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Reentrant metal-insulator transition and competing magnetic interactions on a triangular lattice
with second nearest-neighbor hopping
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The 120◦ antiferromagnetism (AFM) is widely believed as the magnetic ground state of the triangular systems
because of the geometrical frustration. The emergence of novel magnetism, such as the row-wise AFM in
Mn/Cu(111) and Sn/Si(111), reveals the importance of the longer-range hopping on magnetic competitions
in realistic material systems. By utilizing advanced many-body techniques, we systematically studied the
isotropic triangular Hubbard model with second nearest-neighbor hopping t ′, including both the single- and the
two-particle responses. We found that both electronic and magnetic phase transitions show a clear dependence
on t ′/t . Consequently, we observed a remarkable reentrance of the metal-insulator transition and a crossover
between the 120◦- and the row-wise AFM. The Fermi surface (FS) shows two distinct structures with the nesting
vectors consistent with the magnetic correlations. When t ′ evolvs from 0 to 1, the correlated Fermi surface
demonstrates a Lifschitz transition between the two nesting structures, and exotic phases like the featureless
insulating state can be realized. Our work sheds light on the engineering of electronic and magnetic correlations
of correlated triangular surfaces via longer-range hopping. The rich phase diagram and the high degree of
tunability make the triangular lattice with longer-range hopping a more realistic platform to study the emergent
magnetic competitions.
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I. INTRODUCTION

Strongly correlated electron systems are the heart of con-
temporary research of condensed matter physics. Among
them, the two-dimensional (2D) electron systems, in which
the quantum wave function of electrons is confined in 2D
layer, exhibit distinct and diverse phenomena, continuously
challenging our understanding of quantum physics. Examples
include the quantum Hall systems [1,2], quantum wells [3,4],
orbital-selective Mott insulators [5–7], spin-liquid materials
[8,9], Hund’s coupled iron-based superconductors [10–14],
transition-metal oxide heterostructures [15,16], and the re-
cently discovered infinite-layer nickel oxides [17] and twisted
bilayer graphene [18–24], etc. Among the 2D systems, the
triangular system is unique. In addition to the spatial confine-
ment, the geometric frustration makes the spin arrangement
a nontrivial problem. Electron spins on a triangular lattice
can be neither parallel nor antiparallel simultaneously with
respect to all other neighboring spins. A compromise has to be
made, which leads to an arrangement of spins with 120◦ angle
pointing from one to another in the classical ground state. The
noncollinear antiferromagnetism (AFM) in triangular lattice
is a natural consequence of the geometric frustration and
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has been found in many systems, such as Cr/Fe(111) [25],
Mn/Ag(111) [26], and Cr/Cu(111) [25,27].

The spin arrangements in triangular materials can be much
more prosperous. The spin frustration and, in particular, its
competition with strong electronic correlations, trigger the
emergence of various unconventional phenomena in triangular
systems, including the possibility of the disordered ground
state to occur in S = 1

2 2D AFM [28,29]. A typical example
is the triangular-layered organic κ-(BEDT-TTF)2Cu2(CN)3,
whose bulk-spin susceptibility [30] shows no indication of
long-range AFM order at significantly lower temperature
as compared to the Heisenberg exchange theoretically es-
timated from the high-temperature series expansion [31].
In sharp contrast to the 120◦ noncollinear AFM, the ap-
pearance of nonmagnetic quantum spin-liquid phase in
κ-(BEDT-TTF)2Cu2(CN)3 is astonishing. Many theoretical
works have been devoted to this challenging problem [32–41],
with the conclusions converging to the competition of geomet-
rical frustration and electronic correlations.

Besides the spin-liquid state, the stabilization of a collinear
AFM in correlated triangular lattice is another surprise, which
has been confirmed theoretically in Mn/Cu(111) [27] and
experimentally in Sn/Si(111) [42,43] surfaces. Different from
the normal triangular lattice, the spin susceptibility of these
systems peaks at M point instead of at K, indicating a
row-wise-type collinear AFM. The clear contradiction to
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FIG. 1. (a) Two DCA clusters with Nc = 3 and Nc = 9 sites and (b), (c) with their corresponding BZ. The color-shaded areas in (a) display
the primitive cell of the two clusters with the 3 and 9 sites denoted by the red circles. In (b) and (c), we show the momentum patches in different
colors. All patches with the same color belong to the same symmetry group. The white circle inside each momentum patch corresponds to the
center momentum of this patch. (d) The band dispersion and Fermi surface topology of four representative t ′.

the classical spin arrangement calls for new understandings
of correlated magnetism in quantum triangular systems. In
Sn/Si(111), in addition to the nearest-neighbor (N.N.) hop-
ping generally considered in various quantum many-body
model studies, there exists considerably large second N.N.
hopping, providing a new competing energy scale to the geo-
metrical frustration. The relationship of the row-wise collinear
AFM with the second N.N. hopping, especially under strong
electronic correlation, has not been fully explored. By using
the dual-fermion (DF) approach [44,45], we have studied the
magnetic correlations in an effective model for Sn/Si(111)
and explained the collinear AFM observed experimentally
[42,43]. Recently, Misumi et al. [46] also studied this problem
by using zero-temperature variational cluster approximation
[47,48], which reaches a consistent conclusion.

