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Matrix elements of observables in eigenstates of generic Hamiltonians are described by the Srednicki ansatz
within the eigenstate thermalization hypothesis (ETH). We study a quantum chaotic spin-fermion model in a
one-dimensional lattice, which consists of a spin-1/2 XX chain coupled to a single itinerant fermion. In our
study, we focus on translationally invariant observables including the charge and energy current, thereby also
connecting the ETH with transport properties. Considering observables with a Hilbert-Schmidt norm of one,
we first perform a comprehensive analysis of ETH in the model taking into account latest developments. A
particular emphasis is on the analysis of the structure of the offdiagonal matrix elements |〈α|Ô|β〉|2 in the
limit of small eigenstate energy differences ω = Eβ − Eα . Removing the dominant exponential suppression of
|〈α|Ô|β〉|2, we find that (1) the current matrix elements exhibit a system-size dependence that is different from
other observables under investigation and (2) matrix elements of several other observables exhibit a Drude-
like structure with a Lorentzian frequency dependence. We then show how this information can be extracted
from the autocorrelation functions as well. Finally, our study is complemented by a numerical analysis of the
fluctuation-dissipation relation for eigenstates in the bulk of the spectrum. We identify the regime of ω in which
the well-known fluctuation-dissipation relation is valid with high accuracy for finite systems.
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I. INTRODUCTION

Nonequilibrium experiments with many-body systems in
nearly perfect isolation from the environment have become
feasible in the last two decades [1–10]. One of the outstanding
challenges is to better understand the mechanism of relaxation
and thermalization in generic quantum systems, i.e., systems
that do not exhibit any nontrivial local conservation laws. In
particular, studies of thermalization and its relation to quan-
tum ergodicity now represent a rapidly evolving research field
(see, e.g., Refs. [11–13] for reviews).

An important conceptual goal is to provide a simple frame-
work to explain thermalization in many-body systems on a
lattice and away from any perturbative regimes in interaction
strengths. A useful insight can be provided by two related
approaches, the random matrix theory (RMT) [11,14,15] and
quantum typicality [16–22]. For random matrices one can
introduce the corresponding RMT ansatz [11] and use it for
matrix elements of observables in Hamiltonian eigenstates
|α〉, |β〉,

〈α|Ô|β〉 = N√
D

Rαβ, (1)

where D is the Hilbert-space dimension, N = ||Ô|| is the
Hilbert-Schmidt norm [see Eq. (10)] of the operator Ô, and
Rαβ are random numbers with zero mean and a variance of
one (two) for the offdiagonal (diagonal) matrix elements. For
simplicity, we set N ≡ 1 for all operators studied in this paper.
If the RMT ansatz is valid, it provides a stepping stone to

guarantee thermalization after a nonequilibrium time evolu-
tion under unitary dynamics [11].

Nevertheless, the RMT ansatz in Eq. (1) turns out to be
a too crude approximation to accommodate all the rich fea-
tures in the nonequilibrium dynamics governed by physical
Hamiltonians. The main missing aspects are temperature,
which gives rise to the characteristic dependence of the di-
agonal matrix elements of observables on energy, and the
observable-specific relaxation dynamics, which is reflected as
the observable-specific energy dependence of the underlying
offdiagonal matrix elements. To appreciate the significance of
the latter, below we first introduce the ETH and its connection
to autocorrelation functions, which is followed by a compre-
hensive summary of our results.

A. Eigenstate thermalization hypothesis (ETH)

A natural but nontrivial extension of the RMT ansatz in
Eq. (1) was introduced by Srednicki [23], now known as the
ETH ansatz,

〈α|Ô|β〉 = O(Ē )δαβ + 1√
eS(Ē )

fO(Ē , ω)Rαβ . (2)

In this ansatz, the amplitude of fluctuations 1/
√

eS(Ē ), which
replaces 1/

√
D in Eq. (1), is expressed through the thermo-

dynamic entropy S(Ē ) at energy Ē , which scales extensively
with the lattice size L. Here Ē = (Eα + Eβ )/2 is the average
energy of a pair of eigenstates |α〉 and |β〉 and ω = Eα − Eβ is
the corresponding energy difference (we set h̄ ≡ 1 throughout
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the exposition). The structure functions O(Ē ) and fO(Ē , ω) in
the ETH ansatz are, in principle, arbitrary smooth functions
of their arguments, in contrast to the RMT ansatz where
O(Ē ) = 0 and fO(Ē , ω) = 1.

The ETH [24–26] provides a sufficient condition for quan-
tum ergodicity: if a system satisfies the ETH, expectation
values of observables will time evolve (for the majority of
physically relevant initial states) towards the corresponding
statistical ensemble average. Great efforts have been invested
to test the validity of the ETH ansatz in finite many-body
systems [27–47]. A particular emphasis has been devoted to
the verification of the scaling of the amplitude of fluctua-
tions 1/

√
eS(Ē ) and to the study of the degree of randomness

encoded in Rαβ in Eq. (2). It is now well established that
(1) the matrix-element fluctuations decay exponentially with
lattice size L [30,33,35,37,39–41,44–47], (2) the distribution
of fluctuations is Gaussian [34,40,42,48], and (3) the ratio
�2 of variances of matrix elements (the diagonals divided by
the offdiagonals) satisfies the RMT prediction �2 = 2 [11]
in sufficiently narrow energy windows [36,39,45]. Examples
of (1) and (3), with remarkable numerical accuracy, are also
demonstrated in this work.

Less attention has been devoted to the structure functions
O(Ē ) and f (Ē , ω). In the analysis of fluctuations of the diag-
onal matrix elements, the structure function O(Ē ) is usually
subtracted [30,37]. Another approach to study fluctuations of
the matrix elements is to consider two neighboring eigen-
states, which are exponentially close in energy and hence
the structure function of the matrix elements does not impact
the result [33,35,39,40]. Recently, a quantitative framework
has been introduced to relate the structure of O(Ē ) and
the “similarity” of observables to local integrals of motion,
quantified by the projection of observables onto conserved
quantities and products thereof [41]. It was argued that, if
such similarity of observables to local integrals of motion
is removed, then O(Ē ) ≈ 0, similar to the RMT ansatz in
Eq. (1).

Studies of the offdiagonal matrix elements are now
also gaining attention [11,29,34,36,39,40,42,43,45,46,49–53],
with strong interest in the structure of | fO(Ē , ω)|2 at small ω

[11,42,43,45,46,51]. The physical importance of | fO(Ē , ω)|2
is related to the decay of autocorrelation functions and the
fine structure of response functions [11]. Moreover, it gov-
erns the fluctuation-dissipation theorem for nonequilibrium
pure states [11,54,55] and it determines the heating rates in
driven systems [56]. Note that there has been interest in the
fluctuation-dissipation theorem in nonequilibrium and quench
dynamics in closed systems [23,29,54,57–61] from various
angles.

Another important question, which we also address here,
is the impact of the system size on | fO(Ē , ω)|2. Extract-
ing and understanding the L-dependence of | fO(Ē , ω)|2 is
paramount for identifying timescales that define the onset of
quantum chaotic behavior. In connection with transport, such
timescales would relate to the onset of hydrodynamic behavior
and generically diffusion. For instance, in Ref. [11], a gener-
alization of the Thouless energy scale to the many-body case
was discussed. There is, however, only a scarce amount of
work on concrete models and observables and our work aims

at broadening the available information on L-dependencies of
| fO(Ē , ω)|2 [11,42,43,45,46,51,62].

Note that the extraction of the system-size dependence of
| fO(Ē , ω)|2, which may strongly depend on a specific observ-
able [42], is a nontrivial numerical operation. In particular,
while the amplitude of | fO(Ē , ω)|2 at small ω may scale poly-
nomially with the number of lattice sites L [11], this effect is
masked by the dominant contribution e−S(Ē ) in the ETH ansatz
(2). The latter is exponentially small in L since S(Ē ) ∝ L for
the eigenstates away from the spectral edges.

An increased attention has recently been devoted to the
study of the matrix elements of observables in quantum
chaotic models in which integrability is broken by a single
static impurity [42,43,63–68]. Here we consider a spin-1/2
XX chain where integrability is broken by a coupling to a sin-
gle itinerant impurity (i.e., a single fermion), extending earlier
work by some of us on the Holstein-polaron model [39]. These
types of models are relevant for describing polaron physics
[69,70], i.e., properties of itinerant charge carriers coupled
to bosonic degrees of freedom. We study different classes of
observables and discuss the underlying physical features that
can be identified from their offdiagonal matrix elements.

B. Autocorrelation functions and spectral densities

A convenient approach to extract properties of the struc-
ture function | fO(Ē , ω)|2 is provided by the autocorrelation
functions and the corresponding spectral densities of the ob-
servable Ô. One possibility is to consider local observables
of the conserved quantities, which in quantum chaotic sys-
tems should propagate diffusively [71,72], giving rise to a
specific low-ω form of the structure function [11]. Here, in
contrast, we focus on various translationally invariant observ-
ables and study scaling properties of their structure functions
| fO(Ē , ω)|2.

We define the symmetric autocorrelation function for an
observable Ô in an eigenstate |α〉 as

C(α)
O (t ) = 〈α|{Ô(t )Ô(0)}|α〉c, (3)

where Ô(t ) = eiĤt Ôe−iĤt and { · · · } denotes the anticommu-
tator. For convenience, the function in Eq. (3) is connected,
implying that for every pair of operators Ô1 and Ô2 we have
〈Ô1Ô2〉c ≡ 〈Ô1Ô2〉 − 〈Ô1〉 〈Ô2〉. One can express Eq. (3) in
terms of the matrix elements of observables as

C(α)
O (t ) = 2

∑
β �=α

cos [(Eβ − Eα )t] |〈α|Ô|β〉|2, (4)

where the sum runs over all eigenstates {|β〉} in the Hilbert
space except for |β〉 = |α〉, which cancels out for the con-
nected autocorrelation functions.

