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We describe the large-N saddle point, and the structure of fluctuations about the saddle point, of a theory
containing a sharp, critical Fermi surface in two spatial dimensions. The theory describes the onset of Ising
order in a Fermi liquid, and closely related theories apply to other cases with critical Fermi surfaces. We
employ random couplings in flavor space between the fermions and the bosonic order parameter, but there
is no spatial randomness: consequently, the G-� path integral of the theory is expressed in terms of fields
bilocal in spacetime. The critical exponents of the large-N saddle point are the same as in the well-studied
nonrandom random-phase-approximation theory; in particular, the entropy density vanishes in the limit of zero
temperature. We present a full numerical solution of the large-N saddle-point equations, and the results agree
with the critical behavior obtained analytically. Following analyses of Sachdev-Ye-Kitaev models, we describe
scaling operators which descend from fermion bilinears around the Fermi surface. This leads to a systematic
consideration of the role of time reparametrization symmetry, and the scaling of the Cooper pairing and 2kF

operators which can determine associated instabilities of the critical Fermi surface. We find no violations of
scaling from time reparametrizations. We also consider the same model but with spatially random couplings:
this provides a systematic large-N theory of a marginal Fermi liquid with Planckian transport.
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I. INTRODUCTION

The problem of the critical Fermi surface without quasipar-
ticle excitations has received extensive interest in recent years
[1], given its central role in the theory of the half-filled Landau
level, quantum critical points (QCPs) in metals, and Fermi
surfaces of fractionalized particles coupled to emergent gauge
fields in gapless spin liquids [2–40]. Much has been under-
stood about the structure of the theory, but a fully systematic
analysis of the critical theory, its operator spectrum, and
possible low-temperature instabilities to symmetry-broken or
topological states has remained elusive. Initially, it was as-
sumed that a theory with a large number of flavors, N , of
fermions could provide such a systematic theory. But, in an
influential analysis, Lee [8] showed that certain higher loop
corrections implied a breakdown of the large-N expansion,
and that the theory remains strongly coupled even at large
N . Various workarounds have been proposed since then, but
none are fully satisfactory: they either involve deploying ad-
ditional expansion parameters, introduce nonanalytic terms
not present in the original theory, or depend upon choosing
N-dependent energy scales.

In this paper, we wish to apply insights gained by the study
of another class of realizations of compressible quantum mat-
ter without quasiparticle excitations: the Sachdev-Ye-Kitaev
(SYK) class of models [41–44]. These models involve ran-
dom couplings, but after an average over randomness, the
resulting theory realizes a compressible non-Fermi liquid
which is amenable to a systematic large-N expansion via
a path integral over bilocal fields [44–46] often called the

G-� theory (the low-energy limit of the G-� theory is a
theory of two-dimensional quantum gravity [42,44,47–49]).
Furthermore, the model is strongly self-averaging in the non-
Fermi-liquid phase; i.e., for sufficiently large N , the properties
of a single sample are indistinguishable from those of the
average, and so it is technically far easier, and permissible,
to work with the average theory. Recent works [50–53] have
used this method to obtain operator spectra and instabilities
of non-Fermi liquids realized by SYK models. The idea of
simplification realized by an average over similar strongly
coupled theories is also playing an important role in recent
investigations in quantum gravity, and averages over random
matrices or conformal field theories yield systematic large-N
holographic realizations of the path integral of simple theories
of gravity [54–61].

In the context of finite-dimensional systems with Fermi
surfaces, Aldape et al. [36] introduced the idea of coupling
the fermions to a boson, and making the associated Yukawa-
like fermion boson coupling a random function of flavor
indices, but not of space. In such a model, the sharp Fermi
surface is maintained even in the presence of randomness,
and a systematic large-N saddle point with regimes of non-
Fermi-liquid behavior is obtained. They used this strategy to
describe non-Fermi-liquid behavior across a transition from
a Fermi liquid to a fractionalized Fermi liquid. We also note
Ref. [62] which applies this idea to critical Dirac fermions in
1 + 1 dimensions, and obtained evidence for maximal chaos
in the large-N limit with vanishing entropy density in the
zero-temperature limit. We emphasize that in all these cases
there is no spatial disorder, and the disorder is entirely in
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coupling-constant space. A given sample with a particular set
of couplings will not be identical to another sample, but the
difference will vanish in the large-N limit. To compute the
differences between samples we have to include fluctuations
of the replica off-diagonal components of the bilocal Green’s
functions [45], but we will not do that here. The replica
off-diagonal components vanish in the N = ∞ saddle-point
theory, and it is even possible that the replica off-diagonal
fluctuations do not modify the universal critical properties at
higher orders in 1/N , because we do not expect the critical
properties to be sensitive to the microscopic values of the
couplings.

We follow these recent works [36,62], and examine the
non-Fermi liquid with a critical Fermi surface formed at the
QCP involving the onset of Ising order in a two-dimensional
Fermi liquid. We note that the location of the critical Fermi
surface in momentum space obeys an extended Luttinger the-
orem [63,64], even in the presence of the random couplings.
Our large-N theory of a critical Fermi surface has the same
critical behavior at N = ∞ as already anticipated in the early
work [1–4]. Specifically, there is no extensive entropy in
the zero-temperature limit in our approach, unlike previous
studies of critical Fermi surfaces employing a large-N limit
with random couplings [22,23,31,38]. And there is anisotropic
dynamic scaling on the Fermi surface, with the frequency
ω ∼ q3/2

⊥ for momenta q⊥ normal to the Fermi surface, and
ω ∼ q3

‖ for momenta parallel to the Fermi surface.
We introduce our model, its averaged effective action, and

the setup of the large-N expansion in Sec. II. This involves a
path integral over a G-� action in which the fields are bilocal
in spacetime; this should be compared to previous studies
[44–46] in which the fields were bilocal only in time. The
large-N critical theory is obtained in Sec. III by taking the
low-energy limit on separate patches on the Fermi surface. We
then present a full numerical solution of the large-N equations
for the complete Fermi surface in Sec. IV, and find results
which are in agreement with the analytic patch analysis in
Sec. III.

We begin our discussion of the fluctuations about the large-
N saddle point in Sec. V by a consideration of the role of time
reparametrization symmetry. The special role of this symme-
try, and an associated soft mode, was first noted for the SYK
model [42,44,49,65–69] where it leads to a violation of scal-
ing at times of order N . The symmetry is also present in the
saddle-point action for the critical Fermi surface. However,
we shall find here that there is no corresponding soft mode
for the critical Fermi surface, and no associated violation of
scaling. This time reparametrization analysis is carried out
in a single patch theory, which on its own realizes a “chi-
ral non-Fermi liquid” [11]. The soft-mode analysis involves
examination of the eigenmodes of a ladder operator, which
determine composite operators in the particle-hole sector. We
limit our consideration to momenta orthogonal to the Fermi
surface, in which case the eigenmode equations simplify
to one-dimensional integral equations. We do not find any
nontrivial operators in this sector, apart from the conserved
density operator the correlations of which were studied by
Kim et al. [5].

One operator that could have appeared in a single patch
theory is the fermion pair operator associated with Amperean

pairing [70,71]. This requires consideration of physics beyond
the scaling limit, and is discussed in Appendix A.

Section VI describes the structure of the G-� theory
beyond the large-N saddle point. We will obtain formal ex-
pressions for the fermion self-energy at order 1/N in terms
of the inverse of the ladder operator of the large-N theory.
These considerations will be quite general, and can be applied
equally to the single patch theory of Sec. V, the lattice theory
of Sec. III, or the antipodal patch theory to be considered in
Sec. VII, and also bears a resemblance to the corresponding
analysis of the SYK model in Ref. [49].

Section VII turns to the examination of the scaling struc-
ture for the nonchiral case, with a closed Fermi surface. A
number of singular effects arise from antipodal pairs of
patches on the Fermi surface.

(1) Reference [9] showed that three-loop diagrams lead to
a small correction to the fermion anomalous dimension, ηψ .
Our 1/N expansion will contain a similar correction to the
value of ηψ , but it will be a systematic contribution at order
1/N , unlike the previous analysis which was not controlled in
their large-N limit.

(2) In the particle-particle sector, fermions on antipo-
dal patches can undergo a Cooper-pairing instability. A
renormalization-group analysis of this was presented in
Ref. [12] employing an expansion [10] which combined large
N with a bare long-range interaction controlled with small
ε. In our large-N expansion, the N = ∞ equations for the
scaling dimension of the Cooper pair operator reduce to in-
tegral equations which appeared in the γ model of Chubukov
and collaborators [24–27], and also coincide with equations
studied in the SYK model [72,73]. We find either a nontrivial
scaling dimension for the Cooper pair operator, or an instabil-
ity to a paired ground state with no critical Fermi surface.

(3) In the particle-hole sector, fermions on antipodal
patches yield density fluctuations at the 2kF wave vector.
The scaling dimension of the 2kF operator was computed in
the combined large-N/small-ε expansion in Ref. [10]. Our
large-N theory yields integral equations in momentum and
frequency for the scaling dimension of particle-hole operators
on antipodal patches, and we solve these equations numeri-
cally. These equations have not been studied previously.

Finally, in Sec. VIII we consider a model in which the
Yukawa coupling is spatially random, in addition to the ran-
domness in the flavor space. This model also provides a
systematic large-N theory of a sharp Fermi surface, but for
a marginal Fermi liquid. The physical properties of this model
turn out to be quite similar to a different model considered by
Aldape et al. [36], including Planckian transport discussed in
Sec. VIII D.

II. LATTICE MODEL AND EFFECTIVE ACTION

This section will introduce a lattice model for the onset
of Ising order in a Fermi liquid on the square lattice, and
describes the structure of its large-N saddle point.

We consider fermions ψik with a flavor index i = 1 . . .N
and momenta k obeying periodic boundary conditions. These
fermions are coupled to soft Ising fields φik representing Ising-
nematic order corresponding to a breaking of C4 rotational
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symmetry. In imaginary time (τ ), the lattice action is

S =
∫

dτ
∑

k

N∑
i=1

ψ
†
ik (τ )[∂τ − 2t (cos kx + cos ky) − μ]ψik (τ )

+ 1

2

∫
dτ
∑

q

N∑
i=1

φiq(τ )
[− ∂2

τ − 2J (cos qx + cos qy − 2) + m2
b

]
φi,−q(τ )

+
∫

dτ
∑
k,q

(cos kx − cos ky)
N∑

i, j,l=1

[gi jl

N
ψ

†
i,k+q(τ )ψ jk (τ )φlq(τ )

]
. (2.1)

Here t is the fermion hopping, μ is chemical potential, the coupling J determines the dispersion of the boson, and mb is the bare
boson mass. We will henceforth set the nematic form factor cos kx − cos ky to 1 for simplicity, since it does not qualitatively
affect any of the physics we will be interested in apart from at a measure zero set of special points in momentum space with
kx = ±ky. In the absence of this form factor, the φik field no longer has an interpretation as a fluctuating order parameter, as
condensing φik does not break any symmetries. However, one may still think of φik as a phonon field, in which case a q = 0
instability corresponds to phase separation.

