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Phase diagram of the anisotropic triangular lattice Hubbard model
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In a recent study [Phys. Rev. X 10, 021042 (2020)], we showed using large-scale density matrix renormaliza-
tion group (DMRG) simulations on infinite cylinders that the triangular lattice Hubbard model has a chiral spin
liquid phase. In this work, we introduce hopping anisotropy in the model, making one of the three distinct bonds
on the lattice stronger or weaker compared with the other two. We implement the anisotropy in two inequivalent
ways, one which respects the mirror symmetry of the cylinder and one which breaks this symmetry. In the
full range of anisotropy, from the square lattice to weakly coupled one-dimensional chains, we find a variety
of phases. Near the isotropic limit we find the three phases identified in our previous work: metal, chiral spin
liquid, and 120° spiral order; we note that a recent paper suggests the apparently metallic phase may actually
be a Luther-Emery liquid, which would also be in agreement with our results. When one bond is weakened
by a relatively small amount, the ground state quickly becomes the square lattice Néel order. When one bond
is strengthened, the story is much less clear, with the phases that we find depending on the orientation of the
anisotropy and on the cylinder circumference. While our work is to our knowledge the first DMRG study of the
anisotropic triangular lattice Hubbard model, the overall phase diagram we find is broadly consistent with that

found previously using other methods, such as variational Monte Carlo and dynamical mean field theory.
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I. INTRODUCTION

Over the past few decades, both theoretical and exper-
imental works have pointed to the existence of quantum
spin liquids, states for which spin degrees of freedom re-
main disordered down to zero temperature [1-3]. The study
of spin liquids has been especially intensive since the ex-
perimental identification in 2003 [4] of the organic crystal
k-(BEDT-TTF),Cu,(CN)3, abbreviated as «-Cu, as a candi-
date material. The spins in this compound are arranged on a
triangular lattice in two-dimensional (2D) layers and exhibit
no sign of ordering down to temperatures that are several
orders of magnitude lower than the spin coupling constant. In
the intervening years, many other triangular lattice materials
have been experimentally demonstrated to have a lack of
magnetic order down to extremely low temperatures [5—14].
Meanwhile, theoretical work has identified a wide variety of
different spin liquid states that might be realized in these sys-
tems, ranging from gapped topological states to gapless states
with or without a spinon Fermi surface [15-20]. Attempts to
explain observations in spin liquid candidate materials have
recently also focused on the role of disorder [21-34].

The correspondence between the predictions from theory
and the measured behavior in experiments remains muddled,
in part because in some cases there is controversy even about
the properties of the materials. In the case of «-Cu, specific
heat measurements [35] corroborate the presence of gapless
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excitations, while thermal conductivity measurements [36]
and a recent electron spin resonance study [33] suggest a
spin-gapped ground state. In another triangular lattice material
that has attracted significant interest, EtMe3;Sb[Pd(dmit);],, it
remains under debate whether thermal conductivity measure-
ments demonstrate the existence of mobile gapless excitations
[37-40]. At the same time, there are many different theoretical
predictions, which could potentially explain all or parts of the
measured behavior, but none of which have been conclusively
demonstrated to be correct.

In light of this profusion of possibilities, it is essential to
make sure that the models we study do indeed match the actual
materials. While many spin liquid candidates are believed
to be described by the Hubbard model on a nearly perfect
triangular lattice, there are typically measured anisotropies
on the order of 10% or 20%, although the precise values are
still under debate, in particular for the case of x-Cu [41-44].
Additionally, spin liquid-like behavior has been observed in
Cs,CuCly [45], which is described by a highly anisotropic
triangular lattice; the importance of the anisotropy is evi-
dent from the fact that more general compounds of the form
Cs,CuCly_,Br,, which differ from Cs,CuCly in the degree of
anisotropy [46,47], show a variety of magnetic orders [48,49].

With the importance of anisotropy in mind, many the-
oretical studies have considered the Hubbard model or its
strong-coupling limit, the Heisenberg model [50], on the
anisotropic triangular lattice. One of the three bonds in the
lattice is chosen to be different from the other two; see Fig. 1.
These models thus interpolate from the square lattice in one
limiting case to a set of uncoupled chains in the other with
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FIG. 1. (a-b) Triangular lattice with anisotropic hopping on a
cylinder of circumference 4 with YC boundary conditions (YC4
cylinder); dashed edges in the lattice indicate hopping strength ¢’
while solid edges indicate hopping strength 7. The gray lines at
top and bottom are identified together to form a line running along
the length of the cylinder. These two distinct ways of orienting the
anisotropic bonds on the cylinder we refer to as (a) “symmetric”
and (b) “asymmetric.” (c—e) U = 0 Fermi surface at half filling with
t'/t = 0.5, 1, and 2, respectively. Allowed momentum cuts through
the Brillouin zone for the YC4 cylinder are shown by solid horizontal
lines for the case of symmetric anisotropy and dashed diagonal lines
for asymmetric anisotropy. (In the latter case, the Brillouin zone is
actually rotated such that the dashed lines are horizontal.)

the isotropic lattice as a special point in between. The many
theoretical works, using a diverse range of techniques such
as variational Monte Carlo (VMC) simulations [51-57], exact
diagonalization (ED) [58-61], dynamical mean field theory
(DMFT) [62-64], variational cluster approximation (VCA)
[65-67], and (for the Heisenberg model only) the density
matrix renormalization group (DMRG) [58,68] and series
expansions [69,70], find a large variety of phases. There is
general agreement on some features, such as square lattice
Néel ordering for a large portion of the phase diagram when
one bond is weaker than the other two, and 120° three-
sublattice magnetic ordering in the strong coupling limit for
the isotropic lattice. Furthermore, a wide range of studies
agree on the presence of a nonmagnetic insulating (NMI)
phase at intermediate interaction around isotropic hopping
[16,54,55,60,62,67,71-78]. In the case where the distinct
bond is stronger than the other two, there is much more
disagreement, with proposed phases including collinear mag-
netic order, spiral magnetic order, and various spin liquids.
We provide a reasonably comprehensive review of these past
works below.

In this paper, we provide the first DMRG study of the
full Hubbard model on the anisotropic triangular lattice. A
primary motivation for this work is to further the understand-
ing of the aforementioned NMI phase. In a recent work, we
identified the NMI, whose nature had not been determined
numerically before, as a topologically ordered chiral spin

liquid (CSL) [79,80]; however, our previous study consid-
ered only the isotropic line, so a natural follow-up question
is whether the CSL remains stable upon the introduction of
anisotropy in the hopping. If the CSL does prove stable, that
would suggest it should be taken seriously as a possible expla-
nation of experimentally observed behavior; this is especially
important to check because the possibility of a CSL was
not investigated in past theoretical studies of the anisotropic
model. On the other hand, the CSL might give way to various
other spin liquids with a small amount of anisotropy, in which
case this study could reveal other candidate states to look for
in experiments and to compare with other theoretical works.

In addition to providing an independent perspective that
can be compared with results from other numerical ap-
proaches, DMRG [81,82], a variational algorithm for finding
ground states within the matrix product state (MPS) ansatz
[83,84], has some crucial advantages. In particular, DMRG
calculations capture the full many-body correlation effects in
the system, and the ansatz is not explicitly biased towards
certain types of states such as spin liquids or magnetic orders.
On the other hand, one key limitation of DMRG is that it is
efficient in one dimension, but not in two dimensions. Con-
sequently, to study a 2D model such as the Hubbard model
on a triangular lattice, one must restrict the system to a quasi-
one-dimensional (quasi-1D) system such as a cylinder of finite
circumference; the calculation effort scales exponentially in
the circumference, limiting simulations for spinful fermions
to circumferences on the order of six lattice sites or fewer.
In order to make meaningful statements about the original
2D model, we study four different cylinder geometries and
compare the results; phases that consistently appear can be
assumed to be present also in the 2D limit, while phases
appearing only for some cylinders should rather be viewed
as possibilities which may or may not appear in the full 2D
model.