In this work, we want to present a systematic study of
the isotropic triangular lattice as a function of the second
N.N. hopping t ′/t . We find a strong competition of 120◦- and
row-wise collinear AFM and a reentrance of metal-insulator
transition (MIT), which significantly enrich our understanding
of the correlated triangular materials.

II. MODEL AND METHOD

We study the isotropic triangular lattice by considering the
following Hubbard model at half-filling,

H = − t
∑

〈i, j〉
(c†

iσ c jσ + H.c.) − t ′ ∑

[i, j]

(c†
iσ c jσ + H.c.)

+ U
∑

i

ni↑ni↓. (1)

To resemble the realistic triangular material systems, in addi-
tion to the N.N. hopping t between 〈i, j〉, we further include
the t ′ term between the pair of the second N.N. sites [i, j].

Compared to the ideal triangular Hubbard model with only
N.N. hopping, the presence of this longer-range hopping term
delocalizes the electrons and further competes with the geo-
metrical frustration. The local Coulomb interaction between
two electrons with opposite spins from the same site is U .
Throughout the paper, we take the energy unit t to be 1.
Whenever t ′ and U are referred to, they shall be understood
as t ′/t and U/t .

To better account for the competition and the interplay
between t and t ′, we employ a self-consistent method which
essentially works at thermodynamic limit and respects the
periodicity of the Brillouin zone (BZ), i.e., the dynamical
cluster approach (DCA) [49]. In this work, we consider a
Nc = 9 site cluster whose BZ is patched into nine sections as
shown in Fig. 1. The specific shape of a finite-size cluster can
play a crucial role in the calculations, which may either break
or additionally impose symmetries into the calculations. DCA
employs the periodic boundary condition, which effectively
restores the translational symmetry. The BZ of the Nc = 9
site cluster chosen in our calculations respects all the lattice
symmetries including the sixfold rotational and mirror sym-
metries, leading to the titling of momentum patches in the BZ
shown in Fig. 1(c). We have carefully verified and further en-
sured these symmetries to be satisfied in every DCA iteration.
Not all nine patches give independent self-energy functions.
Under sixfold rotation and mirror symmetries, some momen-
tum patches become equivalent. In Fig. 1(c) we show all
the equivalent momentum patches with the same color. In a
Nc = 9 cluster, there are only three inequivalent momentum
patches, providing three independent self-energy functions.
As a comparison, we also showed a Nc = 3 site cluster in
Fig. 1(a), whose BZ is divided into two inequivalent patches
under the DCA construction. We note that the study of the
two different magnetic correlations requires a resolution of
the self-energy at two inequivalent momentum points K and
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M. As clearly seen in Fig. 1(b), K and M reside in the same
momentum patch. Consequently, the self-energy at these two
points will be exactly the same in Nc = 3 DCA calculations.
For this reason and also for better accounting for the nonlocal
effect, we adopt the Nc = 9 site cluster.

To solve the DCA self-consistent equation, we adopt the
interaction-expansion CT-QMC method [50,51] and measure
the single-particle Green’s function directly in the Matsubara
frequency space. To monitor the instability of the magnetic
channel, we also measure the particle-hole vertex function in
the last iteration after the DMFT self-consistency is achieved.

III. MIT

The MIT in isotropic triangular lattice has been widely
studied by various theoretical methods [34,36,52–69]. Single-
site DMFT correctly captures the essence of paramagnetic
MIT in low-dimensional systems, but with the incorrect es-
timation of the transition boundary. In particular, it predicts
an increasing critical Uc for MIT at lower temperature on
2D square lattice. The cellular DMFT [70,71], on the other
hand, revealed a decreasing Uc with the decrease of temper-
ature [72]. The difference shows the significant role played
by the nonlocal charge fluctuations. Compared to the square
lattice, a local approximation like DMFT is better justified
in triangular lattice. Although the triangular lattice is often
taken as a prototype of frustrated systems where the local
fluctuations dominate, the nonlocal correlation effect is not
negligible. Thus, it is not yet fully settled, in isotropic triangu-
lar lattice with only N.N. hopping t , how the MIT behaves as a
function of temperature under the nonlocal charge fluctuations
included in the cluster-type DMFT calculations.