In our approach the Yukawa couplings gi jl are independent, translationally invariant complex Gaussian random variables with
zero mean and variance g2, and g jil = g∗

i jl . We will comment where needed on the differences that appear upon taking real gi jl .
Upon performing an SYK-like disorder average at large N , we obtain

S =
∫

dτ
∑

k

N∑
i=1

ψ
†
ik (τ )[∂τ − 2t (cos kx + cos ky) − μ]ψik (τ )

+ 1

2

∫
dτ
∑

q

N∑
i=1

φiq(τ )
[− ∂2

τ − 2J (cos qx + cos qy − 2) + m2
b

]
φi,−q(τ )

+ N
g2

2

∫
dτdτ ′∑

k,q

G(k, τ − τ ′)G(k + q, τ ′ − τ )D(τ − τ ′, q) − N
∫

dτdτ ′∑
k

�(k, τ ′ − τ )

×
[

G(k, τ − τ ′) + 1

N

N∑
i=1

ψik (τ )ψ†
ik (τ ′)

]
+ N

2

∫
dτdτ ′∑

q

�(q, τ ′ − τ )

[
D(q, τ − τ ′) − 1

N

N∑
i=1

φiq(τ )φi,−q(τ ′)

]
. (2.2)

Here, we have introduced fermion (boson) Green’s functions
G (D) and self-energies � (�) as dynamical degrees of free-
dom by employing them as Lagrange multipliers. We have
already assumed the saddle-point structure in which the G, �,
D, and � fields are functions only of differences in spacetime
positions, but in the full path integral these fields are bilocal
in spacetime. The action is quadratic in fermions and bosons,
and integrating them out yields the G-�-D-� action of the
theory with a prefactor of N .

The saddle-point equations δS/δ� = δS/δG = 0 =
δS/δD = δS/δ� yield the familiar random-phase-
approximation–Dyson equations, exact at large N :

�(r, τ ) = g2D(r, τ )G(r, τ ),

�(r, τ ) = −g2G(−r,−τ )G(r, τ ),

G(k, iωn) = 1

iωn + 2t (cos kx + cos ky) + μ − �(k, iωn)
,

D(q, i
m) = 1


2
m−2J (cos qx+ cos qy−2)+m2

b−�(q, i
m)
.

(2.3)

These equations may be solved numerically by using Fourier
transforms in space and time, and iterative updates, as

will be described in Sec. IV. Care needs to be taken
that D−1(q, i
m) > 0 throughout the iterative procedure. At
criticality, we must first determine m2

b by requiring that
m2

b − �(0, 0) = 0 at infinite system size and zero temper-
ature, and then use this value of m2

b in the finite-size and
finite-temperature problem. The number of points in the nu-
merical analysis can be reduced somewhat by exploiting
the Kubo-Martin-Schwinger (KMS) conditions G(τ + β ) =
−G(τ ), D(τ + β ) = D(τ ) = D(−τ ), and the spatial C4 sym-
metry G(x, y) = G(±x,±y), D(x, y) = D(±x,±y).

A. Issues with the boson thermal mass

In this random-phase-approximation (RPA) theory, crit-
icality is achieved when m2

b − �(0, 0)|L=∞
T =0 = 0, where L

is the system length. At T �= 0 and/or finite L, there is a
“thermal mass” for the boson given by M2(T,L) = m2

b −
�(0, 0) = �(0, 0)|L=∞

T =0 − �(0, 0). This follows the finite
temperature/length correction to the free fermion compress-
ibility, which is very small, and, for the nearest-neighbor
square lattice considered here, is negative at low T , which
causes a first-order transition at small T �= 0 at generic
fermion fillings. This is undesirable.
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To remedy this issue, we include a fixed length con-
straint

∑
q

∑N
i=1 φiq(τ )φi,−q(τ ) = N/γ . This can arise from

the U → ∞ limit on the quartic boson self-interaction∑
r U/(2N )(

∑N
i=1 φi,r (τ )φi,r (τ ) − N/γ )2, which in turn is

generated by integrating out fermions in the full, non-RPA
theory. Performing a Hubbard-Stratonovich transformation
and sending U → ∞ gives the action with a Lagrange mul-
tiplier λr (τ ):

S1 = S + 1

2

∫
dτ
∑

r

iλr (τ )

(
N∑

i=1

φir (τ )φir (τ ) − N

γ

)
.

(2.4)

At the large-N saddle point, iλr (τ ) = m2
b, and we get the

model described in Sec. II, with an additional constrain-
ing equation in the set of Dyson equations: D(r = 0, τ =
0) = 1/γ . We can now control the phase diagram by tun-
ing γ ; m2

b is adjusted along with L and T to keep γ fixed.
At γ = γc, m2

b|L=∞
T =0 − �(0, 0)|L=∞

T =0 = 0. We therefore tune
γ so that M2(T,L) vanishes at the lowest numerically ac-

cessible T and largest L. Our numerical solution, as well
analysis with the simpilfied continuum RPA boson prop-
agator D(q, i
m) = 1/(
2

m + q2 + |
m|/|q| + M2(T )), find
M2(T,∞) ∼ T ln(1/T ) at low T at criticality, which is para-
metrically smaller than the expected RPA quantum critical
scaling M2(T,∞) ∼ T 2/3 [13,74]. This anomalous thermal
mass also leads to an anomalous contribution to the fermion
self-energy, from the thermal (
m = 0) fluctuations of the
bosons, that does not obey the expected quantum critical scal-
ing; however, this was shown to be in qualitative agreement
with recent analysis of quantum Monte Carlo simulation data
[75] from the full, non-RPA theory, which indicates that the
RPA model is a reasonable description of the actual physical
problem, at least above some temperature scale.

B. Thermodynamics

The RPA grand canonical free energy, exact at the large-N
saddle point, is given by (Z = e−S1 )

F/N = − T
∑
k,ωn

ln

[
iωn + 2t (cos kx + cos ky) + μ − �(k, iωn)

iωn + 2t (cos kx + cos ky) + μ

]
− T

∑
k

ln[1 + e[2t (cos kx+cos ky )+μ]/T ]

+ T

2

∑
q,
m

ln

[

2

m − 2J (cos qx + cos qy − 2) + m2
b − �(q, i
m)


2
m − 2J (cos qx + cos qy − 2) + m2

b

]
+ T

∑
q

ln[1 − e−[m2
b−2J (cos qx+cos qy−2)]1/2/T ]

− T
∑
k,ωn

�(k, iωn)G(k, iωn) − L2 m2
b

2γ
+ I0. (2.5)

Here expressions for free fermion and free boson free
energies have been added and subtracted to ensure numerical
convergence, and L is the system size. Note that, for the
boson contribution to the free energy, we are subtracting
IT = (T/2)

∑
q,
m

ln[
2
m − 2J (cos qx + cos qy − 2) + m2

b],
which is unregulated, but only adding the (regular) difference
IT − I0 = T

∑
q ln[1 − e−[m2

b−2J (cos qx+cos qy−2)]1/2/T ], where
I0 = (1/2)

∫

m

∑
q ln[
2

m − 2J (cos qx + cos qy − 2) + m2
b].

This difference represents the free energy of free boson
excitations, and vanishes as T → 0. We therefore also add
back the formally infinite constant I0 on the third line of
(2.5), which is physically just the ground-state energy of the
collection of dispersive free boson harmonic oscillators with
mass m2

b:

I0 = 1

2

∑
q

√
m2

b − 2J (cos qx + cos qy − 2). (2.6)

The entropy is then given by S/N = −(1/N )(∂F/∂T )|μ,γ ,
where the derivative is taken numerically at fixed inverse
length γ and chemical potential μ.

III. LARGE-N CRITICAL THEORY

In this section, we analyze the low-energy version of the
quantum critical RPA model around a single patch of the
Fermi surface. We take L = ∞ to begin with, and will be
concerned only about quantum fluctuations here. We hence

do not bother about using the fixed length constraint to de-
termine the boson thermal mass, and we just discard the
purely thermally fluctuating boson modes of the theory by
hand.

The critical singularities of the lattice N = ∞ theory of
Sec. II are described by a continuum theory which focuses
on a single patch of the Fermi surface around a chosen wave
vector k0 on the Fermi surface [3,9] (see Fig. 1). We choose
a point along the x axis, and then the fermion dispersion near
this point is kx + k2

y , where we have scaled the kx and ky axes
so that the coefficients are unity. In this manner, we obtain that

FIG. 1. Patch theory for fermions in the vicinity of the points k0

on the Fermi surface.

235129-4



LARGE-N THEORY OF CRITICAL FERMI SURFACES PHYSICAL REVIEW B 103, 235129 (2021)

the action for single patch theory is [
∫

k ≡ ∫
dkxdky/(2π )2]

S =
∫

dτ
∫

k

N∑
i=1

ψ
†
ik (τ )

[
∂τ + kx + k2

y

]
ψik (τ ) + 1

2

∫
dτ
∫

q

N∑
i=1

φiq(τ )
[
q2

y

]
φi,−q(τ )

+ N
g2

2

∫
dτdτ ′

∫
k,q

G(k, τ − τ ′)G(k + q, τ ′ − τ )D(τ − τ ′, q)

− N
∫

dτdτ ′
∫

k
�(k, τ ′ − τ )

[
G(k, τ − τ ′) − 1

N

N∑
i=1

ψik (τ )ψ†
ik (τ ′)

]

+ N

2

∫
dτdτ ′

∫
q
�(q, τ ′ − τ )

[
D(q, τ − τ ′) − 1

N

N∑
i=1

φiq(τ )φi,−q(τ ′)

]
. (3.1)

However, the φiq fields are now defined to have φiq(i
m = 0) = 0 as the thermal fluctuations are excluded.
The saddle-point equations are

�(r, τ ) = g2D(r, τ )G(r, τ ), �(r, τ ) = −g2G(−r,−τ )G(r, τ ),

G(k, iωn) = 1

iωn − kx − k2
y − �(k, iωn)

,

D(q, i
m �= 0) = f rac1q2
y − �(q, i
m). (3.2)

We can solve the saddle-point equations analytically at T �= 0. First we note that sgn{ωn − Im[�(k, iωn)]} = sgn(ωn). We then
assume �(k, iωn) = �(iωn) is momentum independent. Then

�(q, i
m) = −g2T
∑
ωn

∫
k

1

iωn − kx − k2
y − �(iωn)

1

iωn + i
m − kx − qx − (ky + qy)2 − �(iωn + i
m)

= −ig2 T

2

∑
ωn

∫
ky

sgn(ωn + 
m) − sgn(ωn)

i
m − qx − 2kyqy − q2
y + �(iωn) − �(iωn + i
m)

= g2 T

8|qy|
∑
ωn

sgn(ωn)[sgn(ωn + 
m) − sgn(ωn)] = − g2

8π

|
m|
|qy| . (3.3)

Further,

�(k, iωn) = g2T
∑

m �=0

∫
q

1

q2
y + g2

8π
|
m|
|qy|

1

iωn + i
m − kx − qx − (ky + qy)2 − �(iωn + i
m)

= −ig2 T

2

∑

m �=0

∫
qy

sgn(ωn + 
m)

q2
y + g2

8π
|
m|
|qy|

= −2ig4/3π1/3 T

3
√

3

∑

m �=0

sgn(ωn + 
m)

|
m|1/3
= −isgn(ωn)25/3g4/3 T 2/3

3
√

3
H1/3

( |ωn| − πT

2πT

)
,

�(k, iωn,T = 0) = −isgn(ωn)
g4/3

π2/3
√

3
|ωn|2/3. (3.4)

The function H1/3(x) is MATHEMATICA’s
HARMONICNUMBER[X,1/3] and is related to generalized
Riemann zeta functions [37]. We can therefore see that the
assumptions we made about �(k, iωn) are self-consistent.
The fermion self-energy vanishes at the first Matsubara
frequencies ωn = ±πT .