The phase diagram we find is broadly similar to the results
of past works mentioned above. In addition to the three phases
found in our previous work on the isotropic model [80],
namely, the spiral magnetic order at large U/t, apparently
metallic phase (which is likely a Luther-Emery liquid [85])
at low U/t, and CSL in between, like the various past works
we find that a large portion of the phase diagram for one
weak bond is filled by the square lattice Néel order, and in
the other limit of one strong bond we find a large variety of
phases including the previously predicted collinear magnetic
order and spin liquids, as well as some phases that have not
been predicted before, such as phases with alternating orbital
charge currents. For the specific question of whether the CSL
is stable to hopping anisotropy, we find that it remains the
ground state with up to about 5% to 10% anisotropy, beyond
which we observe magnetic ordering as well as possible gap-
less spin liquids.

The remainder of this paper is organized as follows: In
Sec. II we introduce the model we study, including the
specifics of the cylinder geometries we use. We review the
results of past theoretical work on both the Hubbard and
Heisenberg models on the anisotropic triangular lattice in
Sec. III, before summarizing our results in Sec. I'V; for each
of the four cylinder geometries we study, we present phase
diagrams in two parameters: coupling strength and degree

235132-2



PHASE DIAGRAM OF THE ANISOTROPIC TRIANGULAR ...

PHYSICAL REVIEW B 103, 235132 (2021)

of anisotropy. In Sec. V we show the key data from our
simulations that inform the phase diagrams; for interested
readers, further data are included in the Supplemental Material
[86]. Finally, we conclude in Sec. VI with a discussion of
how our results fit with both the past theoretical works and
experimental findings.

II. THE MODEL

We consider the Hubbard Hamiltonian,
H = —Ztijc;cja +H.C.+U2nmni¢, (1)
(ij)o i

where ¢, (cfﬂ) is the fermion annihilation (creation) operator
for spin o on site i and n = c'c is the number operator. (-)
indicates nearest-neighbor pairs on the triangular lattice; on
this lattice there are three distinct bonds, and we consider
anisotropic hopping #;; such that two bonds have hopping
strength ¢ and one has hopping strength ¢’, as shown in
Figs. 1(a) and 1(b). We work at half filling with net zero
spin, so that Zi<niT> = Zi(”u) = N/2, where N is the total
number of sites. In Figs. 1(c)-1(e) we show the U = 0 Fermi
surface at half filling with ¢/t = 0.5, 1, and 2; the transition
from a closed (2D) to open (quasi-1D) Fermi surface is at
t'/t =~ 1.636.

To study this model using the DMRG method, we wrap the
2D triangular lattice onto an infinitely long cylinder of finite
circumference. We use the so-called YC boundary conditions
[80,87], for which the triangles are oriented such that one of
the sides runs along the circumference of the cylinder. Given
the YC boundary conditions, there are two distinct ways of
introducing the aforementioned anisotropy. If the bonds with
strength ¢’ run around the cylinder circumference, this pre-
serves all spatial symmetries of the cylinder; we therefore
refer to this orientation, shown in Fig. 1(a), as “symmetric
anisotropy.” Conversely, if the ' bonds are on one of the
diagonal directions, as in Fig. 1(b), the mirror symmetries
of the cylinder are broken; we refer to this orientation as
“asymmetric anisotropy.”

As in our paper on the isotropic model [80], we explicitly
conserve the momentum quantum numbers associated with
translation around the cylinder circumference by rewriting the
Hamiltonian in a mixed real- and momentum-space basis with
single-particle operators cy ., [88,89]. This improves the
computational efficiency of our simulations and also allows
us to separately find the ground state in different momentum
sectors.

We focus particularly on the YC4 cylinder, with four
sites around the circumference, which is simultaneously small
enough to allow for relatively converged simulations and large
enough to capture at least some behavior of the full 2D model.
In order to better assess how representative the YC4 cylinder
is of the 2D model, we also make a more limited study of
both the YC3 and YC6 cylinders, revealing that some phases
appear in all cases and are likely robust to the 2D limit while
others are limited to just one of the cylinders and should be
viewed only as candidates for existence in two dimensions.

III. PAST THEORETICAL RESULTS

Before presenting the results of our simulations, we review
past theoretical works on both the Hubbard and Heisenberg
models on the anisotropic triangular lattice.

In the case of the Heisenberg model, two observations are
firmly established with a variety of methods. First, when one
bond is weaker than the other two, the Néel order remains
stable in a wide region extending from the square lattice
limit, and second, the isotropic case exhibits 120° spiral or-
der [90-92]. Density matrix renormalization group (DMRG)
calculations suggest a continuous variation of the angle of
the spiral order from the isotropic point to both the Néel
state and the uncoupled chain limit [68]. Variational Monte
Carlo (VMC) simulations [51,53,57], resonating valence bond
mean-field theory [93] and Schwinger boson theory [94] on
the other hand report the presence of at least one spin liquid
phase towards the latter, a scenario that is partly supported
by the detection of a magnetically disordered phase with
collinear spin correlations in a functional renormalization
group investigation [95] and by earlier DMRG and ED studies
[58]. Furthermore, a VMC study puts forward the possibility
of another spin liquid phase with competitive energy between
the Néel and spiral orders, but the results remain inconclusive
[57]; this possibility is also seen in the Schwinger boson
theory work [94]. Around the same region, early series ex-
pansion calculations have instead suggested a dimer ordered
phase [69]. While the above numerical studies favor either
incommensurate spiral order or a spin liquid in the weakly
coupled chain case, collinear order has been proposed from
renormalization group (RG) [96,97] studies and shown to be
strongly competitive using the coupled cluster method [98]
and ED [61]. In a series expansion, the spiral is shown to
prevail over collinear order, but small magnetization and un-
clear convergence properties might hint at a spin liquid state
in agreement with many of the numerical works [70].

Turning to the Hubbard model, in addition to the
anisotropy, the ratio of interaction to kinetic energy U/t
represents another degree of freedom and adds to the
complexity of the phase diagram; the range of open questions
grows concomitantly larger. In the isotropic case, numerous
methods have established the existence of a nonmagnetic
insulating (NMI) phase for intermediate interaction strength;
however, the determination of its precise nature escaped
these approaches [60,62,67,71-73,75,77,78]. Based on VMC
calculations on a Heisenberg model with ring exchange
resulting from a ¢ /U expansion of the Hubbard model, a spin
liquid with spinon Fermi surface (SFS) was long believed to
be a strong candidate for the state [16]; this scenario also has
some support from ED and DMRG simulations [74,99,100].
Despite this model capturing the main effect of charge
fluctuations near the Mott transition, it remained unclear
whether the SFS would also appear in the Hubbard model.
(In fact, the emergence of the state is still under debate even
in the spin model [101].) In our previous DMRG study, we
determined the nature of the NMI phase in the full Hubbard
model for the first time and suggested that it is a topologically
ordered chiral spin liquid [79,80]. More recent papers, using
a different variant of DMRG, also find the CSL [102,103] and
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FIG. 2. Summary phase diagrams for four different cylinder geometries. (a) YC4, symmetric anisotropy; (b) YC4, asymmetric anisotropy;
(c) YC3, symmetric anisotropy; (d) YC6, symmetric anisotropy. Note that the parameter ranges are not all the same. We briefly describe
the observed phases (in alphabetical order by label): /D Metal—phase with a large charge 1 correlation length like a metal and with an
open (quasi-1D) Fermi surface; /D Spin Liquid—a nonmagnetic insulator with some 1D character (e.g., in the spin structure factor), and
which has isolated gapless points; Alt. Charge Current—a phase with charge currents running around the cylinder circumference, in opposite
directions on neighboring rings, and which also has a nonzero scalar chiral order parameter with alternating sign; Alt. Chiral—a similar
phase, but with currents and chiral order parameters varying with a four-ring unit cell; Collinear—a state with antiferromagnetic ordering
along the distinct (strong) bond, and with ferromagnetic and antiferromagnetic ordering respectively along the other two bonds; Collinear
superposition—possibly a superposition of collinear order in two different orientations; CSL—chiral spin liquid; Metal or L-E Liquid—phase
that appears metallic in our data, but a large charge 2 correlation length and RG theory [85] suggest is a Luther-Emery liquid; Néel—square
lattice antiferromagnetic spin order; NMI—nonmagnetic insulator, which appears to be gapped; SL or Spin Liquid—a nonmagnetic insulating
phase that appears to be spin gapless; Spiral—spiral magnetic order; Spiral 2—part of the same spiral-ordered phase in two dimensions, but
distinct on the cylinder. Dashed lines denote locations where there may be a phase transition, but our data are not conclusive. Finally, we note
two regions for YC6 in which the correct phase is not clear at accessible MPS bond dimensions: the striped region for YC6, labeled N./Sp.
(Néel/Spiral), which may belong to either phase, and the small gray region, which may belong to the CSL or spiral order. In both cases,