A Fourier transform of the autocorrelation function C(α)
O (t )

is referred to as the spectral density S(α)
O,+(ω) of an operator Ô,

S(α)
O,+(ω) =

∫ ∞

−∞
dt eiωt C(α)

O (t ), (5)

where the subindex “+” in S(ω) denotes the use of the anti-
commutator in Eq. (3). Applying the ETH ansatz (2) for the
matrix elements of observables, one can show (see Sec. VII
or Ref. [11] for the derivation) that the leading term of the
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spectral density equals

S(α)
O,+(ω) = 4π cosh(βω/2)| fO(Eα, ω)|2. (6)

If the autocorrelation function in Eq. (3) is defined by the com-
mutator, it is proportional to the response functions, whose
spectral density S(α)

O,−(ω) can be written in a similar form

[see Eq. (45)]. The relation between S(α)
O,+(ω) and S(α)

O,−(ω)
constitutes the basis of the eigenstate fluctuation-dissipation
theorem [11]. However, in finite systems, their relation may be
governed by subleading terms, which include the derivatives
of | fO(Eα, ω)|2 [11,55]. In this work, we identify the regime
of ω in which the fluctuation-dissipation theorem, without the
inclusion of subleading terms, is valid with high accuracy in
finite systems.

Another important quantity is the time integral of the au-
tocorrelation function in Eq. (3), which can be calculated
numerically using various techniques such as the exact time
evolution [73,74], matrix-product state methods [75,76], dy-
namical quantum typicality [77,78], and the numerical linked
cluster expansion [79–82]. At sufficiently long times, this
quantity reveals the ω → 0 properties of | fO(Ē , ω)|2. For
specific operators in quantum chaotic models, such as the cur-
rents, this quantity is expected to become a constant which has
a well-defined physical meaning, namely, it is the diffusion
constant [71,74]. The latter property relates the low-energy
structure of | fO(Ē , ω)|2 to transport [71]. Here we contrast
the structure function | fO(Ē , ω)|2 of currents with those of
other observables, and we explicitly demonstrate how the
time integral of the autocorrelation functions for currents ap-
proaches results obtained by averaging the matrix elements in
the ω → 0 limit.

C. Summary of results

In this work, we study a nonintegrable spin-fermion model
introduced in Sec. II, which consists of the spin-1/2 XX chain
and a single itinerant fermion. In this model, integrability is
broken by a local coupling of spins to the fermion. The model
exhibits two conserved quantities, the number of fermions and
the total energy, and it is equivalent to the Holstein-polaron
model with dispersive phonons subject to a hard-core con-
straint. Apart from the currents, we also study various other
observables defined in Sec. III.

In the first part of the paper [cf. Secs. IV–VI], we scrutinize
many aspects of the ETH ansatz in Eq. (2). Specifically, we
study the diagonal matrix elements in Sec. IV, the offdiagonal
matrix elements in Sec. V and the corresponding variances
of matrix elements in Sec. VI. There are two main results
of this analysis: (1) We identify two classes of observables.
The first class are the current operators, for which the scaled
offdiagonal matrix elements |Oαβ |2D from the bulk of the
spectrum exhibit almost no system-size dependence. (All
other observables under investigation exhibit a robust sys-
tem size dependence in the low-ω regime.) The second class
are the operators for which the offdiagonal matrix elements
|Oαβ |2 exhibit a Drude-like (Lorentzian) dependence on ω.
(2) For those observables whose diagonal matrix elements
exhibit no structure in the bulk of the spectrum [i.e., O(Ē ) ≈ 0
in Eq. (2)], we verify the ETH ansatz with remarkable

accuracy: the variance of the offdiagonal matrix elements
scales as a0D−γ , where the numerical values of a0 and γ equal
1 on two digits. Moreover, the ratio of variances (diagonal
versus the offdiagonal) equals 2 on nearly three digits. These
results provide simple and powerful benchmarks for future
studies.

In the second part [cf. Secs. VII and VIII], we focus on
properties of the offdiagonal matrix elements as extracted
from the autocorrelation functions and the spectral densities.
We first study the validity of the fluctuation-dissipation theo-
rem for eigenstates in the bulk of the spectrum. In particular,
we identify the regime of energies in which the fluctuation-
dissipation relation, valid in the thermodynamic limit, holds
with high accuracy in finite systems accessible with exact
diagonalization. We then study the time dependence of the
autocorrelation functions, or the integrals thereof, for vari-
ous observables. This allows us to make explicit connections
between properties of the time-evolving quantities and the
specific features of the offdiagonal matrix elements of observ-
ables. We conclude in Sec. IX.

II. MODEL

We study a spin-fermion Hamiltonian on a one-
dimensional lattice with L sites, which consists of the spin-1/2
XX chain in a homogeneous magnetic field, coupled to a
single itinerant spinless fermion. The Hamiltonian is given by

Ĥ = − t0

L∑
j=1

(
ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j

) + g
L∑

j=1

n̂ j Ŝ
x
j

+ ω0

L∑
j=1

Ŝz
j + J

L∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

)
, (7)

where ĉ j is a spinless fermion annihilation operator at site
j, n̂ j = ĉ†

j ĉ j is the fermion site-occupation operator, and Ŝα
j

(for α = {x, y, z}) are standard spin-1/2 operators. We use
periodic boundary conditions, ĉL+1 ≡ ĉ1 and Ŝα

L+1 ≡ Ŝα
1 . We

set the unit of energy to t0 ≡ 1 and the lattice spacing to a ≡ 1.
The Hamiltonian in Eq. (7) conserves the total number

of fermions N̂ = ∑
j ĉ†

j ĉ j , but not the total spin magnetiza-

tion Ŝz = ∑
j Ŝz

j . Here we focus on the single fermion sector

〈N̂〉 = 1, for which the Hilbert-space dimension is D̃ = L 2L.
Using full exact diagonalization and employing translational
invariance, we numerically calculate all eigenvalues {Eα} and
eigenstates {|α〉} of the Hamiltonian in Eq. (7) in a target total
quasimomentum sector k with the Hilbert-space dimension
D = 2L. We focus on k = 2π/L throughout the work. Un-
less stated otherwise, we set the parameters to ω0/t0 = 1/2,
g/t0 = √

2 and J/t0 = 0.2.
The spin-fermion Hamiltonian in Eq. (7) is equivalent to

the Holstein-polaron model with hard-core bosons,

Ĥ = − t0

L∑
j=1

(
ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j

) + γ ′
L∑

j=1

n̂ j (b̂
†
j + b̂ j )

+ ω0

L∑
j=1

b̂†
j b̂ j + ω′

L∑
j=1

(
b̂†

j b̂ j+1 + b̂†
j+1b̂ j

)
, (8)
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where b̂ j is a boson annihilation operator on site j, and infinite
repulsion is enforced by the constraints (b̂ j )2 = (b̂†

j )
2 = 0.

The Hamiltonian in Eq. (8) has recently been investigated in
studies of quantum ergodicity and nonequilibrium dynamics
[39,83], as well as in studies of response functions [84]. The
spectra of Hamiltonians in Eqs. (7) and (8) are identical (up
to a constant energy shift) if g = 2γ ′ and J = 2ω′. Note that
a nonzero ω′ implies that the phonons are dispersive, which
is usually not taken into account in studies of the Holstein-
polaron model.

In Ref. [39], it has been shown that the Holstein-polaron
model with a hardcore constraint for the phonons [equivalent
to Eq. (8)] is quantum chaotic in the sense that the level
statistics at ω′ = J = 0 agrees with the one predicted by
the Gaussian orthogonal ensemble in a wide range of cou-
plings γ ′. Here we work with the spin-fermion Hamiltonian
representation and focus on properties of Ĥ in Eq. (7) at
nonzero J .

III. SET OF OBSERVABLES

We study nine different dimensionless observables defined
below. All observables are traceless operators,

〈Ô〉 = D−1Tr{Ô} = D−1
D∑

α=1

〈α|Ô|α〉 = 0, (9)

which are normalized as ||Ô|| = 1. The norm is defined by the
Hilbert-Schmidt norm (also denoted as the Frobenius norm)

||Ô||2 = D−1Tr{Ô2} = D−1
D∑

α,β=1

|〈α|Ô|β〉|2 = 1. (10)

Throughout the paper, we use a compact notation for the
matrix elements of observables Oαβ ≡ 〈α|Ô|β〉.

A. Currents

A particular focus of this work is on current operators.
They are related to the conserved U(1) quantities of the sys-
tem through the continuity equation. For the Hamiltonian (7)
under investigation, there exist two such conserved quantities:
the total number of fermions N̂ and the total energy Ĥ . They
are connected to the charge current Ĵc and the energy current
Ĵe, respectively. The charge current is defined as

Ĵc =
L∑

j=1

(
iĉ†

j ĉ j+1 − iĉ†
j+1ĉ j

)
, (11)

and the energy current is defined as

Ĵe =
L∑

j=1

[
ĵ

(2)
j − g

t0

(
ĵ

(1)
j Ŝx

j+1

) − gJ

2t2
0

(
n̂ j+1Ŝy

j

)

+ w0J

t2
0

(
Ŝx

j Ŝ
y
j+1 − Ŝy

j Ŝ
x
j+1

)

+ J2

2t2
0

(
Ŝx

j Ŝ
y
j+2 − Ŝy

j Ŝ
x
j+2

)]
, (12)

where ĵ
(m)
j = iĉ†

j ĉ j+m − iĉ†
j+mĉ j is a generalized current op-

erator that moves particles a distance m.
Since the operators are block diagonal in the basis of trans-

lationally invariant states used for numerical diagonalization,
we make them traceless and normalized, to satisfy Eqs. (9)
and (10), within a target symmetry sector (i.e., the single
fermion sector with total quasimomentum k). To this end, we
renormalize the currents in these symmetry sectors as

Ĵ → N Ĵ + const, (13)

where for the charge current, we get N = 1/
√

2 − ερ ,
with ερ = cos(2k)/2L−3+(L mod 2) + sin2(k)/22L−4, and
const = N

∑
j ρ0, with ρ0 = sin(k)/2L−2. For the energy

currents, we calculate both normalization parameters
numerically.

