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Anisotropic photoelectron emission delay in two-dimensional atomic arrangements
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In two-dimensional semiconductors, the density fluctuation potential created by a screening of the photo-
hole is intrinsically anisotropic because of the infinitely periodic planar arrangements of atoms. Modeling
the anisotropic-localized screening with the cylindrical geometry, we investigate the emission delay of the
photoelectron from 2s and 2pz states of graphene in an angle-resolved mode of the attosecond streaking by
solving the time-dependent Schrödinger equation. Strong angle dependencies in absolute emission delays of
2s and 2pz states are obtained, from which the effects of the infrared-induced continuum transition are ruled
out and those of the anisotropic screening could be solely extracted. Consequently, the anisotropic scattering
induces photoelectrons to be emitted with substantial negative delays within small angles (i.e., θ � θc) from
the normal direction to the atomic arrangement, that is, a conical electron emission in a very early stage of the
photoemission.
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I. INTRODUCTION

Technical developments of the strong field laser make it
possible to analyze the motion of an electron in the attosecond
time scale, for instance, the electron emission delay during
the photoemission. The principle experiment of the photoe-
mission time delay was carried out for a tungsten metal [1].
A relative photoemission delay in an atomic neon was also
determined between 2s and 2p orbitals [2], which builds up the
photoemission metrology. On the other hand, pioneering the-
oretical considerations have been made by Eisenbud, Wigner,
and Smith (EWS) more than half a century ago [3–5]. They
interpret an energy derivative of the photoelectron phase shift
by a short-ranged potential as an emission delay, i.e., the EWS
delay. In atoms, the EWS delays induced by the Coulomb
potential [6,7], the correlation [8–12], and resonance effect
[13,14] are addressed. In solids, the Coulomb-type EWS delay
shows an agreement with the experiment in a bulk mate-
rial [15]. Furthermore, several electronic constituents strongly
affect the emission delay including the periodic potential
[15–17], collective excitations [18–21], spin contribution [22],
and strong Coulomb correlation [23]. Additionally, the con-
tinuum transition delay induced by the infrared (IR) probe
field has been recently found in the pump-probe measurement
[24,25].

Previous studies show that the attosecond dynamics of
an electron is sensitive to the electronic environment. Re-
cent studies of the isotropic atomic systems show that the
photoemission delay depends on the photoelectron emission
angle [26–29] according to the continuum transition induced
by the IR streaking field. In this point of view, an atom-
istic two-dimensional system is interesting. In the system, the
photoelectron experiences an anisotropic electronic screening
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because of planar arrangements of atoms. This makes the
atomic potential cylindrically symmetric, which, in addition
to the effects of the aforementioned IR-induced transition,
produces an inherent correlation with the spatial motion of
the photoelectron and the resultant angle-dependent photo-
electron emission delay.

In this paper, we calculate the angle-resolved photo-
electron emission delay in a two-dimensional system of
graphene by solving the time-dependent Schrödinger equa-
tion with a model Hamiltonian incorporating the anisotropic
density fluctuation potential with the cylindrical geometry.
The anisotropic potential is obtained by the density func-
tional theory (DFT) calculation and further parameterized
by the potential depth and the anisotropic screenings along
in-plane and out-of-plane directions. Graphene is a perfect
single atomic layer, which has a few conceptual merits such
as the zero transport delay and the negligible electron in-
teraction. Absolute emission delays of 2s and 2pz states
of graphene are found to strongly depend on the emission
angle, which would stem from the IR-induced transition
and the anisotropic photoelectron screening. The effect of
the anisotropic photoelectron screening could be isolated by
excluding the IR-induced transition in a comparison with
the isotropic screening. The anisotropic screening is found
to result in a velocity cone with earlier electron emis-
sion centering around the normal direction to the atomic
plane.

The paper is organized as follows. In Sec. II, we propose
a model and formulation for the streaking photoemission in
a two-dimensional atomic arrangement of graphene. In Sec.
III, we provide a calculation of angle-dependent photoelectron
emission delays with respect to screening parameters and
investigate the origins of their angle dependencies. Among
those, we further try to isolate and discuss the effect of the
anisotropic potential. Finally, in Sec. IV, we provide a sum-
mary and conclusion.

2469-9950/2021/103(23)/235135(6) 235135-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8957-4566
https://orcid.org/0000-0003-0833-3080
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.235135&domain=pdf&date_stamp=2021-06-15
https://doi.org/10.1103/PhysRevB.103.235135


HYOSUB PARK, YOUNGJAE KIM, AND J. D. LEE PHYSICAL REVIEW B 103, 235135 (2021)

FIG. 1. (a) Schematic view of the streaking photoemission. The
x̂-polarized pump (red) and probe (blue) pulses are considered onto
graphene. (b) Band structure of the graphene; 2s and 2pz bands are
drawn in red and blue solid lines. (c) |MLk|2 for 2s and 2pz states with
the x̂-polarized XUV pump pulse. (d) Schematics of photoelectron
waves excited by the dipole operator from 2s and 2pz states.