different momentum sectors show different behavior, and the energy difference is comparable to or smaller than the MPS truncation error.

its presence was subsequently detected in the effective spin
model as well [104].

With the introduction of anisotropy, two limits are still
very well understood: when U = 0, the model is exactly
solvable, and the system is metallic; when ¢’ = 0, the model
reduces to the square lattice Hubbard model and has long-
range Néel antiferromagnetic order for all U > 0. As in
the Heisenberg model, the square lattice Néel state ex-
tends through much of the ¢/t < 1 portion of the phase
diagram, as reported in studies by numerous techniques
[52,55,59,62,63,65,67,71,105,106]. VMC simulations sug-
gest the presence of a spin liquid phase between the Néel order
and the spiral phase around the isotropic line for large U/¢,
similar to the possibility in the Heisenberg model [54,55].
Moreover, a d-wave superconducting state has been proposed
to appear at lower U/t between the metallic and Néel phases
from cellular DMFT (CDMFT) [62], variational cluster per-
turbation theory [105], and some VMC [52] calculations.
Conversely, we note the absence of a superconducting state
in other VMC studies [55,106], and in path integral renormal-
ization group [71], ED [59], variational cluster approximation
(VCA) [65,67], and complementary DMFT [63] studies.

The low-U phase near the isotropic line is mostly referred
to as (paramagnetic) metal in the studies we review here;
however, this might not be entirely correct. The noninteracting
state at U/t = 0 is obviously a metal, but RG studies in the
full 2D model have shown that it becomes a d + id super-
conductor for infinitesimally small interaction [107,108]. If
there is no other phase transition between the low-U state and
the NMI state, this full region of the phase diagram could be
a superconductor, but possibly with an exponentially small

gap which would make it likely to appear to be a metal in
many numerical studies. There is also evidence for similar
behavior at low U/t on the cylinder geometries relevant for
DMRG simulations [85]; the phase would then be a Luther-
Emery liquid (LEL) [109]. On the numerical side, a modified
version of the VCA from Ref. [67] suggests that a d + id
superconducting state is lower in energy than the metal. This
superconductor scenario would also lead to a more natural
description of the transition to the CSL.

The situation in the case of hopping anisotropy towards the
1D chain limit with #'/t > 1 has been much less studied. Both
VMC [56] and VCA [65,66] calculations report the presence
of a collinear magnetically ordered phase at intermediate U /¢
and the spin liquid at large U/t connected to the one suggested
in the Heisenberg model. The occurrence of the collinear
state is in agreement with ED and CDMFT studies, which,
however, do not find indications of the spin liquid [60,64].

IV. PHASE DIAGRAM SUMMARY

In this section, we present a summary of the phase di-
agram we observe for each of four different setups: YC4
cylinder with symmetric anisotropy, YC4 cylinder with asym-
metric anisotropy, YC3 cylinder with symmetric anisotropy,
and YC6 cylinder with symmetric anisotropy. Each summary
phase diagram is shown in Fig. 2, with the supporting data
presented below, in Sec. V.

Of course, the real aim is to determine the phase diagram
of the model on the full 2D lattice, not the phases that appear
on certain finite-circumference cylinders. While a rigorous
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conclusion about the 2D model is not possible from our data,
we can make some progress, noting the following:

(1) Any phase where all four phase diagrams agree is more
likely to be present in the 2D model.

(2) Larger cylinders are more representative of the 2D
model in principle, but they also require a much larger MPS
bond dimension to converge; when the bond dimension is too
small, the wrong state may be energetically favored.

Some intuition for the question of how small of a circum-
ference is “too small” can be gained by comparing the YC3
phase diagram with those of the larger cylinders. Evidently,
the whole phase diagram is shifted upwards, so that ¢/t ~ 1.2
acts like the isotropic line, meaning that correlations around
the cylinder circumference introduce an effective anisotropy.
So at least near ¢’ /t = 1, YC4 may be large enough to capture
2D behavior, while YC3 might not be.

(3) Because the symmetric anisotropy case has the same
mirror symmetries as the full 2D anisotropic lattice, it seems
likely to better represent the true 2D ground state. Some
evidence for this can be found in Ref. [64].

(4) On the other hand, in the limit of large #' /¢, the case of
symmetric anisotropy may act as a single weakly coupled 1D
chain, with each effective site being one ring of the cylinder;
in contrast, asymmetric anisotropy gives a small number of
weakly coupled infinite 1D chains. The latter may be a more
natural way to study the 2D large-¢’ limit of weakly coupled
1D chains.

(5) Specific types of magnetic ordering are
stabilized/destabilized by whether they are commensurate
with the cylinder circumference.

With these points in mind, we can make some predictions
about what the phase diagram of the full 2D model should
look like. The metal /LEL phase, CSL, and spiral order should
appear on the isotropic line, as in our previous work [80].
For t'/t < 1, the majority of the phase diagram is taken up
by the Néel order, and there may be an additional phase
between the Néel phase and the CSL and spiral phases near
t'/t = 1. However, this additional phase is clearly observed
only for YC4 with asymmetric anisotropy, which breaks extra
symmetries. There is an extra phase in this region for the YC3
cylinder as well, but that appears to also correspond to the
spiral phase of the 2D model, appearing as distinct only due to
the finite circumference. Thus overall our data weakly suggest
the absence of such an additional phase in two dimensions.

For t'/t > 1, any predictions are much less certain. At low
U/t, we consistently find what we call the “1D metal” phase,
for which the longest correlation lengths are for charge 1
excitations, and where the k-space occupation numbers are
consistent with an open Fermi surface; for YC4 and YC3 with
symmetric anisotropy, this phase is clearly distinct from the
metal /LEL, but for YC4 with asymmetric anisotropy, it is
distinguishable only via the occupation numbers, so its status
as a truly distinct phase is not entirely clear.

As U increases, we find multiple spin liquids, collinear
magnetic order, and time-reversal symmetry-breaking phases
whose scalar chiral order parameter varies in sign and/or mag-
nitude between triangular plaquettes. The latter phases appear
only for YC3, the smallest and least 2D of the cylinders, and
YC4 with symmetric anisotropy, in the ¢/t >> 1 limit where
the asymmetric anisotropy may be more representative. Con-

sequently, these phases are unlikely to be present in the 2D
model. We also note that the spiral magnetic order may extend
to larger ¢/t in two dimensions, since general spiral orders are
incommensurate on finite-circumference cylinders and thus
might be artificially disfavored. This incommensurability can
be partially addressed by flux insertion, as we discuss in the
Supplemental Material, Sec. II.A.5., but our data from such
calculations are not conclusive.