IV. NUMERICAL SOLUTION OF THE LATTICE MODEL

In this section we describe the numerical solution of the
saddle-point equations (2.3) for the lattice model, along with

the fixed-length constraint

D(r = 0, τ = 0) = 1/γ . (4.1)

We solve these equations on a square lattice with periodic
boundary conditions and consider systems of linear dimen-
sions L = 32–256. As mentioned previously, the equations
are solved efficiently by employing fast Fourier transforms in
both space and imaginary time. Furthermore, we find conver-
gence of the iterative procedure is significantly enhanced by
solving the equations progressively from high to low temper-
ature, using the solution from the previous higher temperature
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FIG. 2. Left: Phase diagram as a function of γ in units of γc � 0.15 and temperature T . The color scale shows the exponent, x, with which
the boson mass approaches its T = 0 value: M2(T ) − M2(T = 0) ∼ T x . Up to logarithmic corrections, we expect x = 1 at the QCP and x = 2
in the Fermi-liquid regime. In the region T < T �, M2(T ) ∼ e−T �/T and the behavior of the system is governed by the soft thermal fluctuations
of the boson. For γ < γc, the system is ordered only at T = 0. Right: Boson mass as a function of T for γ > γc (red), γ = γc (black), and
γ < γc (blue). The inset shows the behavior of the boson mass at the g = 0 QCP, where M2 ∼ T 2.

as a seed for a given temperature. This procedure is typically
started at a relatively high temperature, T ∼ t .

A. Lattice parameters

From the bare fermion and boson dispersion in (2.3) we
identify the following energy scales:

{t,
√

J, g2/J}. (4.2)

Other relevant electronic energy scales are the bandwidth
W = 8t and the density of states (DOS) at the Fermi energy
N0 ∼ 1/W . We define a dimensionless coupling constant as

λ0 = g2

JW
. (4.3)

The other important dimensionless parameter is
√

J/t ∼
c/vF , where c and vF are the boson and fermion velocities,
respectively. In terms of lattice parameters, vF ∼ ta and c ∼√

Ja, where a is the lattice constant. Here we focus on the
regime c ∼ vF . For all the data presented below we fix the fol-
lowing parameters: λ0 = 0.125,

√
J/t = 2, and μ = −0.5t .

For reference, this chemical potential corresponds to a Fermi
energy εF = 3.5t and DOS N0 � 0.19/t . As explained in
Sec. II A, the boson mass, mb, is determined self-consistently
for a fixed value of γ .

B. Results

1. Phase diagram

To access the QCP, we first map out the phase diagram of
the model as a function of γ and temperature T . The results
are shown in the left panel of Fig. 2 and are based primarily
on the behavior of the renormalized boson mass,

M2(T ) = m2
b − �(0, 0), (4.4)

shown in Fig. 2 (right). We find a QCP at the value γc �
6.7t , where we observe the boson mass vanishes approx-
imately linearly, M2 ∼ T . Up to logarithmic corrections,
which are hard to detect numerically, this is consistent with
earlier analytic calculations [13,74]. This scaling holds in
the quantum-critical fan above the QCP, as is seen from the

color scale in Fig. 2. For γ > γc, the system is a Fermi
liquid at low temperatures, with the boson mass behaving as
M2 − M2(T = 0) ∼ T 2. For γ < γc, the system is ordered
only for T = 0, with the boson mass vanishing according
to M2 ∼ exp(−T �/T ) [the T � line in the figure is obtained
by fitting the M2(T ) to this functional form]. The absence
of a finite temperature ordering transition is a result of the
Hohenberg-Mermin-Wagner theorem [76,77], and as such a
transition corresponds to spontaneously breaking the O(N )
symmetry of the original (disorder averaged) model. The
exponentially vanishing mass as T → 0 is known from the
behavior of the O(N ) model at large N in two dimensions.
We remark that the boson mass behaves in the same way even
in the absence of the fixed length constraint, (4.1). Below the
temperature scale T �, the system crosses over into a regime
governed by soft thermal fluctuations of the boson, and, as
will be further discussed below, the fermion self-energy has a
form distinct from that of a Fermi liquid. For comparison, we
also show the behavior of the boson mass at the g = 0 QCP of
the decoupled model in the inset of the right panel of Fig. 2,
in which case M2 ∼ T 2 [even for g = 0, the bosonic sector is
self-interacting due to the fixed length constraint, (4.1)].

To better characterize the single-fermion properties of the
system across the phase diagram, we decompose the fermion
self-energy as

�(k, iωn) = �T (k, iωn) + �Q(k, iωn), (4.5)

where subscripts T and Q denote the “thermal” and “quan-
tum” contributions, respectively. The thermal contribution is
defined as that from the zero Matsubara frequency transfer
term in the self-consistent equation for �, while the quantum
contribution comes from nonzero Matsubara frequency trans-
fer:

�T (k, iωn) = g2T

L2

∑
k′

D(k − k′,
 = 0)G(k′, iωn), (4.6)

�Q(k, iωn) = g2T

L2

∑
n′ �=n

∑
k′

D(k − k′, iωn − iωn′ )G(k′, iωn′ ).

(4.7)
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(a)

� ωn

γ ≈ 0.96γc

(b)

ωn/t

ImΣ FS/t
ImΣQ FS/t
ImΣT FS/t

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.5 1 1.5 2
ωn/t

ImΣ FS/t
ImΣQ FS/t
ImΣT FS/t

−0.02

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6

FIG. 3. (a) Imaginary part of the fermion self-energy averaged over the Fermi surface, as a function of Matsubara frequency, ωn, on
the Fermi-liquid side (γ � 1.25γc) for βt = 40–100. Red shows the full self-energy, −〈Im�〉FS, while blue and green show the quantum,
−〈Im�Q〉FS, and thermal, −〈Im�T 〉FS, contributions, respectively. Different symbols correspond to different temperatures. For the full �, the
points for various temperatures fall essentially on the same curve, indicating � has converged to its T = 0 value. The components �Q and
�T show a more significant temperature dependence. We find −Im� ∼ ωn at small frequency, consistent with a Fermi liquid. In this regime,
the contribution from �T is small. (b) Same as (a) but on the ordered side (γ � 0.96γc) for βt = 8–14. In this regime −Im� is an increasing
function of ωn at small frequency, where it is dominated by �T .

This decomposition has been used to analyze finite-T correc-
tions to quantum-critical scaling [19,20,29,75,78] and here we
find it particularly useful in analyzing the behavior both at the
QCP, γ = γc, and on the ordered side, γ < γc.

We first discuss the behavior of the fermion self-energy
away from the QCP. In Fig. 3, we show the negative imaginary
part of the fermion self-energy, 〈−Im�(ωn)〉FS, where the
brackets denote averaging momentum dependence over
the Fermi surface [in general we find � is a weak function
of the direction of k along the Fermi surface; see Fig. 5(a)].
Figure 3(a) shows the self-energy for γ > γc, where we find a
linear frequency dependence, consistent with a Fermi liquid,
corresponding to fermion mass enhancement. Data are shown
for a set of temperatures in the range βt = 40–100. The data
points for different temperatures fall on the same curve, indi-
cating � has essentially converged to its T = 0 value. In the
Fermi-liquid regime, the contribution from �T is small. Fig-
ure 3(b) shows the self-energy on the ordered side, γ < γc. In
this case, the low-frequency behavior is significantly affected
by �T . On the ordered side, the exponentially small boson
mass makes it challenging to numerically access low temper-
atures, and the data shown in the figure are for βt = 8–14.
Even here the full self-energy is essentially temperature inde-
pendent, while the separate contributions, �Q and �T , show
a stronger temperature dependence. In contrast to the Fermi-
liquid regime, on the ordered side and at low frequency, the
self-energy is essentially constant over the frequency range
ωn � 1t–3t and at lower frequency becomes an increasing
function of decreasing frequency. The small boson mass, sat-
isfying M � T , and large thermal self-energy, �T , explain
why we denote region T < T ∗ in Fig. 2 as being characterized
by “strong thermal fluctuations.” We note that the data on the
ordered side of the transition are only very slightly tuned away
from the critical point, γ � 0.96γc, yet the behavior of the
self-energy is nevertheless drastically different from that at the
QCP (to be further discussed in the next section), indicating a
rapid crossover in the behavior of the system on the ordered
side. Finally, we remark that in both regimes 〈−Im�Q(πT )〉FS

is negative; this curious fact has been explained in
Ref. [29].

2. Behavior at the QCP and comparison with the patch theory

We now describe the behavior at the QCP, γ = γc. Figure 4
shows the entropy density, S/L2, at the QCP, which we find
vanishes as T → 0. The entropy is computed by numerical
differentiation of the free energy, F , which is shown in the
bottom inset of Fig. 4 and computed according to (2.5). We
also find the Fermi surface remains sharp at the QCP, in accord
with Luttinger’s theorem. This can be seen in the top inset
of Fig. 4, where we show an imaginary-time proxy for the

FIG. 4. Entropy density, S/L2, as a function of T at the QCP. This
is expected to vanish as ∼ T 2/3 as T → 0, but our data is not precise
enough to distinguish from a linear T dependence. The entropy
is obtained by numerical differentiation of the free-energy density,
F/tL2, shown in the bottom inset. The top inset is G(k, τ = β/2),
which is essentially the fermion spectral function averaged over an
energy window of order T about the Fermi energy, for βt = 100. We
see the Fermi surface remains sharply defined at the QCP, in accord
with Luttinger’s theorem.
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FIG. 5. (a) Imaginary part of fermion self-energy at the QCP, normalized by the first Matsubara frequency ω0 = πT , as a function of
angle, θ , along the Fermi surface for βt = 100. The variation as a function of θ is small, essentially tracking the density of states of the
noninteracting band structure. The inset shows the same quantity through the whole first Brillouin zone, where we see it is sharply peaked at
the Fermi surface. (b) Imaginary part of fermion self-energy at the QCP, averaged over the Fermi surface, for the range βt = 40–160. For all
but the lowest frequencies, � has essentially converged to its T = 0 behavior by βt � 40.

fermion spectral weight at zero energy:

G(k, τ = β/2) =
∫ ∞

−∞
dω

1

2 cosh(βω/2)
A(k, ω), (4.8)

where A(k, ω) is the fermion spectral function. This quantity
is essentially the spectral function averaged over an energy
range of order T about the Fermi energy and has been fre-
quently used in numerical studies, as it avoids the need for
analytic continuation of Matsubara frequency data [79–81].

The behavior of the fermion self-energy at the QCP is
shown in Figs. 5 and 6. Figure 5(a) shows the variation of
−Im� along the Fermi surface. The dependence on angle
along the Fermi surface is weak, and essentially tracks the
behavior of the noninteracting DOS. The inset of the figure
shows −Im� across the entire Brillouin zone and we find
it is peaked on the Fermi surface. These observations are
in line with the analytic predictions of Sec. III. Figure 5(b)
shows the Fermi-surface average of −Im�. The data are
shown for a set of temperatures in the range βt = 40–160.
Figure 6 shows the decomposition into �Q and �T . We

find the temperature dependence of the full � is weak at all
but the lowest frequencies, where the thermal contribution,
shown in Fig. 6(b), is still sufficiently large to obscure the
expected ω2/3

n scaling. The quantity Im�Q precisely removes
this thermal contribution and, from Fig. 6(a), we see that,
although Im�Q shows a stronger temperature dependence
than Im�, the low-frequency behavior is indeed compatible
with ω2/3

n scaling as T → 0, as in Eq. (3.4). In the temperature
regime shown in Fig. 6, earlier work has predicted that the
the thermal self-energy should behave as −Im�T ∼ T/ωn,
[29,75]. We find this scaling is indeed well satisfied, as seen
in the inset of Fig. 6(b).

