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Strategy for constructing compact numerical atomic orbital basis sets by incorporating
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We develop an algorithm to construct high-quality numerical atomic orbital (NAO) basis sets suitable for
large-scale, efficient density-functional calculations. The key idea behind this algorithm is that, in addition to
fitting the reference wavefunctions themselves generated by plane-wave based calculations of chosen target
systems, the first derivatives of the reference wavefunctions are also taken into account as the fitting target. By
doing so, the quality of the generated NAO basis sets is significantly improved in the sense that the same level
of numerical precision can be achieved with smaller basis set sizes or with reduced cutoff radii of the NAOs.
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I. INTRODUCTION

In the past decades, numerical atomic orbitals (NAOs)
have become a popular choice of basis functions in the
first-principles calculations. They are adopted in several
newly developed first-principles softwares, such as Dmol [1],
SIESTA [2], FPLO [3], FHI-aims [4], OpenMX [5], and oth-
ers. Compared to another popular basis set, the plane wave
(PW) bases, NAO bases are more compact, and usually strictly
localized in real space. These properties bring advantages in
studying large physical systems, containing hundreds or even
thousands of atoms.

However, unlike the PW bases, which can be systemati-
cally improved by just increasing the kinetic energy cutoff,
the atomic basis sets must be constructed very carefully to en-
sure both good accuracy and transferability. Furthermore, the
quality of the basis sets should be systematically improvable
in an unbiased way, which is not trivial to achieve for NAO
bases. In the past, several schemes to construct NAOs have
been attempted [2,4,5]. For example, one way to construct
atomic orbitals is to solve an effective one-electron problem of
isolated atoms subject to certain confinement potentials [6,7].
Alternatively, Blum et al. proposed a procedure to generate
optimized NAO basis sets by picking up iteratively the basis
functions one by one from a large pool of predefined candi-
dates, so that the weighted sum of ground-state total energies
of target systems is improved most of a time [4]. Alternatively,
within OpenMX [5], the shape of NAOs is optimized on the
fly along with the self-consistency cycle, and consequently the
final NAOs are adapted to the specific chemical environment
of a given material [5].
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In the above methods, the energies have been used as
the criterion to generate optimized NAOs. An alternative ap-
proach was taken by Chen, Guo, and He (CGH), [8] who
proposed a procedure to systematically generate NAOs by
fitting them to the high-quality plane-wave calculations for
chosen reference systems (usually diatomic molecules), via
the spillage formalism [9,10]. It has been demonstrated the
generated NAOs using the CGH procedure have very good
transferability and can produce reliable results for both iso-
lated and periodic systems [8,11]. In contrast to the NAO
bases reported in the literature where the egg-box effects
are relatively large [12], the CGH NAO basis sets have very
small egg-box effects [11] and therefore allow the forces be
converged to very high accuracy during structural relaxations.
The CGH bases have been successfully applied in studying the
structures of DNA under stretch [13], deuterium diffusion in
Li-Sn liquid [14], AlCl4 diffusion in graphite [15], Mg isotope
diffusion in MgSiO3 and Mg2SiO4 melts [16], the electronic
structures of hyperuniform SiO2 [17], etc.

Despite their success, here we show that the CGH scheme
can be further improved to generate NAO bases of higher
quality. The key idea behind this improvement is the follow-
ing. Within the original CGH scheme, only the wavefunctions
of the reference systems are fitted. However, we know that
the kinetic energies are very sensitive to the derivatives of
the wavefunctions, and the derivatives of two wavefunctions
could be quite different even if they have large overlap (or
small spillage). Therefore, it is natural to ask what happens if
the derivatives of the wavefunctions of the reference systems
are also taken into account in the fitting procedure, in addition
to the wavefunctions themselves. It turns out that the incorpo-
ration of the derivatives of the reference wavefunctions indeed
helps to improve the quality of the NAOs.

In this work, we present the improved algorithm for ba-
sis optimization whereby the derivatives of the reference
wavefunctions are incorporated. Benchmark calculations of
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both molecular and crystalline systems will be presented to
assess the quality of the NAO basis sets generated using this
algorithm, in comparison to its precedents. We show that the
small double-ζ plus polarization (DZP) basis set resulting
from this algorithm may yield comparable accuracy to that
of the much larger triple-ζ plus double polarization (TZDP)
or even quadruple-ζ plus triple polarization (QZTP) bases
generated by the old scheme.

The rest of paper is organized as follows. Details of our
scheme to construct NAOs are given in Sec. II. We benchmark
the quality of the created NAO bases by calculating the struc-
tural and electronic properties of a wide variety of systems in
Sec. III. We summarize our paper in Sec. IV.

II. METHODS

In Ref. [8], the NAOs are generated by minimizing the
“spillage” between the Hilbert space spanned by a set of local
basis functions and that spanned by the “exact” wavefunctions
of the interested states of the reference systems [9,10]. In
this work, we further optimize the NAO bases by taking the
wavefunction derivatives into consideration.

We first define an error function between the reference
wavefunctions |�n〉 and their projected wavefunctions on
Hilbert space expanded by the NAO bases |�̃n〉,

�PSI
def= 1

Nn

Nn∑
n=1

‖ |�n〉 − |�̃n〉 ‖2, (1)

where

|�̃n〉 def= P̂ |�n〉 . (2)

Here, P̂ is the projector spanned by the NAOs, i.e.,

P̂ =
∑
μν

|φμ〉 S−1
μν 〈φν | , (3)

where φμ(r) is the μth NAO and S−1 is the inverse of the over-

lap matrix Sμ,ν
def= 〈φμ|φν〉. Utilizing P̂2 = P̂ and 〈�m|�n〉 =

δmn, it is easy to show that the error function

�PSI = 1

Nn

Nn∑
n=1

[
1 − 〈�n|P̂|�n〉

]
(4)

is just the “spillage” between the Hilbert space of reference
wavefunctions and that spanned by the NAOs [8–10].