The spin liquids we find seem to be of two types. First is
the “1D spin liquid” predicted in references [51,53,56,57,94],
which we observe in the YC4 symmetric case and also for
the YC6 cylinder. Despite the name, this is not truly a 1D
phase. While some properties, such as spin-spin correlations,
indeed appear very one-dimensional, the excitation spectrum
as revealed by MPS transfer matrix spectra with flux insertion
has only isolated gapless points in the 2D Brillouin zone
consistent with the characterization from VMC. The second
spin liquid is closer to the isotropic line and is found by
gapping out charge from the 1D metal phase. Both types of
spin liquids, as well as the collinear magnetic order, are strong
candidates for the '/t > 1 regime for the full 2D model.

V. DATA FOR DIFFERENT CYLINDERS

In this section, we present the most important pieces of
data that lead to the phase diagram summaries of Fig. 2. In
particular, we show the following observables:

Magnetic ordering, as measured by the spin structure
factor. For each MPS wavefunction, we compute (S,S;) cor-
relations to a distance of six sites along the cylinder, then
Fourier transform to find an approximation to the spin struc-
ture factor. We confirm using a random subset of parameter
points both that (a) spin rotation symmetry is preserved in the
simulation, so that (S.S;) = (5:Sx) = (5,S,), and (b) the range
of six sites is sufficient to capture the full spin structure factor,
either because there is true long-range order which is already
clear at this distance or because long-range order is prevented
since it would require spontaneously breaking a continuous
symmetry in one dimension. In the latter case, the decay is fast
enough that farther correlations do not contribute significantly
to the structure factor.

We illustrate the measured spin structure factors in two
ways: by showing the structure factor at a representative point
in each phase, and by showing its height at specific points in
the Brillouin zone (e.g., M and K points) for all points in the
phase diagram.

These spin structure factor results can be compared with
the expectations for several types of magnetic ordering, in-
cluding square lattice Néel order, spiral order, and collinear
order; for details on how these different orderings are expected
to manifest on the cylinders we study, see the Supplemental
Material [86], Sec. L.

Time-reversal symmetry breaking, as measured by the
scalar chiral order parameter, (S; - (S; x S¢)) where i, j, k
label the three vertices of a triangular plaquette in the lattice.
This is nonzero in the chiral spin liquid phase that appears
near the isotropic line, and we also observe other phases with
nonzero chiral order on some cylinders in the large ¢’ /¢ limit.

Correlation lengths for excitations with charge 0, 1, and
2. These serve as a rough indication of whether phases
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are gapped or gapless in these charge sectors. Ideally, one
would instead perform a finite entanglement scaling calcula-
tion [110-112], but for a 2D phase diagram this requires more
computation time than is feasible, and, as we show below, the
correlation lengths already provide clear intuition.

While these data are sufficient to distinguish different
phases, and in some cases to clearly identify them, we also
consider a variety of other quantities that help to identify
the phases, including entanglement entropy and entanglement
spectra [113,114], transfer matrix spectra [80,115], and occu-
pation in the Brillouin zone, among others. All of these addi-
tional data can be found in the Supplemental Material [86].

A. YC4, symmetric anisotropy

Data for the YC4 cylinder with symmetric anisotropy are
shown in Fig. 3; to be precise, we show the spin structure
factor, scalar chiral order parameter, and correlation length in
each of several charge sectors. These quantities are calculated
from MPS ground states with bond dimension yx = 4000,
using unit cells of one, two, and three rings, and initialized
with different conserved momenta, including total momentum
around the cylinder of O for each unit cell size as well as
momentum 7 for one- and two-ring unit cells. The three-ring
unit cell data were computed by adiabatically increasing or
decreasing anisotropy starting from the isotropic point, while
the others were computed directly at each point in the phase
diagram; both approaches yield the same observed phases. At
each point in the phase diagram, the figures show measured
quantities using the state with the lowest energy among the
various datasets. We have also performed the same simula-
tions with bond dimensions of 1000 and 2000, finding the
same phases but with somewhat shifted boundaries, especially
at low U. Some representative figures for these lower bond
dimensions are available in the Supplemental Material, along
with various additional quantities at bond dimension 4000:
real-space spin correlations, k-space occupation numbers,
transfer matrix and entanglement spectra, and various proper-
ties as a function of spin flux insertion in the high-U limit [86].

Each phase can be at least partially identified using these
data. We now discuss the evidence for each phase, roughly in
order from most to least clearly identified from our data.

Néel order: The most obvious phase, and also the one
occupying the largest portion of the phase diagram, is the
square lattice Néel magnetic order, labeled as ® in Fig. 3(a).
Referring to Fig. 1(a), in the limit ¢/t = O the dashed line
vanishes entirely and the lattice becomes unfrustrated, leading
to magnetic ordering that is ferromagnetic within each ring
and antiferromagnetic between rings. In the spin structure
factor, this is indicated by extensive peaks at the k, =0 M
points, exactly as we see in ® in Fig. 3(a). The energy is
lowest with a two-ring unit cell, in which case the translation
symmetry of the Hamiltonian is spontaneously broken in the
simulation: there is a net spin up on half the rings and net spin
down on the other half [116]. With a one- or three-ring unit
cell, so that the translation symmetry breaking is not allowed,
the Néel order still appears in the correlation functions, but the
correlation strength decays slowly to zero along the cylinder.

Spiral order: The spiral-ordered phase, labeled by @ in
Fig. 3(a) and exemplified by the 120° three-sublattice order

at the isotropic point, is identifiable primarily via the spin
structure factor. For the special case of 120° order, on the
full 2D lattice the structure factor would have peaks at the K
points, the corners of the Brillouin zone; we look for peaks at
the closest allowed momenta, including point © in Fig. 3(b).
Based on analysis of the classical Heisenberg model [117] as
discussed in the Supplemental Material [86], away from the
isotropic point incommensurate spiral order is expected with
peaks along the line connecting points ® (for '/t = 1/+/2)
and ©, and continuing through the K point to the bottom
of the Brillouin zone, ending at the mirror of point ® (for
t'/t — 00). However, in our data, we find that the spiral order
is stabilized only in the vicinity of the isotropic line. It would
be reasonable to suppose that the spiral-ordered phase would
shift with spin flux insertion, which can shift the allowed
momentum cuts through the Brillouin zone and thus change
which magnetic orders are effectively commensurate on the
cylinder. Indeed we see that spiral order near the isotropic line
becomes stronger when the allowed momentum cuts include
the K points. At small nonzero flux the spiral phase appears
larger than at O flux, but phase boundaries are not clearly
defined (see the Supplemental Material [86], Sec. IL.A.5.).

Chiral spin liquid: The CSL, labeled by ® in Fig. 3(a), is
most easily identifiable via the scalar chiral order parameter
in Fig. 3(c) and corresponds roughly to the green region near
the isotropic line in that figure.

Metal or Luther-Emery liquid (LEL): This phase, labeled
by @ in Fig. 3(a), was identified as a metal in our previous
work [80], on the basis partly of finite entanglement scaling
calculations giving a central charge matching the expectation
for the U = 0 state on the isotropic line. More recent the-
oretical work using renormalization group calculations [85]
suggests that this phase is instead a LEL, which would not
have been distinguishable from the metal at the bond dimen-
sions we considered. However, one feature of the data in our
previous paper that is consistent with the LEL is a relatively
large correlation length for charge 2 excitations, which may
indicate a tendency towards superconductivity. In Fig. 3(f),
we see that the charge 2 correlation length is indeed even
larger in the parts of this phase with larger ¢'/f, which is a
further confirmation that this phase may indeed be the LEL
rather than a metal. To conclusively demonstrate this fact,
however, would require much larger bond dimensions than are
currently accessible, in order to resolve very small gaps and
correspondingly large correlation lengths. If such data were
available, finite entanglement scaling for the LEL should show
a central charge that decreases from 6 to 1 with increasing
bond dimension [85].

