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We describe a solvable model of a quantum transition in a single band model involving a change in the size
of the electron Fermi surface without any symmetry breaking. In a model with electron density 1 − p, we find a
“large” Fermi surface state with the conventional Luttinger volume 1 − p of electrons for p > pc, and a first-order
transition to a “small” Fermi surface state with a non-Luttinger volume p of holes for p < pc. As required by
extended Luttinger theorems, the small Fermi surface state also has fractionalized spinon excitations. The model
has electrons with strong local interactions in a single band; after a canonical transformation, the interactions are
transferred to a coupling to two layers of ancilla qubits, as proposed by Zhang and Sachdev [Phys. Rev. Research
2, 023172 (2020)]. Solvability is achieved by employing random exchange interactions within the ancilla layers,
and taking the large M limit with SU(M ) spin symmetry, as in the Sachdev-Ye-Kitaev models. The local electron
spectral function of the small Fermi surface phase displays a particle-hole asymmetric pseudogap, and maps
onto the spectral function of a lightly doped Kondo insulator of a Kondo-Heisenberg lattice model. We discuss
connections to the physics of the hole-doped cuprates: the asymmetric pseudogap observed in STM, and the
sudden change from incoherent to coherent antinodal spectra observed recently in photoemission. A holographic
analogy to wormhole transitions between multiple black holes is briefly noted.
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I. INTRODUCTION

A number of recent experiments [1–3] have highlighted
the role of optimal doping in the hole-doped cuprate super-
conductors, where there is a rapid change in the size of the
underlying Fermi surface. At hole doping p away from half-
filling, a conventional, Fermi-liquid-like, large Fermi surface
corresponding to an electron density of 1 − p is obtained for
p > pc, where pc is critical optimal doping. In the pseudogap
regime for p < pc, a small Fermi surface corresponding to a
hole density p is observed. We shall take the point-of-view
here that this change in Fermi surface size is the primary
physics driving the transition. Symmetry breaking is often ob-
served at low temperatures in the small Fermi surface regime,
but we shall view this here as a secondary phenomenon to be
understood in a more refined treatment.

Large-to-small Fermi surface transformations without
symmetry breaking, between phases that obey and violate the
conventional Luttinger theorem, have been studied a great
deal [4–16] in the context of two band Kondo lattice models.
Such models have a band of localized spins coupled to a
second band of mobile electrons. In the large Fermi surface
phase (FL), the localized spins are Kondo screened by the con-
duction electrons, and so the Fermi surface size corresponds to
the combined density of the mobile electrons and the localized
spins [17].

In the small Fermi surface phase, the “fractionalized Fermi
liquid” (FL*), the spins form a decoupled spin liquid with
fractionalized spinon excitations, and the Fermi surface size
corresponds only to the density of mobile electrons. The

conventional Luttinger relation for the Fermi surface size is
obeyed only in the large Fermi surface phase. On the other
hand, in the small Fermi surface phase, the fractionalized
excitations and emergent gauge fields accompanying the small
Fermi surface allow this phase to satisfy a generalized Lut-
tinger relation [5–7,18]. (We note that in studies of “Kondo
breakdown” critical points [19–22], the small Fermi surface
phase has broken symmetry and obeys the conventional Lut-
tinger theorem, and so this phase is not required to have
fractionalized excitations.) Recent experiments on CePdAl
[23] and CeCoIn5 [24] have presented significant evidence
for such a small-to-large Fermi surface transition without any
symmetry breaking.

Large-to-small Fermi surface transformations also appear
in various dynamic mean-field theory treatments of multiband
models, where they are often referred to as “orbitally selective
Mott transitions” [25–31]. But these treatments do not account
for the fractionalized excitations that are required to appear
along with the small Fermi surface to account for any violation
of the Luttinger value for the Fermi surface size.

For the cuprates, the observations appear to require a
small-to-large Fermi surface transition in a single band model.
Models of small Fermi surfaces of electrons obtained by the
nonperturbative binding spinons and holons excitations of a
doped spin liquid have been proposed [32–46], but none pro-
vide a fully self-consistent method for computing the Fermi
surface in both the small and large Fermi surface states. Un-
like the Kondo lattice model, there is no natural criterion for
choosing between the electrons which form local moments
and fractionalize, and those which are mobile, and so this
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FIG. 1. (a) The top layer is the physical layer of electrons C
in a single band model coupled to two “hidden” layers of ancilla
qubits (spin-1/2 spins) realized by fermions �1 and �2. The antifer-
romagnetic exchange couplings JK and J⊥ are nonrandom, while the
dashed lines represent random exchange interactions of mean-square
strength J between the �1 spins and between the �2 spins. (b) In
the large Fermi surface FL phase, the ancilla spins lock into rung
singlets, while the C electrons are largely decoupled from the ancilla
and form a conventional Fermi liquid of electron density 1 − p. (c) In
the small Fermi surface FL* phase, the �1 ancilla spins are Kondo
screened by the C electrons to form a Fermi surface with density
2 − p electrons. This is equivalent to a small hole-like Fermi surface
of size p, as observed in the cuprates at low doping. The �2 spins
are largely decoupled from the top two layers in the FL* phase, and
form a gapless spin liquid with fractionalization, whose presence is
required by the generalized Luttinger theorem.

leads to significant technical difficulties in obtaining the small
Fermi surface FL* state.

Recent work [47,48] has shown that many of these diffi-
culties are overcome in an “ancilla qubit” approach, which
can describe both the small and large Fermi surface states
of a single band model. This approach begins with a single
band Hubbard model of electrons, C. We then perform an
analog of a Hubbard-Stratonovich transformation on the Hub-
bard interaction, by “integrating in” a pair of S = 1/2 ancilla
spins on each site, coupled to each other by a large antifer-
romagnetic exchange coupling J⊥ (see Fig. 1). As described
in Appendix A, upon eliminating the ancillas by a canonical
transformation, in a 1/J⊥ expansion which locks the ancillas
into rung spin singlets, we recover the original single band
Hubbard model of C electrons. But we choose instead to keep
the ancilla degrees of freedom “alive” at intermediate stages,
and work in the canonically equivalent model of free electrons
coupled to the ancillas: this gives us the flexibility needed to
obtain a large M saddle point which describes the pseudogap
phase. Fluctuations of a SU(2)S gauge field beyond the saddle

point are needed to project the ancillas into a rung-singlet
subspace [47,48], and this ensures that the final theory is
expressed only in terms of the single band degrees of freedom
of the physical C electrons. The theory of the SU(2)S gauge
fluctuations shows that the small Fermi surface state is stable
to the projection to the physical degrees of freedom: this is
because the SU(2)S gauge fluctuations are higgsed in the FL*
phase.

In the present paper, we will combine the ancilla qubit
method for a single band model, with the method employed
by Burdin et al. [4] for the Kondo lattice model. We will
couple two ancilla layers to a physical single band model, and
use a Sachdev-Ye-Kitaev [49–52] (SYK) description of the
spin liquid states on the ancillas; this is achieved by including
a random exchange interaction of mean-square strength J
within each ancilla layer. We show below that this leads to a
tractable description of the phases on both sides of a first-order
Fermi volume changing transition, while also providing a
self-consistent description of the incoherent and fractionalized
excitations.

We begin by recalling the ancilla qubit method and its
description of the phases of the single band model [47,48]: see
Fig. 1. The top physical layer of electrons, C, of density 1 − p
is coupled to 2 layers of ancilla qubits. The ancilla qubits
are realized by fermions �1,2 using the usual Schwinger con-
struction, with the constraint

∑
α �

†
i;a;α�i;a;α = 1 satisfied on

each lattice site i (a = 1, 2 is a layer index, and α =↑,↓ is a
spin index). It is important that we add two layers of ancilla
qubits, because only then are the added layers free of all
anomalies [18], and are allowed to form a trivial insulator.
Some previous discussions of the FL* phase [37,38] were
obtained by adding a single band near half-filling: this gives
a suitable description of the electron spectral function in the
FL* phase, but misses the FL* spectrum of spin excitations
associated with the second ancilla layer, and cannot obtain a
FL phase.

In the large Fermi surface FL phase, we assume that the
nonrandom and antiferromagnetic coupling J⊥ dominates, and
so the ancilla are locked into rung singlets, and can be safely
ignored in the low-energy theory: then the C electrons form a
conventional Fermi liquid phase, and we obtain a Fermi sur-
face corresponding to electron density 1 − p or hole density
1 + p.

In the small Fermi surface FL* phase, we assume that
the nonrandom and antiferromagnetic Kondo coupling JK

dominates, and so the Kondo effect causes the �1 spins to
‘dissolve’ into the Fermi sea of the mobile electrons. By anal-
ogy with the corresponding process in the two-band Kondo
lattice model, we conclude that the Fermi surface will corre-
spond to an electron density of 1 + (1 − p) = 2 − p: this is a
small Fermi surface of holes of density p. There is an interest-
ing inversion here that is worth noting: at the mean-field level,
the small Fermi surface FL* phase of the single-band+ancilla
model maps on to the large Fermi surface phase of the two-
band Kondo lattice model, where it is the FL phase of that
model. At small doping p, we can refine this to the state-
ment that the FL* phase of the single band model maps
onto a lightly doped Kondo insulator in a Kondo-Heisenberg
lattice model. This correspondence, however, does not hold
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beyond mean-field: in the small Fermi surface FL* phase of
the single-band+ancilla model there are fractionalized spinon
excitations arising from the �2 ancillas, which are required by
the generalized Luttinger theorem. There are no fractionalized
excitations in the large Fermi surface FL phase of the two-
band Kondo lattice model.