In this work, we generalize the definition of this error
function by including the derivatives of the wavefunctions.
The total error function is now defined as

�tot
def= 1

Nn

Nn∑
n=1

[‖|�n〉 − |�̃n〉‖2 + ‖|∇�n〉 − |∇�̃n〉‖2], (5)

where |∇�n〉 and |∇�̃n〉 are the gradients of the reference and
projected wavefunctions, respectively. From Eqs. (2) and (3),
one may recognize that |�̃n〉 is a linear combination of the
NAOs {|φμ〉}, i.e.,

|�̃n〉 =
∑

μ

aμn |φμ〉 , (6)

with

aμn =
∑

ν

S−1
μν 〈φν |�n〉 . (7)

Therefore, the gradient of the projected wavefunctions is also
a linear combination of the gradients of the NAOs,

|∇�̃n〉 =
∑

μ

aμn |∇φμ〉 . (8)

The second term on the right-hand side of Eq. (5) becomes

‖ |∇�n〉 − |∇�̃n〉 ‖2

= 〈∇�n|∇�n〉 −
∑

μ

aμn 〈∇�n|∇φμ〉

−
∑

ν

a∗
νn 〈∇φν |∇�n〉 +

∑
μν

aμna∗
νn 〈∇φν |∇φμ〉 . (9)

The inner products of the gradients are calculated in reciprocal
space, e.g.,

〈∇φν |∇φμ〉 =
∑

G

|G|2φ∗
ν (G)φμ(G), (10)

where φμ(G)
def= 〈G|φμ〉 is the Fourier transform of φμ(r) in

the reciprocal space.
The NAOs are given by numerically tabulated radial func-

tions multiplied by spherical harmonic functions, ϕαlξm(r)
def=

fαlξ (r)Ylm(r̂), where α is the element type, ζ is the multiplicity
of the radial functions for the angular momentum l , and m is
the magnetic quantum number. The basis function φμ(r) is
φαilξm(r) = ϕαlξm(r − ταi ), where i is the index of the atom
of αth element and ταi is the atom position. Following the
CGH scheme [8], the radial functions are expanded as linear
combinations of spherical Bessel functions, i.e.,

fαlξ (r) =
{∑

q cαlξq jl (qr), r < Rc,

0, r � Rc.
(11)

Here jl (qr) is the spherical Bessel function and q is chosen
to satisfy jl (qRc) = 0, where Rc is the cutoff radii of the
radial functions, beyond which the NAOs are strictly zero.
The number of spherical Bessel functions [controlled by the
highest q in Eq. (11)] are determined by the same energy
cutoff of plane wave calculations.

To generate optimized and transferable NAOs, we choose
for each element a group of dimers at different bond lengths
as the reference systems. We perform high-quality plane wave
calculations for these reference systems, and use the obtained
Kohn-Sham molecular wavefunctions as the reference wave-
functions. The average error functions are then evaluated
using Eq. (1) or (5), following the procedure proposed in
Ref. [8]. Previous works [4,11] demonstrate that the NAO
bases generated according to these reference systems have
remarkable transferability, which may be used for complex
chemical environment, including defects, surfaces, alloys, etc.

The coefficients cαlξq in Eq. (11) are determined by min-
imizing the error functions between the reference wavefunc-
tions and projected wavefunctions as defined in Eq. (5). To
calculate the gradients of the error function ∂�tot/∂cαlξq, we
use the automatic differentiation techniques as implemented
in PyTorch [18]. The error function is then minimized via
Adam algorithm [19]. This approach is orders of magnitude
faster than the simulated annealing method used in Ref. [8].
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TABLE I. Radial basis functions of the hierarchical basis set SZ, DZ, DZP, TZDP, and QZTP for 24 different chemical elements used in
this paper. The SZ basis prescription also reflects the valence electrons of the employed pseudopotentials behind.

Element SZ DZ DZP TZDP QZTP

H 1s 2s 2s1p 3s2p 4s3p
Li 2s 4s 4s1p 6s2p 8s3p
B C N O F Si P S Cl As Se Br 1s1p 2s2p 2s2p1d 3s3p2d 4s4p3d
Na Mg 2s1p 4s2p 4s2p1d 6s3p2d 8s4p3d
Al 2s2p 4s4p 4s4p1d 6s6p2d 8s8p3d
Ga In Sb Te I 1s1p1d 2s2p2d 2s2p2d1 f 3s3p3d2 f 4s4p4d3 f
Zn Cd 2s1p1d 4s2p2d 4s2p2d1 f 6s3p3d2 f 8s4p4d3 f

In the original CGH work, a smooth function is applied
after the generation of the NAOs to make the second derivative
of the NAOs continuous near the Rc [8,20]. Furthermore, an
extra step is taken to optimize the shapes of the orbitals, by
minimizing the kinetic energy of the orbitals. However, we
find that these extra steps are no longer needed in the current
algorithm, apparently due to the fact that the first derivatives
of the reference wavefunctions are also fitted.

It should be mentioned that we also tried to include the
second and third derivatives in the definition of the error
functions. However, the obtained results are worse than the
ones which only involve the first derivatives.

Our NAO basis can be seen as a contraction of spherical
Bessel functions, as is evident from Eq. (11). The set of spher-
ical Bessel functions within an energy cutoff, multiplied with
spherical harmonics below certain angular momentum them-
selves represent a basis set. This basis set, which is referred
to as jY basis in this paper, represents the upper limit of the
accuracy that a NAO basis can achieve for a given maximum
angular momentum and radius. This basis is of little value in
practical calculations because the size of the basis is too large,
but it can be used to benchmark the NAO bases and help us
understand the source of error for the NAO bases.

III. RESULTS AND DISCUSSION

In this section, we benchmark the optimized NAO bases for
various systems including molecules and crystals. We com-
pare the results obtained by PSI and DPSI bases to the results
of PW bases. Here, for convenience, we use “PSI ” to denote
the old NAO bases and “DPSI ” to denote the new ones where
the first derivative is involved in the optimization. Both PSI

TABLE II. Cutoff radii Rc (in Bohr) parameters of the LCAO
basis functions for 24 different elements used in this paper.

Element Rc Element Rc Element Rc

H 8.0 Mg 9.0 As 8.0
Li 9.0 Al 9.0 Se 8.0
B 8.0 Si 8.0 Br 8.0
C 8.0 P 8.0 Cd 9.0
N 8.0 S 8.0 In 9.0
O 7.0 Cl 8.0 Sb 9.0
F 7.0 Zn 9.0 Te 9.0
Na 10.0 Ga 9.0 I 8.0

and DPSI basis sets form a hierarchy, ranging from double-ζ
(DZ), double-ζ plus polarization functions (DZP), triple-ζ
plus double polarization functions (TZDP), to quadrupole-ζ
plus triple polarization functions (QZTP). In the present work,
the hierarchical NAO basis sets are constructed based on the
SG15 pseudopotentials [21], and the size of the actual basis
sets for a given chemical element depends on the valence
electrons in such a pseudopotential prescription. For example,
for Si, the single-ζ (SZ) basis is 1s1p, whereby one valence
electron is described by only one radial basis function. This
number is doubled in the DP basis set (i.e., 2s2p), and in DZP
one additional radial function of higher momentum (l = 2) is

FIG. 1. Comparison of the total energies of CO and S2 as a
function of the bond lengths using different LCAO basis sets to those
using the PW and jY bases. The solid and dotted lines represent DPSI
and PSI results, respectively.
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TABLE III. Total energies (in eV) of 11 molecules obtained with various LCAO basis sets, in comparison with jY and PW. For each
molecule, the same structure is used for different basis sets. The total energies of the PW basis are set to zero.

