based on
our results, we propose that at low temperatures the orbital
ordered moments Q are induced with two successive tran-
sitions for A15 structures, and L moments may appear for
fcc structures. Such fingerprints of the orbital orders may
be found in thermodynamic quantities in principle. Here, the
orbital moment is not for a usual electron but for the dou-
blons specific to the systems with antiferromagnetic Hund’s
coupling as emphasized in this paper. On the other hand,
since the real compounds are polycrystals and disorder ef-
fects are also present, the orbital orders might be smeared
out in realistic situations. In this context, the effect of dis-
orders on our spin-orbital model is an interesting issue for
future research which would make comparing the theoretical
results with experimental observations more direct. Moreover,
the antiferromagnetic Hund’s coupling originates from the
electron-phonon coupling. The resultant retardation effects
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are also not included in this paper and are an important issue
for more realistic arguments.

V. SUMMARY AND OUTLOOK

In order to clarify the properties of strongly correlated
electrons in fulleride superconductors, we have constructed
the spin-orbital model in the strong-coupling limit. We begin
with the three-orbital Hubbard model with antiferromagnetic
Hund’s coupling which is realized by the coupling between
the electronic degrees of freedom and anisotropic Jahn-Teller
molecular vibrations. In this case, the pair hopping effect
among the different orbitals becomes relevant in strong con-
trast to the multiorbital d-electron systems with ferromagnetic
Hund’s coupling. We have mainly considered the half-filled
n = 3 case relevant to real materials, where it is composed
of singly occupied (singlon) plus doubly occupied (doublon)
orbitals as illustrated in Fig. 1. The correlated ground state
for an isolated fullerene molecule is sixfold degenerate and is
characterized by the spin and orbital indices. This is a situation
similar to the n = 1 ground states, and the analogy between
n = 3 and n = 1 helps us in interpreting the results. The
usual orbital moment, which is present for the n = 1 case, is
absent for n = 3 because of the correlated nature of the wave
function, and instead the active orbital moment characteristic
for doublons exists. As a result, the spin-orbit coupling, which
is of the order of 1 meV for p electrons, becomes 1 neV
because of the extended nature of the molecular orbitals and
the correlation effects.

We have applied the second-order perturbation theory with
respect to the intermolecule hopping and have obtained the
localized spin-orbital model specific to the fullerides. The
obtained spin-orbital model is analyzed by employing the
mean-field approximation. For reference, we have first solved
the spherical n = 1 model for both ferromagnetic and an-
tiferromagnetic Hund’s couplings with a spherical limit for
the bipartite lattice. We then applied our method to the n =
3 model, where the magnetic order is found at relatively
high temperatures and the orbital order also occurs at lower
temperatures. The temperature dependences of the physi-
cal quantities, such as order parameters, internal and free
energies, specific heat, entropy, and susceptibilities, are inves-
tigated in detail. The thermodynamic stability is also studied

based on the Hessian matrix derived from the inverse suscep-
tibilities and is checked by confirming that all the eigenvalues
are non-negative.

We have also considered the realistic situation in alkali-
doped fullerides, by using the tight-binding parameters
derived from first-principles calculations. For the choice of
the lattice structure, we have taken both the bipartite A15 and
fcc structures, whose hopping parameters have been derived in
Ref. [40]. For the A15 structure, the antiferromagnetic order
occurs at high temperatures, and the electric orbital orders
arise at lower temperatures with two successive transitions.
The first orbital order is already captured in the spherical
model, but the second orbital order is characteristic for the
Th symmetry in fulleride materials where only the threefold
rotation symmetry exists. This point has been discussed in
detail based on the Landau theory and symmetries. For the
fcc model, we have concentrated on the spatially uniform
solutions due to the geometrically frustrated nature of the
lattice. We have found that the magnetic orbital order oc-
curs. Although this orbital moment has the same symmetry
as the electronic spin, the spin moment is not induced simul-
taneously in fulleride since the spin-orbit coupling is tiny as
mentioned above. Thus the spin moment can order indepen-
dently and is expected to be antiferromagnetically ordered in
the ground state, where the transition temperature is expected
to be low owing to the geometrical frustration of the fcc
lattice.