Finally, Fig. 7 shows the “dynamical part” of the boson
self-energy, defined as δ�(q,
n) = �(q,
n) − �(q,
n =
0), for two q vectors and range of temperatures βt = 50–100.
We find the expected linear scaling with frequency, δ� ∼

n, when 
n < vF |q| (recall vF ∼ ta). The scaling with

n/vF |q|, as in Eq. (3.3), is not perfectly satisfied due to the
anisotropy of the Fermi surface (in the low-energy calcula-
tions, a circular Fermi surface is assumed). The dependence

βt =

∼ω
2/3
n

(a) (b)
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S
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FIG. 6. Decomposition of the imaginary part of fermion self-energy at the QCP, averaged over the Fermi surface, for the range of inverse
temperatures βt = 40–160. (a) The quantum part, Im�Q, shows more significant T dependence than the full Im�, tending toward the predicted
ω2/3

n behavior as T → 0. (b) The thermal part, Im�T , displays a significant temperature dependence, tending slowly to zero as T → 0. The
inset shows the thermal part obeys the scaling behavior −Im�T ∼ T/ωn [29,75].
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∼Ωn

0 < |q|a < 0.8
βt = 100

δΠ
/
t2

Ωn/(ta|q|)
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FIG. 7. Dynamical part of boson self-energy, δ�, as a function of

n/ta|q|, where ta ∼ vF . Data are shown for representative q vectors
in the inverse temperature range βt = 50–100, where δ� has essen-
tially converged to its T = 0 limit. The small frequency behavior is
linear, as predicted from the low-energy analysis in Sec. III, albeit
with a slope that depends on the direction of q, as would be expected
for an anisotropic Fermi surface. The inset shows δ� for q vectors in
the range 0 < |q|a < 0.8 for βt = 100.

of δ� on the angle of q may be seen in the inset of Fig. 7,
where δ� is shown for a larger set of q’s, in the range 0 <

|q|a < 0.8.

V. SINGLE PATCH THEORY AND TIME
REPARAMETRIZATIONS

We now turn to a characterization of the fluctuations about
the large-N saddle point in the spatially uniform model with
a critical Fermi surface described in Secs. II and III. Here we
will focus on the single patch critical theory in (3.1), and will
defer consideration of the special role of antipodal patches [9]
to Sec. VII.

In the SYK model, the fluctuations are characterized by
the structure of the four-point correlators of the large-N
saddle point [44,49], and this is dominated by the time
reparametrization mode. Formally, it appears that the single
patch saddle point of the large-N theory in Sec. III has a time
reparametrization symmetry, and so we examine it here for
a corresponding soft mode. However, as we show below, the
spatial structure of the critical Fermi-surface theory does play
an important role, and we find there is no special contribu-
tion from time reparametrizations. Instead, we find that the
four-point correlators are controlled by response functions of
the conserved fermion density, which were explored earlier in
Ref. [5].

Integrating out the fermions from the single patch con-
tinuum action (3.1) leads us to consider the following G-�
action:

S

N
= − Tr ln

(
∂τ δ

(3) − s f
(
i∂x + ∂2

y

)
δ(3) + �

)
+ 1

2
Tr ln

(−sb∂
2
y δ

(3) − �
)

+ g2

2
Tr(G · GD) − Tr(� · G) + 1

2
Tr(� · D). (5.1)

The Tr(·) is defined on the indices of spacetime (x, y, τ ),
similar to Ref. [82]:

Tr(A · B) ≡
∫

d3x1d3x2A(x1, x2)B(x2, x1).

We have also inserted two parameters s f , sb in front of mo-
menta for convenience of the analysis below.

The saddle-point equations are (we focus at zero tempera-
ture and ignore the zero-mode subtraction for bosons)

�(r, τ ) = g2G(r, τ )D(r, τ ), (5.2)

�(r, τ ) = −g2G(−r,−τ )G(r, τ ), (5.3)

G(k, iωn) = 1

iωn − s f
(
kx + k2

y

)− �(k, iωn)
, (5.4)

D(q, i
n) = 1

q2
y − �(q, i
n)

. (5.5)

We recall the solutions of these equations at zero temperature
obtained in Sec. III:

�(k, iω)

= −isgn (ω)25/3g4/3 T 2/3

3
√

3
H1/3

( |ω| − πT

2πT

)
(T → 0),

(5.6)

�(q, i
) = − g2

8π

|
|
|qy| . (5.7)

We describe the structure of fluctuation around the saddle
point. We introduce a collective notation for Green’s func-
tions G = (D,G) and self-energies � = (�,�), and let � =
diag(−1/2, 1) act on the two component space of (D,G) or
(�,�). Following derivations in Refs. [82,83], we can expand
the G-� action around the saddle point to quadratic order as

δS = 1

2
(δ�T δGT )�

(
W� −1
−1 WG

)(
δ�

δG

)
, (5.8)

where T means transpose on spacetime indices. Here W� and
WG are defined as

W� = δG∗[�]

δ�
, WG = δ�∗[G]

δG , (5.9)

where G∗[�] is the saddle-point expression of G viewed as a
functional of �, and similarly for �∗[G].

We can further integrate out δ� in (5.8), to obtain

δS = 1

2
δGT�W −1

� (W�WG︸ ︷︷ ︸
KG

−1)δG, (5.10)

where we have defined the kernel KG = W�WG. Therefore,
soft fluctuations are related to the unit eigenvalue of KG.

A. Time reparametrization

We now note the time reparametrization symmetry of (5.1).
Consider the following reparametrization:

τ = f (σ ), dx = [ f ′(σ )]1/zdx̃, dy = [ f ′(σ )]1/(2z)dỹ.
(5.11)
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Then ignoring the irrelevant ∂τ term, the action is invariant
under the change of variables

G(x, x′, y, y′, τ, τ ′)

= 1

[ f ′(σ ) f ′(σ ′)]a
G̃(x̃, x̃′, ỹ, ỹ′, σ, σ ′), (5.12)

�(x, x′, y, y′, τ, τ ′)

= 1

[ f ′(σ ) f ′(σ ′)]1+3/(2z)−a
�̃(x̃, x̃′, ỹ, ỹ′, σ, σ ′), (5.13)

D(x, x′, y, y′, τ, τ ′)

= 1

[ f ′(σ ) f ′(σ ′)]1+3/(2z)−2a
D̃(x̃, x̃′, ỹ, ỹ′, σ, σ ′), (5.14)

�(x, x′, y, y′, τ, τ ′) = 1

[ f ′(σ ) f ′(σ ′)]2a
�̃(x̃, x̃′, ỹ, ỹ′, σ, σ ′),

(5.15)

s f
(
i∂x + ∂2

y

)
δ(x, x′)δ(y, y′)δ(τ, τ ′)

= s̃ f
1

[ f ′(σ ) f ′(σ ′)]1/2+5/(4z)

(
i∂x̃ + ∂2

ỹ

)
× δ(x̃, x̃′)δ(ỹ, ỹ′)δ(σ, σ ′), (5.16)

sb∂
2
y δ(x, x′)δ(y, y′)δ(τ, τ ′)

= s̃b
1

[ f ′(σ ) f ′(σ ′)]1/2+5/(4z)
∂2

ỹ δ(x̃, x̃′)δ(ỹ, ỹ′)δ(σ, σ ′).

(5.17)

The consistency with the saddle-point equation yields a =
2/3, z = 3/2, and sb, s f are marginal couplings.

Let us consider the consequence of reparametrization sym-
metry on the kernel KG. In the low-energy conformal limit
(ignoring ∂τ term), the saddle-point equations can be written
as

G · [s f
(
i∂x + ∂2

y

)
δ(3) − �

] = 1,

D · (−sb∂
2
y δ

(3) − �
) = 1.

(5.18)

Due to the reparametrization symmetry, it is valid to con-
sider an infinitesimal reparametrization δε : f (τ ) = τ + ε(τ )
on both sides. Because the Schwinger-Dyson equation holds,
we can rewrite δε�, δε� in terms of δεG, δεD, and therefore
we obtain

(1 − KG)δεG = W�δεk. (5.19)

This is a two component equation for (δεD, δεG). On the
right-hand side (RHS), δεk is the reparametrization of momen-
tum term

δεk = (
s f δε

(
i∂x + ∂2

y

)
δ(3),−sbδε∂

2
y δ

(3)
)
. (5.20)

In the original SYK model, the RHS is absent and the
reparametrization mode is an eigenvector of KG with eigen-
value 1 [44]. This eigenvalue of 1 is responsible for the βJ
enhancement in four-point functions. In the current model, the
presence of the δεk term will destroy the dominance of the
unit eigenvalue mode in the action for fluctuations, and the
reparametrization fluctuation will not have βJ enhancements.

Therefore, the low-energy theory will contain not only the
reparametrization but also other fluctuations.

We can also repeat the above discussion for the U (1) gauge
symmetry:

δλG(x, x′, y, y′, τ, τ ′) = i[λ(τ ) − λ(τ ′)]G(x, x′, y, y′, τ, τ ′),

δλ�(x, x′, y, y′, τ, τ ′) = i[λ(τ ) − λ(τ ′)]�(x, x′, y, y′, τ, τ ′).
(5.21)

This symmetry is emergent at low energy given that the ∂τ
term in the action is irrelevant. Running the above argument
for this U (1) symmetry, we obtain an eigenvector of KG with
unit eigenvalue:

(1 − KG)δλG = 0, (5.22)

and there is no momentum term on the RHS because the
symmetry is uniform in space. In what follows, we will
demonstrate that δλG is the only unit eigenvector of KG that
obeys sliding symmetry.

B. Sliding symmetry

An important symmetry of the patched Fermi surface prob-
lem is the sliding symmetry:

φ(x, y) → φ(x, y + θx),

ψ (x, y) → e−i[(θ/2)y+(θ2/4)x]ψ (x, y + θx).
(5.23)

In Fourier space, the representation is simpler:

φ(qx, qy) → φ(qx − θqy, qy),

ψ (kx, ky) → ψ

(
kx − θky − θ2

4
, ky + θ

2

)
. (5.24)

We can see there are two different representations of the
sliding group. One is the boson class [0], and another is the
fermion class [1]. Given two momenta k1, k2 that transform
under representation [n1] and [n2], respectively, we can fuse
them into a new representation simply by momentum addi-
tion:

k3 = αk1 + βk2,

which transforms under representation [n3] and n3 = αn1 +
βn2. Here α, β are rational numbers such that n3 is an integer.
In our problem, we will only encounter class [0] and [1].

Each representation is associated with some invariants. For
example q of [0] has invariant qy and k of [1] has invariant
kx + k2

y .
The eigenfunctions of the kernel KG are bosonic or

fermionic two-point functions B(k, p) and F (k, p) [see
(5.30)], where k is the relative momentum and p is the c.m.
momentum. For B(k, p), both (k, p) are class [0]. For F (k, p),
k is class [1] and p is class [0]. Therefore B is in class
[0] ⊗ [0] and F is in class [0] ⊗ [1]. They are in tensor product
representations.

By trial and error, we find the following invariants of the
above tensor product representations up to quadratic order:

[0] ⊗ [0] : ky, py, pxky − pykx,

[0] ⊗ [1] : py, kx + k2
y , px + 2pyky. (5.25)
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C. Feynman diagrams

In this part we give a diagrammatic prescription to compute KG. We have the following diagrammatic representations for δεG
and δεD:

(5.26)

where numbers are shorthands for spacetime coordinates.
Using the saddle-point equations, we can also write down the Feynman diagrams for W� and WG:

(5.27)

(5.28)

where a black arrowed line denotes the fermion propagator, a dashed arrowed line denotes the boson propagator, and a
nonarrowed dashed line denotes the spacetime δ function. The first entry is boson and the second entry is fermion. Recalling
� = diag(−1/2, 1), we see that �W� and �WG are explicitly symmetric as required by quadratic expansion. Therefore we can
obtain the diagram for KG = W�WG as

(5.29)

Examination of these diagrams shows that summing the se-
ries (1 − KG)−1 is equivalent to summing ladder diagrams of
fermions with the so-called Maki-Thomson and Aslamazov-
Larkin corrections to all orders; the first-order terms of this
type were examined by Kim et al. [5].