PSI DPSI

DZ DZP TZDP QZTP DZ DZP TZDP QZTP jY

Br2 1.05 0.28 0.27 0.25 0.98 0.21 0.19 0.18 0.15
Cl2 1.53 0.26 0.24 0.22 1.50 0.23 0.20 0.18 0.16
CO 1.58 0.22 0.17 0.16 1.55 0.20 0.12 0.12 0.06
F2 0.65 0.17 0.15 0.13 0.63 0.14 0.11 0.11 0.08
I2 0.56 0.35 0.33 0.30 0.41 0.14 0.12 0.11 0.07
Li2 0.41 0.47 0.44 0.38 0.27 0.11 0.11 0.11 0.11
LiH 0.48 0.14 0.13 0.10 0.44 0.07 0.06 0.04 0.02
N2 1.55 0.15 0.10 0.10 1.54 0.13 0.09 0.08 0.06
Na2 0.23 0.21 0.17 0.15 0.08 0.07 0.06 0.06 0.09
O2 1.55 0.25 0.22 0.22 1.51 0.20 0.16 0.15 0.10
S2 2.02 0.32 0.28 0.26 1.93 0.23 0.18 0.17 0.15

MAE (jY) 0.94 0.14 0.12 0.10 0.89 0.07 0.04 0.03
MAE (PW) 1.06 0.26 0.23 0.21 0.99 0.16 0.13 0.12 0.10

added, ending up with 2s2p1d basis set for Si. The meanings
of TZDP and QZTP follow naturally according to this nomen-
clature. In Table I, the actual sets of radial functions under the
acronyms SZ, DZP, DZDP, and QZTP are presented for all
the 24 chemical elements used in the present work. The cutoff
radii for the different radial basis functions are chosen to be
the same for a given chemical element, and these are presented
in Table II. For molecules, we also compare the results to
those obtained by using jY bases. The jY bases are, however,
overcomplete for closely packed crystals, and therefore not
used in the comparison.

All calculations are performed by using the ABACUS
code. Generalized gradient approximation of Perdew, Burke,
and Ernzerhof (PBE) [22] is used as the exchange-correlation
functional and, as implied above, the SG15 [21] optimized
norm conserving Vanderbilt-type (ONCVP) pseudopotentials
[23,24] are employed to represent the ion cores and core-
valence interaction. For molecules, the supercell approach

with a single  point is used, where, for crystals, an 8 × 8 × 8
Monkhorst-Pack (MP) k-point mesh is used for the Brillouin
zone sampling.

A. Molecules

1. Total energies

Figures 1(a) and 1(b) depict the ground state energies as a
function of bond lengths around the equilibrium for the CO
and S2 molecules, respectively, using different basis sets. The
results of the DZP, TZDP, and QZTP bases are shown in red,
blue, and green, respectively. The dotted lines correspond to
the results obtained using the PSI bases, whereas the solid
lines represent those obtained using the DPSI bases. The jY
(brown solid line) and PW (black solid line) results are also
shown as the references. The total energies systematically
converge to the jY and PW results as the size of the NAO basis
set increases [11]. However, the total energies calculated using

TABLE IV. Bond lengths (in Å) of 11 diatomic molecules obtained with various LCAO basis sets, in comparison with jY and PW.

PSI DPSI

DZ DZP TZDP QZTP DZ DZP TZDP QZTP jY PW

Br2 2.4432 2.3261 2.3249 2.3250 2.4421 2.3240 2.3250 2.3247 2.3259 2.3140
Cl2 2.1904 2.0273 2.0262 2.0278 2.1914 2.0253 2.0266 2.0266 2.0277 2.0149
CO 1.1604 1.1379 1.1355 1.1355 1.1592 1.1365 1.1345 1.1348 1.1332 1.1324
F2 1.4734 1.4261 1.4227 1.4223 1.4710 1.4222 1.4206 1.4209 1.4215 1.4171
I2 2.7267 2.6996 2.6962 2.6965 2.7335 2.6973 2.6941 2.6934 2.6928 2.6910
Li2 2.8379 2.6597 2.6637 2.6650 2.8229 2.7073 2.7066 2.7070 2.7067 2.7284
LiH 1.6497 1.5970 1.6003 1.5961 1.6544 1.6009 1.6037 1.5999 1.6060 1.6081
N2 1.1234 1.1056 1.1033 1.1031 1.1225 1.1046 1.1028 1.1026 1.1024 1.1017
Na2 3.0495 3.0576 3.0598 3.0617 3.0653 3.0674 3.0707 3.0709 3.0717 3.0888
O2 1.2817 1.2241 1.2209 1.2221 1.2808 1.2219 1.2208 1.2211 1.2215 1.2190
S2 2.0635 1.9224 1.9208 1.9204 2.0624 1.9211 1.9204 1.9208 1.9212 1.9143

MAE (jY) 0.0740 0.0086 0.0066 0.0067 0.0716 0.0025 0.0011 0.0013
MRE (jY) 3.90% 0.40% 0.28% 0.29% 3.81% 0.14% 0.06% 0.08%
MAE (PW) 0.0772 0.0160 0.0134 0.0137 0.0748 0.0089 0.0077 0.0080 0.0075
MRE (PW) 4.08% 0.73% 0.58% 0.60% 3.99% 0.42% 0.35% 0.37% 0.34%
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TABLE V. Atomization energies (in eV) of 11 molecules obtained with various LCAO basis sets, in comparison with jY and PW.

PSI DPSI

DZ DZP TZDP QZTP DZ DZP TZDP QZTP jY PW

Br2 1.61 2.21 2.23 2.24 1.61 2.21 2.23 2.24 2.26 2.38
Cl2 1.70 2.59 2.61 2.63 1.70 2.58 2.61 2.63 2.64 2.78
CO 10.31 11.62 11.67 11.67 10.31 11.60 11.67 11.67 11.70 11.75
F2 1.97 2.40 2.41 2.42 1.97 2.40 2.42 2.43 2.43 2.51
I2 1.82 2.04 2.05 2.06 1.78 2.03 2.05 2.06 2.08 2.08
Li2 0.84 1.16 1.13 1.10 0.78 0.92 0.92 0.92 0.91 0.86
LiH 2.06 2.58 2.57 2.55 2.00 2.35 2.36 2.38 2.39 2.33
N2 8.52 9.88 9.92 9.92 8.52 9.88 9.92 9.92 9.93 9.99
Na2 0.85 0.85 0.84 0.83 0.79 0.80 0.80 0.80 0.80 0.77
O2 5.36 6.49 6.53 6.53 5.36 6.50 6.53 6.55 6.56 6.65
S2 3.63 4.94 4.98 5.00 3.62 4.94 4.98 4.99 5.00 5.11

MAE (jY) 0.738 0.084 0.056 0.047 0.752 0.046 0.020 0.014
MRE (jY) 17.73% 4.83% 3.77% 3.18% 18.36% 1.33% 0.70% 0.50%
MAE (PW) 0.791 0.157 0.128 0.119 0.803 0.111 0.086 0.083 0.072
MRE (PW) 18.70% 7.75% 6.68% 6.06% 19.11% 3.69% 3.20% 3.14% 2.77%

the DPSI bases are significantly better than those calculated
using the PSI bases of the same size. For S2, the total energies
calculated using the DZP basis of DPSI are even lower than
those of the much larger QZTP basis of PSI.