B. Additional translationally invariant observables

In addition to the currents, we study several other normal-
ized observables that are extensive sums of local operators
with support on at most two consecutive lattice sites [with the
exception of the fermion quasimomentum distribution, to be
defined in Eq. (20)]. Among the operators that act only on the
spin sector, we study the spin correlators

T̂1 = 2
√

2√
L

L∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

)
(14)

and

V̂1 = 2
√

2√
L

L∑
j=1

(
Ŝx

j Ŝ
y
j+1 − Ŝy

j Ŝ
x
j+1

)
, (15)

as well as the total spin polarization along the z-axis,

Ŝz = 2√
L

L∑
j=1

Ŝz
j, (16)

and along the x-axis,

Ŝx = 2√
L

L∑
j=1

Ŝx
j . (17)

We also study the spin-fermion coupling

Ĝ = 2
L∑

j=1

n̂ j Ŝ
x
j . (18)

Among the operators that act only on the fermion sector, we
study the fermion kinetic energy

Ĥkin = −
L∑

j=1

(
ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j

)
(19)

and the fermion quasimomentum distribution

m̂q =
L∑

j,l=1

ei(l− j)qĉ†
j ĉl . (20)

For the latter, we study the q = 0 contribution only. The oper-
ator m̂q is a one-body but nonlocal observable.
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FIG. 1. Diagonal matrix elements Oαα of the eight observables defined in Sec. III, plotted as a function of Eα/(Lt0). Symbols from the
back to the front represent results for L = 14 (red), L = 15 (dark blue), and L = 16 (light blue), respectively.

In analogy to the currents, we make Ĥkin and m̂q traceless
and normalized within the target quasimomentum sector. To
this end, we renormalize Ĥkin → NκĤkin − Nκ

∑
j κ0, where

Nκ = 1/
√

2 + εκ and the constants εκ and κ0 are expo-
nentially small in L, namely, εκ = cos(2k)/2L−3+(L mod 2) −
cos2(k)/22L−4 and κ0 = cos(k)/2L−2. We also renormalize
m̂q → Nqm̂q + const, where the normalization constants are
calculated numerically.

IV. STRUCTURE OF DIAGONAL MATRIX ELEMENTS

The diagonal matrix elements Oαα of all observables de-
fined in Sec. III are shown in Fig. 1 and Fig. 2. A few
comments can be made about their properties.

First, all the diagonal matrix elements appear to be consis-
tent with the ETH, i.e., they are smooth functions of energy,
up to fluctuations. A quantitative study of their fluctuations

FIG. 2. Diagonal matrix elements T1,αα of the spin correlator T̂1

defined in Eq. (14). Results are plotted as a function of Eα/(Lt0) for
three system sizes L = 14 (red), L = 15 (dark blue), and L = 16
(light blue). The spin-exchange coupling is set to (a) J = 0 and
(b) J/t0 = 0.2.

is carried out in Sec. VI, where we calculate variances of the
matrix elements.

Second, the diagonal matrix elements of some observables
[cf. Ĵc, Ĵe and V̂1 in Figs. 1(a)–1(c), respectively] appear to be
structureless, i.e., O(Ē ) ≈ 0, since their matrix elements fluc-
tuate around zero at all energies (away from spectral edges).
This feature seems to be in agreement with the RMT ansatz for
matrix elements in Eq. (1) in which O(Ē ) = 0. The origin of
such a behavior was studied in Ref. [41], where it was argued
that the degree of structure of the diagonal matrix elements
in nonintegrable systems can be quantified by the projection
of an observable onto the Hamiltonian Ĥ and onto higher
powers of Ĥ . In particular, in the case of a vanishing pro-
jection 〈ÔĤn〉 ≡ D−1 ∑

α〈α|ÔĤn|α〉 ≈ 0 for all n, the matrix
elements should exhibit no structure, which appears to be
consistent with the results presented in Figs. 1(a)–1(c). In con-
trast, observables with considerable structure are those which
are parts of the Hamiltonian since in such cases, 〈ÔĤn〉 �= 0
already for n = 1. This is the case for the observables Ŝz, Ĥkin

and Ĝ shown in Figs. 1(d), 1(e), and 1(g), respectively.
Finally, we note that the structure of the diagonal matrix

elements for the observables under investigation may strongly
depend on parameters of the Hamiltonian. This is illustrated
in Fig. 2 that shows that the observable T̂1 is (to a large degree)
structureless if J = 0 [see Fig. 2(a)]. T̂1 becomes part of the
Hamiltonian (7) for J �= 0, implying 〈T̂1Ĥ〉 �= 0 and then, the
structure of its matrix elements is considerably modified [see
Fig. 2(b)].

V. STRUCTURE OF OFFDIAGONAL MATRIX ELEMENTS

Next, we study the structure of the offdiagonal matrix ele-
ments. We average the matrix elements for each target mean
energy Ētar and energy difference ωtar in a narrow energy
window, such that for all matrix elements included in the
average, Ē = (Eα + Eβ )/2 ≈ Ētar and ω = Eβ − Eα ≈ ωtar.
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Specifically, we define the average as

|Oαβ |2 = 1

M
∑

α′, β ′; α′ �= β ′
|(Eα′ + Eβ′ )/2 − Ētar | < �/2

||Eα′ − Eβ′ | − ωtar | < δω

|Oα′β ′ |2, (21)

where M is the number of elements in the sum. Unless
stated otherwise, we set Ētar = 0, �/L = 0.0025t0, and we
choose δω such that M = 700, 1000, 2000, 3000, 4000 for
L = 12, 13, 14, 15, 16, respectively. We denote Ētar → Ē and
ωtar → ω further on.

We study the dependence of |Oαβ |2 on ω for different
observables in Figs. 3–7. A particular attention is devoted to
the properties of the scaled matrix elements |Oαβ |2D. Such a
definition of scaled matrix elements is particularly convenient
for the normalized operators studied here, since the value of
the typical scaled matrix element is |Oαβ |2D ≈ 1. One may
nevertheless argue that a proper rescaling, consistent with the
ETH ansatz (2), should include the density of states ρ instead
of D, as done in the derivation of the fluctuation-dissipation
theorem in Sec. VII; see, e.g., Eq. (39). The latter is pro-
portional to D/, where  is the width of the density of
states, 2 = Tr{Ĥ2}/D − (Tr{Ĥ}/D)2. For the Hamiltonian
in Eq. (7), we get

2 = 2t2
0 +

( g

2

)2
+ L

(
ω2

0

4
+ J2

8

)
. (22)

The L independent part is the contribution from the itinerant
impurity, while the L dependent part is the contribution from
the extensive spin-1/2 chain. For the model parameters under
investigation [see the text below Eq. (7)], and for the given
system sizes L, the first contribution is dominant, and hence
 exhibits only a weak L dependence. We therefore omit 

in the calculation of the scaled matrix elements. It should
be mentioned, however, that the scaling properties of  may
impact results for system sizes beyond those available from
current exact diagonalization studies. We therefore refrain
from making statements about the L dependence of the scaled
matrix elements |Oαβ |2D in the thermodynamic limit.

We focus on the low-ω properties, which govern the long-
time behavior of the autocorrelation functions. It is expected
that for sufficiently small ω � �O, the ETH ansatz (2) re-
sembles the RMT ansatz (1) in the sense that fO(Ē , ω) is
independent of ω [11]. For moderately large values of �O � ω

but not yet in the regime of a Gaussian decay at ω0/t0 � 1, the
structure function | fO(Ē , ω)|2, or the scaled matrix elements
|Oαβ |2D, exhibit some observable-dependent behavior, which
eventually decays towards zero for very large ω. This regime
of intermediate values of ω determines how the autocorre-
lation functions in quantum chaotic systems decay towards
zero. We find that in terms of the system-size dependence of
|Oαβ |2D, the observables can be divided into two classes: the
currents and the other observables.

A. Charge and energy current

We first study the offdiagonal matrix elements of the
charge and energy currents. Their scaled matrix elements
|Oαβ |2D are shown in Fig. 3. A generic property of both

FIG. 3. Scaled offdiagonal matrix elements |Oαβ |2D for (a) the
charge current Ĵc and (b) the energy current Ĵe, shown as a function
of ω/t0 in a logarithmic scale (main panels) and in a linear scale
(insets). Overlapping solid lines are results for different system sizes
from L = 12 to L = 16 at the target energy Ētar = 0 as explained in
the context of Eq. (21). Dashed-dotted lines are results for L = 16,
averaged over all energies [� → ∞ in Eq. (21)]. Horizontal lines are
fits of a constant to the data at ω/t0  1.

currents is the existence of a plateau (i.e., an ω-independent
regime) in the limit ω/t0 → 0, which can be observed in a
log-log scale in the main panels of Fig. 3. For the model
parameters under investigation, the width �O of the plateau is
roughly �O/t0 ≈ 10−1. Note, however, that the precise value
of �O/t0 depends on the number of matrix elements included
in the average in Eq. (21), as seen from the differences be-
tween the solid and dashed-dotted lines in the main panels of
Fig. 3.

In contrast to the ω/t0  1 limit, the regime at moder-
ate energies 1 � ω/t0 � 5 exhibits nongeneric properties, as
shown in the insets of Fig. 3. While the matrix elements
decay nearly exponentially with ω for the charge current,
they exhibit a cusp at ω/t0 ≈ 4 for the energy current. The
nearly exponential decay of |Oαβ |2D for the charge current
may share some similarities with an anomalous dependence
of the optical conductivity on ω in some other nonintegrable
models at high temperatures, such as the extended t-V model
in one dimension [48] and strongly correlated models in two
dimensions [85,86]. The decay of matrix elements at even
larger ω/t0 � 5 is studied in Fig. 7 in Sec. V C.