1D metal: The upper left phase, labeled by @ in Fig. 3(a),
can be seen from Figs. 3(d) and 3(e) to have large correlation
lengths for both charge and spin excitations, indicating that
it is likely gapless. The boundary with the phase below is
between ¢/t = 1.65 and 1.7 (for bond dimension y = 4000
as shown in the figure—it is at a slightly lower value of t'/¢ for
smaller bond dimensions [86]), which seems to correspond to
the U = 0 Fermi surface opening at t'/t &~ 1.64; indeed, we
directly observe from k-space occupation numbers that this
is the case, as shown in the Supplemental Material [86], Fig.
S10. While this Fermi surface opening informs the label we
assign to the phase, we emphasize that it is identifiable as a
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FIG. 3. Data for YC4 cylinder with symmetric anisotropy, with MPS bond dimension x = 4000. (a) Spin structure factor, view 1. We show
the spin structure factor computed on allowed momentum cuts at one representative point in each of the eight phases we observe. (b) Spin
structure factor, view 2. We show, for the full range of ¢/t and U /¢, the value of the spin structure factor at the four points labeled ®, ®, ©,
and ®. The M points ® and ® correspond to collinear and Néel order respectively. The point © is as close as possible to the K points, where
the 120° order appears, on the allowed momentum cuts. The point ® is included because a comparison with ® distinguishes between collinear
order and a “1D” order where the whole line containing those points is a subextensive peak. (c) Scalar chiral order parameter (S - (S x S)). Note
that the nonzero value at low U/t is a finite bond dimension effect; see Fig. 3(e) of Ref. [80]. In the CSL, around the isotropic line, the order
parameter has the same sign on every triangular plaquette. In the large ¢/t phase where the order parameter is nonzero, the sign alternates
on neighboring rings; see the Supplemental Material [86] for an illustration of the pattern. (d) Correlation length for charge 0 excitations
(i.e., spin excitations), computed using the MPS transfer matrix. A large correlation length will be found if spin excitations are gapless. (e)
Correlation length for charge 1 excitations. A large correlation length is implied by gapless charge excitations. (f) Correlation length for charge
2 excitations. A large correlation length may indicate a tendency towards superconductivity.
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distinct phase from the LEL via other signatures, such as the
aforementioned correlation lengths. In particular, the charge
2 correlation length is much shorter in this phase, perhaps
indicating that it is truly metallic, unlike the LEL.

Alternating charge current: The upper middle phase, la-
beled by @ in Fig. 3(a), is identifiable in Fig. 3(c) by a
nonzero scalar chiral order parameter. What is not clear
from the figure, where we plot only the absolute value of
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the scalar chirality, is that in this phase the sign alternates
on different plaquettes—the precise pattern is shown in Fig.
S11 of the Supplemental Material [86]. Evidently, the phase
breaks translation symmetry. Accordingly, this phase is only
observed when we use a two-ring unit cell in the simula-
tion; for one- or three-ring unit cells, the simulations do not
converge well in this region of phase space. The translation
symmetry breaking also manifests in the form of charge cur-
rents that run around the cylinder circumference, in opposite
directions on neighboring rings, which is also discussed in
the Supplemental Material [86]. We emphasize that these
are local orbital currents only, and there is no net current
through the system. Note that the phase is charge gapped,
as can be seen from the very small charge correlation length
in Fig. 3(e).

1D spin liquid: The upper right phase, labeled by ®
in Fig. 3(a), is most clearly identifiable by a peak in the
spin structure factor that is uniform along &, at k, = 7, in
other words by strong antiferromagnetic correlations around
the cylinder and almost no correlations along the cylinder.
However, the picture of the phase as 1D breaks down when
we perform flux insertion by twisting the periodic bound-
ary conditions around the cylinder, which has the effect of
shifting the allowed momentum cuts through the Brillouin
zone; flux insertion data are provided in the Supplemental
Material [86]. We observe gapless points with flux insertion,
at which the local magnetic ordering becomes much more
correlated along the cylinder. Our results for this phase are
generally consistent with the phase called “1D spin liquid”
in Refs. [51,53,56,57,94]. In particular, the structure factor
agrees with the ones presented in Refs. [53,56] for this phase.
Although, as revealed by our flux insertion calculations, the
phase is not truly one-dimensional, we also adopt the “1D spin
liquid” name for consistency with the literature.

Gapless spin liquid: Finally, the central phase labeled by
® in Fig. 3(a) appears to be a gapless spin liquid: there is
no strong magnetic order, and comparing Figs. 3(d) and 3(e),
there is evidently a transition from the 1D metal at which
the charge correlation length becomes short, indicating a gap,
while the spin correlation length is unchanged. To distinguish
between different gapless spin liquids, we again perform flux
insertion, but the results are inconclusive. Looking at the
transfer matrix spectrum (Fig. S12 of the Supplemental Mate-
rial [86]), we see that the gapless region of the Brillouin zone
is small, possibly consistent with a nodal gapless spin liquid
such as a Dirac spin liquid (DSL). A more precise identifi-
cation would probably require much larger bond dimensions
and, due to shifting phase boundaries with flux insertion [80],
flux insertion over a possibly large portion of the phase dia-
gram, so we leave this question for future study.

B. YC4, asymmetric anisotropy

Data for the YC4 cylinder with asymmetric anisotropy are
shown in Fig. 4, again calculated from MPS ground states with
bond dimension x = 4000 and with one-, two-, and three-
ring unit cells, initialized with total momentum around the
cylinder of 7, 0 and 7, and O per unit cell, respectively. Lower
bond dimension data are again available in the Supplemental
Material, along with various other quantities [86].

Using these data, we identify the following phases:

Néel order: The bottom phase, labeled as ® in Fig. 4(a),
is again square lattice Néel order, though the ordering pattern
is rotated clockwise by 60° compared to the symmetric case.
Here the bond that vanishes in the ¢/t = 0 limit is one of
the diagonals, so the real-space spin correlations are ferro-
magnetic along that diagonal, leading to two differences from
the symmetric case: the corresponding peak in the structure
factor is at a different M point, and translation symmetry is
not broken.

Spiral order: The spiral-ordered phase, labeled by ® in
Fig. 4(a), is again identifiable from the spin structure factor.
It extends to larger ¢'/t compared with the case of symmetric
anisotropy, likely because in this case the expected peaks
for spiral order in two dimensions are closer to the allowed
momentum cuts at k, = £ /2 when t'/t > 1, while for the
symmetric case they become farther from these cuts.

Chiral spin liquid: The CSL, labeled by ® in Fig. 4(a), is
again clearly identified by the scalar chiral order parameter,
Fig. 4(c). With asymmetric anisotropy, this is the only phase
with time-reversal symmetry breaking.

Metal or Luther-Emery liquid: This phase, labeled by ® in
Fig. 4(a), is identified by a large correlation length for both
charge 1 and charge 2 excitations, as shown in Figs. 4(e)
and 4(f). The dashed line near the top shows where k-space
occupation numbers seem to indicate an opening of the Fermi
surface. Unlike the case of symmetric anisotropy, no other
quantities clearly change at this location, so we do not identify
it as a separate phase.