II. MODEL AND FORMULATION

We propose a single electron model Hamiltonian for a
calculation of the attosecond photoelectron streaking in a ve-
locity gauge [23,30,31], whose physical situation is described
by a schematic of Fig. 1(a),

H = εLc†
LcL +

∑
k

[εk − k · AIR(τ + τXUV−IR )]c†
kck

+ AXUV(τ )
∑

k

[MLkc†
Lck + M∗

Lkc†
kcL] +

∑
kk′

Vkk′c†
kck′ ;

(1)

c†
L or cL is an operator of the target electron with its energy

εL. We consider two band states of graphene, i.e., the lowest
σ band [red line in Fig. 1(b)] and the π band [blue line
in Fig. 1(b)] dominantly characterized by 2s and 2pz states,
respectively. Their energies are given by ε2s = −21.6 eV and
ε2pz = −6.6 eV. A d-state contribution to the π band is ig-
nored [32]; c†

k or ck is an operator of the photoelectron and its
kinetic energy εk = k2/2. The second term of Eq. (1) is for the
photoelectron streaking employing the x̂-polarized IR probe
pulse [i.e., AIR(τ )x̂] with the extreme ultraviolet (XUV)-IR
delay τXUV−IR from the XUV pump pulse. The third term
denotes the photoelectron excitation through the dipole tran-
sition by the x̂-polarized XUV pulse [i.e., AXUV(τ )x̂], where
the matrix element MLk is

MLk =
∫

d3rψ∗
L (r)x̂ · kφk(r). (2)

Radial functions of 2s and 2pz states are obtained by the
Hartree-Fock method [33]. Behaviors of |MLk|2 are displayed
in Fig. 1(c), where the Cooper minimum occurs around 70 eV
for the 2s state and is known to generate exotic behaviors of
emission delays [9,12,34]. Illustrations of px and dxz photo-
electron waves excited by the dipole operator from 2s and
2pz states, respectively, are provided in Fig. 1(d). The pump

FIG. 2. Density fluctuation potential due to a created photohole
from the DFT calculation (black) and V (ρ, z) (red) of Eq. (4) with
α = 0.25 a.u. and β = 0.15 a.u. (a) z = 0 is taken. (b) ρ = 0 is taken.

and probe pulses are assumed to have Gaussian-cosine en-
velopes as depicted in Fig. 1(a). The probe pulse is assumed to
have the frequency ωIR = 1.5 eV together with the amplitude
A0

IR = 0.05 a.u. (a.u. is the atomic unit) and the half-width at
half maxima (HWHM) 1.14 fs unless mentioned otherwise.
On the other hand, the pump pulse should be the attosec-
ond one with HWHM 400 as and its amplitude taken as
|A0

XUV/A0
IR| � 10−6 for the whole calculation. The last term

is the density fluctuation potential for a screening of the pho-
tohole, which plays a role of the scattering potential of the
photoelectron

Vkk′ =
∫

d3rφ∗
k (r)V (r)φk′ (r), (3)

in the plane-wave basis φk(r). As we mentioned before, the
potential should be anisotropic that it is reasonable to have
a form of V (r) = V (ρ, z) with the cylindrical symmetry in a
two-dimensional system. Meanwhile, it may be worthwhile to
note that an approach using the model Hamiltonian of Eq.(1)
could be shown to be quite successful in describing other
localized systems (see Supplemental Figs. S2 and S3) [35].

To get the scattering potential V (r), we use the DFT cal-
culation by ELK [36]. For a 2 × 2 supercell, we obtain a
difference in the potential between the ground state and the
excited state with the photohole at a selected carbon atom,
i.e., removing the 2s electron density in the corresponding
muffin tin radius. The black lines in Figs. 2(a) and 2(b) show
the anisotropic potential along in-plane and out-of-plane di-
rections, respectively. Now we try a parametrization of the
potential like

V (ρ, z) = V0e−αρ−β|z|, (4)

and fit the parameters to the DFT calculation of Fig. 2; α and
β are screening parameters and their inverses correspond to
the screening length along in-plane and out-of-plane direc-
tions. The screening parameters are taken as α = 0.25 a.u.
and β = 0.15 a.u. for the 2s photohole state of graphene, but
found there is no meaningful difference between 2s and 2pz

photohole states. It should be noted that the photohole will be
somewhat delocalized beyond a given muffin tin, which may
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underestimate the potential depth. Additional simplifications
may be enabled due to a feature of the single atomic layer
of graphene. A photoelectron may have little chance of expe-
riencing the crystal potential, which will be neglected here.
Further, the initial state being taken as a core state, the density
fluctuation due to a created photohole would induce quite
a local screening, the Bloch characteristics and the multiple
scattering would be limited.