For completeness, we clarify what we mean by “fraction-
alization” in a metal. Although a FL phase has half-integer
spin excitations, it is not fractionalized: all half-integer spin
excitations carry an odd electronic charge. A fractionalized
excitation has half-integer spin with even charge, or integer
spin with odd charge; the zero charge case is the spinon.

At this point, it is useful to contrast the ancilla qubit ap-
proach to the pseudogap phase of the single band cuprates
from earlier variational wave-function approaches. In the pop-
ular and influential “vanilla” approach to resonating valence
bond theory [53], the underdoped normal state is modeled as
a Gutzwiller projected Fermi liquid

|�vanilla〉 = [Project out doubly occupied sites]

�� |Slater determinant of C〉. (1.1)

However, this approach predicts a large Fermi surface for
small p, which appears to be incompatible with recent experi-
ments [1–3]. In our ancilla approach, the corresponding wave
function of the FL* phase present at small p is [47]

|�ancilla〉 = [Projection onto rung singlets of �, �̃]

�� |Slater determinant of (C, �)〉
⊗ |Slater determinant of �̃〉. (1.2)

Note that after the projection onto rung singlets on the right
hand side of Eq. (1.2), |�ancilla〉 is a wave function dependent
only upon the physical C degrees of freedom in the single
band model under consideration. As has been well understood
[54] for some time, for |�vanilla〉 the consequences of the pro-
jection can be understood by examining a gauge theory for the
constrained subspace. The gauge symmetry is fully higgsed in
the phase described by |�vanilla〉, and so gauge fluctuations are
not singular; in the language of wavefunctions, the projection
in Eq. (1.1) has little influence on the large Fermi surface of C,
apart from a Brinkman-Rice renormalization [55] of the quasi-
particle mass. Turning to |�ancilla〉, the implementation of the
rung singlet projection requires consideration of a SU(2)S

gauge field [47,48]: this gauge field is also fully higgsed in
the FL* phase, and so the small Fermi surface formed by the
Slater determinant of (C, �) in Eq. (1.2) is stable under the
projection.

With our use of SYK models for the couplings within each
ancilla layer, it becomes possible to obtain exact results for
the electron spectral function in the FL* phase. A typical
spectrum in shown in Fig. 2. This spectrum is for a random
matrix model of hopping within the electronic C layer, which
leads to a semicircular density of states in FL phase. We shall
show below that computations are also possible for arbitrary
translationally invariant band structures within the C layer. As
shown in the figure, our numerical results obey a modified
Luttinger theorem which constrains the value of the density
of states at the Fermi level in the FL* phase. A notable
feature of Fig. 2 is the appearance of a pseudogap in the

FIG. 2. Local electron spectral function ρcc(ω) =
−(1/π )Im Gcc(ω) [with

∫ ∞
−∞ dωρcc(ω) = 1] in the FL* state

for the model with random hopping of electrons (these spectra can
also be computed, with more numerical effort, for a nonrandom
electron dispersion εk) showing a particle-hole asymmetric
pseudogap near the Fermi level. Also shown is the corresponding
Wigner semicircle spectral function in the FL phase. The areas of
the hatched regions are indicated, with p the hole doping away from
half-filling. The extended Luttinger theorem in the FL* phase (see
Sec. III and Appendix C) implies that the values of ρcc(ω) identified
by the red circle are equal. The plot is for p = 0.246, t = 1, J = 1,
and JK = 2.03.

electronic spectrum of the FL* phase. This pseudogap leads
to a particle-hole asymmetry in the electron spectral function
which has similarities to that discussed in Ref. [56]. Moreover,
the minimum in the local density of states is slightly above
the Fermi level, as is observed in STM experiments at higher
temperatures [57].

It is interesting to ask if there is any holographic parallel,
along the lines of Ref. [58], to the small-to-large Fermi surface
transition we describe here. The physical electronic layer has a
q = 2 SYK model with quasiparticle excitations which has no
black hole dual, but the question becomes better defined if we
consider the non-Fermi liquid phases of higher q analogs of
our model. In this case there is a correspondence to wormhole
transitions of black holes [59], as we will discuss further at
the end of Sec. VI.

We will define the model and obtain its saddle-point equa-
tions in Sec. II, with details of the G-	 theory appearing
in Appendix B. We will discuss some exact features of
the phases of the model, including the Luttinger theorems
which apply in the FL* and FL phases in Sec. III and Ap-
pendix C. Our numerical solutions of the imaginary frequency
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saddle-point equations and the mean field phase diagram are
described in Sec. IV. In Sec. V, we turn to a discussion of the
electronic spectrum in the FL* phase by a direct solution of
the saddle point equations for real frequencies. This reveals
interesting structure in the spectrum which would have been
difficult to obtain by numerical analytic continuation of the
imaginary frequency solution. This real frequency analysis is
aided by an exact solution of the saddle point equations at
J = 0 which is presented in Appendix D.

II. MODEL AND SADDLE-POINT EQUATIONS

We extend the model of Burdin et al [4] to include 2
layers of ancilla as illustrated in Fig. 1 to obtain the following
Hamiltonian:

H = − μ
∑

i

C†
i;αCj;α + 1√

N

∑
i 	= j

ti jC
†
i;αCj;α

+ JK

M

∑
i

C†
i;αCi;βSi;1;βα

+ 1√
MN

∑
a=1,2

∑
i< j

Ja;i jSi;a;αβS j;a;βα

+ J⊥
M

∑
i

Si;1;αβSi;2;βα . (2.1)

The physical layer has electrons Ci;α on the sites i of a lattice,
and α, β = 1, 2, . . . , M are SU(M) spin indices which gener-
alize the SU(2) spin indices. The ancilla layers a = 1, 2 are
represented by SU(M) spins Si;a;αβ .

We will now take the large spatial dimension and large M
limit of (2.1) as discussed by Burdin et al. [4]. This can be
performed in a model with nonrandom ti j and a corresponding
momentum space dispersion εk of the bare electrons Ck;α;
such a model will have sharp Fermi surfaces in momentum
space, and so a well-defined concept of the “size” of the
Fermi surface. However, it is technically somewhat easier to
work in a model in which the ti j are independent random
numbers representing all-to-all hopping on a cluster of sites
i = 1, . . . , N ; such a random model has the same phases in the
large M limit, and is also constrained by a Luttinger theorem,
as we will review in Sec. III. We will present our analysis
for the case of random ti j , but will indicate in Sec. III the
modifications needed for the case with nonrandom hopping
and a sharp momentum space dispersion εk. For the random
case, the couplings in (2.1) obey

ti j = 0 |ti j |2 = t2,

J1;i j = 0 J2
1;i j = J2,

J2;i j = 0 J2
2;i j = J2. (2.2)

The Kondo exchange coupling JK and the rung exchange
coupling between the ancilla, JK are taken to be positive (i.e.,
antiferromagnetic) and nonrandom.

The large M limit is implemented by a fermionic parton
representation of the spins with

Si;1;αβ = �
†
i;1;α�i;1;β,

Si;2;αβ = �
†
i;2;α�i;2;β, (2.3)

where the fermions �1,2 obey the local constraint∑
α

�
†
i;a;α�i;a;α = M

2
. (2.4)

The chemical potential μ is adjusted so that the average den-
sity of the electrons is∑

α

〈C†
i;αCi;α〉 = M

2
(1 − p). (2.5)

We now discuss the crucial issue of the gauge symme-
tries introduced by the parton representation in Eq. (2.3). As
written, the model (2.1) has a global U(1) symmetry of the
conservation of the electron number C†C, and a pair of U(1)
gauge symmetries, denoted U(1)1 and U(1)2, associated with
the constraints (2.5) on the two ancilla layers. However, for the
theory with the ancillas to apply to the underlying single band
Hubbard model, we also need to project the ancilla spins onto
the rung singlet subspace. This projection has been discussed
at length in earlier papers [47,48] for M = 2 (see especially,
Sec. II in Ref. [47], and Secs. II and III A in Ref. [48]): it was
shown that the projection is accomplished by integrating over
a rotating reference frame in spin space [60] by employing an
additional SU(2)S gauge symmetry; the subscript S denotes
that the spin space rotation, in contrast to the U(1)1,2 gauge
symmetries which act on the Nambu pseudospin space [61].
It is possible to extend this SU(2)S gauge symmetry to the
model with general M (similar to Ref. [62]), but we will not
enter into this technical complexity here because it does not
change the structure of the large M saddle point. As we have
noted earlier, the SU(2)S gauge symmetry is fully higgsed in
the FL* phase, and so does not lead to any singular corrections
to the small Fermi surface. In the FL phase, the SU(2)S gauge
fluctuations are confining, and have little influence on the
low-energy theory of the large Fermi surface. The SU(2)S

gauge symmetry is important mainly at possible deconfined
critical points [47,48] which we do not address in the present
paper, because the transitions are found to be first order at
large M.