Collinear order: This phase, labeled by @ in Fig. 4(a),
has collinear magnetic order, which in the present case of
asymmetric anisotropy is nearly identical to that observed in
the Néel phase with symmetric anisotropy, though weaker.
Here too, the translation symmetry is spontaneously broken,
with a net spin up on half the rings and a net spin down on
the other half. This ordering arises because the spins align
antiferromagnetically along the strong (diagonal) bond. In two
dimensions, the other two bonds would be equivalent so that
the collinear order, with ferromagnetic ordering along one of
these directions and antiferromagnetic along the other, would
have to spontaneously break a mirror symmetry or appear in
a superposition of both orderings. Here the cylinder geometry
already breaks the symmetry, and evidently the effective bond
strength is larger on the remaining diagonal than around the
cylinder, so the latter orders ferromagnetically.

Spin liquid: This phase, labeled by @ in Fig. 4(a), appears
to be a gapless spin liquid, much like the one for '/t > 1
with symmetric anisotropy. The likely gapless nature of the
spin excitations is indicated by a large correlation length in
Fig. 4(d), while charge 1 and 2 excitations are clearly gapped,
per Figs. 4(e) and 4(f). We perform spin flux insertion and use
the transfer matrix spectrum to check the possible locations of
spin-gapless points in the Brillouin zone, again finding a small
gapless region that is possibly consistent with a DSL or other
nodal gapless spin liquid.

Collinear superposition?: This phase, labeled by @ in
Fig. 4(a), is challenging to identify. Like the collinear phase,
it breaks translation symmetry, though the magnitudes of (S;)
on each ring are smaller. Accordingly, the structure factor has
peaks at the k, = 0 M points. However, there are also peaks
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FIG. 4. Data for YC4 cylinder with asymmetric anisotropy, with MPS bond dimension x = 4000. (a) Spin structure factor, view 1. We
show the spin structure factor computed on allowed momentum cuts at one representative point in each of the eight phases we observe. Note
that for ® and ®, we have chosen points off the isotropic line for generality. (b) Spin structure factor, view 2. We show, for the full range of
t'/t and U/t, the value of the spin structure factor at the three inequivalent M points in the Brillouin zone, labeled ®, ®, and ©, as well as
the maximum height in the region labeled by ©. The M point ® corresponds to Néel order, while ® and © correspond to possible collinear
orders. The region © includes all points on the k, = 7r /2 momentum cut that are as close as possible to the expected peak locations for spiral
order. (c) Scalar chiral order parameter (S - (S x S)). (d) Correlation length for charge 0 excitations (i.e., spin excitations), computed using the
MPS transfer matrix. A large correlation length will be found if spin excitations are gapless. (e) Correlation length for charge 1 excitations. A
large correlation length is implied by gapless charge excitations. (f) Correlation length for charge 2 excitations, possibly indicating a tendency

towards superconductivity.

at the M points labeled by ® in Fig. 4(b), which correspond
to the other possible collinear order after antiferromagnetic
correlations along the strong bond have been fixed. So one
strong possibility is that this phase is a superposition of the
two possible collinear orders.

We also note that there is a moderately large charge
correlation length [see Fig. 4(e)] in the leftmost part of the
phase, which may indicate that there are actually two phases
here, one which is metallic with an open Fermi surface, the
other being the phase described in the previous paragraph. As

235132-9



AARON SZASZ AND JOHANNES MOTRUK

PHYSICAL REVIEW B 103, 235132 (2021)

@)
®
0.0+ . .
6 8 10 12
U/t
® 3.0 1w @
: 35
25 3.0
2.0 25
2.0
15 15
1.0 1.0
0.5
(b)

6 8
U/t

10 12

1.6
1.4
1.2
1.0
0.8
0.6
0.4

[(S- (S x 9))|, max

® 235 (€) 29
2.00
1.75 0.4
1.50 15
1.25
100 ; 03
0.75 =10
0.50 - 0.2
05 0.1
@ 1.8
1.6 0.0
6 8 10 12
1.4
Lo U/t
) (d) Corr. length, charge 0
1.0 2.0 50
0.8
15 40
9
8 = 30
; 10
6 20
J
4 0.5
3 10
2
0.0
6 8 10 12
U/t

Corr. length, charge 1

ot

2.0
3 15
L5
6
N 10
10
4
0.5 :
2
0.0
6 8 10 12

12

8 10

U/t U/t

FIG. 5. Data for YC3 cylinder with symmetric anisotropy, with MPS bond dimension x = 4000. (a) Spin structure factor, view 1. We show
the spin structure factor computed on allowed momentum cuts at one representative point in each of the eight phases we observe. (b) Spin
structure factor, view 2. We show, for the full range of t'/t and U/, the value of the spin structure factor at one K point and one M point in the
Brillouin zone, labeled ® and ®, respectively. The point ® will have a peak for spiral order, while the point ® will have a peak for Néel order.
(c) Scalar chiral order parameter (S - (S x S)). The magnitude and sign of the order parameter vary with a two-ring unit cell in phase ® and
a four-ring unit cell in phase @, so here we show for each parameter point the largest magnitude among all plaquettes. In the Supplemental
Material [86] we also show the smallest magnitude, which shows very similar behavior. (d) Correlation length for charge 0 excitations (i.e., spin
excitations), computed using the MPS transfer matrix. A large correlation length will be found if spin excitations are gapless. (e) Correlation
length for charge 1 excitations. A large correlation length is implied by gapless charge excitations. The charge 2 correlation length can be

found in the Supplemental Material and is largest in phase @ [86].

this is unclear, we denote this possible boundary by a dashed
line.

Nonmagnetic insulator: Finally, the phase labeled by ® in
Fig. 4(a) appears to be some kind of nonmagnetic insulator,
with no long correlation lengths and with minimal magnetic
ordering even at short range. It is sharply distinguished from
the phase labeled @ in 4(a) by the lack of translation symme-
try breaking but seems otherwise similar.

C. YC3, symmetric anisotropy

Data for the YC3 cylinder with symmetric anisotropy are
shown in Fig. 5, again calculated from MPS ground states with
bond dimension y = 4000. Here all data are computed using
a four-ring unit cell with momentum O around the cylinder per
unit cell. The data were generated by adiabatically increasing

and decreasing anisotropy from the isotropic line; part of the
phase diagram also uses a dataset generated by adiabatically
decreasing anisotropy starting from large ¢/¢. Additional data
are available in the Supplemental Material [86].

Using these data, we identify the following phases:

Néel order: The bottom phase, labeled as ® in Fig. 5(a),
is again square lattice Néel order, very similar to what was
observed for the YC4 cylinder with symmetric anisotropy.

Spiral order: The spiral-ordered phase, labeled by ® in
Fig. 5(a), is again identifiable from the spin structure factor.
Here the allowed momentum cuts intersect the K points, and
this phase has peaks in the structure factor at those points,
as expected for spiral (in particular, 120°) order. Surprisingly,
this phase does not include the isotropic line #'/t = 1, at least
with the range of U considered here, even though that is where
the 120° order is expected in two dimensions. This is a sign of
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the one-dimensionality of this small-circumference cylinder:
coupling around the cylinder circumference apparently intro-
duces some “effective anisotropy” so that ¢’ /t ~ 1.2 acts like
the isotropic line.

Chiral spin liquid: The CSL, labeled by ® in Fig. 5(a), is
again clearly identified by the scalar chiral order parameter,
Fig. 5(c), roughly corresponding to the green region nearer to
the isotropic line. The chiral order parameter here varies in
sign and magnitude with a two-ring unit cell; the exact pattern
is shown in the Supplemental Material [86]. We remark that
in our previous work [80], we reported the variation in magni-
tude [Fig. 11(a)], but did not note the varying sign; the data are
in agreement. The appearance of the CSL with an alternating
sign for the scalar chirality on the YC3 cylinder, albeit with
a different pattern, was recently also reported in Ref. [102].
Finally, we note that in our work on the isotropic model, we
observed the CSL to be shifted to lower U/t relative to the
same phase in YC4 and YC6, but our new data reveal that to
be an artifact of the aforementioned effective anisotropy—in
fact, the phase appears at a similar range of U /¢, just shifted
upwards in¢’/t.