Our formalism itself is constructed in a very general way
and can be applied to any systems in the strong-coupling limit
with integer fillings per atom or molecule. In this context,
it would be desirable to develop the general framework for
the strong-coupling-limit spin-orbital model with the combi-
nation of the hopping parameters in the Wannier functions
obtained from the band structure calculations. This applica-
tion is of interest specifically in studying the ordered state of
the multiorbital electronic systems including transition metals
and organic materials. This point remains to be explored and
is an intriguing issue for future research.
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Y. Kasahara, Y. Iwasa, A. N. Fitch, Y. Ohishi, G. Garbarino, K.
Kato, M. J. Rosseinsky, and K. Prassides, Sci. Adv. 1, e1500059
(2015).

[16] Y. Kasahara, Y. Takeuchi, R. H. Zadik, Y. Takabayashi, R. H.
Colman, R. D. McDonald, M. J. Rosseinsky, K. Prassides, and
Y. Iwasa, Nat. Commun. 8, 14467 (2017).

[17] S. Han, M.-X. Guan, C.-L. Song, Y.-L. Wang, M.-Q. Ren, S.
Meng, X.-C. Ma, and Q.-K. Xue, Phys. Rev. B 101, 085413
(2020).

[18] M.-Q. Ren, S. Han, S.-Z. Wang, J.-Q. Fan, C.-L. Song,
X.-C. Ma, and Q.-K. Xue, Phys. Rev. Lett. 124, 187001
(2020).

[19] M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi,
S. Lupi, P. D. Pietro, D. Pontiroli, M. Riccò, S. R. Clark,
D. Jaksch, and A. Cavalleri, Nature (London) 530, 461
(2016).

[20] A. Cantaluppi, M. Buzzi, G. Jotzu, D. Nicoletti, M. Mitrano, D.
Pontiroli, M. Riccò, A. Perucchi, P. D. Pietro, and A. Cavalleri,
Nat. Phys. 14, 837 (2018).

[21] M. Capone, M. Fabrizio, P. Giannozzi, and E. Tosatti, Phys.
Rev. B 62, 7619 (2000).

[22] Y. Nomura, S. Sakai, M. Capone, and R. Arita, Sci. Adv. 1,
e1500568 (2015).

[23] A. Koga and P. Werner, Phys. Rev. B 91, 085108 (2015).
[24] S. Hoshino and P. Werner, Phys. Rev. B 93, 155161 (2016).
[25] K. Steiner, S. Hoshino, Y. Nomura, and P. Werner, Phys. Rev. B

94, 075107 (2016).
[26] S. Hoshino and P. Werner, Phys. Rev. Lett. 118, 177002 (2017).
[27] K. Ishigaki, J. Nasu, A. Koga, S. Hoshino, and P. Werner, Phys.

Rev. B 98, 235120 (2018).
[28] K. Ishigaki, J. Nasu, A. Koga, S. Hoshino, and P. Werner, Phys.

Rev. B 99, 085131 (2019).
[29] C. Yue, S. Hoshino, and P. Werner, Phys. Rev. B 102, 195103

(2020).
[30] S. Hoshino, P. Werner, and R. Arita, Phys. Rev. B 99, 235133

(2019).
[31] T. Misawa and M. Imada, arXiv:1711.10205.
[32] K. I. Kugel and D. I. Khomskii, Pis’ma Zh. Eksp. Teor. Fiz. 15,

629 (1972) [JETP Lett. 15, 446 (1972)].
[33] K. I. Kugel and D. I. Khomskii, Zh. Eksp. Teor. Fiz. 64, 1429

(1973) [Sov. Phys. JETP 37, 725 (1973)].
[34] S. Inagaki, J. Phys. Soc. Jpn. 39, 596 (1975).
[35] S. Ishihara, J. Inoue, and S. Maekawa, Phys. Rev. B 55, 8280

(1997).
[36] L. F. Feiner and A. M. Oleś, Phys. Rev. B 59, 3295 (1999).
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