FIG. 2. Total energies of GaAs and NaCl as a function of the
lattice constant using different LCAO basis sets, in comparison to
the results obtained using the PW basis. The solid lines correspond
to the DPSI results and the dotted lines the PSI results.

The total energies of 11 molecules relative to those of
PW bases are presented in Table III for different bases. The
calculations are done using the same diatomic distance of each

TABLE VI. Total energies (in eV) of 26 solids obtained from
various LCAO basis sets, compared to the PW. Each molecule for
different basis sets has the same structure. The total energies of the
PW basis are set to zero.

PSI DPSI

DZ DZP TZDP QZTP DZ DZP TZDP QZTP

AlAs 1.06 0.35 0.32 0.28 0.69 0.10 0.08 0.07
AlNw 2.33 0.79 0.51 0.40 2.10 0.43 0.28 0.25
AlP 1.20 0.35 0.29 0.27 0.87 0.11 0.09 0.08
AlSb 0.74 0.30 0.24 0.21 0.45 0.07 0.06 0.05
BN 0.51 0.13 0.09 0.07 0.46 0.08 0.06 0.05
BP 1.27 0.24 0.19 0.17 1.09 0.10 0.08 0.07
C 0.64 0.10 0.08 0.07 0.60 0.08 0.06 0.05
CdSew 0.99 0.64 0.49 0.43 0.73 0.48 0.19 0.16
CdSw 1.07 0.61 0.44 0.38 0.87 0.33 0.20 0.16
CdTe 0.33 0.25 0.18 0.15 0.21 0.12 0.07 0.06
GaAs 0.67 0.42 0.34 0.28 0.28 0.08 0.06 0.05
GaN 0.53 0.40 0.29 0.25 0.23 0.08 0.05 0.04
GaP 0.81 0.40 0.33 0.28 0.43 0.08 0.06 0.05
GaSb 0.44 0.33 0.26 0.20 0.12 0.05 0.04 0.03
InP 0.72 0.41 0.33 0.29 0.41 0.09 0.07 0.06
LiF 0.35 0.12 0.08 0.07 0.43 0.10 0.09 0.08
MgO 0.51 0.29 0.21 0.15 0.45 0.14 0.10 0.08
MgS 0.63 0.24 0.21 0.16 0.49 0.10 0.08 0.06
NaCl 0.16 0.11 0.08 0.07 0.10 0.04 0.04 0.03
Si 1.55 0.42 0.31 0.30 1.16 0.11 0.09 0.08
SiC 1.74 0.32 0.23 0.20 1.61 0.19 0.14 0.12
ZnO 0.44 0.38 0.23 0.17 0.28 0.17 0.09 0.07
ZnOw 0.89 0.76 0.46 0.34 0.57 0.35 0.17 0.14
ZnS 0.66 0.39 0.25 0.18 0.45 0.16 0.09 0.07
ZnSe 0.59 0.41 0.28 0.20 0.35 0.24 0.09 0.07
ZnTe 0.39 0.33 0.20 0.14 0.18 0.10 0.06 0.04

MAE 0.82 0.36 0.27 0.22 0.60 0.15 0.09 0.08
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TABLE VII. Lattice constant (in Å) of 22 fcc solids obtained from various LCAO basis sets, compared to the PW.

PSI DPSI

DZ DZP TZDP QZTP DZ DZP TZDP QZTP PW

AlAs 5.836 5.748 5.742 5.740 5.802 5.741 5.739 5.738 5.733
AlP 5.611 5.522 5.510 5.507 5.593 5.516 5.512 5.511 5.507
AlSb 6.319 6.244 6.237 6.234 6.283 6.228 6.225 6.225 6.224
BN 3.639 3.625 3.623 3.622 3.636 3.623 3.622 3.622 3.621
BP 4.646 4.552 4.549 4.547 4.634 4.547 4.546 4.545 4.541
C 3.586 3.567 3.568 3.568 3.584 3.567 3.569 3.569 3.568
CdTe 6.677 6.648 6.636 6.633 6.667 6.637 6.632 6.630 6.624
GaAs 5.822 5.784 5.778 5.774 5.788 5.759 5.759 5.757 5.753
GaN 4.583 4.580 4.570 4.568 4.573 4.557 4.555 4.554 4.551
GaP 5.595 5.533 5.522 5.521 5.564 5.514 5.513 5.512 5.509
GaSb 6.263 6.246 6.238 6.231 6.236 6.219 6.218 6.217 6.216
InP 6.040 5.984 5.974 5.972 6.023 5.970 5.970 5.969 5.963
LiF 4.117 4.075 4.069 4.067 4.124 4.068 4.069 4.069 4.062
MgO 4.284 4.282 4.270 4.264 4.277 4.268 4.262 4.259 4.256
MgS 5.299 5.243 5.238 5.232 5.287 5.228 5.227 5.226 5.225
NaCl 5.744 5.720 5.715 5.710 5.730 5.709 5.705 5.704 5.699
Si 5.605 5.492 5.486 5.483 5.594 5.481 5.480 5.479 5.476
SiC 4.483 4.393 4.388 4.385 4.475 4.390 4.388 4.386 4.380
ZnO 4.658 4.645 4.633 4.630 4.650 4.632 4.623 4.621 4.616
ZnS 5.558 5.489 5.466 5.461 5.537 5.467 5.456 5.454 5.446
ZnSe 5.829 5.784 5.764 5.752 5.806 5.785 5.752 5.749 5.739
ZnTe 6.241 6.226 6.205 6.194 6.220 6.197 6.188 6.187 6.181

MAE 0.070 0.022 0.013 0.009 0.054 0.010 0.005 0.004
MRE 1.33% 0.41% 0.25% 0.18% 1.04% 0.19% 0.10% 0.08%

molecule for all basis sets. Since the absolute value of the
total energy is irrelevant, here we set the total energy obtained
using the PW bases to zero, and only the energy differences to
the PW results are reported. Thus the presented total energy
values of the NAO bases can be seen as the basis set errors
with respect to the PW reference. In all cases, the errors of
total energy (relative to the PW bases) of the DPSI bases are
much smaller than those of the PSI bases at the same level.
For most of the molecules, errors of the DZP bases for the
DPSI type are similar or even smaller than those of the QZTP
bases of the PSI type. The errors of the QZTP-DPSI bases are
very close to those of the jY bases. The mean absolute error
(MAE) relative to both the jY and PW bases are shown at the
bottom of Table III. The MAE to jY bases is only 0.07 eV
for DZP-DPSI, and 0.03 eV for QZTP-DPSI, which are much
smaller than those of the PSI bases at the same level. The
MAE of the DPSI bases to the PW results are also much
smaller than that of the PSI bases. The MAE of DZP-DPSI
is about 0.16 eV smaller than the MAE of QZTP-PSI 0.21 eV
to the PW basis.