Perhaps the most intriguing feature of the scaled matrix
elements |Oαβ |2D for the currents is the absence of any pro-
nounced system-size dependence. This can be seen from (1)
the nearly perfect overlap of results for different lattice sizes
L in Fig. 3, and (2) the analysis in Fig. 5(b) where the values
of the scaled matrix elements as a function of L and in the
ω/t0 → 0 limit turn out to be roughly a constant. In what fol-
lows, we argue that all other observables under investigation
exhibit a robust L dependence of the scaled matrix elements
|Oαβ |2D in the ω/t0 → 0 limit. We note that the L dependence
of the scaled matrix elements |Oαβ |2D is typically polynomial
with L, and can only be observed after the dominant, exponen-
tial dependence on L is removed by multiplying the matrix
elements with D. These observations suggest that, at least
for the model under investigation, the matrix elements of the
currents exhibit a unique scaling property. Recently, special
scaling properties of the particle-current operators (despite
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FIG. 4. Offdiagonal matrix elements |Oαβ |2 as a function of ω/t0

for the observables (a) T̂1, (b) Ŝz, (c) V̂1, and (d) Ĥkin. Results are
shown for different lattice sizes from L = 12 to L = 16. Dashed
horizontal lines are fits of the data at ω/t0  1 to a constant.
Dashed-dotted lines denote the scaling ∝ (ω/t0)−2. The arrow in
(d) marks the peak at ω/t0 ≈ 4. Insets show the scaled matrix el-
ements |Oαβ |2ω2DL. In the insets, we choose δω in Eq. (21) as
δω/t0 = 0.08.

being different from those reported here) were studied in the
context of ballistic transport in Heisenberg chains, in which
integrability is broken by a single static impurity [42].

In Sec. VIII we show that certain features of the system-
independence of |Oαβ |2D can also be detected from the
current autocorrelation functions. Specifically, since the width
of the plateau of the offdiagonal matrix-element structure
function appears to be L independent, the integral over the
autocorrelation function becomes time independent after a
moderately short time of the order (�O/t0)−1.

B. Drude-like structure of matrix elements

Next, we focus on the offdiagonal matrix elements of the
observables T̂1, V̂1, Ŝz, and Ĥkin. The choice of these observ-
ables is based on some common features that they exhibit in
the structure of the matrix elements and/or in the autocorrela-
tion functions studied in Sec. VIII.

The offdiagonal matrix elements |Oαβ |2 of the observables
T̂1, V̂1, Ŝz, and Ĥkin are shown in the main panels of Fig. 4. A
common feature is the existence of the plateau in the limit
ω/t0 → 0. Such a plateau also emerges in the structure of the
matrix elements of currents in Fig. 3. However, in contrast
to the currents, for the observables in Fig. 4, the width �O

of the plateaus (which is of the order �O/t0 ≈ 10−2) seems
to decrease with L, as indicated by the dashed arrows in
the main panels of Fig. 4. We will further elaborate on this
issue below. Their second common feature is the signature of
an ∝ 1/ω2 decay at moderate ω/t0 ≈ 1, as indicated by the
dashed dotted lines in the main panels of Fig. 4. Properties

FIG. 5. Scaled offdiagonal matrix elements |Oαβ |2D at ω ≈ 0
as a function of L for (a) the observables T̂1, V̂1, Ŝz, and Ĥkin and
(b) for the currents Ĵc and Ĵe. The values of |Oαβ |2D at ω ≈ 0
correspond to the smallest nonzero ω according to Eq. (21), i.e.,
they are averaged over 700, 1000, 2000, 3000, and 4000 matrix
elements for L = 12, 13, 14, 15, 16, respectively. Dashed lines are
fits to the results for 13 � L � 16. In (a) we fit the function ∝ Lγ ,
where γ = 1.3, 1.4, 1.2, 2.0 for T̂1, V̂1, Ŝz, and Ĥkin, respectively. In
(b) we fit a constant (dashed lines) to the data.

of matrix elements at very large ω/t0 � 1, which also share
some common features, are studied in Fig. 7 in Sec. V C.

We note that other observables introduced in Sec. III, not
presented in Figs. 3 and 4, share similarities with the ob-
servables shown in Fig. 4 in the sense that the width of the
ω-independent plateau in the limit ω/t0 → 0 exhibits an L
dependence. However, they do not exhibit signatures of an
∝ 1/ω2 decay, and hence they are not studied in more detail
in this section. In fact, even for the kinetic energy Ĥkin in
Fig. 4(d), the 1/ω2 decay appears to be less pronounced.
Still, it exhibits an exponential decay of its autocorrelation
function (to be discussed in Sec. VIII B), and hence we study
the structure of the offdiagonal matrix elements of Ĥkin along
with those for the observables T̂1, V̂1, Ŝz.

In the insets of Fig. 4, we further illustrate the scaling prop-
erties of the algebraic ∝ 1/ω2 decay of the matrix elements.
We find a good data collapse for different L if the matrix
elements are scaled as |Oαβ |2Dω2L. Such a scaling suggests
that

|Oαβ |2 D ∝ 1

L ω2
. (23)

However, some care is required when applying Eq. (23) to
the numerical results. First, it implies that the scaled matrix
elements |Oαβ |2Dω2L are independent of ω. The results in the
insets of Figs. 4(b) and 4(c) suggest that this may indeed be the
case for the observables V̂1 and Ŝz for 1 � ω/t0 � 4, while the
inset of Fig. 4(a) shows a persistent increase of |Oαβ |2Dω2L
with ω for T̂1, eventually suggesting an additional contribution
of the form 1/ωζ , with ζ < 2. Finally, the matrix elements
of Ĥkin exhibit a peak around ω/t0 ≈ 4 [see the arrow in
Fig. 4(d)], which screens a possible ∝ 1/ω2 decay and as a
consequence, we do not observe any ω-independent regime
when carrying out the rescaling |Oαβ |2Dω2L for Ĥkin.

Coming back to the properties in the ω → 0 limit, we note
that not only the width of the plateau of the scaled matrix
elements |Oαβ |2D is L dependent, but also its height. The
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FIG. 6. (a–c) Scaled offdiagonal matrix elements |Oαβ |2D/L for
the operators T̂1, Ŝz, and V̂1, respectively, and (d) |Oαβ |2D/L2 for
the fermion kinetic energy Ĥkin. Results are shown as a function of
(ω/t0)L for different lattice sizes from L = 12 to L = 16.

latter is at the focus of the analysis presented in Fig. 5, where
we plot the scaled matrix elements |Oαβ |2D in the ω → 0
limit as a function of L. In general, those matrix elements
increase as ∝ Lγ , where 1 � γ � 2 for T̂1, V̂1, Ŝz, and Ĥkin

[see Fig. 5(a)], in contrast to the currents where γ ≈ 0 [see
Fig. 5(b)]. In particular, we get γ = 1.2 for T̂1 and γ = 1.3 for
Ŝz, which may suggest ballistic dynamics of those observables
(γ → 1) in the thermodynamic limit. However, we obtain
γ = 2.0 for Ĥkin, which may be consistent with diffusion.
We also note that the model under investigation is studied in
the single-fermion sector, which may impact the scalings of
matrix elements in the L → ∞ limit as the density goes to
zero.

The scaling behaviors studied so far raise the question
about a possible phenomenological description of the offdiag-
onal matrix elements over a wide regime of ω/t0 that includes
the ω/t0 → 0 limit and the ∝ 1/(Lω2) decay at ω/t0 ≈ 1.
A possible ansatz is given by the Drude-like (Lorentzian)

FIG. 7. Scaled offdiagonal matrix elements |Oαβ |2D as a function of (ω/t0)2 for four observables and different system sizes L =
12, . . . , 16. Dashed lines are fits of a Gaussian function ∝ e−ζO (ω/t0 )2

to the results for L = 16 and (ω/t0)2 > 30, with the values of ζO given in
the legends.

function

|Oαβ |2 D ∝
a
L(

a
L

)2 + ω2
, (24)

where a is a constant. It correctly reproduces the algebraic
decay from Eq. (23) at ω � a/L and predicts the scaling
|Oαβ |2 D ∝ L at ω/t0 → 0, in reasonable agreement with the
behavior of the observables T̂1, Ŝz, and V̂1 in Fig. 5(a).

If the ansatz from Eq. (24) is applicable, then the scaled
matrix elements |Oαβ |2D/L plotted versus (ω/t0)L should be
L independent. We test that conjecture in Figs. 6(a)–6(c) for
T̂1, Ŝz, and V̂1. Our results indeed show a reasonably good data
collapse and hence support the applicability of the Drude-like
form in Eq. (24). Furthermore, we stress that the ansatz in
Eq. (24) also describes the L dependence of the plateau width
�0 as ω → 0, since the width of the Lorentzian function
scales as �O ∝ 1/L.

However, for Ĥkin, where γ = 2.0 in Fig. 5(a), one needs to
multiply the r.h.s. of Eq. (24) by L to describe the |Oαβ |2D ∝
L2 dependence in the ω → 0 limit. This functional depen-
dence is verified in Fig. 6(d) and it yields a rather good data
collapse, even though we do not exclude other possibilities for
the scaling relation.

To summarize the results of Secs. V A and V B, the first
remarkable message is that the L dependence of the scaled
offdiagonal matrix elements |Oαβ |2D for the currents is, in
the ω/t0 → 0 limit, very different from all other observables
under investigation. The second message is that we identified
a Drude-like structure of |Oαβ |2D for several observables
under investigation in the regime of small and moderate values
of ω/t0.

One may wonder what is the common mechanism that
gives rise to the Drude-like structure of the offdiagonal ma-
trix elements of the observables studied here. We note that
the three observables (T̂1, Ŝz, and Ĥkin) are parts of the
Hamiltonian at the integrable point [g = 0 in Eq. (7)], while
the other observable (V̂1) commutes with it. Using the lan-
guage of Ref. [87] one can characterize those observables as
integrability-preserving observables. It is then plausible that
the departure from integrability by increasing g gives rise to a
Drude-like structure of matrix elements [88,89]. Establishing
a systematic correlation between the classes of observables

235137-8



EIGENSTATE THERMALIZATION HYPOTHESIS THROUGH … PHYSICAL REVIEW B 103, 235137 (2021)

and the functional forms of their offdiagonal matrix elements
is beyond the scope of this work.