A. Schwinger-Dyson equations

In Appendix B, we describe the formal procedure of taking
the large N and large M limits of H . This procedure yields
the following equations for diagonal components of the 3 × 3
matrices of Green’s functions G and self-energies 	:

	cc(τ ) = t2Gcc(τ ), (2.6)

	ψ1ψ1 (τ ) = −J2G2
ψ1ψ1

(τ )Gψ1ψ1 (−τ ), (2.7)

	ψ2ψ2 (τ ) = −J2G2
ψ2ψ2

(τ )Gψ2ψ2 (−τ ). (2.8)

These are just the self-energies of the q = 2 and q = 4 com-
plex SYK models.

The off-diagonal self-energies play an important role in
our analysis. As the interband couplings are nonrandom, these
self-energies are independent of frequency, and we use a dif-
ferent symbol, R for their constant values (similar to Ref. [4]).
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So we write

Rcψ1 = −JK Gcψ1 (τ = 0−), (2.9)

Rψ1ψ2 = −J⊥Gψ1ψ2 (τ = 0−) . (2.10)

Then, Green’s functions are related to self-energies by the following matrix Dyson equation in Matsubara frequency ωn:

Gv (iωn) = −
⎛⎝−iωn − μ + 	cc(iωn) Rcψ1 0

Rcψ1 −iωn − μψ1 + 	ψ1ψ1 (iωn) Rψ1ψ2

0 Rψ1ψ2 −iωn − μψ2 + 	ψ2ψ2 (iωn)

⎞⎠−1

, (2.11)

where the subscript of Gv is any of
(cc), (ψ1ψ1), (ψ2ψ2), (ψ1ψ2), (cψ1). We have made a
gauge choice in which the R are real.

Our task is now to solve equations (2.6)–(2.11) for Green’s
functions and self-energies, where the chemical potentials μ,
μψ1 , μψ2 are chosen to satisfy (2.4) and (2.5). If there is
more than one solution, we have to choose the one with the
lowest free energy, expressions for which are presented in
Appendix B.

III. PHASES AND THE LUTTINGER RELATIONS

The nature of the phases of the model of Sec. II are con-
trolled by the values of the real saddle-point variables Rcψ1 and
Rψ1,ψ2 . This becomes clear upon examining their role as Higgs
fields under the gauge symmetries which were discussed at the
end of Sec. II.

The fields associated with the mean values Rcψ1 and Rψ1,ψ2

carry charges of the U(1) gauge fields as follows:

Rcψ1 Rψ1ψ2

U (1) +1 0
U(1)1 −1 +1
U(1)2 0 −1

(3.1)

In the full theory, beyond the large M saddle point, with
projection onto the rung singlet subspace, we have to consider
a SU(2)S gauge symmetry, and the fields analogous to Rcψ1

and Rψ1ψ2 also carry SU(2)S gauge charges [47,48]. From
the charge assignments in (3.1), we can deduce the basic
properties of the phases found in our numerical analyses.

(A) Large Fermi surface, FL: Rcψ1 = 0, Rψ1ψ2 	= 0. The
nonzero value of Rψ1ψ2 higgses a diagonal combination of
U(1)1 × U(1)2 but leaves the other diagonal combination un-
broken. As we will see below, the spectrum of �1,2 fermions
is fully gapped in this phase, and so there is no obstacle for
the unbroken gauge symmetry to confine. So the structure of
this phase is as sketched in Fig. 1(b): the �1 and �2 fermions
confine in a rung-singlet phase, and the C electrons form a
Fermi liquid with a Fermi surface of size 1 − p electrons. The
SU(2)S gauge theory is also confining, but this confinement
only influences the already gapped ancilla layers, and has little
effect on the large Fermi surface.

(B) Small Fermi surface, FL*: Rcψ1 	= 0, Rψ1ψ2 = 0. Now
U(1)1 is higgsed by Rcψ1 , and this effectively endows the �1

fermions with the global U(1) charge. The hybridized bands of
C and �1 fermions form a Fermi sea of size 2 − p electrons,
which is equivalent to p holes. Indeed, the structure of the

state formed by C and �1 is indentical to that obtained by
Burdin et al. [4] in their HFL state. The �2 fermions form a
gapless q = 4 SYK spin liquid state with fractionalized spinon
excitations, and U (1)2 remains unbroken. The SU(2)S gauge
symmetry is fully higgsed by the generalized field analogous
to Rcψ [47,48], and so the small Fermi surface is stable to
SU(2)S gauge fluctuations.

(C) Rcψ1 	= 0, Rψ1ψ2 	= 0. Both U(1)1 and U(1)2 are now
Higgsed, and both the �1 and �2 fermions effectively carry
the global U(1) charge; the SU(2)S gauge symmetry is also
higgsed. This state does appear in our iterative solution of the
saddle-point equations. However, upon computation of its free
energy, we always find it is metastable, with a free energy
higher than the states (A) and (B) above. This state forms a
Fermi surface of 3 − p electrons; subtracting a filled band,
this is equivalent to a Fermi surface of 1 − p electrons. So
by Higgs-confinement continuity, we can assume this state is
formally the same as the FL phase (A). However, both layers
of ancilla are involved in the band structure, and so this phase
may not be a realistic description of the FL phase of the single-
band model.

Let us now describe the structure of the Luttinger relations
in these phases, following earlier work [4,52,63–68]. We note
that these relations are expected to be exact, and do not rely
upon the large M limit. In the present formulation, we will
see that the generalized Luttinger relations obtained earlier by
topological arguments [5–7,18] can also be obtained in a more
conventional Luttinger-Ward formalism.

It is useful to first solve the equations in Sec. II A for Gcc

and 	cc, in terms of the other unknowns. We solve (2.11) in
the form a continued fraction by writing

Gcc(iωn) = 1

iωn + μ − 	cc(iωn) − R2
cψ1

Gψ1 (iωn)
, (3.2)

Gψ1 (iωn) ≡ 1

iωn + μψ1 − 	ψ1ψ1 (iωn) − R2
ψ1ψ2

Gψ2 (iωn)
,

(3.3)

Gψ2 (iωn) ≡ 1

iωn + μψ2 − 	ψ2ψ2 (iωn)
. (3.4)

Note that Gψ1 and Gψ2 are not the same as Green’s functions
Gψ1ψ1 and Gψ2,ψ2 ; rather, they are Green’s functions for �1

and �2 in absence of mixing between �1 (�2) and C (�1).
Indeed, from (3.2)–(3.4), we can obtain explicit expressions
for the remaining Green’s functions of (2.11) (these expres-
sions are easy to obtain diagrammatically from the Dyson
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series)

Gψ1ψ1 (iωn) = Gψ1 (iωn) + R2
cψ1

Gcc(iωn)
[
Gψ1 (iωn)

]2
(3.5)

Gψ2ψ2 (iωn) = Gψ2 (iωn) + R2
ψ1ψ2

Gψ1ψ1 (iωn)
[
Gψ2 (iωn)

]2
(3.6)

Gcψ1 (iωn) = Rcψ1 Gcc(iωn)Gψ1 (ωn) (3.7)

Gψ1ψ2 (iωn) = Rψ1ψ2 Gψ1ψ1 (iωn)Gψ2 (ωn) . (3.8)

We now observe that (2.6) and (3.2) form a pair of coupled
equations for Gcc and 	cc; these equations can be solved an-
alytically in terms of Green’s function G0

c for the C electrons
on their own

Gcc(iωn) = G0
c

(
iωn + μ − R2

cψ1
Gψ1 (iωn)

)
, (3.9)

G0
c (z) =

∫ ∞

−∞
d


D(
)

z − 

, (3.10)

where the density of mobile electron states D(
) is given by
the Wigner semicircular distribution for the random ti j model:

D(
) = 1

2πt2

√
4t2 − 
2 , 
 ∈ [−2t,+2t] , (3.11)

and D(
) = 0 for |
| > 2t . As discussed in Refs. [4,63], we
can now also present the form of the saddle-point equations
if we had chosen a disorder-free ti j with a sharp momentum
space dispersion εk: we simply have to replace (3.11) by

D(
) =
∑

k

δ(
 − εk ). (3.12)

From these D(
) and (3.10), the explicit expressions for G0
c (z)

for all complex z are:

G0
c (z) =

{
1

2t2

[
z ∓ √

z2 − 4t2
]
, random ti j∑

k
1

z−εk
, nonrandom ti j

, (3.13)

where the sign in front of the square root is chosen so that
G0

c (|z| → ∞) = 1/z. The conduction electron Green’s func-
tion is then determined by (3.9), while the equations for the
�1 and �2 Green’s functions and self-energies are given by
(2.7,2.8,3.5,3.6). Also, for the nonrandom ti j we have the
full momentum-dependent Green’s function of the physical
electrons on the lattice in the FL* phase

Gcc(k, iωn) = 1

iωn + μ − εk − R2
cψ1

Gψ1 (iωn)
. (3.14)

So the main approximation in this method is that the influence
on the ancilla arises only via a k-independent (but frequency-
dependent) self-energy, while a more realistic description of
the Fermi surface structure of the pseudogap would have a
k-dependent self-energy. Also note that

Gcc(iωn) =
∑

k

Gcc(k, iωn) . (3.15)

We can now state the Luttinger constraint on the solu-
tion of the saddle-point equations. The Luttinger analysis
[4,64,65,68] is reviewed and extended in Appendix C: it fixes
the value of chemical potential at T = 0 to equal

μ = EF + R2
cψ1

ReGψ1 (0), (3.16)

where the Fermi energy EF is determined from the free elec-
tron density of states as the solution of

2
∫ EF

−2t
d
 D(
) =

{
1 − p, large Fermi surface, FL
2 − p, small Fermi surface, FL* .