Importantly, we note that the MAE of the jY basis to
the PW basis is already 0.10 eV, which is larger than the
MAE between DPSI basis and jY basis. This result suggests
that the MAE between DPSI and PW is dominated by the
incompleteness of the jY basis, due to the finite cutoff radii
[Rc in Eq. (11)] and the maximum angular momentum. As a
result, the MAE between DPSI and PW dose not reduce much
from DZP-DPSI to QZTP-DPSI bases. Therefore, further in-
creasing the number of radial functions could not significantly
improve the results. To further improve the quality of the

bases, one has to increase the radii and maximum angular
momentum of the NAO bases.

To gain further insights into the origin of why the DSPI
bases show a substantial supremacy with respect to the PSI
bases, in Tables XII and XIII of Appendix, we present the
errors of DZP-PSI and DZP-DPSI bases (with respect to the
jY reference results) for individual contributions to the total
energy, i.e., the kinetic energy, the potential energies due
to local and nonlocal pseudopotentials, and the Hartree and
exchange-correlation energies. While Table XII presents the
error analysis of individual contributions after the first itera-
tion of the self-consistent calculations, Table XIII presents the
counterparts at full self-consistency. This study reveals that
the key reason behind the better accuracy of the DPSI bases is
their improved wavefunction gradients. This will immediately
lead to an improved accuracy in the kinetic energy, which
further triggers an improvement in other parts of the total
energy through the self-consistent process. Thus it is really
the detailed shapes of the entire radial functions that result in
the improved quality of the DPSI bases.

2. Bond lengths

Table IV compares the bond lengths of the 11 molecules
calculated by different base sets. The bond lengths calculated
by DPSI bases are much better than those by PSI bases of the
same level. The MAE of the DZP-DPSI bases to the PW bases
is 0.0089 Å, much smaller than the MAE of the QZTP-PSI
bases 0.0137 Å. The MAEs of DPSI bases to the jY basis
(0.0016–0.0028 Å) are extremely small, suggesting that the
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TABLE VIII. Cohesive energies (in eV/atom) of 26 solids obtained from various LCAO basis sets, compared to the PW.

PSI DPSI

DZ DZP TZDP QZTP DZ DZP TZDP QZTP PW

AlAs 3.353 3.687 3.705 3.714 3.386 3.665 3.671 3.675 3.651
AlNw 5.158 5.531 5.600 5.618 5.142 5.547 5.583 5.590 5.615
AlP 3.685 4.086 4.113 4.119 3.725 4.081 4.092 4.095 4.083
AlSb 3.118 3.319 3.333 3.337 3.135 3.312 3.316 3.318 3.289
BN 6.641 6.825 6.843 6.852 6.632 6.816 6.823 6.828 6.835
BP 4.822 5.311 5.333 5.342 4.826 5.294 5.304 5.308 5.308
C 7.351 7.612 7.618 7.623 7.350 7.608 7.612 7.615 7.620
CdSew 2.177 2.253 2.279 2.289 2.174 2.227 2.286 2.293 2.305
CdSw 2.423 2.519 2.553 2.560 2.420 2.531 2.561 2.569 2.586
CdTe 1.966 1.998 2.024 2.027 1.969 2.007 2.028 2.032 2.036
GaAs 2.987 3.105 3.136 3.142 3.028 3.123 3.127 3.130 3.096
GaN 4.106 4.163 4.212 4.211 4.178 4.250 4.260 4.262 4.248
GaP 3.250 3.437 3.467 3.468 3.311 3.475 3.480 3.483 3.458
GaSb 2.831 2.878 2.890 2.892 2.859 2.893 2.893 2.893 2.858
InP 3.018 3.149 3.148 3.157 2.982 3.123 3.133 3.136 3.105
LiF 4.355 4.563 4.566 4.547 4.260 4.416 4.420 4.427 4.418
MgO 4.954 5.058 5.079 5.105 4.904 5.051 5.069 5.081 5.088
MgS 3.579 3.757 3.760 3.777 3.554 3.740 3.750 3.756 3.755
NaCl 3.121 3.136 3.136 3.132 3.083 3.108 3.113 3.116 3.100
Si 4.074 4.614 4.645 4.661 4.042 4.521 4.528 4.530 4.494
SiC 5.675 6.355 6.387 6.404 5.618 6.289 6.307 6.314 6.326
ZnO 3.474 3.497 3.564 3.595 3.517 3.564 3.606 3.615 3.631
ZnOw 3.482 3.506 3.573 3.603 3.525 3.572 3.614 3.623 3.639
ZnS 2.694 2.807 2.871 2.906 2.749 2.878 2.910 2.920 2.935
ZnSe 2.386 2.466 2.518 2.557 2.440 2.488 2.555 2.563 2.573
ZnTe 2.118 2.141 2.194 2.216 2.165 2.200 2.220 2.225 2.227

MAE 0.212 0.058 0.045 0.041 0.204 0.033 0.019 0.016
MRE 5.26% 1.74% 1.24% 1.07% 4.88% 1.00% 0.54% 0.46%

accuracy is approaching the limit of the NAOs for the given
highest angular momentum and cutoff radii of the NAOs. The
mean relative error (MRE) of DPSI bases to both the jY and
PW bases is also much smaller than that of PSI.

3. Atomization energies

The atomization energies of the 11 molecules are presented
in Table V. In this case, the differences between the PSI
base and DPSI bases are much smaller than those of the
corresponding total energies, which is presumably due to the
error cancellation (between the total energies of the molecules
and free atoms) in calculating the atomization energies. For
many molecules, the atomization energies calculated by the
two base sets are very close. However, for some molecules,
e.g., Li2, LiH, and Na2, the atomization energies calculated
by the DPSI bases are significantly better than those by the
PSI bases. The overall MAEs of the DPSI bases to the PW
bases are much smaller than those of the PSI bases. Again, the
MAEs of DPSI bases to the jY bases are already very small,
much smaller than the MAE of the jY bases to the PW bases.
Therefore, the improvement of the atomization energies is
relatively small when increasing the base size from DZP-DPSI
to QZTP-DPSI bases.