D. Eigenvalues of the kernel

Let us investigate the eigenvalues of the kernel (5.29). Unit
eigenvalues will correspond to composite scaling operators
[52,53,72,73,84] appearing in the operator product expansion
of a particle and a hole in the single patch theory, as they lead
to singularities in ladder expansion (1 − KG)−1.

Assume the eigenvectors have the following ansatz:

(5.30)

where

B̃(k1, p) = − g2D(k1 + p/2)D(k1 − p/2)
∫

d3k2

(2π )3

× [G(k2 − k1)F (k2, p) + G(k1 − k2)F (−k2, p)],
(5.31)

F̃ (k1, p) = g2G(k1 + p/2)G(k1 − p/2)

×
∫

d3k2

(2π )3

[
1

2
G(k1 − k2)[B(k2, p)

+B(−k2, p)] + D(k1 − k2)F (k2, p)

]
. (5.32)

E. Using sliding symmetry

We can use sliding symmetries to simplify the kernel KG.
The generic sliding symmetric eigenfunctions B,F depend on
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the invariants discussed in (5.25) (we assumed that higher-
order invariants can be factorized into lower order ones):

B(k2, p) = B(ω2,
, k2y, py, k2y px − pyk2x ), (5.33)

F (k2, p) = F
(
ω2,
, k2x + k2

2y, py, px + 2pyk2y
)
.

(5.34)

One can verify that the kernel KG actually preserves the
above sliding symmetric ansatz.

F. Further simplification

Because the c.m. momentum p is conserved by KG, we are
free to specify its value, and similarly for the frequency 
. We
will limit ourselves here to the case py = 0 because then, as
shown below, the integral equations can be simplified to one
over frequency alone. So we will be restricting attention to
longitudinal density fluctuations of the fermions on the Fermi
surface, in the terminology of Kim et al. [5]. The case with
py �= 0 corresponds to the transverse “diamagnetic” sector [5],
which we do not analyze below.

The kernel further simplifies if we set py = 0, which sim-
plifies one of the arguments in the ansatz:

B(k2, p) = B(ω2, k2y,
, px ), (5.35)

F (k2, p) = F
(
ω2, k2x + k2

2y,
, px
)
. (5.36)

Therefore, in (5.31), for the first term we do k2x → k2x −
k2

2y followed by k2y → k2y + k1y, and for the second term we
do k2x → k2x + k2

2y, and then integrate over k2y:

B̃(k1, p) = − g2D(k1 + p/2)D(k1 − p/2)
∫

d3k2

(2π )3

× [
G(ω2 − ω1, k2x

− (
k1x + k2

1y

)− 2k1yk2y)F (ω2, k2x, p)

+ G
(
ω1 − ω2,

(
k1x + k2

1y

)− k2x − 2k1yk2y
)

× F (−ω2,−k2x, p)
]

= −g2D(k1 + p/2)D(k1 − p/2)
∫

dω2dk2x

(2π )2

× i

4|k1y| sgn (ω1 − ω2)

× [F (ω2, k2x, p) − F (−ω2, k2x, p)], (5.37)

and in the second term of the last line we also flipped −k2x →
k2x.

For the first term of (5.32), we directly integrate over k2x,
and for the second term, we shift k2x → k2x − k2

2y and then
integrate over k2y:

F̃ (k1, p) = g2G(k1 + p/2)G(k1 − p/2)
∫

dω2

2π

×
[∫

dk2y

2π

−i

4
sgn (ω1 − ω2)[B(ω2, k2y ) + B(−ω2, k2y)] +

∫
dk2x

2π

4π1/3

3
√

3g2/3|ω1 − ω2|1/3
F (ω2, k2x, p)

]
. (5.38)

Plugging p = (
, px, 0) into (5.37) and (5.38), we see that the sliding symmetry is preserved. Furthermore, the action of KG

is highly degenerate because it only relates to the integration of F,B over all spatial momenta. We can therefore integrate out all
spatial momenta to get a functional only in frequency space. Let

BI (ω) =
∫

dky

2π
B(ω, ky), (5.39)

FI (ω) =
∫

dkx

2π
F (ω, kx ). (5.40)

For simplicity we have suppressed (
, px ) dependence in the arguments.
The projected action of KG is

B̃I (ω1) = − 8iπ4/3

3
√

3g2/3|ω2
1 − 
2/4|1/3(|ω1 − 
/2|2/3 + |ω1 + 
/2|2/3 + |ω2

1 − 
2/4|1/3)

×
∫

dω2

2π
sgn (ω1 − ω2)[FI (ω2) − FI (−ω2)], (5.41)

and

F̃I (ω1) = ig2

2

sgn (ω1 + 
/2) − sgn (ω1 − 
/2)

i
 − px − [�(ω1 + 
/2) − �(ω1 − 
/2)]

∫
dω2

2π

×
[−i

4
sgn (ω1 − ω2)[BI (ω2) + BI (−ω2)] + 4π1/3

3
√

3g2/3|ω1 − ω2|1/3
FI (ω2)

]
. (5.42)
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In the conformal limit |
|, |px| � g, we can ignore the i
 − px term in (5.42), and after rescaling b = g2/3B, we can rewrite
the above equations to be independent of g:

b̃I (ω1) = − 8iπ4/3

3
√

3
∣∣ω2

1 − 
2/4
∣∣1/3(|ω1 − 
/2|2/3 + |ω1 + 
/2|2/3 + ∣∣ω2

1 − 
2/4
∣∣1/3)

×
∫

dω2

2π
sgn (ω1 − ω2)[FI (ω2) − FI (−ω2)], (5.43)

F̃I (ω1) = − i

2

sgn (ω1 + 
/2) − sgn (ω1 − 
/2)

[�̄(ω1 + 
/2) − �̄(ω1 − 
/2)]

∫
dω2

2π

×
[

−i

4
sgn (ω1 − ω2)[bI (ω2) + bI (−ω2)] + 4π1/3

3
√

3|ω1 − ω2|1/3
FI (ω2)

]
, (5.44)

where �̄ = g−4/3�.

G. Unit eigenvalue of KG

The action of KG in (5.43) and (5.44) can be classified into two sectors. The first one is bI = 0 and FI (ω) even. The second
sector is bI (ω) even and FI (ω) odd.

1. FI even sector

In this case the conformal KG reduces to (5.44) with bI = 0. By numerical diagonalization, we found only one mode with a
unit eigenvector. It is generated by the U (1) gauge symmetry:

δλG(x, x′, y, y′, τ, τ ′) = i[λ(τ ) − λ(τ ′)]G(x, x′, y, y′, τ, τ ′),

δλ�(x, x′, y, y′, τ, τ ′) = i[λ(τ ) − λ(τ ′)]�(x, x′, y, y′, τ, τ ′). (5.45)

There is no action on D,� or the kinetic term. The Fourier transform of δλG is

δλG(
,ω, k) = λ
[iG(ω − 
/2, k) − iG(ω + 
/2, k)], (5.46)

where 
 is the c.m. frequency, ω is the relative frequency, and k is the relative momentum. λ
 = ∫
dτei
τλ(τ ).

Integrating out the spatial momentum, we get

FI (
,ω) =
∫

dkx

2π
δλG(
,ω, kx )

= 1

2
[sgn (ω − 
/2) − sgn (ω + 
/2)], (5.47)

and BI (
,ω) = 0. We can analytically verify that this is an exact eigenvector of the conformal KG with unit eigenvalue. If we
retain the i
 − px term, the correction is of order 
1/3g−4/3.

2. FI odd sector

To numerically diagonalize the kernel, we first substitute (5.43) into (5.44) to eliminate bI :

F̃I (ω) = 2

3

θ (
2/4 − ω2)

|ω − 
/2|2/3 + |ω + 
/2|2/3

∫ 
/2

−
/2
dω′ ×

[
1

|ω − ω′|1/3
+ h(ω,ω′)

]
FI (ω′), (5.48)

where

h(ω,ω′) =
∫ ∞

−∞
dν

sgn (ν − ω)sgn (ν − ω′)
|ν2 − 
2/4|1/3(|ν − 
/2|2/3 + |ν + 
/2|2/3 + |ν2 − 
2/4|1/3)

. (5.49)

Here we have used the explicit form of �(ω).
In (5.48), 
 is the only external scale so we can safely set 
 = 1. By numerically diagonalizing KG, we found no eigenvalue

close to 1.

VI. DIAGRAMMATICS OF G-� THEORY

In this section we discuss the diagrammatics of the G-� theory, with the goal of developing a systematic 1/N expansion. As
the large-N limit is expressed as the saddle point of a G-� action, and the self-energy does not have a prefactor of 1/N in the
Dyson equation, the difficulties described in Ref. [8] do not arise here. The structure of the expansion for the bilocal fields is
dictated by the form of the G-� action, and the bilocal field propagator resums an infinite number of terms from the previous
approach [8].
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Using notations in Sec. V, we can expand the G-� action around the saddle point as

S = NS0 + NS2[δG, δ�] + NS3[δG, δ�] + NS4[δG, δ�] + . . . . (6.1)

Here Sn means the term which contains the nth power of δG and δ�. In particular, S2 is given by (5.8). For convenience of power
counting, we decide to make propagators of δG and δ� independent of N and push N power counting into vertices. This can be
done by rescaling (δG, δ�) → N−1/2(δG, δ�), and therefore NSn[δG, δ�] → N1−n/2Sn[δG, δ�].

A. Propagator

Using (5.8) and (5.10), we can write down the propagator of δG as

(6.2)

Here the numbers in the argument denote spacetime indices. For example 1 means (x1, y1, τ1). On the RHS we also defined its
diagrammatic representation.

Similarly we can derive the propagator for δ� to be

(6.3)

Here we use thick lines to denote Green’s functions δG and wavy lines to denote self-energies δ�.
There are also mixed correlators between δG and δ�:

(6.4)

(6.5)

where K� = WGW� and it shares the same nonzero spectrum with KG = W�WG.
The rule of concatenation is that only edges of the same type (solid or wavy) can concatenate with the following restriction

on arrow direction.
(1) For fermionic components G and �, the arrows of the two concatenating edges should be paired in opposite directions.
(2) For bosonic components D and �, the arrows can be paired in either direction, but both ways of pairing should be regarded

as identical. This is because D and � are even functions.

B. Vertices

There are two kinds of vertices in the theory, which come
from expanding the determinant terms and the interaction
term in G-� action (5.1), respectively.

Expanding the two determinants in (5.1), we obtain non-
Gaussian terms of the form

S ⊃
∞∑

n=3

1

n
N1−n/2Tr[�(Gδ�)n]. (6.6)

These terms give rise to the “sheet” vertices (following the
terminology in Ref. [49]). At cubic order, the diagrammatic
representation is

(6.7)

The vertex can connect to three self-energy propagators of the
same type a = � or �. Here �� = 1 and �� = −1/2.

The second type of vertex comes from the
G(τ )G(−τ )D(τ ) term:

S ⊃ g2

2
√

N
Tr(δG · δGδD). (6.8)

It generates the “seam” vertex in Ref. [49], which can be
diagrammatically represented as

(6.9)

where the two arrowed edges connect to fermionic compo-
nents (δG) and the nonarrowed edge connects to bosonic
component (δD).

C. 1/N correction to self-energy

Using the above vertices, we can write down the first-order
1/N corrections to self-energies, which are given by a tadpole
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FIG. 8. Diagrams contributing to self-energy at O(1/N ). We
have suppressed arrows at concatenated edges.

diagram of δ�:

(δ�)1 = 1√
N

〈δ�〉 . (6.10)

There are two diagrams as shown in Fig. 8, which are due to
the sheet vertex and the seam vertex, respectively.