(3.17)
The remarkable fact is that it is the density of states of the
noninteracting electrons which exactly determines the value
of EF for the interacting electron problem. The relationship
(3.17) is illustrated in Fig. 2, where the value of EF for the
FL* phase is determined by the position of the red circle in
the lower panel showing the density of states in the FL phase.

We can also fix the nature of the low frequency behavior of
Green’s function in the metallic states. In the FL* phase, we
expect that the C and �1 Green’s functions will have a finite
imaginary part at zero frequency, and so

Gcc(τ ) ∼ Gψ1ψ1 (τ ) ∼ 1/τ (3.18)

at large |τ | at T = 0. Using (2.7), we can deduce that

Im 	ψ1ψ1 (
) ∼ 
2 (3.19)

at small 
. Then from (3.2,3.3) we obtain Im Gψ1 (
) ∼ 
2.
Along with (3.16), we can now obtain the exact density of
states of the C electrons at the Fermi level from (3.9)

− 1

π
Im Gcc(i0+) = D(EF ) . (3.20)

This relationship is also illustrated in Fig. 2 by the equal
values of ρcc(ω) at the 2 red circles.

IV. NUMERICAL RESULTS

We turn to a numerical solution of the saddle point equa-
tions in Sec. II A. This section will present a numerical
analysis with imaginary time Green’s functions. Results ob-
tained by solving the equations directly on the real frequency
axis will be presented in Sec. V.

A. Zero doping

In this case, we set the chemical potentials to zero, μ =
μψ1 = μψ2 = 0, by particle-hole symmetry. The numerical
solution of the Schwinger-Dyson equations is based on an
iteration procedure, starting from a trial Green’s function.
After convergence, we inspect the values of the off-diagonal
self-energies Rcψ1 and Rψ1ψ2 to determine the nature of each
phase. In some cases there are multiple solutions, and we
select the solution with the lowest free energy.

Figure 3 shows the phase diagram as a function of the two
couplings between the layers. When J⊥ < J⊥c and JK < JKc

the “trivial” phase is realized, where all three layers are de-
coupled, and Rcψ1 = Rψ1ψ2 = 0. The boundaries of this trivial
phase can be determined by taking the limit Rcψ1 → 0 and
Rψ1ψ2 → 0 in equations (2.9,2.10):

1 = −JKc

β

∑
n

G(d )
cc G(d )

ψ1ψ1
, (4.1)

1 = −J⊥c

β

∑
n

G(d )
ψ2ψ2

G(d )
ψ1ψ1

, (4.2)
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FIG. 3. Phase diagram at zero doping. The right plot shows the free energy of the Fermi liquid (FL), Kondo insulator + spin liquid (KI +
SL) and merged phases at JK = 9. We note that the merged phase where Rcψ1 	= 0 and Rψ1ψ1 	= 0 is never dominant. The black dot in the right
plot indicates the point where the phase transition happens. Parameters: t = 2, J = 2, and β ≡ 1/T = 100.

where the superscript (d ) implies that Green’s functions are
computed with layers decoupled. Under this condition, the
first layer is described by the SYK2 model while second
and third layers are described by the SYK4 models (here
SYKq represents the SYK model with random couplings of
q fermion operators). It can then been seen for G(d )

ψ1ψ1
=

G(d )
ψ2ψ2

∼ 1/
√

τ that J⊥c = 0 at T = 0. So the trivial region
in Fig. 3 shrinks to the line JK < JKc, J⊥ = 0 at T = 0. This
‘trivial’ is expected to be unstable to confinement upon includ-
ing SU(2)S gauge fluctuations, and so we will not consider it
further.

In the large JK regime of Fig. 3, the physical and first
ancilla layers are strongly coupled. This implies that the
first layer ancilla spins are Kondo screened by the physi-
cal electrons. As the latter are at half filling, we realize a
Kondo insulator. However, the second ancilla layer remains a
SYK4 spin liquid. So while a conventional Kondo insulator is
smoothly connected to a trivial band insulator, that is not the
case in our model. We instead realize a Mott insulator with
fractionalization, with the fractionalized spinon excitations
residing on the second ancilla layer. Indeed, the presence of
the fractionalized excitations in this insulator is required by
the extended Luttinger theorem.

In the other limit, when J⊥ is large enough, the free energy
of the FL becomes lower. Here the physical layer is decoupled

from the ancilla layers, and forms a free electron metal. On
the other hand, the SYK4 spin liquids on the ancilla layers are
coupled by J⊥, and this drives them into a gapped state which
is smoothly connected to a band insulator.

As Rcψ1 and Rψ1ψ2 change discontinuously between the
phases above, the transition between FL and the Kondo in-
sulator is first order. When J⊥ and JK are close to each other,
we also obtain a ‘merged’ solution, with both Rcψ1 and Rψ1ψ2

nonzero. However, Fig. 3 shows that the free energy of this
merged solution is never the global minimum, and the transi-
tion is first order.

Figure 4 shows Green’s functions in the Kondo insulator
phase. We observe exponential decay, indicating the presence
of a gap in the physical layer and the first ancilla layer (there
is no gap on the second ancilla layer, which forms a gapless
SYK4 spin liquid). We will obtain a more accurate determina-
tion of the gap in the real frequency solution in Sec. V.

B. Nonzero doping

When we turn to nonzero p, the Kondo insulator phase in
Fig. 3 turns into the metallic FL* phase, due to a difference
between the density of mobile C electrons and the density of
spins in the first ancilla layer. The size of the Fermi surface
will be 2 − p, which is equivalent to a density of p mobile
holes.

FIG. 4. Imaginary time Green’s functions in the Kondo insulator phase at zero doping. The frequency ω is on the Matsubara frequency
axis. Parameters: t = 2, J = 2, JK = 6, and β = 10.

235138-7



ALEXANDER NIKOLAENKO ET AL. PHYSICAL REVIEW B 103, 235138 (2021)

FIG. 5. Phase diagram as a function J⊥ and p. At p = 0, J⊥c is
nonzero because of the nonzero temperature, and the Kondo insulator
is present below the black circle. The chemical potential changes
discontinuously at any nonzero p, and so the phase boundary of the
FL* phase does not meet the black circle. Parameters: t = 2, J = 2,
JK = 2.6,and β ≡ 1/T = 100.

The density of the electrons in the first layer is equal
to 1 − p, while in both ancilla layers it is equal to 1. This
is equivalent to the constraints: −Gcc(β−) = (1 − p)/2 and
−Gψ1ψ1 (β−) = −Gψ2ψ2 (β−) = 1/2. These can be satisfied by
tuning only one chemical potential μ in the FL phase (while
μψ1 = μψ2 = 0), and tuning both chemical potentials: μ and
μψ1 in the FL∗ phase (while μψ2 = 0).

Derivation of the two-dimensional phase diagram as in the
Fig. 3 for p > 0 is complicated because the chemical poten-
tials are unknown. We show a phase diagram as a function of
p and J⊥ in Fig. 5 obtained as described below.

As in Sec. IV A, Eqs. (4.1) and (4.2) can be used to find the
values of JKc and J⊥c that determine the phase transition lines
from the trivial phase to FL and FL∗ phases. It is clear that
J⊥c does not depend on doping and is equal to zero at zero
temperature, while JKc(p) depends on doping in a nontrivial
way, it increases at larger doping (see Fig. 6). This has an
important physical consequence: the transition between FL

FIG. 6. The onset of the FL* phase from the trivial decoupled
phase. The FL* phase is present for JK > JKc(p). Parameters: t = 2,
J = 2, and β = 100.

FIG. 7. Red lines show the contours of constant doping, while
blue line shows the contour of constant density in the second layer.
The dashed lines delineate the region of convergence of Schwinger-
Dyson equations. The intersection of red line with the lines of
constant p gives chemical potentials at the concrete doping. Parame-
ters: JK = 10, t = 2, J = 2, and β = 10.

and FL∗ phases can be initiated by varying doping, without
changing any physical couplings. As the doping increases, the
onset of the FL∗ phase goes to a larger JK and the FL phase
emerges.