With the Nc = 9 site DCA calculation, we want to first
answer this question. To study the MIT, we examine the in-
teracting Green’s function at the momentum patches colored
in blue in Fig. 1(b), where the FS of the metallic phase re-
sides. In Fig. 2, we show the imaginary-time single-particle
Green’s function at τ = 1/2T , where T is temperature, at
these momentum patches for three clusters with different
sizes, i.e. Nc = 1, 3, and 9. Let’s focus on the Nc = 9 cal-
culations. When approaching the insulating phase from the
metallic side, Gk (1/2T ) decreases slowly from a finite value
and logarithmically drops to zero when crossing the transition
boundary. Thus, it works as a probe of the MIT. In the top
plot of Fig. 2, we show the evolution of GK (τ ) for clus-
ter momentum K at #2 − #7 patches and τ = t/2T at two
different temperatures. For both temperatures, we observe a
clear suppression of GK (1/2T ) at Uc ∼ 8 eV. Uc obtained in
our symmetry-invariant 9-site DCA calculations agrees well
with the published results [46,53,55–58,63,65,67,69,73,74].
Furthermore, with the decrease of temperature, Uc becomes
smaller. This behavior is similar to the MIT on square lattice
[72], as DCA makes no approximation on the local charge
fluctuations within the cluster as in the cellular DMFT. Sum-
marizing the results on all four temperatures we studied in
this work, we show the transition boundary in the bottom
plot of Fig. 2. The back-turning of MIT boundary is obvious,
indicating the importance of the nonlocal correlation effect.
Compared to the square lattice study, both Uc and the degree
of back-turning are smaller due to the geometrical frustration.

FIG. 2. (Top) Single-particle Green’s function GK (τ ) at
imaginary-time τ = 1/2T of the isotropic triangular lattice as
functions of U . The main plot shows GK (τ = 1/2T ) at two
selected temperatures T = 1/15 and T = 1/20. K is chosen as the
momentum patch where Fermi surface resides. (Bottom) The T-U
phase diagram summarized on all four temperatures studied in this
work and at three different sizes of clusters.

However, the lack of nonlocal charge fluctuations leads an
increasing Uc with the decrease of temperature in single-
impurity DMFT (Nc = 1); see the rightmost plot in each
figure. The Nc = 3 DCA cluster partially corrects the MIT
boundary, leading to a constant value of Uc at all temperatures
studied. Our previous DF calculation is consistent with this
conclusion, but with a larger Uc value due to the different
approximations [67]. Note that, in the Nc = 3 DCA cluster,
each pair of sites is connected by hopping inside the cluster
as well as hopping through the periodic boundary. Thus, the
Nc = 3 cluster is subjected to a stronger boundary effect, as
the Nc = 2, 4 DCA clusters for the square lattice. The Nc = 9
DCA calculations incorporate more nonlocal correlations and
are less affected by the boundary effect. We, thus, believe that
the predicted back-turning of the MIT boundary is an intrinsic
character of the triangular lattice.

Now we further include the second N.N. hopping t ′ and
examine the MIT boundary at fixed temperature T = 0.05.
We show the estimated Uc for different values of t ′. It is
very interesting to observe that the MIT boundary does not
monotonically vary with the change of t ′. Increasing t ′, Uc

rather shows a decreasing followed by an increasing behavior
as displayed in Fig. 3. Varying t ′ from 0 to 1 at fixed 7.2 eV <

U < 7.95 eV, one will first observe a metallic state with FS at
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FIG. 3. The critical value U2 for the MIT (red circled line) does
not monotonically depend on the second N.N. hopping amplitude.
For a fixed value of interaction, metal-insulator-metal transition can
then be observed. The insets show the local density of state at U =
7.6 eV and t ′ = 0.0, 0.4, 0.8.

small t ′, then the FS disappears for some intermediate values
of t ′, and further increasing t ′ leads to the appearance of the
FS again. Thus, the second N.N. hopping in triangular lattice
results in a metal-insulator-metal transition—a reentrance of
the MIT. This behavior has not been observed in nonfrus-
trated lattice, where only one type of magnetic correlations
dominates. As shown below, we will see that the reentrance
of MIT strongly connects to the competition of two different
magnetisms.