C. Large-ω behavior

We complement our analysis of the structure of offdiagonal
matrix elements with a discussion of their properties at large
ω/t0 � 1. While the observables may exhibit rather distinct
features at small and moderate ω/t0, they appear to exhibit a
pretty generic behavior at large ω/t0. This is demonstrated for
four different observables in Fig. 7 (the other observables, not
shown here, exhibit a qualitatively similar behavior). We fit
the results using a Gaussian function,

|Oαβ |2 D ∝ e−ζO (ω/t0 )2
. (25)

Figure 7 shows the resulting Gaussian functions as dashed
lines using the optimal coefficients ζO that are very similar for
all observables. We note, however, that we cannot exclude the
existence of a possible L-dependent contribution in Eq. (25),
in analogy to the scaling in Eq. (23).

The Gaussian decay of the structure of offdiagonal matrix
elements appears to be consistent with results of [39], which
studied the Holstein-polaron model. Moreover, a recent study
of the integrable Heisenberg spin-1/2 chain in the Sz = 0 total
magnetization sector found an exponential decay with ω at
moderate values of ω, followed by a Gaussian decay at large
ω [40]. In the nonintegrable regime of the Heisenberg spin-
1/2 chain, however, only the exponential decay was observed
[40]. The origin of the difference between the two functional
forms needs to be further explored in future work, as well as
their relation to other functional forms such as e−ζω ln ω that
was recently proposed for the transverse and longitudinal field
Ising model [90,91].

VI. VARIANCES OF MATRIX ELEMENTS

We now study fluctuations of both diagonal and offdiag-
onal matrix elements of observables. We first focus on the
offdiagonal matrix elements. We define the variance over all
offdiagonal matrix elements as

〈|Oαβ |2〉D = 1

D(D − 1)

D∑
α′, β ′ = 1
α′ �= β ′

|Oα′β ′ |2, (26)

where we neglected the contribution from the mean squared,
which is of the order 10−9 or smaller for the system sizes
under investigation.

The scaling of variances 〈|Oαβ |2〉D versus the Hilbert-
space dimension D is shown as symbols in Fig. 8, while lines
represent fits of the data to the function a0D−γ . We observe
γ ≈ 1 for all nine observables defined in Sec. III, in accord
with the ETH ansatz in Eq. (2). The numerical accuracy of γ

is on the second digit. This represents a remarkable manifes-
tation of the ETH in finite systems, which can be studied via
exact diagonalization.

The results of Fig. 8 for the spin-fermion model are con-
sistent with previous studies of variances for Heisenberg-like
spin Hamiltonians [40]. We note that here we use the same
normalization of observables as in Ref. [41], for which the

FIG. 8. Variances of the offdiagonal matrix elements 〈|Oαβ |2〉D ,
see Eq. (26), for the nine observables defined in Sec. III. Symbols are
numerical results for systems with L = 10, . . . , 16, while the lines
are fits of the function a0D−γ to the data for L � 13. The resulting
values of γ are shown in the figure legend for each observable.

ETH ansatz is given by Eq. (2). For intensive observables
of the form Ô = (1/L)

∑
j ô j , where ô j is a local operator

around site j with support on O(1) sites, the Hilbert-Schmidt
norm of observables (10) typically decays as 1/L. It has been
argued in Ref. [40] that, for intensive observables, the second
part of the ETH ansatz (2) needs to be multiplied by 1/

√
L to

yield the same scaling of the variances as observed in Fig. 8.
Interestingly, the variances in Fig. 8 do not only exhibit a

nearly identical exponent γ in the fitting function a0D−γ , but
also the prefactor a0 may be very similar. In fact, we observe
a0 = γ = 1.00 for the charge and energy currents Ĵc and Ĵe.
The latter result implies that

1

D

D∑
α, β = 1
α �= β

|Oαβ |2 ≈ 1, (27)

with exponentially small corrections. This is a consequence
of the observable normalization introduced in Sec. III and
a vanishing contribution of the diagonal matrix elements to
the operator norm, 1/D

∑
α O2

αα  1. This is the case for
observables whose diagonal matrix elements are structureless,
such as Ĵc and Ĵe shown in Figs. 1(a) and 1(b), respectively.

Note that the prefactor a0 is noticeably different (specifi-
cally, a0 < 1) for the observables Ĥkin, Ŝz, and Ĝ, which are all
part of the Hamiltonian (7). This can be understood along the
lines of Ref. [41]: if an observable is part of the Hamiltonian,
the contribution of the diagonal matrix elements to the observ-
able normalization (10) is considerable (since the projection
of the observable on the Hamiltonian is large, as discussed
in Sec. IV). Therefore, to fulfill the observable normalization,
the contribution of the offdiagonal matrix elements needs to
decrease, which results in a lower value of a0.

We contrast the variances of the offdiagonal matrix ele-
ments with those of the diagonal ones. For the latter, however,
several definitions of variances were used in the past. For the
diagonal matrix elements of observables with nonvanishing
structure, that structure needs to be subtracted in an appro-
priate microcanonical window (see, e.g., Refs. [30,37,41]).
Another possible measure of the fluctuations that does not
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FIG. 9. Scaled variances of the diagonal matrix elements
〈O2

αα〉μ D for (a) the charge current Ĵc and (b) the energy current
Ĵe, as a function of the lattice size L. Lines are fits of the data for
L � 13 to a constant. We choose μ in Eq. (28) such that we include
results for 70%, 50%, and 20% eigenstates around the center of the
spectrum (see the legend).

require any subtraction are eigenstate-to-eigenstate fluctu-
ations of matrix elements [33], which turned out to be
a powerful indicator of the validity of the ETH ansatz
[35,39,40]. However, here we focus on observables whose
diagonal matrix elements have no structure [cf. Ĵc, Ĵe, and V̂1;
see Figs. 1(a)–1(c)], and hence the subtraction of the mean
values in microcanonical windows is not necessary [41]. This
allows us to use a simple definition of the variance of diagonal
matrix elements,

〈O2
αα〉μ = 1

μ

D/2+μ/2∑
α′=D/2−μ/2+1

(Oα′α′ )2, (28)

where the role of μ is to remove contributions from spectral
edges. The dominant contribution to the variance is expected
to decay as ∝ 1/D if the system satisfies ETH, and hence we
study the scaled variances 〈O2

αα〉μD further on.
The convenience of studying structureless observables can

also be understood by the analysis of how the expectation
values of observables in the diagonal ensemble [26] approach
the corresponding expectation value in the microcanonical
ensemble [11,92]. In this analysis, one typically expands the
structure function O(E ) in a power series around the tar-
get energy E , which gives rise to the differences between
the diagonal and the microcanonical ensemble averages that
vanish polynomially with L. In contrast, if O(E ) = 0, those
polynomial contributions are zero, giving rise to the leading
term that scales algebraically with D (i.e., it is exponentially
small in L).

Figure 9 shows the scaled variances 〈O2
αα〉μD of the cur-

rents Ĵc and Ĵe, as functions of the lattice size L. They appear
to be nearly L independent. This is similar to the scaling of
fluctuations of their offdiagonal matrix elements in a narrow
energy window at ω/t0 → 0, see Fig. 5(b). In fact, we argue
that the results in Fig. 5(b) and 9 are consistent with each
other since the ratio of variances [to be defined in Eq. (29)]
is an L-independent value �2 = 2, as shown in Figs. 11(a)
and 11(b).

In contrast to the currents, the scaled variance of the diag-
onal matrix elements of the spin correlator V̂1 [see Fig. 10(a)]
keeps increasing as a function of L for the system sizes
under investigation. One possible interpretation of the re-
sults in Fig. 10(a) is, along the lines of Ref. [37], to argue
that the variance scales as 〈V 2

1,αα〉μ ∝ D−z, with z < 1. How-

FIG. 10. Scaled variances of the diagonal matrix elements for the
spin correlator V̂1 as a function of the lattice size L. Variances are
scaled as (a) 〈V 2

1,αα〉μ D and (b) 〈V 2
1,αα〉μ D/L. The line in (b) is a

fit to a constant for L � 13. We choose μ in Eq. (28) such that we
include results for 70%, 50%, and 20% eigenstates around the center
of the spectrum (see legend).

ever, here we interpret the numerical results as a polynomial
increase of 〈V 2

1,αα〉μD with L. This is corroborated in
Fig. 10(b), where we show that the scaled variance
〈V 2

1,αα〉μD/L appears to be approximately L independent.
While the extraction of the precise functional form of the L
dependence cannot be determined from the available system
sizes, we argue that the scaling of the diagonals in Fig. 10(a)
is in agreement with the scaling of the variance of the offdiag-
onal matrix elements at ω/t0 → 0 shown in Fig. 5(a), where
it was observed that |V1,αβ |2D ∝ Lγ , with γ = 1.4.

The results presented so far can be summarized as follows:
(1) the system-size dependence of the variances of the diag-
onal matrix elements may strongly depend on the observable
and (2) the variances of the diagonal matrix elements seem
to exhibit a very similar scaling as the variances of the corre-
sponding offdiagonal matrix elements in the ω/t0 → 0 limit.
The latter observation is further corroborated by studying the
ratio of variances, defined as

�2
α,μ(O) =

[
σ

(α,μ)
diag (O)

]2

[
σ

(α,μ)
offdiag(O)

]2 , (29)

where the variances of the diagonal and offdiagonal matrix
elements,

[
σ

(α,μ)
diag (O)

]2 = 1

μ

α+μ−1∑
ρ=α

O2
ρρ −

(
1

μ

α+μ−1∑
ρ=α

Oρρ

)2

(30)

and

[
σ

(α,μ)
offdiag(O)

]2 = 1

μ2 − μ

α+μ−1∑
ρ, ρ ′ = α

ρ �= ρ ′

|Oρρ ′ |2, (31)

respectively, are now defined for a set of μ consecutive eigen-
states starting at the eigenstate |α〉.