B. Crystals

After comparing the accuracy of DPSI bases with the PSI
bases for the molecules, we turn to the benchmark of their
performance for periodic systems. To this end, a set of 26
crystalline solids are chosen as the test systems that cover
semiconductors, alkaline and alkaline-earth metals, alkaline
chloride, and transition metals. Among them, 22 materials
have the face-centered cubic (fcc) structure, whereas four
have the wurtzite structure, labeled with a character “w” after
the name. For the crystals, the jY bases are too large and
overcomplete, which causes serious numerical instability, and
therefore are not included in the comparison. We only com-
pare the results of NAOs with the PW bases.

1. Total energies

The total energies as a function of lattice constant for GaAs
and NaCl are shown in Figs. 2(a) and 2(b), respectively, for
various NAO bases, compared to those of the PW bases. The
advantage of the DPSI bases over the PSI ones is remarkable.
For both crystals, the total energies calculated by the DPSI
bases are much lower than those by the PSI bases, and are
very close to the PW results. The figure visually shows the
advantages of the DPSI bases over the PSI bases.

The total energies of 26 crystals are presented in Table VI
for both the PSI and DPSI bases. The MAE of DZP-DPSI
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TABLE IX. Bulk moduli (in GPa) of 26 solids at their equilibrium lattice constants obtained from various LCAO basis sets, compared to
the PW results.

PSI DPSI

DZ DZP TZDP QZTP DZ DZP TZDP QZTP PW

AlAs 55.34 66.02 65.38 66.54 63.05 66.82 66.39 66.29 67.03
AlNw 180.84 190.27 192.06 194.30 176.98 188.59 191.53 190.84 194.27
AlP 70.50 78.98 79.74 80.02 75.57 81.45 81.50 81.55 82.37
AlSb 44.93 49.04 49.30 49.51 46.53 49.52 48.98 49.00 49.41
BN 368.18 369.67 369.42 369.45 365.48 368.43 369.61 369.25 368.49
BP 156.43 157.16 155.95 155.89 151.56 160.78 160.35 160.45 160.28
C 426.23 433.13 433.00 431.36 420.91 432.46 430.59 430.47 430.21
CdSew 43.82 44.91 44.93 45.29 43.84 44.44 44.63 44.94 44.77
CdSw 52.21 52.68 53.29 53.29 52.68 53.15 53.25 53.55 53.40
CdTe 34.27 35.24 34.93 34.73 34.82 35.13 35.00 35.04 35.18
GaAs 54.16 57.46 56.68 56.94 57.74 59.78 59.38 59.39 59.81
GaN 165.61 166.93 168.52 169.20 168.48 171.19 171.69 171.29 172.18
GaP 66.15 71.62 73.43 73.58 71.54 75.98 76.00 76.02 76.58
GaSb 42.57 42.67 42.62 43.69 44.09 44.80 44.62 44.60 44.59
InP 59.65 61.97 61.77 60.49 56.86 59.22 59.29 59.45 59.21
LiF 61.91 66.06 66.54 66.78 61.56 67.30 65.54 66.54 67.74
MgO 148.16 145.78 148.99 149.03 153.36 148.97 148.45 146.26 151.65
MgS 70.07 73.75 73.80 74.71 70.71 74.57 74.67 74.85 75.20
NaCl 23.02 22.75 23.52 23.43 23.01 23.10 23.25 23.46 23.75
Si 81.11 94.52 90.79 90.32 76.94 88.00 86.61 86.34 87.52
SiC 173.47 210.52 210.70 209.79 176.14 210.64 210.21 209.55 210.90
ZnO 125.76 125.93 128.89 128.22 127.34 128.71 128.93 130.14 129.09
ZnOw 127.23 127.52 130.04 130.03 128.46 130.02 129.98 131.31 130.44
ZnS 64.80 66.84 68.81 69.52 65.60 68.33 68.75 68.97 69.73
ZnSe 53.60 54.27 54.07 56.15 54.81 55.33 56.31 56.42 56.95
ZnTe 41.62 41.71 42.67 42.61 42.24 43.04 43.44 43.48 43.38

MAE 5.97 2.54 2.02 1.71 5.28 0.98 0.85 0.98
MRE 6.17% 2.92% 2.25% 1.84% 4.70% 1.04% 0.91% 0.91%

bases (with respect to the PW reference results) is 0.15 eV,
which is much smaller than the 0.36 eV of the DZP-PSI bases,
and even smaller than 0.22 eV of the much larger QZTP-PSI
bases.

2. Lattice constants

Table VII lists the lattice constants of the 22 fcc crystals.
For clarity of the table, four crystals with the wurtzite structure
(AlNw, CdSew, CdSw, and ZnOw), which each have two
lattice constants, are omitted. The lattice constants are fitted
by the Birch-Murnaghan equation of state [25].

Again, for nearly all crystals, the DPSI bases show better
performance than the PSI bases. The MAE and MRE of the
DPSI bases are approximately only half of those of the corre-
sponding PSI bases of the same level, and the quality of the
DZP-DPSI bases is comparable to the QZTP-PSI bases.

3. Cohesive energies

The cohesive energies are presented in Table VIII. For most
of the crystals, the errors of the DPSI bases are smaller than
those of the PSI bases. The MAE of DZP bases is reduced
from 0.15 eV to 0.09 eV. Increasing the size of the bases
does not significantly improve the results, which, according
to the results of the molecules, suggests that the accuracy is

approaching the limit of the NAO bases at the given cutoff
radii and highest angular momentum of the NAOs.

4. Bulk moduli

The bulk moduli of 26 crystals calculated using various
NAO basis sets as well as using the PW bases are presented
in Table IX. The DPSI DZP bases show a MAE of 0.98 GPa,
compared to a MAE of 2.54 GPa of the PSI DZP bases and
1.71 GPa of the PSI QZTP bases. It is worth noting that,
however, for DPSI bases the accuracy of the calculated bulk
moduli does not show systematic improvement beyond the
DZP basis set. Thus a MAE of ∼0.98 GPa might be the upper
limit of such a numerical orbital method.

5. Band structures

In this subsection, we check the influence of the type of
NAO bases on the band structure calculations. In Fig. 3, the
PBE band structures of Si crystal calculated using both PSI
[blue solid lines in panel (a)] and DPSI [blue solid line in
panel (b)] DZP basis sets are presented. For comparison, the
results calculated using the PW bases are plotted in both
panels of Fig. 3 (the red dashed lines) as well.

The indirect band gap of Si calculated using the PW basis
set is 0.552 eV. If the PSI DZP basis set is used, the obtained
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TABLE X. Band gap (in eV) of 26 solids obtained from various LCAO basis sets, compared to the PW. For each material, the same
structure is used for all bases. The band gap is calculated in an 8 × 8 × 8 k mesh.