We focus on a fixed JK > JKc and show that FL∗ phase
exists for all dopings, and it goes to the FL phase at large
J⊥. As the chemical potentials are unknown, we solve the
Schwinger-Dyson equations for all chemical potentials, and
impose the constraints afterwards. Our numerical solutions
are also aided by analytical solutions which are possible at
J = 0, as described in Appendix D.

Figure 7 displays the lines of the constant densities as
functions of two chemical potentials in the FL∗ phase. The
red line corresponds to a fixed density nψ1 = 1 in the first
ancilla layer. It intersects with the lines at constant p which
indicates the presence of FL∗ phase. We note that the line at
constant density does not intersect with the p = 0 line which
is expected since the chemical potentials are zero at zero
doping. The jump in the chemical potentials from p = 0 to
p 	= 0 is consistent with the Luttinger theorem (3.16).

This conclusion can be further substantiated by analyzing
the behavior of Green’s functions. Imaginary time Green’s
functions decay as 1/τ at large times (Fig. 8), while in the
frequency space they reach constant values at ω = 0 and de-
cay as 1/ω at large frequencies. This demonstrates the gapless
metallic nature of the FL* phase.

In the FL phase, the two ancilla layers decouple from the
physical layer and form a ‘trivial’ insulator. The decoupled
ancilla layers are a pair of the SYK4 models with a nonrandom
exchange coupling J⊥ between them. This is similar, but not
identical, to coupled SYK models considered in the literature:
there have been studies of SYK models each with a differ-
ent random four-fermion term, coupled with another random
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FIG. 8. Green’s functions in FL∗ phase at nonzero doping as functions of imaginary time (left, logarithmic scale) and imaginary frequency
(right). Parameters: p = 0.4, t = 2, J = 2, JK = 10, and β = 200.

four-fermion term [69–72]; and of SYK models each with
the same random four-fermion term, coupled by nonrandom
two-fermion terms [59,73–78]. In our case with a nonrandom
four-fermion coupling J⊥, the argument below (4.2) implies
that an infinitesimal J⊥ induces a gap. In our numerical study,
the imaginary time Green function demonstrates an expo-
nential decay at large times (Fig. 9). This implies that the
ancilla excitations are gapped, and do not contribute to the
low-energy excitations of the physical layer.

V. SPECTRAL FUNCTIONS IN THE FL* PHASE

This section solves the saddle-point equations along the
real frequency axis, allowing us to obtain accurate results for
the electron spectral function. We will consider only the FL*
phase, where we have new results on electron spectral func-
tions which do not obey the conventional Luttinger theorem.
As the second ancilla layer decouples from the first two layers
in the FL* phase, the equations we need to solve are

	ψ1ψ1 (τ ) = −J2G2
ψ1ψ1

(τ )Gψ1ψ1 (−τ ),

Gcc(z) = G0
c

(
z + μ − R2

cψ1

z + μψ1 − 	ψ1ψ1 (z)

)
,

Gψ1ψ1 (z) = 1

z + μψ1 − 	ψ1ψ1 (z)
+ R2

cψ1
Gcc(z)(

z + μψ1 − 	ψ1ψ1 (z)
)2 .

(5.1)

We solve these equations by iteration. As before, we fix Rcψ1

to some value, and the chemical potential μψ1 is to be found
such that the constraint on the half-filling on the first level
(2.4) is satisfied.

In both cases of zero and nonzero doping, we solve the
equations on the spectral functions directly that are related to
Green’s functions as follows:

Gv (z) =
∫ +∞

−∞
dω

ρv (ω)

z − ω
, (5.2)

where the subscript v indicates either (cc) or (ψ1ψ1). The
self-energies are complex valued, thus we consider equations
for both real and imaginary parts. The imaginary part can be
obtained directly from the Schwinger-Dyson equation (5.2).
Taking the Fourier transform of the first equation, the imag-
inary part of the self-energy can be written in the following
form

	′′
ψ1ψ1

(ω > 0) = − πJ2ω2
∫ π

2

0
du sin3 u ρψ1ψ1 (−ω cos2 u)

×
∫ π

2

0
dφ sin2 2φρψ1ψ1

× (ω sin2 u cos2 φ)ρψ1ψ1 (ω sin2 u sin2 φ).
(5.3)

The above expression is defined at positive frequencies. For
negative frequencies we change the sign ω → −ω. The real
part is obtained using the Kramers-Kronig relations.

FIG. 9. Imaginary time Green’s functions of the two coupled Ancilla layers. The frequency ω is on the Matsubara frequency axis.
Parameters: J⊥ = 5, J = 2, and β = 10.

235138-9



ALEXANDER NIKOLAENKO ET AL. PHYSICAL REVIEW B 103, 235138 (2021)

FIG. 10. Electron spectral density for different values of J and
fixed Rcψ1 = 0.75, in the Mott insulator (i.e., Kondo insulator in the
electron and first ancilla layer) at doping p = 0. Inset: Behavior of
the spectral densities at small frequencies. The gap becomes smaller
with increasing J .

To obtain the solutions we are interested in, we choose
the exact expressions for the spectral functions ρcc(ω) and
ρψ1ψ1 (ω) at J = 0 (see Appendix D) as the initial functions
and proceed with iterations until the needed convergence is
reached.

We use slightly different equations to obtain solutions at
zero and nonzero doping. At p = 0, i.e. when the chemical
potentials are set to zero, the equations on the spectral func-
tions are obtained as the imaginary parts of Green’s function
in (5.2).

For the case of p 	= 0, we instead use the matrix Dyson
equation (2.11) for the FL∗ phase, and consider the imagi-
nary parts of both Gcc(ω) and Gψ1ψ1 (ω). We find that these
equations converge easier to the solutions that are discussed
below. In both cases, we use the same equations for the self-
energies (5.3).

As in Sec. IV, we consider p = 0 and p > 0 cases in turn.

A. Zero doping

At p = 0, our FL* phase reduces to Mott insulator. How-
ever, the Mott insulating behavior is realized in a novel way in
the ancilla approach. As we noted in Sec. IV A, the electron

FIG. 11. Spectral density of �1 fermion for the case in Fig. 10,
with different values of J and fixed Rcψ1 = 0.75, in the Mott insulator
at doping p = 0.

FIG. 12. Numerically computed gap � as function of Rcψ1 with
fixed r.m.s. exchange in the ancilla layers J = 1 at doping p = 0.

layer combines with the first ancilla layer to form a Kondo
insulator. Then the second ancilla layers realizes a gapless
SYK4 spin liquid, which is required to exist in a Mott insu-
lator in a single band model at half filling. In our mean-field
analysis, the second ancilla layer decouples in the FL* phase,
and we will not consider it further here.

We define the spectral densities ρv (ω) = −ImGR
v (ω)/π

and find their behaviors at zero doping p = 0 for different val-
ues of the coupling constant J on the first layer. See Figs. 10
and 11.

The spectra show a gap �. At J = 0, we can determine the
value of �, and the full spectrum, exactly from the solution
in Appendix D. At nonzero J , the value of � decreases with
increasing J . We also observe signs of nonanalyticities in the
spectrum at ω = 3�, 5�, . . .: these are expected at all odd
multiples of � from (2.7), and are thresholds associated with
the decay of an excitation to three excitations.

In conclusion of the analysis at zero doping, we compute
the value of the gap � as a function of the off-diagonal self-
energy Rcψ . In Fig. 12, we show its behavior at J = 1.

FIG. 13. Spectral density of �1 fermion for the case in Fig. 2,
with Rcψ1 = 0.75 and doping p = 0.246. The dashed line indicates
the density at ω = 0. The r.m.s. exchange in the ancilla layers is J =
1. (Inset) Behavior of the spectral density at small frequencies.
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FIG. 14. Electron C spectral density at Rcψ1 = 0.75 and value of
doping p = 0.1. The dashed line indicates the density at ω = 0. The
r.m.s. exchange in the ancilla layers is J = 1.8.

B. Nonzero doping

We already showed a result for the spectral function of the
FL* phase in Fig. 2 for p = 0.246. There is now no strict gap
in the spectrum, but a pseudogap at positive frequencies; any
nonzero hole doping moves the Fermi energy to the top of the
lower band in the insulator in Fig. 11. The density of states
at the Fermi energy, ω = 0, is suppressed to a value that is
constrained by the extended Luttinger theorem in Appendix
C: as illustrated in Fig. 2, and from (3.20), the density of states
at the Fermi level has the same value as the case where p holes
are doped in a fully filled band of the C electrons. For the
case with a nonrandom dispersion εk, the equivalent statement
would be that the Fermi surface encloses a volume equivalent
to p holes in the FL* phase. We also show the spectral density
of the ψ1 fermions in the first ancilla layers in Fig. 13.

Spectral functions at a smaller doping p = 0.1 appear in
Figs. 14 and 15. Note the decrease in the electron density
of states at the Fermi level, and pseudogap above the Fermi
energy.