Based on the random-matrix theory, it was argued that
�2 = 2 in many-body systems that comply with the ETH
[11]. Indeed, results of large-scale numerical calculations for
matrix elements of observables in the transverse field Ising
model [36] and the Holstein-polaron model [39] are consistent
with this expectation. Those studies also highlight that the
expected result can only be observed for small μ, i.e., in
the limit ω/t0 → 0 of the offdiagonal matrix elements. The
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FIG. 11. Ratio of variances of diagonal versus offdiagonal matrix elements �2
α,μ=100(O) [see Eq. (29)] at L = 16 as a function of the

eigenstate index α. Each panel includes 216 − 99 values of �2
α,μ=100(O). In the inset, the moving average (MA) is performed over the 2000

nearest values. Results are shown for the operators Ĵc, Ĵe, and V̂1 in (a)–(c), respectively. Horizontal dashed lines represent the averages
�2

μ=100(O), which are obtained by averaging over those sets of ratios of variances for which the mean energy Eα = ∑α+99
ρ=α Eρ/100 lies in the

window Eα/(Lt0) ∈ [−1/6, 1/6] (such average includes 83.6% of all values in the main panel). We get �2
μ=100(Jc ) = 1.994, �2

μ=100(Je ) =
1.995, and �2

μ=100(V1) = 1.984.

latter statement is independent of whether the structure of the
diagonal matrix elements of observables is vanishingly small
or not.

In Fig. 11 we show the ratio �2
α,μ(O) for the observables

Ĵc, Ĵe, and V̂1. Note that for these observables, the subtraction
of the square of the mean value on the r.h.s. in Eq. (30) is used
only to improve the numerical accuracy and can be omitted.
The results show that the ratio of variances is indeed very
close to 2 in finite systems. Hence, in the limit ω → 0, the
variance of the offdiagonal matrix elements should have an
identical system-size scaling as the variance of the diagonal
matrix elements.

It is remarkable how good the agreement between �2
α,μ(O)

and the random matrix theory prediction is. For the currents
studied in Figs. 11(a) and 11(b), we get the numerical val-
ues �2

μ=100(Jc) = 1.994 and �2
μ=100(Je ) = 1.995, where the

average is performed over those sets of ratios of variances
for which the mean energy Eα = ∑α+99

ρ=α Eρ/100 lies in the

window Eα/(Lt0) ∈ [−1/6, 1/6]; see Fig. 11 for details.
Summarizing the analysis of the matrix-element fluctua-

tions, we argue that the most generic feature is the result for
the ratio of their variances, �2

α,μ(O) ≈ 2 in narrow energy
windows (ω/t0 → 0 for the offdiagonals). However, the ETH
ansatz per se does not imply any particular scaling of the fluc-
tuations with system size L (beyond the dominant exponential
suppression), which is illustrated by the difference between
the matrix elements of currents and other observables.

VII. SPECTRAL DENSITIES OF OPERATORS

Next, we study properties of the spectral densities of ob-
servables, which are related to the autocorrelation functions,
such as the one in Eq. (3), by a Fourier transform. For the
symmetric autocorrelation function C(α)

O (t ) defined in Eq. (3),
the spectral density S(α)

O,+(ω) is defined in Eq. (5). It consists
of two contributions,

S(α)
O,+(ω) = S(α)

O (ω) + S(α)
O (−ω), (32)

where

S(α)
O (ω) =

∫ ∞

−∞
dt eiωt 〈α|Ô(t )Ô(0)|α〉c, (33)

S(α)
O (−ω) =

∫ ∞

−∞
dt eiωt 〈α|Ô(0)Ô(t )|α〉c. (34)

In Eq. (34), invariance under time translations has been as-
sumed. Writing the operators in Eq. (33) in the Heisenberg
picture, inserting a complete eigenbasis Î = ∑

β |β〉〈β|, and

performing the integral over time one can express S(α)
O (ω) by

the matrix elements of observables as

S(α)
O (ω) = 2π

∑
β �=α

|Oαβ |2δ[ω − (Eβ − Eα )]

= 2π |OEα,Eα+ω|2 ρ(Eα + ω). (35)

In the derivation of the final result in Eq. (35), we averaged
the matrix elements over eigenstates β such that |ω − (Eβ −
Eα )| � δω, where δω should be much larger than the mean
level spacing (such that it includes δN � 1 states) and much
smaller than any other relevant energy scale in the system.
This is consistent with the averaging of the offdiagonal matrix
elements used in Eq. (21). The density of states ρ(E ) in
Eq. (35) is then defined as ρ(E ) = δN/δω.

An important consequence of the choice of normalization
of observables invoked in Eq. (10) is the nonvanishing value
of the sum rule of the spectral density. For a typical eigenstate
|α〉 in the bulk of the spectrum, one can express it as∫ ∞

−∞
S(α)

O,+(ω)dω = 4π
∑
β �=α

|Oαβ |2 ≈ 4π + O(D−1), (36)

where it is assumed that the contribution of the missing diag-
onal matrix element in the sum of Eq. (36) is O(D−1).

A. Fluctuation-dissipation theorem (FDT)

The spectral density provides access to squares of matrix
elements of observables, averaged over a narrow energy win-
dow. In Eqs. (5) and (32), we defined the symmetric eigenstate
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spectral density S(α)
O,+(ω) through the anticommutator of the

two-time correlation function. One can analogously define the
antisymmetric eigenstate spectral density S(α)

O,−(ω) by replac-
ing the anticommutator with the commutator,

S(α)
O,−(ω) = S(α)

O (ω) − S(α)
O (−ω). (37)

The latter is relevant for the definition of the response func-
tions. In particular, the dissipative part of the eigenstate Kubo
linear response function can be expressed by S(α)

O,−(ω) as

Im
(
χ

(α)
O (ω)

) =
∫ ∞

0
dteiωt 〈α|[Ô(t ), Ô(0)]|α〉c = S(α)

O,−(ω)

2
.

(38)
The relationship between S(α)

O,+(ω) and S(α)
O,−(ω) represents

the core of the fluctuation-dissipation theorem (FDT). If the
spectral densities are evaluated in a Gibbs ensemble, it is well
known that the FDT can be derived without assuming any par-
ticular form of the matrix elements of observables (see, e.g.,
Ref. [93]). Remarkably, for systems in which the ETH ansatz
(2) is valid, the FDT can be derived for a single eigenstate
[11]. Below we sketch this derivation (see also Ref. [11]).

It is convenient to express the density of states ρ(Eα ± ω)
through the thermodynamic entropy S(Eα ± ω) at the same
energy. Since the eigenstate energy Eα scales extensively with
the lattice size L and the target range of ω does not scale with
L, one can expand S(Eα ± ω) around S(Eα ) as

ρ(Eα ± ω) = eS(Eα±ω) = eS(Eα )±βω+ ω2

2
∂β

∂Eα
+···, (39)

where we define the inverse temperature β of an eigenstate
|α〉 as β = ∂S/∂Eα , and the density of states is expressed in
dimensionless units.

Next, we introduce the averages |OEα,Eα±ω|2 of offdiagonal
matrix elements of observables over a narrow window around
the target eigenstates at Eα and Eβ = Eα ± ω. We express it
using the ETH ansatz (2) as

|OEα,Eα±ω|2 = | fO(Eα ± ω
2 , ω)|2

ρ(Eα ± ω/2)
|REα,Eα±ω|2. (40)

The averaging window is assumed to be large enough to set
the fluctuating part |REα,Eα±ω|2 = 1, but also narrow enough
such that the smooth functions | fO|2 and ρ are accurately
described by the values at the target eigenstates Eα and
Eβ = Eα ± ω. We assume the operators to be Hermitian
and to satisfy f (E , ω)∗ = f (E ,−ω), which yields | f (Eα −
ω
2 ,−ω)|2 = | f (Eα − ω

2 , ω)|2 in Eq. (40). Then we expand the
remaining quantities around Eα ,

|OEα,Eα±ω|2 =
(

| fO(Eα, ω)|2 ± ω

2

∂| fO(Eα, ω)|2
∂Eα

)

× e
−

(
S(Eα )± βω

2 + ω2

8
∂β

∂Eα
+···

)
. (41)

The density of states in Eq. (39) and the averaged offdiagonal
matrix elements in Eq. (41) can now be plugged into Eq. (35)
to obtain

S(α)
O (±ω) = 2π

(
| fO(Eα, ω)|2 ± ω

2

∂| fO(Eα, ω)|2
∂Eα

)

× e± βω

2 + 3ω2

8
∂β

∂Eα
+··· . (42)

In the latter equation, all quantities are expanded up to the
terms that are derivatives with respect to the extensive energy
Eα (they are expected to scale as ∝ 1/L). The standard form of
the fluctuation-dissipation relation is derived by neglecting all
such terms. We follow this approach here, while in Sec. VII C
we also explore finite-size corrections.

The symmetric spectral density from Eq. (32) can be ex-
pressed using Eq. (42) as

S(α)
O,+(ω) = 2π | fO(Eα, ω)|2eβω/2 + 2π | fO(Eα, ω)|2e−βω/2,

(43)
resulting is Eq. (6), which is, for convenience, repeated below:

S(α)
O,+(ω) = 4π cosh

(
βω

2

)
| fO(Eα, ω)|2. (44)

Analogously, the antisymmetric spectral density from Eq. (37)
can be expressed as

S(α)
O,−(ω) = 4π sinh

(
βω

2

)
| fO(Eα, ω)|2. (45)

Using Eq. (42), one can also obtain another convenient
property of the spectral densities, also known as the Kubo-
Martin-Schwinger relation [94–96],

S(α)
O (ω) = eβω S(α)

O (−ω). (46)

In fact, the latter expression is a key and sufficient ingredient
for the derivation of the FDT.