PSI DPSI

DZ DZP TZDP QZTP DZ DZP TZDP QZTP PW

AlAs 1.553 1.472 1.433 1.386 1.564 1.484 1.412 1.410 1.408
AlNw 3.860 4.173 4.187 4.168 3.835 4.163 4.187 4.189 4.146
AlP 2.150 1.642 1.588 1.549 1.944 1.644 1.569 1.569 1.572
AlSb 1.187 1.318 1.287 1.249 1.251 1.282 1.241 1.241 1.224
BN 5.036 4.692 4.547 4.548 4.803 4.592 4.548 4.545 4.543
BP 2.033 1.398 1.311 1.305 1.698 1.335 1.321 1.317 1.304
C 4.418 4.289 4.185 4.183 4.435 4.265 4.197 4.195 4.176
CdSew 0.665 0.623 0.625 0.626 0.672 0.680 0.661 0.667 0.665
CdSw 1.100 1.061 1.082 1.081 1.102 1.080 1.101 1.101 1.111
CdTe 0.761 0.731 0.747 0.740 0.761 0.745 0.767 0.764 0.766
GaAs 0.324 0.369 0.386 0.374 0.501 0.519 0.487 0.473 0.463
GaN 1.725 1.644 1.665 1.639 1.880 1.749 1.728 1.727 1.722
GaP 1.773 1.660 1.631 1.608 1.926 1.702 1.662 1.660 1.648
GaSb 0.164 0.108 0.043 0.085 0.175 0.129 0.124 0.122 0.120
InP 0.700 0.665 0.627 0.620 0.761 0.729 0.703 0.697 0.687
LiF 9.102 9.214 9.243 9.225 8.914 9.124 9.145 9.188 9.248
MgO 4.644 4.701 4.694 4.701 4.625 4.680 4.699 4.708 4.758
MgS 3.268 2.798 2.774 2.766 3.201 2.779 2.780 2.788 2.832
NaCl 5.055 5.070 5.084 5.081 5.038 5.064 5.079 5.090 5.114
Si 1.100 0.744 0.600 0.586 0.940 0.638 0.609 0.604 0.592
SiC 2.180 1.478 1.375 1.368 2.092 1.450 1.369 1.373 1.386
ZnO 0.722 0.698 0.702 0.710 0.744 0.721 0.729 0.731 0.736
ZnOw 0.847 0.834 0.843 0.848 0.864 0.854 0.861 0.864 0.868
ZnS 1.894 1.881 1.907 1.917 1.946 1.937 1.944 1.946 1.941
ZnSe 1.243 1.203 1.212 1.227 1.301 1.321 1.275 1.286 1.274
ZnTe 1.229 1.188 1.221 1.228 1.271 1.247 1.255 1.256 1.247

MAE 0.2000 0.0689 0.0372 0.0356 0.1755 0.0462 0.0204 0.0157
MRE 17.124% 8.720% 5.453% 5.667% 12.649% 3.550% 1.328% 0.955%

band gap is 0.713 eV, yielding a relative error up to nearly
30%. In contrast, with the DPSI DZP basis set, the calculated
band gap is 0.605 eV, corresponding to a much reduced rela-
tive error of 10%.

For more quantitative information, we measure the differ-
ence between two band structures by taking the root mean
square deviation, i.e.,

δEband = 1

NbNk

√√√√∑
k

Nb∑
n=1

∣∣εNAO
nk − εPW

nk

∣∣2
, (12)

where Nb is the number of bands. Here we include the lowest
seven bands in the definition of Eq. (12), covering the valence
bands and low-lying conduction bands, which the DZP bases
are supposed to describe. According to this definition, the
deviation of the band structure calculated by the PSI bases
is 0.0093 eV, which is reduced to 0.0050 eV if one turns
to the DPSI bases. It can be seen from Fig. 3 that the band
lines calculated by the DPSI basis [panel (b)] are in better
agreement with the PW reference results than those calculated
by the PSI bases [panel (a)].

TABLE XI. Properties of Si crystal calculated using PSI and DPSI bases with different cutoff radii, compared with PW results. The DZP
bases are used in the LCAO calculations.

PSI DPSI PW

Rc (Bohr) 6 7 8 6 7 8

Total energies (eV) 1.98 1.03 0.42 0.45 0.17 0.11 0.00
Cohesive energies (eV) 11.46 9.88 9.21 9.93 9.28 9.03 8.98
Lattice constant (Å) 5.470 5.506 5.492 5.458 5.484 5.481 5.476
Bulk moduli (GPa) 125.32 114.06 94.52 91.04 90.29 88.00 87.52
Band gap (eV) 1.34 0.93 0.74 0.69 0.69 0.64 0.59
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FIG. 3. Comparison of the band structures of Si crystal calcu-
lated by different NAO bases (blue solid lines) and the PW basis (red
dashed lines). The NAO results in panel (a) are obtained using the
PSI bases, whereas those in panel (b) are obtained using the DPSI
bases.

The band gaps of 26 crystals are presented in Table X.
For simplicity, the band gaps in the table are obtained via
the difference between the conduction band minimum and
valence band maximum on an 8 × 8 × 8 k-point mesh, which
may be slightly different from the band gaps calculated along
the high-symmetry k-point paths.

From Table X, it is evident that the band gaps calculated
using the DPSI bases are superior to those by the PSI bases.
Specifically the MAE of DPSI DZP is smaller than that of PSI
DZP and the MRE of DPSI DZP is even smaller than that of
PSI QZTP.

C. Cutoff radii of the NAOs

It has been shown in Ref. [8] that increasing the cutoff radii
of the NAOs can improve the quality of the bases, which,
however, is computationally more costly. To examine how
the total energy converges with respect to the cutoff radii of
NAOs, we show in Fig. 4 the total energies of Si crystal as a
function of the NAO radius for both the PSI and DPSI bases.
As shown in the figure, the total energies calculated using
the DPSI bases converge much faster upon increasing radius
than those of the PSI bases. Specifically, the total energies
calculated by DPSI bases converge to a high precision already

FIG. 4. Differences between the total energies calculated using
NAOs and that of the PW results as a function of the NAO cutoff
radii. The test system is Si crystal in diamond structure. The solid
lines represent the DPSI results, whereas the dotted lines represent
the PSI ones.

at about Rc = 7 Bohr, whereas one needs to go to 10 Bohr for
the PSI bases to achieve a similar level of precision. To further
illustrate the effects of NAO radii, we compare in Table XI the
total energy, cohesive energy, lattice constant, bulk modulus
and band gap of Si crystal calculated by the DZP-PSI and
DZP-DPSI bases with different Rc. We see that, for DZP-PSI
bases, the errors are huge for Rc � 7 Bohr, and Rc = 8 Bohr
is needed to obtain accurate results. In contrast, for the DZP-
DPSI bases, one is able to obtain satisfactory results even for
Rc = 6 Bohr, which are comparable in precision to the results
calculated by the DZP-PSI base with Rc = 8 Bohr. Reducing
the radii of the NAOs without sacrificing accuracy can greatly
save computational time and memory consumption in the
electronic calculations.