We note that the above computations of the FL* spectral
functions do not include the influence of the spin liquid state in
the second ancilla layer. Such a coupling appears at higher or-
ders in 1/M, and consequences are similar to those described

FIG. 15. �1 fermion spectral density for the case in Fig. 14. The
dashed line indicates the density at ω = 0.

by Burdin et al. [4] for the Kondo lattice: for the case of a
SYK spin liquid on the second ancilla layer, there are marginal
Fermi liquid self-energy corrections for the quasiparticles on
the small Fermi surface.

VI. CONCLUSIONS

We examined a solvable single band model with hole dop-
ing p away from half-filling. The model displays a small
Fermi surface of holes of volume p at small doping, and a
transition to a large Fermi surface of holes of volume 1 + p
(or equivalently, a Fermi surface of electrons of volume 1 − p)
obeying the conventional Luttinger theorem at large doping.
This basic phenomenology tracks the physics of the hole
doped cuprates in the crossover from the pseudogap at low
doping to the Fermi liquid at high doping, as displayed in
numerous experiments [1–3]. There are no broken symmetries
in any of the phases we find, and so the observed broken
symmetries at low temperatures are presumed to be secondary
phenomena. Our approach maps the low-energy electronic
excitations of the pseudogap phase to those a doped Kondo
insulator (plus a spin liquid in the second ancilla layer). The
popular approach of a doped Mott insulator [54] requires a
nonperturbative binding of spinons and holons in the FL*
state, and that is not needed in our framework.

We employed an ancilla approach, in which the physical
layer is coupled to two fictitious layers of ancilla spins. We
show in Appendix A that, in a suitable limit, the ancilla
spins can be eliminated by a canonical transformation, and
the resulting effective Hamiltonian for the physical spins is a
single band Hubbard model in the strong correlation regime.
So we can view the ancilla spins as being akin to Hubbard-
Stratonovich fields, which are chosen to be a pair of quantum
spins rather than bosonic fields. The pairing of ancilla spins is
essential to avoid introducing new anomalies [18] associated
with extended Luttinger theorems. Fluctuations of a SU(2)S

gauge field, acting as a rotating reference frame in spin space
[60,61], are also need to ensure that the final theory acts only
on the physical layer, and the ancilla spins are projected onto
rung singlets [47,48].

In the absence of symmetry breaking, the insulator at half-
filling (p = 0) in a single band model is neccesarily a spin
liquid with topological order. Our ancilla approach captures
both spin and charge fluctuations in such a Mott insulator in
an interesting manner. The physical electron (C) layer and
the first ancilla (�1) layer form a Kondo insulator. There is a
charge gap in this Kondo insulator, and conventional electron
and hole excitations across the charge gap, with no spin-
charge separation. The spectrum of these charge excitations
is shown in Fig. 10 for the case of random matrix hopping
in the electron layer. At the same time, this insulator also has
fractionalized spinon excitations—indeed such fractionalized
excitations are required by the extended Luttinger theorems.
In our approach, these fractionalized excitations reside on the
second ancilla (�2) layer. In the present paper, we used a
SYK4 model of a gapless spin liquid, but other possibilities
have also been considered [47,48].

Upon doping this Mott insulator, we obtain a FL* phase as
our theory for the pseudogap. Given the mapping of the Mott
insulator to the Kondo insulator above, the FL* phase maps

235138-11



ALEXANDER NIKOLAENKO ET AL. PHYSICAL REVIEW B 103, 235138 (2021)

onto a doped Kondo insulator. The spectrum of electron-like
excitations of this metallic phase are shown in Figs. 2 and 14
for two values of p. These are computed for the simplest case
where the band structure of the physical electron layer is a
random matrix—so the density of states in the large doping
Fermi liquid phase will be a Wigner semicircle, as shown in
Fig. 2. In the FL* phase, our results show a number of notable
features: a reduction in the density of states at the Fermi
level, a pseudogap above the Fermi level, and a pronounced
particle-hole asymmetry. It would be interesting to extend
these computations to more realistic band structures on the
physical layer; computations with a realistic band structure
were carried out in Ref. [47], but without the dynamic spin
fluctuations present in our SYK model.

In comparing to experimental observations of pseudogap
spectra in STM experiments [57,79,80], we do observe a
particle-hole asymmetry with the same sign. Moreover, as in
Figs. 2 and 14, the minimum in the local density of states
(LDOS) is indeed observed to be slightly above the Fermi
level at higher temperatures (see Fig. 3(c) in Lee et al. [57]).
As the temperature is lowered, the minimum in the LDOS
moves towards the Fermi level, indicating the appearance of
physics not captured by our present analysis. It would be inter-
esting to study fluctuation corrections, possibly from spinon
or electron pairing, or from disorder [81], and determine if
they can explain the pinning of the LDOS minimum to the
Fermi level as T → 0.

At larger p our model undergoes a first-order phase transi-
tion to a conventional Fermi liquid phase (FL), as we showed
in Sec. IV. In this phase, the physical electronic layer is largely
decoupled from the two ancilla layers, which are locked into
a trivial spin gap insulator, as illustrated in Fig. 1(b). The
first-order transition is compatible with the observed sudden
change between incoherent and coherent photoemission spec-
tra in the antinodal region upon a small change in doping in
Bi2122 [2]; we also that the sharp vertical boundary of the
pseudogap phase in the doping-temperature plane, as detected
by the nematicity in x-ray scattering [82]. On the other hand,
the critical fluctuation effects associated with ghost Fermi
surfaces, studied in Refs. [47,48] are absent in the present
large M limit at T = 0. It is possible that such fluctuations are
restored at nonzero temperatures, and it would be interesting
to incorporate such fluctuations in extensions of our approach.

Our computations also make general predictions for
spectra observed in photoemission and neutron scattering ex-
periments in the pseudogap phase. While, the ancillas are a
computational device, they also give a simple physical picture
for such experiments.

(1) For photoemission, the main prediction is that the
electronic spectrum near the Fermi surface should be similar
to that of a lightly doped Kondo insulator. This provides a
direct understanding of the spectrum, rather than proceeding
by doping the spin liquid of a Mott insulator [54].

(2) For neutron scattering, the prediction is that there are
two components to the spin fluctuations. One component con-
sists of the spin fluctuations of the particles/holes observed in
photoemission, which would also be present in a doped Kondo
insulator. The other component arises from the spinons of the
spin liquid in the second ancilla layer, and this is not present
in a doped Kondo insulator.

In closing, we note an interesting correspondence along
the lines of Ref. [58], to a recent study by Sahoo et al.
[59] of wormholes and Hawking-Page transitions in cou-
pled SYK models. They considered two q = 4 complex SYK
models with random four-fermion interactions determined by
the same couplings, and a nonrandom two-fermion coupling
between them. Under suitable conditions, they found a first-
order transition between two compressible non-Fermi liquid
phases. In the ‘large black hole’ phase, all fermions are in-
volved in the low-energy non-Fermi liquid excitations and a
wormhole connects to the black holes dual to the SYK models.
This is separated by a first-order partial Hawking-Page tran-
sition from a ‘small black hole’ phase in which a particular
linear combination of fermions is locked into a trivial gapped
state, while the remaining fermions form the non-Fermi liq-
uid. This has parallels in our study, although the details are
different. We have two q = 4 SYK models with different
random four-fermion couplings, one q = 2 SYK model with
random two-fermion couplings, and nonrandom four-fermion
couplings between the SYK models. The FL phase is the
analog of the small black hole phase: in our case, the q = 4
SYK models lock into a trivial insulator, while the q = 2
SYK model forms a Fermi liquid state. The FL* phase is the
analog of the large black hole phase: in our case, the q = 2
SYK model and one q = 4 SYK model together form a Fermi
liquid, while the other q = 4 SYK model forms a non-Fermi
liquid.

For a closer holographic analogy, we can imagine 3 SYK
models in a row, with the central SYK model coupled to the
outer ones. In one phase, the central black hole is connected
by a wormhole to the one on the left, and in the other phase
the central black hole is connected by a wormhole to the one
on the right. These phases are separated by a Hawking-Page
type transition, which is the holographic analog of the FL* to
FL transition discussed here.
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APPENDIX A: MAPPING TO THE SINGLE BAND
HUBBARD MODEL

In this Appendix, we obtain the effective Hamiltonian for
noninteracting electrons C in the physical layer coupled to
two ancilla layers, as in Fig. 1, in the limit of large J⊥, for
the SU(2) case with M = 2. To leading order in the 1/J⊥
expansion, this effective Hamiltonian turns out to be the fa-
miliar Hubbard model. This Hubbard model can be in a strong
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correlation regime by a judicious choice of ancilla couplings,
as we shall show below.

For simplicity, we only consider the case with nonran-
dom, nearest-neighbor, exchange interactions. So we have (1)
noninteracting electrons at chemical potential μ with nearest-
neighbor hopping t in the physical layer, (2) antiferromagnetic
exchange JK between the physical layer and the first ancilla
layer, (3) antiferromagnetic exchange J⊥ between the second
ancilla layer and the first ancilla layer, (4) antiferromagnetic
exchange J1 within the first ancilla layer, and (5) antiferro-
magnetic exchange J2 within the second ancilla layer.