The emission delay is obtained by solving the
time-dependent Schrödinger equation i ∂

∂τ
|ψ (τ )〉 = H|ψ (τ )〉,

where |ψ (τ )〉 is

|ψ (τ )〉 = aL(τ )|cL〉 +
∑

k

ak(τ )|k〉, (5)

with aL(−∞) = 1. With the spherical k-grid, we adopt the
Runge-Kutta fourth-order algorithm to integrate the equa-
tion with an inherent cylindrical symmetry. In Supplemental
Fig. S4 [35], a convergence of the calculation is demon-
strated for the time step �τ = 0.1 a.u., the number of k-point
(nk, nθ , nφ ) = (120, 18, 30), and the energy cutoff Emax =
400 eV; θ and φ denote polar and azimuthal angles. From
the time-dependent Schödinger equation, we obtain a pho-
toemission spectrogram with respect to the XUV-IR delay
τXUV−IR, and the photoelectron emission delay �τ (εk, θ, φ)
for a selected momentum k is extracted by measuring the time
shift of the spectrogram [23,30].

III. RESULTS AND DISCUSSION

Our formulation makes it possible to obtain both
angle-resolved and angle-integrated time delays under
the anisotropic potential. Angle-integrated emission delays
�τ (εk ) will be evaluated by

�τ (εk ) =
∫ 2π

0

∫ π

0
�τ (εk, θ, φ)P(θ, φ) sin θdθdφ, (6)

where P(θ, φ) is the normalized probability for finding the
photoelectron at given angles and �τ (εk, θ, φ) is the angle-
resolved emission delay. Angle-integrated absolute delays for
2s and 2pz states of graphene are provided with the photo-
electron kinetic energy in Fig. 3(a). In the figure, the absolute
delay could be compared with the case with V (r) = 0 for
each state, which is not actually measurable in the experiment.
Instead, the relative delay between initial target states, say
�τ2pz − �τ2s for a given photon energy is measured in an
actual experiment. In the inset of Fig. 3(a), it can be seen
that the 2s-originated photoelectron is emitted earlier than
the 2pz-originated photoelectron at given photon energies.
This could be readily understood, especially for an isotropic
system if the centrifugal barrier proportional to l (l + 1) is
considered [2,11,24]. In an anisotropic system, however, the
angular momentum contribution is a bit more complicated.
The θ -dependent relative delay with φ integrated at a fixed
photon energy ωXUV = 48 eV is displayed in Fig. 3(b). Near
the normal emission (θ � 20◦), the 2pz-originated photoelec-
tron is found to be emitted earlier. This is different from what
is expected in the angle-integrated case, which implies that the
angle dependence of the emission delay is in fact nontrivial.
In Fig. 4, the angle-integrated emission delays for 2s and 2pz

FIG. 3. (a) Angle-integrated absolute emission delay of 2s (red)
and 2pz (blue) photoelectron states. The inset shows the relative
emission delay between 2s and 2pz states, �τ2pz − �τ2s. (b) Angle-
resolved (with φ-integrated) relative emission delay with respect to
θ at a given photon energy 48 eV [designated by a red arrow in the
inset of (a)].

states are delivered for several values of anisotropic screening
parameters of α and β.

Angle-dependent features in the absolute emission delay
comes from two fundamental aspects. First, the photoelectron
scattering potential of a two-dimensional system is char-
acterized by anisotropic screening parameters α and β. In

FIG. 4. Angle-integrated emission delay of 2s (red) and 2pz

(blue) states with respect to the screening parameters α and β at
εεk = 25 eV. (a) β = 0.15 a.u. is fixed. (b) α = 0.25 a.u. is fixed.
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FIG. 5. Angle-resolved (with φ-integrated) emission delay �τ at
εk = 25 eV for the screening parameters α and β. (a), (b) Photoelec-
tron states from the 2s state. (c), (d) Photoelectron states from the
2pz state. A variation of α (β) is considered for a fixed β = 0.15
a.u. (α = 0.25 a.u.). Note that the data at 90◦ in (c) and (d) are
removed because the corresponding cross-section is almost zero (see
Supplemental Fig. S6 [35]).