IV. SUMMARY

We propose a scheme to construct high-quality NAO ba-
sis sets for density-functional calculations. Compared to the
original CGH scheme proposed in Ref. [8], the key additional
ingredient of this scheme is that the derivatives of the wave-
functions are also incorporated in the optimization procedure.
This scheme not only simplifies the procedures of the original
scheme, but also greatly improves the quality of the generated
NAO base sets. The relatively small DZP bases, most often
used for production calculations, already yield remarkable
accuracy in the calculation of the structural and electronic
properties of molecules and crystals. With suitably chosen
radii of the NAOs, the numerical precision achieved by the
much smaller DZP bases generated via this scheme are com-
parable to that of the QZTP bases generated via the original
scheme.
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TABLE XII. Absolute errors of the individual components of the total energy obtained using the DZP-PSI (left side) and DZP-DPSI (right
side) bases with respect to the jY reference results for a set of molecules, obtained after the first iteration of the calculations.

PSI DPSI

Etot ET EH Exc Eps-l Eps-nl Etot ET EH Exc Eps-l Eps-nl

Br2 0.11 0.40 0.33 0.02 0.31 0.23 0.05 0.16 0.48 0.02 0.53 0.22
Cl2 0.08 0.35 0.37 0.01 0.30 0.14 0.06 0.32 0.38 0.01 0.26 0.08
CO 0.09 0.84 0.82 0.15 1.56 0.31 0.07 0.22 0.47 0.07 0.86 0.35
F2 0.06 0.85 0.48 0.08 0.71 0.30 0.04 0.53 0.46 0.05 0.62 0.22
I2 0.24 0.72 0.55 0.05 0.78 0.56 0.05 0.86 1.41 0.09 1.93 0.25
Li2 0.32 1.89 0.39 0.13 0.65 0.91 0.03 0.97 0.22 0.05 0.18 0.61
LiH 0.02 0.47 0.26 0.02 0.21 0.38 0.01 0.16 0.35 0.06 0.36 0.24
N2 0.02 1.11 1.34 0.25 2.24 0.49 0.01 0.61 1.32 0.25 2.04 0.73
Na2 0.03 10.77 4.88 1.02 7.21 5.97 0.13 9.74 5.81 1.00 7.93 5.37
O2 0.10 0.76 0.26 0.01 0.23 0.63 0.07 0.80 0.21 0.00 0.15 0.63
S2 0.13 0.64 0.31 0.01 0.32 0.50 0.06 0.45 0.44 0.02 0.41 0.38

MAE 0.11 1.71 0.91 0.16 1.32 0.95 0.05 1.35 1.05 0.15 1.39 0.83

APPENDIX: ERROR ANALYSIS OF INDIVIDUAL
COMPONENTS OF THE TOTAL ENERGY

In order to gain a deeper insight into the origin of the
advantage of the DSPI bases over the standard PSI bases, we
performed an error analysis of the individual components of
the total energy. To this end, the ground-state total energy is
decomposed into five terms,

Etot = ET + EH + Exc + Eps-l + Eps-nl, (A1)

including the kinetic energy, the Hartree energy, the exchange-
correlation energy, and the potential energies due to the local
and nonlocal parts of the pseudopotentials. What is presented
in Tables XII and XIII are the (absolute) errors of each
term, for a set of molecules, obtained by the DZP-PSI and
DZP-DPSI bases with respect to the jY reference results.
Specifically, Tables XII and XIII show the errors obtained
after the first iteration and at full self-consistency of the cal-
culations, respectively.

This analysis reveals that, for most of the molecules, the
initial basis set incompleteness error of the kinetic energy is
substantially reduced when going from the PSI to DSPI basis
prescription (cf. MAEs in Table XII), whereas other parts do
not show this improvement. This behavior is understandable
since the DPSI basis functions by construction have improved
gradients and hence feature a better-quality kinetic energy.
Compared to the kinetic energy, other parts of the total en-
ergy are not so sensitive to the wavefunction gradients as the
kinetic energy is and hence do not show similar improvement
initially. However, as the self-consistency process goes on, the
variational principle of the DFT total energy calculation drives
the improved accuracy of the kinetic energy transferring to
other parts of the total energy. Eventually, one can observe
from Table XIII that, on average, not only the kinetic energy,
but also other parts of the total energy get improved, but the
magnitude of the kinetic energy improvement is not as big as
what happened initially.

TABLE XIII. Absolute errors of the individual components of the total energy obtained using the DZP-PSI (left side) and DZP-DPSI (right
side) bases with respect to the jY reference results for a set of molecules, obtained after the full self-consistency of the calculations is achieved.

PSI DPSI

Etot ET EH Exc Eps-l Eps-nl Etot ET EH Exc Eps-l Eps-nl

Br2 0.13 0.45 0.21 0.05 0.13 0.20 0.05 0.29 0.27 0.03 0.24 0.18
Cl2 0.10 0.47 0.25 0.04 0.11 0.03 0.07 0.48 0.21 0.04 0.23 0.06
CO 0.16 0.38 0.16 0.04 0.84 0.51 0.13 0.85 0.79 0.17 1.96 0.62
F2 0.09 1.03 0.31 0.10 0.66 0.41 0.06 0.93 0.18 0.08 0.44 0.39
I2 0.28 1.30 1.06 0.08 2.44 0.16 0.06 1.23 2.01 0.20 3.56 0.45
Li2 0.36 0.53 0.73 0.14 0.99 0.29 0.00 0.19 0.16 0.04 0.24 0.08
LiH 0.12 0.19 0.23 0.08 0.25 0.17 0.05 0.13 0.08 0.02 0.14 0.08
N2 0.09 0.17 0.49 0.10 0.41 0.13 0.07 0.28 0.38 0.08 0.09 0.00
Na2 0.12 1.88 2.95 0.34 3.58 0.97 0.02 1.20 0.63 0.16 0.98 0.66
O2 0.15 1.13 0.37 0.02 0.25 0.39 0.10 1.20 0.16 0.01 0.65 0.28
S2 0.17 0.57 0.12 0.02 0.60 0.33 0.08 0.42 0.17 0.01 0.66 0.48

MAE 0.16 0.74 0.63 0.09 0.93 0.33 0.06 0.66 0.46 0.08 0.83 0.30
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