Finally, relating the dissipative contributions in Eqs. (38)
and (45) to the fluctuations in Eq. (44), one arrives at the
fluctuation-dissipation relation

S(α)
O,+(ω) = coth

(
βω

2

)
2 Im

(
χ

(α)
O (ω)

)
(47)

as expressed in Ref. [11]. Another way to express the
fluctuation-dissipation relation is

S(α)
O,−(ω)

S(α)
O,+(ω)

= tanh

(
βω

2

)
. (48)

Calculating the time-evolving spectral densities of currents af-
ter quantum quenches in the Holstein-polaron model [54], the
latter relation was observed after long times, thereby demon-
strating the restoration of the fluctuation-dissipation relation
in isolated nonequilibrium quantum states.

B. Numerical verification of the FDT

We complement the previous analytical considerations by
numerically verifying the fluctuation-dissipation relation for
Hamiltonian eigenstates. The relation that we actually put to a
test is the Kubo-Martin-Schwinger relation from Eq. (46). We
focus on eigenstates in the center of the spectrum, for which
β = 0.

If the FDT is fulfilled for every eigenstate, it
implies validity of the Kubo-Martin-Schwinger relation
S(α)

O (ω)/S(α)
O (−ω) = 1 for each α. Here we calculate the

typical value of the ratio S(α)
O (ω)/S(α)

O (−ω), which is the
geometric mean defined as

log
(
R(typ)

O,μ (ω)
) = 1

μ

D/2+μ/2∑
α=D/2−μ/2+1

log

(
S(α)

O (ω)

S(α)
O (−ω)

)
, (49)
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FIG. 12. Numerical verification of the Kubo-Martin-Schwinger
relation in Eq. (46) for the means of ratios of the eigenstate spectral
densities S(α)

O (ω) and S(α)
O (−ω). Results are shown for the observ-

ables (a) Ĵc, (b) Ĵe, (c) T̂1, and (d) V̂1. Horizontal lines are analytical
predictions at β = 0, and symbols are numerical results for L =
12, 14, 16. Full symbols represent the typical values R(typ)

O,μ (ω) from

Eq. (49), and open symbols represent the average values R(avr)
O,μ (ω)

from Eq. (50). In Eqs. (49) and (50), we choose μ such that the
means include 10% of all eigenstates w.r.t. the center of the spec-
trum. We discretize the ω/t0 axis by choosing 30 (15) points for
R(typ)

O,μ (ω)[R(avr)
O,μ (ω)] that are equidistant on a log scale from 10−3 to

101.

and the average value of the ratio, which is the arithmetic
mean analogous to the one in Eq. (28),

R(avr)
O,μ (ω) = 1

μ

D/2+μ/2∑
α=D/2−μ/2+1

S(α)
O (ω)

S(α)
O (−ω)

. (50)

Note that the calculation of S(α)
O (±ω) in Eqs. (49) and

(50), using Eq. (35), requires an averaging over eigenstates β

whose energies match the condition |ω − (Eβ − Eα )| � δω.
Hence, one needs to average over sufficiently many offdiago-
nal matrix elements in a window δω to smoothen fluctuations,
which requires δω to be sufficiently large. However, δω should
also be sufficiently small to assure high resolution in ω of
the quantities under investigation. If, for a chosen δω, there
is no eigenstate β to fulfill this condition, we exclude the
eigenstate α from the means in Eqs. (49) and (50). In this
work we partition the ω-axis using equidistant intervals on a
log scale and choose δω accordingly such that the intervals do
not overlap.

Results for both means are shown in Fig. 12 for the currents
Ĵc and Ĵe, and for the two spin observables T̂1 and V̂1. The most
striking feature of Fig. 12 is that at L = 16 and ω/t0 � 1, the
typical value of the ratio R(typ)

O,μ (ω) fulfills the Kubo-Martin-
Schwinger relation (46) with high numerical accuracy. These

results demonstrate the validity of the FDT for the overwhelm-
ing majority of eigenstates in the bulk of the spectrum.

A more careful look reveals that, in fact, for ω/t0  1,
both the typical and the average values exhibit a tendency
to approach the expected asymptotic value by increasing L.
We find (not shown here) that the origin of the difference
between the typical and the average values at ω/t0 → 0 in
finite systems stems from a small number of outliers that
strongly differ from the means (the latter are calculated within
a target interval on the ω axis, which is set by the width δω,
as explained above). The typical values are less sensitive to
such fluctuations. It would be interesting to test numerically
whether all eigenstates in the bulk of the spectrum satisfy the
FDT; this goal, however, is beyond the scope of the current
work.

A somehow different approach to the numerical verifica-
tion of the FDT is to calculate the ratio of the averages of
S(α)

O (ω) and S(α)
O (−ω), where the latter are defined as

〈S(α)
O (±ω)〉μ = 1

μ

D/2+μ/2∑
α′=D/2−μ/2+1

S(α′ )
O (±ω). (51)

FIG. 13. Ratios of averages of the eigenstate spectral densities
〈S(α)

O (ω)〉μ and 〈S(α)
O (−ω)〉μ, defined in Eq. (51). Horizontal lines are

results for the Kubo-Martin-Schwinger relation in Eq. (46) at β = 0.
Filled symbols are numerical results for L = 12, 14, 16. We choose
μ in Eq. (51) such that the average includes 10% of all eigenstates
w.r.t. the center of the spectrum. We discretize the ω/t0 axis by
choosing 30 points that are equidistant on a log scale from 10−3 to
101. Open symbols are numerical results for the finite-size correc-
tion exp{ω ∂ ln | fO (Ē ,ω)|2

∂Ē } [see Eq. (55)] at L = 16. We calculate the
discrete derivative over Ē by first calculating | fO(Ē , ω)|2 at Ē = 0
and Ē = −�, where �/L = 0.0025. For each target Ē , the results
are averaged over all matrix elements for which the mean energy is
in the interval [Ē − �/2, Ē + �/2].
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The results are shown as filled symbols in Fig. 13. They
exhibit certain similarities with the results for the means of
the ratios in Fig. 12. In particular, all quantities under in-
vestigation match the Kubo-Martin-Schwinger prediction (46)
for ω/t0 � 1. Note that the agreement between the average
of the ratio and the ratio of averages, observed here for the
spin-fermion model, is consistent with the recent results for
Heisenberg spin chains [55].

To summarize our main numerical results, we observe a
nearly perfect numerical agreement at small ω/t0 with pre-
dictions from the Kubo-Martin-Schwinger relation at β = 0,
which we express as

R(typ)
O,μ (ω) ≈ R(avr)

O,μ (ω) ≈ 〈SO(ω)〉μ
〈SO(−ω)〉μ ≈ 1, ω/t0  1. (52)

These results show that at small ω/t0, the fluctuation-
dissipation relation (without any finite-size corrections) can be
observed with high accuracy for system sizes accessible with
full exact diagonalization. Another message from Figs. 12
and 13 is that the finite-size corrections become dominant at
ω/t0 ≈ 1 for all four observables studied in Fig. 13. However,
the functional form of the corrections may strongly depend on
the specific observable.

C. Finite-size corrections

It is interesting to analytically explore the leading finite-
size corrections to the Kubo-Martin-Schwinger relation. For
the ratio of the eigenstate spectral densities, the corrections
follow directly from Eq. (42). To the leading order, they give

S(α)
O (ω)

S(α)
O (−ω)

=
| fO(Eα, ω)|2 + ω

2
∂| fO (Eα,ω)|2

∂Eα

| fO(Eα, ω)|2 − ω
2

∂| fO (Eα,ω)|2
∂Eα

eβω

≈
(

1 + ω
∂ log(| fO(Eα, ω)|2)

∂Eα

)
eβω. (53)

However, the numerical evaluation of the latter expression,
averaged over a window of eigenstates, is a difficult task.
Instead, it was argued that the finite-size corrections are more
easily treated for the ratio of averages of the eigenstate spec-
tral densities [55]. For the latter, the leading term can be
expressed as a function of Ē , where Ē is the mean energy
of eigenstates in the microcanonical window with an energy
variance σ 2. The average eigenstate spectral density is then
[55]

〈S(α)
O (±ω)〉μ = 2π | fO(Ē , ω)|2 e± βω

2 + 3ω2

8
∂β

∂Ē

× e± ω
2

∂ ln | fO (Ē ,ω)|2
∂Ē +O(σ 2/Ē2 )+··· (54)

and hence the ratio of averages is

〈S(α)
O (ω)〉μ

〈S(α)
O (−ω)〉μ

= eβω+ω
∂ ln | fO (Ē ,ω)|2

∂Ē +O(σ 2/Ē2 )+···. (55)

Note that there are two sources of finite-size corrections in
Eqs. (54) and (55). The first stems from the expansion of
quantities around the mean energy Ē . An example of such a
contribution in Eq. (55) is ω∂ ln | fO(Ē , ω)|2/∂Ē , which, for
large systems, scales as ∝ 1/Ē ≈ 1/L. The higher-order terms
not given in Eq. (55) are at most of the order ∝ 1/Ē2 ≈ 1/L2.

The second stems from the width of the microcanonical win-
dow in which the results are averaged, and it is governed
by the microcanonical variance σ 2. The leading term of this
contribution is denoted as O(σ 2/Ē2) in Eq. (55), and scales
as ∝ L/L2 = 1/L. It is therefore of the same order as the
term ω∂ ln | fO(Ē , ω)|2/∂Ē . However, by choosing narrow mi-
crocanonical windows, we numerically verified (not shown
here) that the impact of the finite width of the microcanonical
window is negligible and hence not explicitly considered in
Eqs. (54) and (55).

Open symbols in Fig. 13 show the correction to the asymp-
totic value evaluated as exp{ω∂ ln | fO (Ē ,ω)|2

∂Ē }; see Eq. (55).
The results show that the correction (open symbols) roughly
agrees with the numerical finite-size results (full symbols).
However, the quantitative agreement is not very accurate. This
suggests that for large ω/t0, other contributions neglected in
the derivation of Eq. (55) should also be relevant.

VIII. AUTOCORRELATION FUNCTIONS

In this section we explore what can be learned about the
properties of the observable matrix elements |Oαβ |2 from the
autocorrelation functions C(α)

O (t ), defined in Eq. (3), and the
corresponding spectral densities.