We focus on the correction of electron self-energy �, and
write down the expression based on the diagrams in Fig. 8.
The sheet vertex contributes

δ�1a(1, 2) = 1

N

∫
3,4,5,6,7,8

[
− G�� (1, 2; 3, 4)

× G�� (6, 5; 2, 8)G(3, 8)G(5, 4)G(7, 6)

+ 1

2
G��(1, 2; 3, 4)G��(6, 5; 2, 8)

× D(3, 8)D(5, 4)D(7, 6)
]
. (6.11)

Here numbers in the arguments denote spacetime coordinates.
The notation of the form G�� refers to the �-� or fermion-
fermion component of the propagator G��. G and D are the
saddle-point single-particle propagators.

The seam vertex contributes

δ�1b(1, 2) = −g2

N

∫
3,4

[
G�G(1, 2, 3, 4)GGD(4, 3; 4, 3)

+ 1

2
G�D(1, 2, 3, 4)GGG(4, 3; 4, 3)

]
,

(6.12)

where the 1/2 in the second line is a symmetry factor.
We note that the above diagrams are the same as in SYK

models [49]. It is trivial to obtain corrections for other fields
such as δG, δD and δ�: We merely need to change the first
subscript of the G(1, 2; 3, 4) propagator in the above expres-
sions to the corresponding field.

VII. ANTIPODAL PATCH THEORY AND FERMION
BILINEAR OPERATORS

This section moves beyond the single patch theory consid-
ered so far, and examines the role of antipodal patches around
the Fermi surfaces (see Fig. 9).

FIG. 9. Antipodal patches on the Fermi surface with continuum
fermions ψs, s = ±1.

The single patch theory in Sec. V examined the fluctuations
about the large-N saddle point using a perspective similar to
that of the soft-mode analysis of Kitaev and Suh [49] for the
SYK model. An alternative approach [44,50–53,72,73] is to
compute all new operators that appear in the operator product
expansion of two fermions. In the present large-N approach,
applicable equally to the SYK model and the antipodal patch
theory, such a computation is equivalent to computing the
eigenmodes of the two-particle Bethe-Salpeter equation for
the fermion vertex, shown schematically in Fig. 10.

Examination of these diagrams around the Fermi surface
shows that the only new operators that appear from this vertex
are those corresponding to the Cooper pairing and 2kF oper-
ators, as discussed in Refs. [10,12], and we will discuss these
cases in the following subsections.

The case of the pairing operator, discussed in Sec. VII B,
turns out to be simpler, because we are able to use the sliding
symmetry of Sec. V B to simplify the analysis. With this
simplification, the resulting integral Bethe-Salpeter equation
turns out to act only on frequency space; indeed, it is identical
in form to the equations obtained for the SYK model [44,50–
53,72,73,84,85].

The case of the 2kF operator, discussed in Sec. VII C,
is more complicated because the reduction to a purely fre-
quency space integral equation is not possible. Instead we
must consider an equation involving both the frequency and

FIG. 10. Schematic equation for the two-particle vertex in the
large-N limit. The full lines are the renormalized fermion Green’s
functions and the dashed line is the boson Green’s function.
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the tangential momentum on the Fermi surface, the solution
of which requires a numerical analysis.

For the results of this section, we will consider a more
general setting than that of the Ising critical point considered
so far. It is known that the Ising boson leads to an attractive
interaction between the fermions on antipodal points on the
Fermi surface. A very similar theory applies to the problem
of a gauge field coupled to a Fermi surface; for a single U (1)
gauge field, the interaction between antipodal Fermi-surface
points is repulsive. Recent works [86–88] have considered
problems with multiple gauge fields, and the assignment of
gauge charges is such that some gauge fields are repulsive
and others are attractive. So we will consider generalization
of the theory (3.1) with N flavors of fermions, M1 flavors of
bosons which mediate an attractive interaction (in the pairing
channel) between antipodal points on the Fermi surface, and
M2 flavors of bosons which mediate a repulsive interaction.
By rescaling the bosons, we will normalize the mean-square
Yukawa coupling for both classes of bosons as in (3.1) with
the same value g; the value of g will drop out in the scaling
equations we consider in this section. Having obtained the
same Yukawa coupling, we do have to consider the coefficient
of the (∂yφ)2 term in (3.1) more carefully [87,88]. We take
this coefficient to equal K1 and K2 for the two bosons, and
we will see below that the ratio K1/K2 influences the critical
exponents. For the gauge field case, the values of K1,2 are
equal to the corresponding diamagnetic susceptibility of the
system [88], and this depends upon the lattice scale properties.

A. Scaling analysis

Let us write down the explicit form of the Lagrangian
density of the two patch theory, generalizing the action in
(3.1):

L =
∑
s=±1

N∑
i=1

ψ
†
is

[
∂τ − is∂x − ∂2

y

]
ψis +

∑
a=1,2

Ka

2

Ma∑
i=1

(∂yφia)2

+
∑
s=±1

2∑
a=1

s3−a
Ma∑
l=1

N∑
i, j=1

ga
i jl

N
ψ

†
isψ jsφla. (7.1)

Here s = ±1 is the index of the two antipodal patches (see
Fig. 9), and a = 1, 2 represents the attractive and repulsive
bosons, respectively. We now recall the scaling analysis of this
theory [9] under the assignments

dim[y] = −1,

dim[x] = −2,

dim[τ ] = −z,

dim[ψ (r, τ )] = (1 + z + ηψ )/2. (7.2)

This consistently yields

dim[G(k, ω)] = −2 + ηψ. (7.3)

In the present theory, the large-N exponents are z = 3 and
ηψ = 0. Earlier work [9,10] found a small correction to ηψ at
three-loop order. Similar correction will appear in our large-N
expansion at first order in 1/N : an important point is that such
a result is fully systematic in our 1/N expansion, unlike the
result in Ref. [9]. The diagrams contributing to the self-energy

FIG. 11. Examples of graphs in the sheet and seam contributions
in Fig. 8 to the fermion self-energy. As in Fig. 10, the full line is
the fermion, and the dashed line is the boson. For the contribution
to ηψ , the top fermion line in the first graph should form a closed
fermion loop to allow interactions between antipodal patches (i.e.,
no Aslamazov-Larkin-type insertions in the top ladder).

at order 1/N were presented in Fig. 8, and we show in Fig. 11
examples of the contributions to these diagrams in terms of
the fermion and boson Green’s functions. In Ref. [9], the
diagrams contributing to ηψ are those in Figs. 10(b) and 10(c),
and these are terms in the infinite series of diagrams in Figs. 8
and 11; we also need to include particle-particle ladders in
addition to the particle-hole ladders shown, and these appear
upon considering the case of real gi jl . As in Ref. [9], we
expect that it is important to include antipodal patches in these
diagrams to obtain the contribution to ηψ .

Let us now turn to a consideration of the scaling dimen-
sions of the fermion bilinear operators.

1. 2kF operator

The physical quantity we are interested in is the singular
behavior of the 2kF susceptibility, χ2kF . However, this is too
difficult to compute in our large-N theory. So we try an alter-
native route below by relating its scaling dimension to that of
a vertex function �2kF . For the 2kF operator, this is relatively
straightforward, as there is no violation of hyperscaling in the
graphs.

Let us define the scaling dimension of the 2kF operator

ρ2kF = ψ
†
+ψ− (7.4)

by

dim[ρ2kF (r, τ )] = �2kF . (7.5)
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The correspondence with the � defined by Mross et al. [10]
in their (32) is � = �2kF /2. At tree level, we have �2kF =
2 dim[ψ] = 1 + z + ηψ . Then the scaling dimension of the
2kF susceptibility is

dim[χ2kF (k, ω)] = 2�2kF − 3 − z. (7.6)

We define the vertex function �2kF as the three-point cor-
relator of ρ2kF with two fermion operators, after amputating
the external Green’s functions. Then

dim[�2kF ] = dim[ρ2kF ] − 6 − 2z − 2 dim[G(k, ω)]

− 2 dim[ψ]

= �2kF − 1 − z − ηψ. (7.7)

We can check now that

dim[χ2kF (k, ω)] = 2 dim[�2kF ] + 3 + z + 2 dim[G(k, ω)]

= 2 dim[�2kF ] − 1 + z + 2ηψ. (7.8)

We expect the solution of the vertex function to scale as

�2kF (ω) ∼ ωdim[�2kF ]/z (7.9)

(and similarly for χ2kF ). We will compute the frequency de-
pendence of �2kF (ω) below in Sec. VII C, which therefore
yields the scaling dimension �2kF via (7.7).

2. Cooper pair operator

This is a little more subtle, because the intermediate loop
integrals are independent of ky, and so the integral over ky just
yields a factor of kF ; this leads to violation of hyperscaling.

Let us define the scaling dimension of the Cooper operator

� = ψ+ψ− (7.10)

by

dim[�(r, τ )] = ��. (7.11)

Then the scaling dimension of the Cooper pair susceptibility
is

dim[χ� (k, ω)] = 2�� − 4 − z. (7.12)

Note that this differs from (7.6) by an extra −1 on the
RHS, corresponding to the absence of the ky integral in
evaluating χ . Without vertex corrections, evaluation of the
Cooper bubble shows that χ� (k = 0, ω) ∼ ω1−2(1−ηψ )/z, and
so dim[χ� (k, ω)] = z − 2 + 2ηψ ; then (7.12) yields �� =
1 + z + ηψ , which checks out correctly with dim[ψ] in (7.2).

For the vertex operator, the relationship remains the same
as in (7.7), i.e.,

dim[��] = �� − 1 − z − ηψ. (7.13)

Without vertex corrections, we should have dim[��] = 0,
and this agrees with the corresponding value of �� quoted
above. Another way to think about (7.13) is that the two fewer
ky integrals in the evaluation of the three-point correlator
cancel with corresponding factors from dim[G(k, ω)]. We can
also check now that

dim[χ� (k, ω)] = 2 dim[��] + 2 + z + 2 dim[G(k, ω)]

= 2 dim[��] − 2 + z + 2ηψ. (7.14)

We will compute the frequency dependence of

�� (ω) ∼ ωdim[�� ]/z (7.15)

next in Sec. VII B, which determines �� via (7.13).

B. Pairing operator

We consider instabilities towards superconducting pair-
ing. First, we note that with the complex flavor-random
Gaussian interaction gi jk , no anomalous Green’s functions
and self-energies appear in the large-N saddle point, and
there is therefore no intrinsic pairing instability, at least
at large N . To achieve controlled pairing at large N in
this approach, we must include an additional attractive U
: −(U/N )

∑N
i, j=1

∑
k ψ

†
ikψ

†
i,−kψ j,kψ j,−k . The attractive U is

then renormalized exactly by the naive resummation of pair-
ing bubbles, and may also be handled in a saddle-point
formalism with static anomalous Green’s functions and self-
energies [89]. In a regular Fermi liquid, this leads to the
famous BCS instability even for infinitesimal U as the pairing
bubbles diverge as � ln(1/T ) in the infrared (IR). However,
in this non-Fermi liquid, the ω2/z self-energy dominates in
the IR, and the pairing bubble (which is not further dressed
by the complex gi jk) is no longer IR divergent. Therefore,
this model is further resistant to an infinitesimal attractive
U . The disordered model in Sec. VIII with complex random
interactions is a marginal Fermi liquid, and this pairing bubble
then diverges as ln[1/ ln(1/T )] in the IR, so the infinitesimal
attractive U does cause an instability, but it is much weaker
than that in a Fermi liquid.