We can perform Schrieffer-Wolff transformation [83] in
powers of 1/J⊥ to eliminate the ancilla layers. To order 1/J2

⊥,
this will yield an effective Hamiltonian for the physical layer
of C fermions of the following form:

Heff =
∑

i

[E0 − μeff C†
i;αCi;α + Ueff C†

i;↑Ci;↑C†
i;↓Ci;↓]

+
∑
〈i j〉

[
−t (C†

i;αCj;α + H.c.)

+ Jeff

4
C†

i;α �σαβCi;β C†
j;γ �σγ δCj;δ

]
, (A1)

where �σ are the Pauli matrices.
At order 1/J⊥, we only introduce on-site couplings in the

physical layer. These couplings can be computed by exact
diagonalization of the three-site model, with one site in each
layer. With 0 or 2 electrons in the C layer, the ancilla spins
lock in a singlet with energy −3J⊥/4. With 1 electron in the
physical layer, the ground state energy of the three-site model
is

E3 = −J⊥ + JK

4
− 1

2

(
J2
⊥ + J2

K − J⊥JK
)1/2

. (A2)

This lowers the energy of a singly occupied site in the phys-
ical layer, and the result is an effective repulsive interaction
between the electrons; by matching energy levels to those of
Heff , we obtain

μeff = μ + Ueff/2,

Ueff = 3J2
K

8J⊥
+ 3J3

K

16J2
⊥

+ O(1/J3
⊥) . (A3)

The exchange coupling Jeff appears only at order 1/J2
⊥, and

it can be computed by diagonalizing a six-site cluster with two
sites in each layer. We performed such a diagonalization in a
power series in 1/J⊥ and obtained

E0 = −3J⊥
2

− 3(J1 + J2)2

64J⊥
− 3(J1 + J2)3

256J2
⊥

+ O(1/J3
⊥),

Jeff = J2
K (J1 + J2)

4J2
⊥

+ O(1/J3
⊥) . (A4)

We now observe that we can obtain the physically reason-
able heierarchy Jeff � t � Ueff by choosing( J

J⊥

)3

� t

J⊥
�

( J

J⊥

)2

� 1 , (A5)

where J is a generic coupling of order JK , J1, or J2.

APPENDIX B: DERIVATION OF SCHWINGER-DYSON
EQUATIONS

After an averaging of the initial Hamiltonian (2.1) over the
random couplings we obtain the action:

S = SB + St + SJ + SJK , (B1)

where the kinematic Berry phase term is

SB =
∑
i,α

∫
dτC†

i;α (τ )(∂τ − μc)Ci;α (τ )

+
∑
i,a,α

∫
dτ�

†
i;a;α (τ )(∂τ − μψa )�i;a;α (τ ) , (B2)

the random hopping term is

St = −
N∑
i, j

t2

2N

∫
dτdτ ′C†

i;α (τ )Cj;α (τ )C†
j;β (τ ′)Ci;β (τ ′) ,

(B3)

the random exchange terms are

SJ =−
N∑

a,i 	= j

J2

4NM

∫
dτdτ ′Si;a;αβ (τ )S j;a;βα (τ )

× Si;a;α′β ′ (τ ′)S j;a;β ′α′ (τ ′) , (B4)

and the nonrandom exchange terms are

SJK = J⊥
M

∑
i

∫
dτSi;1;αβ (τ )Si;2;βα (τ )

+ JK

M

∑
i

∫
dτC†

i;α (τ )Ci;β (τ )Si;1;βα (τ ) (B5)

The random hopping term can be rewritten in terms of a
bilocal field:

Gαβ
cc (τ, τ ′) = − 1

N

∑
i

Ci;α (τ )C†
i;β (τ ′) . (B6)

Then, assuming Gαβ
cc = Gccδα,β :

St/(NM ) =
∫

dτdτ ′
[

t2

2
Gcc(τ, τ ′)Gcc(τ ′, τ ) − 	cc(τ ′, τ )

×
(

Gcc(τ, τ ′) + 1

NM

∑
i,α

Ci;α (τ )C†
i;α (τ ′)

)]
.

(B7)

To simplify the random exchange terms, we introduce the
following 4-field:

Qαβα′β ′
a (τ, τ ′) = − 1

N

∑
i

Si;a;αβ (τ )Si;a;α′β ′ (τ )(τ ′) . (B8)
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Including a corresponding 4-self-energy, we obtain

SJ =
∫

dτdτ ′
[
−NJ2

4M
Qαβα′β ′

a (τ, τ ′)Qβαβ ′α′
a (τ, τ ′) − N

M
	

αβα′β ′
Q;a (τ ′, τ )

(
Qa(τ, τ ′)αβα′β ′ + 1

N

∑
i

Si;a;αβ (τ )Si;a;α′β ′ (τ ′)

)]
.

(B9)

In the large M limit, we can safely assume that the saddle point has [49] Qαβα′β ′
a = δαβ ′δβα′Qa, and similarly for the corresponding

self-energy. We also introduce a bilocal field:

Gi
ψaψa

(τ, τ ′) = − 1

M

∑
α

�i;a;α (τ )�†
i;a;α (τ ′) . (B10)

Then we obtain

SJ/(NM ) =
∫

dτdτ ′
[

− J2

4
Qa(τ, τ ′)2 − 	Q;a(τ ′, τ )

(
Qa(τ, τ ′) − Gψaψa (τ, τ ′)Gψaψa (τ ′, τ )

)
− 	ψaψa (τ ′, τ )

(
Gψaψa (τ, τ ′) + 1

NM

∑
i,α

�i;a;α (τ )�†
i;a;α (τ ′)

)]
. (B11)

The nonrandom exchange terms can be rewritten in terms of bilocal fields and self-energies as follows. We introduce Green’s
functions as

Gi
cψa

(τ, τ ′) = − 1

M

∑
α

Ci;α (τ )�†
i;a;α (τ ′) Gi

ψac(τ, τ ′) = − 1

M

∑
α

�i;a;α (τ )C†
i;α (τ ′) (B12)

We assume that Gcψa (τ = +0) = Gcψa (τ = −0) due to commutation relation. Indeed Gcψa (τ ) = −〈TC(τ )�†
a (0)〉. Then

Gcψa (+0) = −〈C�†
a 〉 and Gcψa (−0) = 〈�†

aC〉 = −〈C�†
a 〉. Then, after assuming Gi = G, we obtain

SJK /(NM ) =
∫

dτdτ ′
[

− JK Gψ1c(τ + 0, τ )Gcψ1 (τ + 0, τ )δ(τ − τ ′) − 	ψ1c(τ ′, τ )

(
Gψ1c(τ, τ ′) + 1

NM

∑
i,α

�i;1;α (τ )C†
i;α (τ ′)

)

− 	cψ1 (τ ′, τ )

(
Gcψ1 (τ, τ ′) + 1

NM

∑
i,α

Ci;α (τ )�†
i;α (τ ′)

)]

+
∫

dτdτ ′
[

− J⊥Gψ2ψ1 (τ + 0, τ )Gψ1ψ2 (τ + 0, τ )δ(τ − τ ′)

− 	ψ2ψ1 (τ ′, τ )

(
Gψ2ψ1 (τ, τ ′) + 1

NM

∑
i,α

�i;2;α (τ )�†
i;1;α (τ ′)

)

− 	ψ1ψ2 (τ ′, τ )

(
Gψ1ψ2 (τ, τ ′) + 1

NM

∑
i,α

�i;1;α (τ )�†
i;2;α (τ ′)

)]
. (B13)

Now we can integrate over �̃ = (C, �) degrees of freedom. The action is quadratic in these variables: S =∑
i,α,n �̃

†
i,α,nHi,α,n�̃i,α,n, where the n subscript refers to Matsubara frequency:

Hn =
⎛⎝−iωn − μ + 	cc,n 	cψ1,n 0

	ψ1c,n −iωn − μψ1 + 	ψ1ψ1,n 	ψ1ψ2,n

0 	ψ2ψ1,n −iωn − μψ2 + 	ψ2ψ2,n

⎞⎠. (B14)

After integrating these degrees of freedom, we obtain

S/(NM ) =
∑

n

(− ln(detHn) − 	i j,nGi j,n) + 1

2
(μψ1 + μψ2 ) . (B15)

Differentiating over the self-energies, we obtain

Gn = −
⎛⎝−iωn − μ + 	cc,n 	cψ1,n 0

	ψ1c,n −iωn − μψ1 + 	ψ1ψ1,n 	ψ1ψ2,n

0 	ψ2ψ1,n −iωn − μψ2 + 	ψ2ψ2,n

⎞⎠−1

. (B16)
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Differentiating over Green’s functions we obtain the following self-energies:

	cc(τ ) = t2Gcc(τ ),

	ψaψa (τ ) = −J2Gψaψa (τ )2Gψaψa (−τ ),

	cψ1 (τ ) = −JK Gψ1c(τ = +0)δ(τ ),

	ψ1c(τ ) = −JK Gcψ1 (τ = +0)δ(τ ),

	ψ1ψ2 (τ ) = −J⊥Gψ2ψ1 (τ = +0)δ(τ ),

	ψ2ψ1 (τ ) = −J⊥Gψ1ψ2 (τ = +0)δ(τ ), (B17)

which leads to the expressions in Sec. II A.