A. Accessing spectral properties from the integrated
autocorrelation functions

Here we study time integrals of the autocorrelation func-
tions, with the focus on the currents. The emphasis is given
to the properties at long times. At short times (not shown
here), we find that the charge-current autocorrelation function
C(α)

Jc
(t ) typically decays as a Lorentzian function, which is

consistent with the exponential decay of the corresponding
offdiagonal matrix elements reported in Fig. 3(a).

The time integral of the autocorrelation function C(α)
O (t )

from Eq. (4) is

D(α)
O (t ) =

∫ t

−t
C(α)

O (t ′) dt ′ = 4
∑
β �=α

|Oαβ |2 sin[(Eβ − Eα )t]

Eβ − Eα

= 4π

∫ ∞

−∞
dωρ(Eα + ω)|OEα,Eα+ω|2 sin(ωt )

πω
, (56)

where in the second row, the sum over eigenstates was re-
placed by the integral. If the time is large enough, one can
replace sin(ωt )/(πω) → δ(ω). This is indeed a reasonable
approximation for times t > 1/�∗, where �∗ is chosen such
that the density of states ρ(Eα + ω) and the matrix elements
|OEα,Eα+ω|2 are independent of ω at ω < �∗. In this time
regime, we get

D(α)
O

(
t >

1

�∗

)
= 4π |Oαα′ |2ρ(Eα ) = S(α)

O,+(ω ≈ 0). (57)

Hence, the long-time limit of the integrated autocorrelation
function agrees with the ω → 0 result of the spectral density
S(α)

O,+(ω) introduced in Eqs. (5) and (32).
In general, the time t∗ = 1/�∗ needed for the integrated

autocorrelation function to match the ω → 0 limit of the spec-
tral density may be very large provided that usually, 1/�∗ ∝
Lν , with ν > 0. However, based on our analysis carried out
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FIG. 14. Time integration of the autocorrelation functions. Solid
lines: Integrated autocorrelation functions D(α)

O (t ) [see the first row in
Eq. (56)], averaged over (a, b) 10% of eigenstates |α〉 in the middle
of the spectrum and (c, d) over all eigenstates. Observables are the
charge current Ĵc (a, c) and the energy current Ĵe (b, d). The horizontal
dashed lines represent the ω/t0 → 0 limits of the spectral densities,
evaluated for the corresponding matrix elements of the operators and
the density of states as given by the r.h.s. of Eq. (57).

in Sec. V for the currents, we expect that �∗ does not scale
with L for system sizes under investigation, and hence Eq. (57)
should be valid already at moderately short times. We verify
this explicitly for both charge and energy currents: the solid
lines in Fig. 14 represent the numerical evaluation of the first
line in Eq. (56) in a microcanonical window, and the results
indeed approach a time-independent value after a relatively
short time. A comparison of the averages in different micro-
canonical windows around the center of the spectrum [10% of
states in Figs. 14(a) and 14(b) versus all states in Figs. 14(c)
and 14(d)] suggests that for the averages in very large win-
dows, the system-size dependence becomes negligible.

In Fig. 14 we also numerically verify Eq. (57). In particular,
we predict the long-time values of the time-integrated auto-
correlation functions (solid lines) by calculating the mean of
the squared offdiagonal matrix elements in the limit ω/t0 →
0 (horizontal dashed lines). The latter are calculated using
Eq. (35), and we average all quantities in microcanonical
windows. The agreement between the two results is excellent.

The results shown in Fig. 14 demonstrate the possibility
of extracting the low-ω properties of the offdiagonal ma-
trix elements from numerically calculating the autocorrelation
functions. This could be exploited by numerical methods
beyond exact diagonalization (e.g., matrix-product state meth-
ods [75,76], dynamical quantum typicality [77,78], and the
numerical linked cluster expansion [79–82]), which allow for
an efficient time evolution of pure quantum states that corre-
spond to a target energy window. For the currents, note that
a proper statistical ensemble average of D(α)

O (t > 1/�∗) is
related to the dc conductivity and the diffusion constant, as

exploited in a series of studies of transport in spin models
[71,74,97]. Specifically, at infinite temperature (β → 0 limit),
one can express the regular part of the optical conductivity as
[85,98]

σ∞
reg(ω) = β R

{∫ ∞

0
dteiωt 1

D
∑

α

〈α|Ĵc(t )Ĵc(0)|α〉
}

, (58)

which gives

β−1σ∞
reg(ω) = π

D
∑

α

|(Jc)Eα,Eα+ω|2 ρ(Eα + ω). (59)

Hence, the statistical ensemble average of S(α)
Jc

(ω ≈ 0) in the
β → 0 limit yields〈

S(α)
Jc

(ω ≈ 0)
〉
β→0 = 4 lim

ω→0
β−1σ∞

reg(ω). (60)

The latter quantity is shown as horizontal dashed lines in
Fig. 14(c).

B. Autocorrelation functions of observables with Drude-like
structure

Finally, we focus on the class of observables for which the
scaled offdiagonal matrix elements exhibit a Drude-like decay
in a broad energy window, described by Eq. (24). A Fourier
transform of the latter function, which is proportional to the
autocorrelation function, then decays exponentially with time,

C(α)
O (t ) ∝ e−μOt . (61)

Such a time dependence is indeed observed in microcanonical
averages of the autocorrelation functions for the observables
T̂1, Ŝz, V̂1, and Ĥkin, as shown in Fig. 15.

Apart from the mere observation of the exponential decay
of the autocorrelation functions, it is also interesting to study
the L dependence of the rate μO. The Fourier transform of
the function in Eq. (24) predicts that the rate is inversely
proportional to L. In Fig. 15 we plot the autocorrelation
functions as functions of the scaled time tt0/L, which yields
an excellent data collapse for different system sizes. These
results are therefore consistent with the observations made by
solely studying the offdiagonal matrix elements.

The L dependence of the rate suggests that the autocor-
relation functions decay to zero only after extensively long
times, t � L/t0. The linear dependence on L may suggest
fingerprints of ballistic transport and proximity to an inte-
grable point (which is realized if the spin-fermion coupling
vanishes). However, some care is needed in this interpreta-
tion since the rate is calculated in the limit of a vanishing
fermion occupation density, nf ∝ 1/L. Hence, further studies
are needed to shed more light onto the signatures of ballistic
versus diffusive propagation in isolated quantum systems with
itinerant impurities.

IX. CONCLUSIONS

ETH is a well-established framework whose applicability
has been demonstrated for various quantum chaotic models.
Several intriguing aspects of the ETH ansatz have recently
been explored, to list just a few of them: (1) its validity
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FIG. 15. Time evolution (a–c) of the autocorrelation functions CO(t ) = 〈C (α)
O (t )〉μ for the observables T̂1, Ŝz, and V̂1, respectively, and

(d) of the scaled autocorrelation function CO(t )/L for the kinetic energy Ĥkin. The latter scaling is consistent with the additional division
by L of the offdiagonal matrix elements of Ĥkin in Fig. 6(d). We choose μ such that C (α)

O (t ) [see Eq. (4)] is averaged over all eigenstates
|α〉. Results are shown for different system sizes L (see legend) versus the scaled time tt0/L. The dashed line is a fit to the L = 16 results
for tt0/L > 1.

close to integrable points [39,42,43,68] or in few-body sys-
tems [99,100]; (2) existence of a well-defined variance of the
offdiagonal matrix elements of observables in the interacting
integrable Heisenberg model, which is a function of the av-
erage energy and the energy difference [40,56], in analogy to
the structure function | fO(Ē , ω)|2 in the ETH ansatz (2); (3)
characterization of different classes of observables, e.g., their
relation to conserved quantities [41] and the impact of observ-
ables that break the symmetry of the Hamiltonian [46]; (4)
validity of the fluctuation-dissipation relation for eigenstates
in finite systems [11,55]; and (5) the structure of four-point
functions within the ETH ansatz [101–103].

The main results of our work are aligned with several
of those questions. First, a single itinerant fermion, coupled
to an integrable spin-1/2 XX chain, restores ergodicity and
gives rise to the validity of the ETH ansatz as was shown in
Ref. [39] and studied in more detail here. In fact, studying
the fluctuations of the matrix elements of translationally in-
variant observables in this model, we showed that the ETH
is fulfilled to remarkable numerical accuracy, which can
serve as a benchmark for future studies. Our study highlights
that the scaling analysis of several ETH indicators is most
conveniently carried out for structureless operators, i.e., the
operators for which O(E ) ≈ 0 in the ETH ansatz (2). Those
operators have no overlap with the Hamilton operator, in the
sense defined in Ref. [41].

We then focused on the observable-dependent structure of
the offdiagonal matrix elements, and we complemented the
analysis by studying the autocorrelation functions and their
time integrals. Most importantly, we showed that several key
features of the offdiagonal matrix elements of different classes

of observables can be detected from the autocorrelation func-
tions, which opens the door for future studies of the matrix
elements of observables using numerical techniques beyond
full exact diagonalization. Special attention was devoted to
two classes of observables, which have been rarely studied
before: (1) the charge and energy current operators, whose
system-size dependence of the scaled offdiagonal matrix el-
ements |Oαβ |2D for eigenstates in the bulk of the spectrum
strongly differs from all other observables under investigation,
and (2) a class of observables with Drude-like ω-dependence.

Finally, we numerically explored the validity of the
fluctuation-dissipation relation for the eigenstates in the bulk
of the spectrum. We identified the regime of energies ω that
are lower than the typical values of model parameters, for
which the fluctuation-dissipation relation is fulfilled with high
accuracy in systems that can be studied with full exact di-
agonalization. At higher energies, however, the relation is
governed by subleading terms that in finite systems do not
necessarily exhibit a convergence to the result in the thermo-
dynamic limit.
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[84] J. Bonča, Spectral function of an electron coupled to hard-core
bosons, Phys. Rev. B 102, 035135 (2020).
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