Metal or Luther-Emery liquid: This phase, labeled by @
in Fig. 5(a), is identified by a large correlation length for both
charge 1 [Fig. 5(e)] and charge 2 (Supplemental Material [86])
excitations. Note that charge 0 excitations being apparently
gapped is only because the scale for Fig. 5(d) is much larger
than for Fig. 5(e); the same data as in Fig. 5(d) but with a cut-
off at a correlation length of 12 are shown in the Supplemental
Material [86].

1D Metal: As for the YC4 cylinder with symmetric
anisotropy, the upper left phase, labeled in Fig. 5(a) by @,
is characterized by gapless charge and an open Fermi surface.
(k-space occupation numbers are shown in the Supplemental
Material [86].)

Alternating chiral: Again like the YC4 symmetric case, the
next phase to the right, labeled by @ in Fig. 5(a), sponta-
neously breaks time-reversal symmetry and has nonzero local
charge currents. Here the scalar chiral order parameter, and the
local currents, vary with a four-ring unit cell—the precise pat-
tern is illustrated in the Supplemental Material [86]. We note
that since the calculations were performed with a four-ring
unit cell and this phase is found to break translation symmetry
with precisely the full four-ring unit cell, it may be that the
true ground state has a larger unit cell or would have some
noncommensurate pattern.

Spin liquid: The upper right phase, labeled by ® in
Fig. 5(a), appears to be a gapless spin liquid, with no magnetic
order and a large spin correlation length. To further understand
this phase, we perform spin flux insertion for one representa-
tive point, finding the rather surprising behavior that there is
an isolated gapless point at 0 flux as well as a large gapless
region from roughly 7 to 37 flux; see the Supplemental Ma-
terial [86]. This does not clearly correspond to a spin liquid
state expected in two dimensions, in particular the 1D spin
liquid found on the YC4 cylinder with symmetric anisotropy.

We also briefly note that there is some strange behavior
visible in the very upper right in Figs. 5(c) and 5(d); the sim-
ulation did not converge well here, presumably because the
bond dimension is too small to well approximate the gapless
state.

Spiral 2: Finally, the phase labeled by @ in Fig. 5(a) has
a spin structure factor with roughly equal magnitude at the K
points and at the k, = 0 M point, indicating some character of
both 120° and Néel order. This structure factor corresponds to
real-space correlations (see the Supplemental Material [86])
that are antiferromagnetic along the cylinder and nearly O
around the cylinder, which looks like an effective 1D ordering;
however, a quasi-1D state near the isotropic line would be
quite surprising, so it may be better to interpret the minimal
correlations around the cylinder as the way a more general 2D
order happens to manifest with this cylinder circumference.

Then the natural possibility is another spiral phase. In
two dimensions, for '/t between 1 and 1/+/2, classically a
spiral order with peak between the K and M points would
be expected. Given that such peak locations do not lie on
the allowed momentum cuts, this state could manifest with
smaller peaks at both high-symmetry points, which is what
we observe in this phase.

D. YC6, symmetric anisotropy

Data for the YC6 cylinder with symmetric anisotropy are
shown in Fig. 6, computed from MPS ground states with bond
dimension x = 8000. For YC6, we use a two-ring unit cell
with momentum 0 around the cylinder, as well as a one-ring
unit cell initialized both with momentum O and with momen-
tum 7 per ring. Note that although this bond dimension is
larger than that used for the smaller cylinders, the needed
bond dimension for a given level of precision scales roughly
exponentially in the circumference, so these results are rela-
tively less well converged than for the smaller cylinders. In the
large #'/t limit, we have checked several points using a larger
bond dimension of 16 000 and found no qualitative difference.
Note that due to increased computational cost compared with
smaller cylinders, we use a lower resolution in parameter
space and also restrict the range of U /¢ and ¢/t to the region
where the results on the smaller cylinders show the strongest
disagreement. Some additional data not included in Fig. 6
(entanglement spectra and real-space spin correlations) can be
found in the Supplemental Material [86].

Using these data, we identify the following phases:

Néel order: The bottom phase, labeled as ® in Fig. 6(a), is
again square lattice Néel order, very similar to what was ob-
served for the other two cylinders with symmetric anisotropy.

Spiral order: The spiral-ordered phase, labeled by @ in
Fig. 6(a), is identifiable by clear peaks in the spin structure
factor at the K points as expected for 120° order.

Chiral spin liquid: The CSL, labeled by ® in Fig. 6(a), is
again clearly identified by the scalar chiral order parameter,
Fig. 6(c). The region shaded gray in Fig. 6(a) may also belong
to the CSL. On this ¢'/t = 0.95 line, we find nonzero scalar
chirality with momentum O per ring and zero scalar chirality
with momentum 7. The O-momentum state is lower in energy
for both higher and lower U, with the m-momentum state
being lower in energy for the three values of U /¢ that comprise
the shaded region. On the whole line, the difference in energy
is less than the error due to truncation of the MPS bond
dimension while running DMRG, especially so in the shaded
region. (In contrast, for t'/t = 1.0 and 1.05, both momentum
sectors show nonzero chirality, so the phase identification
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FIG. 6. Data for YC6 cylinder with symmetric anisotropy, with MPS bond dimension x = 8000. (a) Spin structure factor, view 1. We show
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spin structure factor found with each setup. We also show the spin structure factor for both setups for the phase labeled © to emphasize that
here the two agree. (b) Spin structure factor, view 2. We show, for the full range of /¢ and U /¢, the value of the spin structure factor at several
important points in the Brillouin zone, namely, at the right edge on each allowed momentum cut. We also show the difference in height between
points ® and ® to show that below the dashed line there is a small peak at ®. (c) Scalar chiral order parameter (S - (S x S)). (d) Correlation
length for charge 0 excitations (i.e., spin excitations), computed using the MPS transfer matrix. (e) Correlation length for charge 1 excitations.

(f) Correlation length for charge 2 excitations.

there is quite clear.) If the gray shaded region does not belong
to the CSL, then it, or indeed the whole '/t = 0.95 line, could
belong instead to the spiral order.

Néel/Spiral order: This region of parameter space, labeled
by ® in Fig. 6(a), may belong to the Néel phase or to the spiral
phase. When simulations are performed with a two-ring unit
cell, allowing translation symmetry breaking, the ground state

has clear Néel order. With a one-ring unit cell the ground state
instead has a spin structure factor with peaks at the edge of
the Brillouin zone on the k, = 47 /2 lines, corresponding to
spiral order; in particular, this appears to be the same spiral
order as in the “Spiral 2 phase for YC3. While the two-ring
state has slightly lower energy, the difference is small, and
with larger bond dimensions the order might reverse since
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small bond dimensions favor symmetry breaking to reduce
entanglement. Thus whether this region actually belongs to
the Néel phase or the spiral phase is uncertain.

1D spin liquid: Much of the upper portion of the phase di-
agram appears to be a single phase, labeled by @ in Fig. 6(a).
We tentatively identify this phase as the 1D spin liquid,
because the spin structure factor, correlation lengths, and en-
tanglement spectrum (shown in the Supplemental Material
[86]), are much the same as for the 1D spin liquid phase on the
YC4 cylinder with symmetric anisotropy, and the spin struc-
ture factor again matches what was reported in Refs. [53,56].
However, for this phase we do not have flux insertion data to
fully confirm this identification.