Free energy

The free energy is given by the action at the saddle point: βF = Ssaddle

βF

NM
=

∑
n

(− ln(detHn) − 	i j,nGi j,n) +
∫

dτdτ ′
[

t2

2
Gcc(τ, τ ′)Gcc(τ ′, τ ) − J2

4
G2

ψaψa
(τ, τ ′)G2

ψaψa
(τ ′, τ )

]
− βJK Gψ1c(0)Gcψ1 (0) − βJ⊥Gψ2ψ1 (0)Gψ1ψ2 (0) + 1

2
(μψ1 + μψ2 ). (B18)

The double integration can be further simplified assuming that Green’s functions depend on time difference(I also divide it by
iωn to get rid of divergences):

βF

NM
=

∑
n

(− ln(detHn/(iωn)3) − 	i j,nGi j,n
) +

∫ β

0
dτ (β − τ )

[
t2Gcc(τ )Gcc(−τ ) − J2

2
G2

ψaψa
(τ )G2

ψaψa
(−τ )

]
− βJK Gψ1c(0)Gcψ1 (0) − βJ⊥Gψ2ψ1 (0)Gψ1ψ2 (0) + 1

2
(μψ1 + μψ2 ). (B19)

The formula can be checked (at least partially) in the following way: we compute Free energy for different 	i j and it the
minimum of the Free energy should coincide with the actual solution of the Schwinger-Dyson equations.

APPENDIX C: LUTTINGER RELATIONS

This Appendix will employ a conventional Luttinger-Ward formalism to obtain the distinct Luttinger relations in the FL* and
FL phases in a unified manner. All results here are exact, and hold to all orders in the 1/M expansion.

First, we review the derivation of the Luttinger result (3.16) from Refs. [64,65,84] in the context of our FL* phase where
Rcψ1 	= 0, but Rψ1ψ2 = 0. We use (3.9, 3.10) to write the c fermion Green’s function as

GF
cc(ω) = d

dω

∫ ∞

−∞
d
D(
) ln

[
ω + μ − R2

cψ1
GF

ψ1
(ω) − 


] + R2
cψ1

dGF
ψ1

(ω)

dω
GF

cc(ω), (C1)

where the superscript F denotes Feynman Green’s functions at T = 0. From (3.3) we have

dGF
ψ1

(ω)

dω
= −[

GF
ψ1

(ω)
]2

(
1 − d	F

ψ1ψ1
(ω)

dω

)
. (C2)

FIG. 16. Electron (a) and fermionic (b) spectral densities of the insulating solution at p = 0 for J = 0, t = 1, and Rcψ1 = 0.75.
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FIG. 17. Numerically computed chemical potentials μψ1 (a) and μ (b) as functions of doping p for J = 0, t = 1, and Rcψ1 = 0.75.

Combining (C1) and (C2) with (3.3) and (3.5), we obtain for
the sum of the c and ψ1 Green’s functions

GF
cc(ω) + GF

ψ1ψ1
(ω)

= d

dω

∫ ∞

−∞
d
D(
) ln

[
ω + μ − R2

cψ1
GF

ψ1
(ω) − 


]
+ GF

ψ1ψ1

d	F
ψ1ψ1

(ω)

dω
+ d

dω
ln

[
ω + μψ1 − 	F

ψ1ψ1
(ω)

]
.

(C3)

Recall that we are in the FL* phase where Rψ1ψ2 = 0. Now we
can compute the total number of fermions by

2 − p

2
=

∫ ∞

−∞

dω

2π i

[
GF

cc(ω) + GF
ψ1ψ1

(ω)
]
eiω0+

. (C4)

As in traditional proofs of the Luttinger theorem [85],
the central point is that the frequency integral of the
GF

ψ1ψ1
[d	F

ψ1ψ1
(ω)/dω] term of (C3) vanishes. In our case,

this follows directly from (2.7) or from the G-	 theory in
Appendix B: this shows that GF

ψψ (ω) = δS/δ	F
ψ1ψ1

(ω), and
so the noted term in (C3) is a total derivative of ω. The
remaining terms in (C3) are explicitly total derivatives of ω,
and so their frequency integrals are easily evaluated [64,85].
For 0 < p < 1, the FL* phase appears in a regime where
the frequency integral of the ln[ω + μψ1 · · · ] term in (C3)
vanishes, and then the ln[ω + μ · · · ] term in (C3) yields the
FL* case of the Luttinger relation in (3.17). We note that this
Luttinger relation is found to be accurately obeyed in all our
numerical analyses.

Next, let us also consider the FL case (C) in Sec. III
where Rcψ1 	= 0 and Rψ1ψ2 	= 0. Then, from the expressions
in Sec. III, the identity (C3) is replaced by

GF
cc(ω) + GF

ψ1ψ1
(ω) + GF

ψ2ψ2
(ω)

= d

dω

∫ ∞

−∞
d
D(
) ln

[
ω + μ − R2

cψ1
GF

ψ1
(ω) − 


]
+ GF

ψ1ψ1

d	F
ψ1ψ1

(ω)

dω
+ d

dω

× ln
[
ω + μψ1 − 	F

ψ1ψ1
(ω) − R2

ψ1ψ2
GF

ψ2
(ω)

]
+ GF

ψ2ψ2

d	F
ψ2ψ2

(ω)

dω
+ d

dω
ln

[
ω + μψ2 − 	F

ψ2ψ2
(ω)

]
.

(C5)

The frequency integral of (C5) can be performed exactly, as
for (C3): now the ln[ω + μψ1 · · · ] term yields unity, while the
ln[ω + μψ2 · · · ] term yields 0, and we obtain the FL case of
the Luttinger relation in (3.17).

For our purposes, the FL case in Fig. 1 actually corresponds
to case (A) in Sec. III with Rcψ1 = 0 and Rψ1ψ2 	= 0. In this
case the Luttinger relations follow as special cases of the
analyses above. The Luttinger relations for the physical C
layer follows directly from (C1), where the last term vanishes.
The Luttinger relation for the two ancilla layers in obtained
from (C5) after dropping the first terms from both the left-
and right-hand sides.

FIG. 18. Electron (a) and fermionic (b) spectral densities at
nonzero doping for J = 0, t = 1, Rcψ1 = 0.75 and p = 0.05, μψ1 =
−0.26, μ = −0.37 (red dotted line), p = 0.25, μψ1 = −0.27, and
μ = −0.79 (black solid line).
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APPENDIX D: SOLUTION AT J = 0

It is instructive to examine the solution of the saddle-point
equations in the limit where the ancilla spins are decoupled
from each other. An exact solution is possible, similar to the
Kondo model studied in Ref. [65], but now for the case of
a Wigner semicircle band of conduction electrons. The exact
solution gives insight into the origin of the gap at p = 0, and
how it closes for nonzero p.

At J = 0, we have 	ψ1ψ1 = 	ψ2ψ2 = 0, and then the ex-
pressions in Sec. III constitute exact results for the frequency
dependence of all Green’s functions in terms of the chemical
potentials and Rcψ1 and Rψ1ψ2 .

Here we examine these expressions in the FL* phase,
where we also set Rψ1ψ2 = 0. Then the nonzero Green’s func-
tions are

Gcc(z) = G0
c

(
z + μ − R2

cψ1

z + μψ1

)
,

Gψ1ψ1 (z) = 1

z + μψ1

+ R2
cψ1

Gcc(z)

(z + μψ1 )2
, (D1)

where G0
c (z) is given in (3.13). It is useful to note the large |z|

limit

G0
c (|z| → ∞) = 1

z
+ t2

z3
+ . . . , (D2)

which establishes that there are no poles in (D1) at z = −μψ1 .
Consider first the undoped insulating limit p = 0, where

we obtain a gapped phase. Particle-hole symmetry requires
μ = 0 and μψ1 = 0. Examination of (D1) then shows that
there is a gap in the spectrum for any Rcψ1 as shown in Fig. 16.

Turning to nonzero p, with gapless metallic solutions. Now
the Luttinger relation in (3.16) and (3.17) applies, and this
relates μ to p

μ = EF + R2
cψ1

μψ1

, (D3)

where EF → 2t as p → 0 as

2
∫ EF

−2t
d
D(
) = 2 − p �⇒

∫ 1

EF /(2t )
dx

√
1 − x2 = π p

4
.

(D4)
At a given doping, the chemical potential μψ1 is found numer-
ically using the constraint (2.4) and presented in Fig. 17. The
spectral densities change with doping as shown in Fig. 18.
We check numerically the Luttinger relation (D3) with the
constraint (2.5) and find that it works with the precision 10−4

which is comparable with the precision that we tune to find
the chemical potential μψ1 . We also check the formula for the
density of states of the electrons at the Fermi level (3.20) and
obtain that it works with the precision 10−8.
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