The reentrance of MIT is confirmed by the local density
of states calculated at U = 7.6 eV shown inside Fig. 3. The
local density of states corresponds to the imaginary part of the
momentum-averaged lattice Green’s function. We calculated
the lattice Green’s function in Matsubara frequency space and
transformed it to real frequency by using the stochastic analyt-
ical continuation [75]. When t ′/t = 0, the isotropic triangular
lattice is a metal with a quasiparticle peak at the Fermi level.
At t ′/t = 0.4, the FS completely vanishes. The local density
of states shows no weight at the Fermi level, which appears
again when t ′/t further increases to 0.8.

The reentrant MIT in our paramagnetic DCA calculations
is closely related to the competition of two different mag-
netic correlations. Although the magnetic fluctuations are
suppressed in the single-particle level as we averaged the
Green’s function in each DCA iteration, the two-particle mag-
netic fluctuations are still present. At smaller or larger t ′/t ,
each of the two magnetic correlations dominates, while at
intermediate t ′/t , they strongly compete.

IV. MAGNETIC COMPETITION

To better understand the magnetic competition, we exam-
ine the instability of the magnetic channel by employing the
Bethe-Salpeter equation (BSE), whose eigenequation reads:

−T

N

∑

K ′,k̃

�K,K ′
Q G(K ′ + k̃)G(K ′ + Q + k̃)�Q(K ′) = λQ�Q(K ).

(2)

FIG. 4. The leading eigenvalue of the magnetic channel with
U = 7 eV at two different high-symmetry momenta, i.e., K and M,
whose vectors correspond to the magnetic wave vector of the 120◦

AFM and the collinear AFM. When t ′ > 0.55, the collinear AFM
becomes the leading instability of the system.

Here K , K ′, and Q are the joint variables containing the
cluster momenta and the Matsubara frequencies. As we work
in the paramagnetic phase, we drop off the spin dependence
of the cluster Green’s function for simplicity. �Q(K, K ′) is the
cluster vertex function calculated from the two-particle cluster
Green’s function χQ(K, K ′) as

�K,K ′
Q = χ−1

0,Q(K, K ′) − χ−1
Q (K, K ′), (3)

with χ0,Q(K, K ′) being the cluster bubble susceptibility;
χQ(K, K ′) is measured in the last iteration of the DMFT
self-consistent loop after convergence is achieved. We plot
the leading eigenvalue λQ at Q = K and Q = M. When the
leading eigenvalue approaches 1, the magnetic channel at the
corresponding Q point will become divergent, signaling
the breakdown of the convergence in BSE, which indicates the
instability of the paramagnetic solution. As a result, a sponta-
neous phase transition would occur toward a magnetic phase
with the magnetic wave-vector Q. Thus, by comparing the
leading eigenvalue λQ, we can know if a magnetic instability
is going to develop and, correspondingly, the type of magnetic
correlations.

Figure 4 shows the leading eigenvalue in the magnetic
channel with U = 7 at #2 − #7 and #8 − #9 momentum
patches, respectively. They correspond to the collinear AFM
and 120◦ AFM correlations. At the #1 momentum patch, the
eigenvalue is smaller than the other patches and is not shown.
As expected, without second N.N. hopping, the leading mag-
netic eigenvalue at patches #8 − #9 wins, consistent with the
120◦ AFM in isotropic triangular lattice. However, it quickly
drops down when t ′ becomes larger than 0.3.

The leading eigenvalues shown in Fig. 4 further approaches
one when we reduce temperature. We note that this does not
necessarily correspond to the establishment of a long-rang
magnetic order, which is strictly prohibited at 2D in sys-
tems with continuously rotational symmetry [76,77]. There
are two reasons for the finite-temperature magnetic ordering
observed in our calculations. First, DCA is a cluster ex-
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FIG. 5. The Lifshitz transition of the FS topology as a function
of t ′ at U = 7. From blue to red, the intensity increases.

tension of DMFT, which partially incorporates the nonlocal
correlation effect. Any longer-range correlation beyond the
cluster scope is still treated as mean field. As in most of
the mean-field calculations, DCA would still predict a finite
transition temperature toward magnetic ordering, which will
be gradually suppressed with the increase of cluster size.
Second, the breakdown of the BSE in a finite-size cluster
only indicates that the magnetic correlation length exceeds the
cluster size. It may not correspond to a true long-range order.
Here, one should understand Fig. 4 as the competition of two
different magnetic correlations. Whether they will lead to a
true magnetic ordering cannot be unbiasedly answered by our
finite-size cluster study.