Fig. 5, it is reasonably shown that in-plane and out-of-plane
screening parameters α and β have strong effects on the time
delays of the electron emitted along grazing (θ → 90◦) and
normal (θ → 0) directions, respectively. Nevertheless, some
cross couplings between the screening parameter and the
anisotropic delay are still observed, which would be caused
by the off-diagonal scattering due to Vkk′ . That is, the inter-
mediate states which experience the scattering contribute to
the final angle-dependent emission delay. Additionally, there
is a change of the angular momentum brought about by the
anisotropic potential. When a photoelectron is scattered by the
cylindrical symmetric potential, the orbital quantum number l
is not a good quantum number any more. Thus the potential
scattering generates a linear combination of all possible l
states, for instance, the px wave emitted from the 2s state
would change to the dxz wave particularly at small α (see Figs.
S5 and S6) [35]. Second, the IR-induced continuum transition
and the Fano propensity rule lead to the angle dependence of
the emission delay [29].

According to Figs. 5(a) and 5(c), the in-plane parameter
α dominantly influences the emission delay near along the
grazing direction, but the angle dependence is not so substan-
tial. On the other hand, Figs. 5(b) and 5(d) indicate that the
strong angle dependence of the emission delay near along the
normal direction is developed by the out-of-plane parameter
β. In particular, for β � 0.25 a.u. (the 2s state) or β � 0.5
a.u. (the 2pz state) at a fixed α = 0.25 a.u., even a sign change
in the emission delay is attained at small angles of θ . A pos-
itive delay implies a retardation of the electron emission, i.e.,
later electron emission, compared to a case with V (r) = 0. It
is actually puzzling to have a positive absolute delay under
the attractive localized potential because a negative delay is
generally expected due to an increase of the photoelectron
kinetic energy compared to the free space [24].

FIG. 6. Angle-resolved (with φ-integrated) emission delay
�τaniso with the anisotropic potential effects isolated, i.e., �τaniso =
�τ − �τiso at εk = 25 eV for the screening parameters α and β. (a),
(b) Photoelectron states from the 2s state. (c), (d) Photoelectron states
from the 2pz state. A variation of α (β) is considered for a fixed
β = 0.15 a.u. (α = 0.25 a.u.).

To get an insight about that, we calculate the absolute emis-
sion delay �τiso for an isotropic scattering potential V (r) =
V0e−αr by solving the time-dependent Schrödinger equation,
exactly on an equal footing with the previous. A possible an-
gle dependence of �τiso could be regarded as the contribution
from the IR-induced continuum transition. We then define the
emission delay �τaniso by isolating the sole contribution of
the anisotropic potential, that is, by subtracting �τiso from
�τ , just like �τaniso = �τ − �τiso. In Figs. 6(a) and 6(c), α

is found to make constant gains in the emission delays �τiso

so that its variation can hardly induce noticeable changes in
the angle dependence of the delays. In contrast, Figs. 6(b) and
6(d) are more insightful. Intriguing positive delays near along
the normal direction in �τ of Figs. 5(b) and 5(d) are almost
removed in �τaniso of Figs. 6(b) and 6(d). This indicates that
�τiso decisively contributes to positive delays at small angles
of θ , which should be from the IR-induced continuum transi-
tion. Consequently, as demonstrated in Figs. 6(b) and 6(d), the
conical electron emission with appreciable negative delays at
θ � θc would be manifested, especially at β 	 α, where θc

may be defined as a critical angle. At θ smaller than θc, the
emission delay becomes appreciably negative. Last, it may
be worthwhile to comment on the quantum interference oc-
curring in the photoemission streaking under the anisotropic
scattering potential. When β is small (i.e., compared to α), the
anisotropic potential produces a mixing of all possible angular
momentum states. Those states would interfere with each
other in a complicated way [29] and then eventually deliver
�τaniso driving a velocity cone of earlier electron emission as
given in Fig. 6.

IV. SUMMARY AND CONCLUSION

In conclusion, we have calculated the angle-resolved pho-
toelectron emission delay in a two-dimensional arrangement
of carbon atoms, i.e., graphene by solving the time-dependent
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Schrödinger equation under the model Hamiltonian accom-
panying the anisotropic scattering potential. The anisotropic
potential has been acquired from the DFT calculation and
further parameterized for an extensive analysis. From our
calculation, it is found that the absolute emission delays of
2s and 2pz states of graphene show the strong angle depen-
dencies derived from the IR-induced continuum transition and
the anisotropic scattering potential. The effect of the sole
anisotropic potential could be isolated by comparing with a
case with the isotropic potential, which should correspond to
the quantum interference by a mixing of the angular momen-

tum states. This is found to drive a velocity cone of earlier
electron emission centering around the direction normal to the
atomic layer.
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