Possible additional phase: Finally, the region below the
dashed line in Fig. 6(a), labeled @, may be an additional
phase. All computed quantities change smoothly from here
into phase O, but there are notable qualitative differences,
including much longer correlation lengths. Most notably, the
spin structure factor shows significantly different behavior,
with a peak at (0, ), whereas in region @ there is a uni-
form peak along the k, = 7 line. The existence of a peak
corresponds to extended correlations along the cylinder, while
the uniform maximum along a line indicates close to zero
correlation along the cylinder; see the real-space correlations
in the Supplemental Material [86].

VI. DISCUSSION

We have used density matrix renormalization group simu-
lations to map out the phase diagram of the triangular lattice
Hubbard model with anisotropic hopping—the bonds along
one of the three orientations in the lattice have hopping
strength ¢', while bonds in the other two orientations have
strength 7. We studied the phase diagram as a function of both
interaction strength U/t and anisotropy t'/t, from the square
lattice limit at#’ = 0 to the weakly coupled chain limit of large
t'. Using four distinct cylinder geometries, namely, circumfer-
ences of three, four, and six sites with the distinct bond around
the cylinder (symmetric anisotropy) and circumference four
with the distinct bond on a diagonal (asymmetric anisotropy),
we find a large variety of phases.

For the three larger cylinders, right around the isotropic
line t'/t = 1 we observe the same phases as in our previous
work [80], namely, an apparently metallic phase that is likely a
Luther-Emery liquid, a chiral spin liquid, and spiral magnetic
order, exemplified by the 120° order expected at high U ex-
actly at#’/t = 1. On the smallest cylinder, with circumference
three, these phases are all shifted upwards, being centered
instead on t'/t ~ 1.2; there is apparently some “effective
anisotropy” as a result of the small cylinder circumference.
Conversely, the consistent behavior around the isotropic line
on the three larger cylinders, in particular that the CSL is
centered around and spiral order is strongest near ¢'/t = 1,
strongly indicates that these cylinders are large enough to
give reliable results for the 2D limit of the isotropic Hubbard
model.

Towards the square lattice limit, with smaller ¢’, the results
are again quite consistent among the four different cylinders:
the square lattice Néel magnetic order takes up a large por-
tion of parameter space, already being stabilized with around

20% anisotropy. We also observe on the circumference four
cylinder with asymmetric anisotropy a small phase that ap-
pears to be a gapless spin liquid, and for circumference three
and possibly circumference six, we find a phase between the
spiral and Néel orders at high U that appears to be a distinct
magnetically ordered state, but in fact should also belong to
the spiral phase for the 2D model.

For large ¢/, we observe a tremendous variety of phases,
with little agreement among the different cylinders. One phase
that is consistently present is an apparently metallic state, with
large charge correlation length, at low U and large ¢’, which
based on occupation numbers in the Brillouin zone appears to
have an open Fermi surface, consistent with the U = 0 state
for '/t 2 1.64. While this state is clearly distinct from the
metal /LEL for the YC3 and YC4 cylinders with symmetric
anisotropy, it is not clear whether this will still be true in
the 2D limit—on these cylinders the Fermi surface becomes
gapped on one of a small number of allowed momentum cuts,
so it is not surprising that this produces a dramatic change
in the ground state. Beyond this, we find various spin liquid
candidates, including an apparently gapless spin liquid just
above the CSL as well as a gapped nonmagnetic state in the
same place in the phase diagram on a different cylinder, and a
“1D spin liquid” at large t' and U. We also observe collinear
magnetic order and phases with an alternating scalar chiral
order parameter and accompanying local currents. Notably,
the YC6 cylinder shows fewer phases than the smaller cylin-
ders, even accounting for the fact that we considered a smaller
portion of parameter space. That the 1D spin liquid is the
phase that survives at large U and large ¢’ in this, the largest
and most 2D of the cylinders we study, suggests that this phase
is perhaps the strongest candidate for this parameter regime on
the full 2D lattice.

Comparing these results with those of past theoretical
works using such techniques as variational Monte Carlo and
dynamical mean field theory, summarized in Sec. III above,
the general trends are similar: the large and very stable Néel
phase for ¢/t < 1 certainly comports with past works, while
many of the phases we find in the t'/t > 1 regime, for example
the 1D spin liquid and collinear order, have been predicted
before. We do also find phases that have never been predicted
before, namely, the phases in circumference three and four
cylinders with alternating chiral order parameters and local
currents; however, these phases do not seem likely to survive
in the 2D limit, especially since we already find no indication
of this behavior with circumference six. One phase found in
some past works of which we find no indication is a super-
conducting state between the metal/Luther-Emery liquid and
Néel phases.

We can now consider the implications of our work for un-
derstanding experiments on nearly isotropic triangular lattice
spin liquid candidates like x-(BEDT-TTF),Cu,(CN);3. These
materials do generally have small hopping/spin-exchange
anisotropies, on the order of 10% or 20%, so in studying
only the isotropic line, it is not clear whether a predicted
spin liquid phase is actually a strong candidate for the nature
of the experimentally observed nonmagnetic insulators. We
find here that the chiral spin liquid from the isotropic line is
stable to around 10% anisotropy. That it is in fact stable with
some anisotropy rather than existing purely on the isotropic
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line means that it does remain a viable candidate state worth
taking into consideration, but on the other hand it is also
sufficiently unstable that if the true anisotropy of spin liquid
candidate materials turns out to be on the larger side of the
various estimates, our simulations would no longer indicate
the CSL as the likely ground state. The other relevant finding
for nearly isotropic candidate materials is that there seem to
emerge gapless spin liquids for some cylinder geometries both
above and below the CSL. While it is not clear whether these
states indeed survive to the 2D limit, their presence on some
cylinders at least shows they are relatively low energy states in
the Hubbard model. Therefore, they could be stabilized by, for
example, longer range interactions in real materials, implying
that the Hubbard model does suggest gapless spin liquids as
reasonable candidates for the states observed in experiments.
In principle, our results could also speak to the nature of
the putative spin liquid states observed in Cs,CuCly_,Br,
compounds, which are less isotropic with ¢/t > 1, but the
large variety of phases we find in the #'/f > 1 limit makes
it difficult to make a prediction with confidence. Furthermore,
the large Hubbard-U in these materials [46] means that the
less computationally expensive Heisenberg model is likely the
preferable choice for numerical simulations.

Finally, we wish to highlight some of the most important
open questions following our work. Of course it continues
to be the case that there are a great many possible phases
in the ¢/t > 1 limit, and which ones will survive to the full
2D model remains unclear. For future DMRG studies of this
problem, this can be addressed both by pushing to higher bond
dimensions and larger cylinders as computational resources
improve, and in the nearer term by using a wider variety of
cylinder geometries such as XC cylinders where one bond
of the triangular lattice runs along the length of the cylinder,
which will give further intuition about which phases tend to
be stable on a large variety of cylinders and thus might ap-
pear in two dimensions. Moving beyond DMRG, a promising

approach is to study the model directly in the 2D limit using,
for example, projected entangled pair states [118,119].

There is also still further work to be done to better un-
derstand the phase diagrams on these finite-circumference
cylinders. For example, the gapless spin liquid phase above
the CSL on the circumference four cylinder with symmetric
anisotropy appears to be gapless only near zero spin-flux,
indicating a possible Dirac or otherwise nodal gapless spin
liquid, but because matrix product states cannot easily de-
scribe gapless states, significant computational effort to study
scaling with very large bond dimensions would be needed
to conclusively identify this state. This possible Dirac spin
liquid and many of the other phases we find for ¢'/t > 1 are
interesting in their own right, even if they may not appear in
the full 2D model, so these further calculations are well worth
pursuing.
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