The magnetic competition can also be understood from the
topology of the quasiparticle FS. We found that, in isotropic
triangular lattice with second N.N. hopping, the FS of the
correlated electrons shows distinct topology at smaller and
larger t ′. And, in both cases, the FS displays nesting shapes
with different nesting vectors. To examine the FS, we need
to calculate the momentum-dependent single-particle Green’s
function Gk (ω),

A(k, ω = 0) = − 1

π
	 1

iδ − εk − 
k (ω = 0)
. (4)

In DCA calculations with a finite number of cluster size,
instead of 
k (ω), which is a smooth function in the entire
BZ, one has stepwise 
K (ω) that is discontinuous when
crossing the momentum patch boundary. Thus, if calculated
with 
K (ω), A(k, ω) would be discontinuous as well. To
get a smooth 
k (ω) in momentum space, we adopt the 
-
periodization scheme [70].


k (ω) = 1

Nc

∑

i, j


i, j (ω)e−ik·(ri−r j ), (5)

where 
i, j (ω) is the cluster self-energy with i, j running over
the limited number of cluster sites. Figure 5 shows the spectral
function over the first BZ as an intensity plot with U = 7 eV.

The intensity increases in color from blue to red. Four rep-
resentative t ′ are taken in these calculations. The FS of the
isotropic triangular lattice in Fig. 5(a) at half-filling shows
a hexagonal shape with the different pieces of the FS con-
nected by a fixed-wave vector that is equal to the vector from
� to K. Thus, the spin susceptibility at q = K − � will be
enhanced, yielding the tendency toward a 120◦ AFM sponta-
neous symmetry breaking. In contrast, at t ′ = 0.8 [Fig. 5(d)],
the FS shrinks to a smaller hexagon. The nesting wave vec-
tor becomes equivalent to vector M, which is the magnetic
wave vector of row-wise collinear AFM. In the intermediate
values of t ′, the FS smoothly interpolates between those in
Figs. 5(a) and 5(d). The FS evolution is highly consistent
with that of the magnetic correlations shown in Fig. 4. As
either smaller or larger t ′, the dominant magnetic correlations
can be interpreted from the corresponding single-particle FS
topology, while in the intermediate t ′, the FS nesting vectors
do not correspond to a commensurate lattice vector. The corre-
sponding magnetic correlation is a superposition of the 120◦
AFM and the row-wise collinear AFM, reflecting the strong
competition between these two magnetic correlations. We
note that, at t ′ = 0 and 0.8, and U = 7, the system is deeper in
the metallic phase as compared to the case of t ′ = 0.3 and 0.5.
Their quasiparticle FS are well defined in Figs. 5(a) and 5(d),
which resemble the noninteracting ones shown in Fig. 1(d).
However, close to the MIT boundary, the self-energy blurs
the single-particle spectra at t ′ = 0.3 and 0.5, indicating a
stronger correlation effect in Figs. 5(b) and 5(c), although the
same U was taken as in the cases of Figs. 5(a) and 5(d).

V. DISCUSSION AND CONCLUSIONS

In this work, we systematically studied the isotropic trian-
gular lattice with the second N.N. hopping, which is a realistic
model for various correlated triangular surface systems. We
found that, despite the geometrical frustration, the nonlocality
in triangular lattice still plays an important role. The MIT
boundary shows a back-turning shape with the decrease of
temperature (see Fig. 2), similar as in the nonfrustrated square
lattice, i.e., a behavior that has not been studied before to
our knowledge. Our calculations strongly indicate the insuf-
ficiency of the single-site DMFT calculation in studying the
phase boundaries of such model. We found that the compe-
tition of t ′ and t results in a reentrant shape of the MIT (see
Fig. 3). At intermediate values of t ′, the insulating phase can
be stabilized at smaller U as contrast to the t- or t ′-dominant
parameter regime. The dominant 120◦ AFM and the row-wise
collinear AFM at smaller and larger t ′, respectively, become
strongly competitive in the intermediate regime of t ′. Thus,
a nonmagnetic insulating phase is highly anticipated in this
regime at zero temperature [46]. The second N.N. hopping,
thus, provides a more reliable tuning parameter in triangu-
lar lattice to achieve nonmagnetic insulating phase, which
is highly feasible and relevant in real material systems. The
evolution of the magnetic correlations can be consistently
explained by the Fermi surface topology of the quasiparticle.
The competition of t ′ and t results in a more featureless
FS in the intermediate t ′ regime, while, for the small and
large t ′, the FS shows a nesting shape with well-defined nest-
ing vectors, consistent with the magnetic correlations. Our
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finite-temperature study provides firm evidence that the mag-
netic correlations are strongly sensitive to the presence of
longer-range hopping [42,43].
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