To get intrinsic pairing instabilities at large N without the
need for an additional U , we consider real Gaussian flavor-
random gi jk . These now do allow for dynamic anomalous
Green’s functions and self-energies in the large-N saddle point
itself [33], and exact Eliashberg equations can be derived
and solved numerically. However, to analyze the pairing in-
stabilities in the metal, we first adapt a simpler approach
by assuming the system is a metal, and then looking at the
exact renormalization of the pairing vertex at large N [50].
The pairing vertex may be described by the large-N exact
self-consistent eigenvalue equation shown in Fig. 10:

E�� (q, i
m) = −
∑

a

Maζag2

N
T
∑

ωn �=
m

∫
k
�� (k, iωn)

× G+(k, iωn)G−(−k,−iωn)

× Da(k − q, iωn − i
m). (7.16)

Here a = 1, 2 sums over the attractive and repulsive bosons
and ζa = 2a − 3 = −1 (+1) for the attractive (repulsive) in-
teractions. Approaching from high T , the transition occurs at
T = TSC when the largest eigenvalue Emax = 1. Note that this
does not determine the nature of the transition itself, which in-
stead requires solving the full nonlinear Eliashberg equations
[89] (as detailed in that reference, these nonlinearities can
sometimes cause some surprises like producing a first-order
transition).

We now formulate the theory using two antipodal patches
subject to the same real gi jk [9]. This multiplies (3.3) by 2
and divides (3.4) by 21/3. We can then exploit the ±kx + k2

y
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and ky dependencies of G and D, respectively, i.e., the sliding
symmetry, to again see that a self-consistent momentum-
independent pairing vertex exists, and its eigenvalue equation
is given by

E�� (i
m) = −
∑

a

Maζag2

N

T

3
√

3

∑
ωn �=
m

× �� (iωn)

|ωn + i�(iωn)|
(4π )1/3

(gKa)2/3|ωn − 
m|1/3
.

(7.17)

At low energies and T = 0, where we drop the bare ωn term in
the RHS of (7.17), because it is irrelevant in the IR, we obtain
a universal equation independent of g:

E�� (i
m) = K
3

∫
dωn

2π

2π�� (iωn)

|ωn|2/3|ωn − 
m|1/3
, (7.18)

where the dimensionless constant

K ≡ M1K2/3
2 − M2K2/3

1

M1K2/3
2 + M2K2/3

1

(7.19)

determines the balance between the attractive and repulsive
interactions. Equation (7.18) has the same form as that for
the γ = 1/3 case of the γ model of quantum-critical pair-
ing studied by Chubukov and collaborators [24–27]; it also
coincides with equations studied in the SYK model [44,50–
53,72,73,84,85].

We now follow Ref. [50]. We assume the eigenvector has
the form1

�� (i
m) = 1

|
m|α . (7.20)

In the notation of the scaling analysis of Sec. VII A 2, this
identifies

dim[��] = −zα. (7.21)

We assume 0 < Re [α] < 1/3 to ensure a convergent integral
in (7.18), and then we have

E = K
π2
[
3 cot

(
πα
2

)+ √
3
]

sec
[
π
(
α + 1

6

)]
9�
(

1
3

)
�(1 − α)�

(
α + 2

3

) . (7.22)

For K = 1, setting E = 1 indicates a complex scaling dimen-
sion α = 1/6 ± i × 0.537 34 . . ., which implies that a pairing
instability exists and the ground state is superconducting. As
the value of K is reduced, the magnitude of the imaginary part
of α also reduces, going to zero at K = K∗ = 0.120 38 . . .,
at which point α = 1/6 exactly. For K∗ > K > 0, E = 1 has
two solutions with purely real α: α1, with 1/6 > α1 > 0,
and α2 = 1/3 − α1, indicating the apparent absence of a su-
perconducting instability arising purely out of the relevant

1There are also odd-parity eigenvectors �� (i
m ) =
sgn(
m )/|
m|α . However, we can see from the diagrams involved
in the renormalization of the pairing vertex that the physical
eigenvector must be of even parity.
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FIG. 12. Plot of Re[α] and Im[α], for the solutions which have
Re[α] � 1/6 and Im[α] > 0, as a function of K. For 1 > K > K∗,
Re[α] = 1/6 and Im[α] �= 0.

operators in the low-energy critical theory, when the repulsive
interaction is strong enough.2

When α is purely real, both the roots α1 and α2 do not
determine the scaling of the Cooper pair susceptibility. In par-
ticular, the root 1/3 > α2 > 1/6 is not allowed. This may be
seen as follows: if we allow for anomalous Green’s functions
and self-energies in the saddle-point equations, then the func-
tion �� (i
m) can be identified as the anomalous component
of the self-energy. This then leads to a contribution to the
saddle-point free energy at O(�2

� ):

F�

N
∼ −

∫
q

∫
d
m

2π
|�� (q, i
m)|2G(q, i
m)G(−q,−i
m)

∼ −
∫

d
m

2π

|�� (i
m)|2
|
m + i�(
m)| . (7.23)

The integral diverges in the IR for α2 (but is finite for α1),
which makes the free energy of the ground state divergent
as T → 0, and therefore unphysical, as the entropy S =
−∂F/∂T becomes negative [25]. Rejecting α2, and using
(7.14) and (7.21), we then have the scaling dimension

dim[χ� (k, ω)] = 1 − 6α1, (7.24)

for Ma,N → ∞. In Fig. 12, we show α1 as a function of K.
We may also define a family of models by changing the

boson propagator to (2 < z � 3) [10]

D(q, i
m) = 1

|qy|z−1 + g2

4π
|
m|
|qy|

. (7.25)

When z = 2, the system is a marginal Fermi liquid, with
�(iω) ∼ iω ln(|ω|). We now repeat the above procedure for
generic 2 < z � 3. In place of (7.22) we obtain

E = −K
π2 csc

(
πα
2

)
csc
(
π
z

)
sec
[
π
(
α
2 + 1

z

)]
4�(1 − α)�

(− 2
z

)
�
(
α + 2

z

) , (7.26)

with

K ≡ M1K2/z
2 − M2K2/z

1

M1K2/z
2 + M2K2/z

1

. (7.27)

2For K < 0, there is no solution for E = 1 with an even-parity
eigenvector. Therefore, there is no superconducting instability, and
the scaling of the Cooper pair susceptibility is also not renormalized
from the pairing bubble value of dim[χ� (k, ω)] = 1.
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For z → 2, the complex scaling dimension is α = 1/2 −
1/z ± i × √

z/2 − 1, when K = 1. The threshold K∗ = (z −
2)/8 as z → 2. These observations imply that the supercon-
ducting instability still survives in the marginal Fermi-liquid
limit for K > K∗.

At T �= 0, our approach of neglecting the purely thermal
fluctuations of the gauge bosons φ causes a superconducting
instability to occur for all K > 0 (but not for K � 0), with
TSC ∼ g4/(z − 2), because the fermion self-energy vanishes
at the first Matsubara frequencies [26]. This is parametrically
the same energy scale at which the non-Fermi-liquid behavior
itself onsets, i.e., when |�(iωn)| becomes comparable to |ωn|.
The true physical problem requires a careful consideration of
the thermal fluctuations of the massless gauge bosons, and
their effects on the fermion Green’s function, in two spatial
dimensions, along the lines of Ref. [90], as the cancellation of
the thermal fluctuations from the equation for the supercon-
ducting gap function via Anderson’s theorem [91] does not
occur in the simultaneous presence of attractive and repulsive
boson interactions [34]. We will therefore perform this analy-
sis in future work.

We also briefly comment on the effects of nonzero T
in the case where the two φ’s are not gauge bosons, and
are therefore allowed to have a thermal mass as in Sec. II,
M2(T ) ∼ T ln(1/T ) � T 2/3, that arises from operators that
are irrelevant in the critical patch theory. This causes both
the bosons to induce thermal self-energies for the fermions,
�T,a(iωn) � −isgn(ωn)saT 1/2 ln1/2(1/T ), with a nonuniver-
sal prefactor sa, as in Sec. IV, that depends on parameters

from outside the patch theory. One can then show, following
Ref. [92], that the pertinent equation for �� can be reduced to
(we consider z = 3 here for simplicity; the consequences are
similar for other 2 < z < 3 as well)

E�� (i
m) � −
∑

a

Maζag2

N

T

3
√

3

×
∑

ωn �=
m

�� (iωn)

|ωn + i�Q(iωn) + 2i�T,2(iωn)|

× (4π )1/3

(gKa)2/3|ωn − 
m|1/3
. (7.28)

As T → 0, since i�T,2(iωn=±1) � ωn=±1, i�Q(iωn=±1),
there is no enhancement due to the first Matsubara fre-
quency, and the thermal part of the self-energy dominates.
The largest eigenvalue therefore scales as � T 1/6/ ln1/2(1/T ),
which vanishes as T → 0 instead of diverging. However,
while approaching from high T , if s2 is small, one still encoun-
ters the pairing instability coming from the first Matsubara
frequency, but TSC is reduced as s2 is increased, and beyond
a certain value of s2 the superconducting transition does not
occur.

C. 2kF operator

We can also write down the analog of (7.16) for a charge
density wave (CDW) instability with wave vector twice the
Fermi wave vector, composed of particle-hole pairs from op-
posite patches of the Fermi surface:3

E�2kF (q, i
m) = −
∑

a

Maζag2

N
T
∑

ωn �=
m

∫
k

1

iωn − kx − k2
y − �(iωn)

1

iωn + kx − k2
y − �(iωn)

× 1

Ka(ky − qy)2 + g2

4π
|ωn−
m|
|ky−qy|

�2kF (k, iωn). (7.29)

We can then see that self-consistent eigenvectors �2kF (qy, i
m) exist that do not depend on qx. This simplifies (7.29) at T = 0
and low energies to

E�2kF (qy, i
m) = −
∑

a

iMaζag2

2N

∫
ky,ωn

sgn(ωn)

k2
y − ig4/3

21/3π2/3
√

3
sgn(ωn)|ωn|2/3

(
M1

K2/3
1 N

+ M2

K2/3
2 N

)
× |ky − qy|

Ka|ky − qy|3 + g2

4π |ωn − 
m|
�2kF (ky, iωn). (7.30)

We can then rescale (ky, qy) → g2/3(ky, qy ) to absorb the cou-
pling g, producing a strong-coupling expression analogous to
(7.18), given by setting g = 1 in (7.30).

We examine a scaling solution for (7.30) with an eigenvec-
tor of the form

�2kF (qy, i
m) = 1

|qy|α �
(


m

|qy|3
)
, (7.31)

3Since we are considering an operator in the particle-hole channel,
nontrivial renormalizations can now occur for both real and complex
gi jk .

which will determine an eigenvalue E (α).4 As with the pairing
case, we are interested in eigenvalues which solve E (α) = 1.
If the solution has α real, then this α will determine the scaling
dimension of the 2kF operator. In the notation of Sec. VII A 1,

dim[�2kF ] = −α. (7.32)

A complex α will indicate a CDW instability.

4We can again see from the diagrams involved in the renormaliza-
tion of the 2kF vertex that the physical eigenvector must be an even
function of qy.
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Upon rescaling (ωn,
m) → (ωn|ky|3,
m|qy|3) and then
ky → kyqy, we transform (7.30) to a one-dimensional integral
equation involving only the scaling function �:

E�(
m) = −
∑

a

iMaζa

2N

∫ ∞

−∞

dωn

2π

× �(ωn)sgn(ωn)

1 − isgn(ωn )|ωn|2/3

21/3π2/3
√

3

( M1

K2/3
1 N

+ M2

K2/3
2 N

)
×
[∫ ∞

−∞

dky

2π

|ky − 1||ky|1−α

Ka|ky − 1|3 + 1
4π |ωn|ky|3 − 
m|

]
,

(7.33)

which we can solve numerically when 0 < Re[α] < 2, which
ensures a convergent ky integral.

If we consider the physically important case of a Fermi
surface coupled to a single repulsive gauge field that occurs
in some U (1) spin liquids, and thereby set M1 = 0, we can
eliminate K1 by rescaling (ωn,
m) → K1(ωn,
m). If we ad-
ditionally set the number of boson flavors M2 equal to the
number of fermion flavors N , like we have in most of this pa-
per, then (7.33) has a solution for E = 1 with α � 1 ± 0.52i,
indicating an instability to CDW ordering. This instability per-
sists for all M2 > N . As M2/N is reduced, Im[α] reduces, and
for M2/N � 0.67 [M2/N = 1/2 for spin-1/2 U (1) spin liq-
uids] we once again have two real roots for E = 1: 0 < α1 <

1, and α2 = 2 − α1, with α1 = α2 = 1 at M2/N � 0.67, and
the instability disappears. An analogous argument about the
IR finiteness of the ground-state free energy as in Sec. VII B
requires that Re[α] < 1; rejecting the root α2, and using (7.8),
the scaling dimension of the 2kF susceptibility is then

dim[χ2kF (k, ω)] = 2(1 − α1), (7.34)

in the limit of large Ma, N . For the spin-1/2 U (1) spin liquid,
we then have the estimate from our large-N strongly coupled
theory of α1 � 0.58, and dim[χ2kF (k, ω)] � 0.84.

For a net attractive interaction between the antipodal
patches, with M1 > M2, there are no solutions to (7.33) with
E = 1, and the scaling dimension, dim[χ2kF (k, ω)] = 2, is
thus not renormalized. For other combinations of Ma,Ka,N ,
CDW instabilities can occur, but there are always regimes in
which there is no instability even with a net repulsive interac-
tion. In Fig. 13, we show α1 as a function of (M2 − M1)/N for
Ka = 1 and (M1 + M2)/N = 1, demonstrating this. In partic-
ular, reducing the value of M2 − M1 and increasing the value
of N both disfavor CDW instabilities, and vice versa.

We can also consider the analog of (7.33) for arbitrary
2 < z � 3, as we did in Sec. VII B. With a net repulsive inter-
action, we find that CDW instabilities are disfavored as z →
2, with α1 → 0 as z → 2 [10], for all values of Ma,Ka,N ,
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FIG. 13. Plot of Re[α] and Im[α], for the solutions which have
Re[α] � 1 and Im[α] > 0, as a function of (M2 − M1)/N , with
Ka = 1 and (M1 + M2)/N = 1. For 0 < (M2 − M1)/N � 0.77, there
is neither a 2kF instability nor a pairing instability in the scaling
theory.

and favored as z → 3, although whether or not α1 actually
manages to reach 1 and then move into the complex plane as
z → 3 depends on the values of Ma,Ka,N .

At T �= 0, our neglect of the thermal gauge boson fluc-
tuations and the vanishing of the fermion self-energy at the
first Matsubara frequencies causes the eigenvalue E in (7.29)
to diverge as � T 1/z as T → 0, which causes a 2kF CDW
instability for any net repulsive interaction. Therefore, we
must carefully consider the effects of the thermal fluctuations
of the massless gauge bosons φ. As in the pairing case of
Sec. VII B, we will consider in detail the effects of the ther-
mally fluctuating gauge boson modes using a gauge invariant
formalism in future work.

In the case where the two φ’s are not gauge bosons
and are therefore allowed to have a thermal mass M2(T ) ∼
T ln(1/T ) � T 2/z, the eigenvalue E does not diverge as T →
0, and one can then have a stable regime for net repulsive
interactions even at finite T , depending on parameter values.

VIII. SPATIALLY DISORDERED MODEL

This section will consider a generalization of the model
(2.1) to the case where the couplings gi jl are also random
functions of position. This results in a theory in which the
non-Fermi-liquid effects are weaker, and we obtain a large-N
expansion of a marginal Fermi liquid. The properties of this
marginal Fermi liquid are similar to those studied recently in
Ref. [36] for a different model.

We take the (complex) Yukawa coupling gi jl in (2.1) to be
a Gaussian random in space as well, which satisfies gi jl (x) =
g jil (x)∗ and

〈gi jk (x)gi′ j′k′ (x′)∗〉 = g2δ(x − x′)δii′δ j j′δkk′ . (8.1)

After performing a disorder average, and inserting self-
energies as Lagrange multipliers, we obtain the action

S =
∫

dτd2x
∫

dτ ′d2x′∑
i

ψ
†
i (τ, x)(∂τ + εk − μ)δ(τ − τ ′)δ(x − x′)ψi(τ

′, x′) + 1

2

∑
i

φi(τ, x)
[−∂2

τ + ω2
q + iλ(x, τ )

]

× δ(τ − τ ′)δ(x − x′)φi(τ
′, x′) − �(τ ′, x′; τ, x)

(
NG(τ, x; τ ′, x′) +

∑
i

ψi(τ, x)ψ†
i (τ ′, x′)

)
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− 1

2
�(τ ′, x′; τ, x)

(
−ND(τ, x; τ ′, x′) +

∑
i

φi(τ, x)φi(τ
′, x′)

)
+ g2N

2
G(τ ′, x′; τ, x)G(τ, x; τ ′, x′)

× D(τ, x, τ ′, x′)δ(x − x′) − iN

2γ
λ(τ, x)δ(x − x′)δ(τ − τ ′). (8.2)

The difference from the translationally invariant model is the extra δ function in the g2 term; consequently the G, �, D, � fields
are now only bilocal in time, and not bilocal in space. The kinetic terms in the first two lines are differential operators that act on
(τ, x). Integrating out ψ and φ, we obtain the G-� action

S

N
= − ln det(∂τ + εk − μ + �) + 1

2
ln det

(−∂2
τ + ω2

q + iλ − �
)

−
∫

dτd2x
∫

dτ ′d2x′
(
�(τ ′, x′; τ, x)G(τ, x; τ ′, x′) − 1

2
�(τ ′, x′; τ, x)D(τ, x; τ ′, x′)

)

+
∫

dτd2x
∫

dτ ′d2x′ g
2

2
G(τ, x; τ ′, x′)G(τ ′, x′; τ, x)D(τ, x; τ ′, x′)δ(x − x′) −

∫
dτd2x

iλ(τ, x)

2γ
. (8.3)

The saddle-point equations are (assuming λ is constant)

G(τ, x; τ ′, x′) =
(

1

−∂τ + μ − εk − �

)
τ,x;τ ′,x′

, (8.4)

D(τ, x; τ ′, x′) =
(

1

−∂2
τ + ω2

q + iλ − �

)
τ,x;τ ′,x′

, (8.5)

�(τ, x; τ ′, x′) = g2

2
G(τ, x; τ ′, x′)[D(τ, x; τ ′, x′)

+ D(τ ′, x′; τ, x)]δ(x − x′), (8.6)

�(τ, x; τ ′, x′) = −g2G(τ, x; τ ′, x′)G(τ ′, x′; τ, x)δ(x − x′),

(8.7)
D(0, 0; 0, 0) = 1

γ
. (8.8)

Unlike the translationally invariant case, the self-energies are
momentum independent, and we obtain the following reduced
set of equations (m2

b = iλ):

Ḡ(iω) =
∫

d2k

(2π )2

1

iω + μ − εk − �(iω)
, (8.9)

D̄(iν) =
∫

d2q

(2π )2

1

ν2 + ω2
q + m2

b − �(iν)
, (8.10)

�(τ ) = g2

2
Ḡ(τ )[D̄(τ ) + D̄(−τ )], (8.11)

�(τ ) = −g2Ḡ(τ )Ḡ(−τ ), (8.12)

1

γ
= T

∑
ν

∫
d2q

(2π )2

1

ν2 + ω2
q + m2

b − �(iν)
. (8.13)

We will introduce momentum space cutoffs �k for the
fermions and �q for bosons. They have the dimension of
energy. g has dimension [energy]−1/2, hence g2�k is dimen-
sionless. γ has dimension [energy]−1.

We investigate Eqs. (8.9)–(8.12) in the patch theory, i.e.,
setting εk − μ = kx + k2

y and ω2
q = q2

x + q2
y . In this model the

two components of the boson momentum scale the same way
so we have to retain both. Assuming that the bandwidth is the

largest energy scale, we can perform the integrals in (8.9) and
(8.10), which lead to

Ḡ(iω) = �k
−isgnω

2
, (8.14)

D̄(iν) = 1

4π
ln

(
ν2 − �̄(iν) + �2

q

ν2 − �̄(iν) + �(T )2

)
, (8.15)

where �k = ∫
dky/(2π ) and the boson propagator is evalu-

ated with the Pauli-Villars regulator with cutoff �q. Here we
have subtracted off the zeroth Matsubara frequency from � by
defining �̄(iν) = �(iν) − �(0), and we have also rewritten
mb using the thermal mass �(T )2 = m2

b − �(0).
At zero temperature, Eq. (8.14) yields

Ḡ = − �k

2πτ
, (8.16)

and it follows from saddle-point equations that

�(τ ) =
(

g�k

2πτ

)2

. (8.17)

To compute � in frequency space, we use the frequency
space version of (8.12):

�(iν) = −g2T
∑
ωn

G(iωn)G(iωn + iν). (8.18)

We subtract off the zeroth Matsubara frequency:

�̄(iν) ≡�(iν) − �(0) =
(

g�k

2

)2

T
∑
ωn

[sgn (ωn)sgn (ωn

+ ν) − 1] = −π |ν|
(

g�k

2π

)2

. (8.19)

A. Thermal mass

Using (8.13), we can determine the low-temperature
asymptotics of the thermal mass at criticality to be (for details,
see Appendix B)

�(T )2 = −πa0TW0
[− 1

π
ln
(

2πT
a0eγ

)]
ln
(

2πT
a0eγ

) , (8.20)
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where W0 is the principle Lambert W function and γ is Euler’s constant. Here a0 = π [g�k/(2π )]2. The asymptotic behavior of
W0(x) is

W0(x → ∞) ∼ ln x − ln ln x,

This result indicates that �(T ) → 0 as T → 0 slightly faster than
√

T by some log corrections. A plot of �(T ) is given in
Fig. 14.

B. Fermion self-energy

The electron self-energy is

�(iω) = g2T
∑
μ

Ḡ(ω + μ)D̄(μ) = −ig2�k

4π
sgn (ω)T

[
1

2
ln

(
�2

q

�(T )2

)
+

∑
0<μ<|ω|

ln

(
μ2 + |μ|a0 + �2

q

μ2 + |μ|a0 + �(T )2

)]
, (8.21)

where the sum cancels in pair when |μ| > |ω|. The sum can be performed exactly

�(iω) = −ig2T�k

4π
sgn (ω) ln

⎡
⎢⎢⎣

�qP

(
1 + a0+i

√
4�2

q−a2
0

4πT ,
|ω|−πT

2πT

)
P

(
1 + a0−i

√
4�2

q−a2
0

4πT ,
|ω|−πT

2πT

)

�(T )P

(
1 + a0+

√
a2

0−4�(T )2

4πT ,
|ω|−πT

2πT

)
P

(
1 + a0−

√
a2

0−4�(T )2

4πT ,
|ω|−πT

2πT

)
⎤
⎥⎥⎦ (8.22)

where P(a, b) = �(a + b)/�(a) is the Pochhammer function. Some limiting cases of �(iω), showing marginal Fermi liquid
behavior, are

�(|ω| � T, a0) = −ig2T�k

4π
sgn (ω) ln

⎡
⎣ 2πT

�(T )
P

⎛
⎝1

2
+

a0 +
√

a2
0 − 4�(T )2

4πT
,

1

2

⎞
⎠P

⎛
⎝1

2
+

a0 −
√

a2
0 − 4�(T )2

4πT
,

1

2

⎞
⎠
⎤
⎦ ,

(8.23)

�(T � |ω| � a0 � �q) = −ig2T�k

4π
sgn (ω)

[ |ω|
2πT

(
1 + ln

�2
q

|ω|a0

)
+ 1

2
ln

a0T

�(T )2

]
, (8.24)

�(T, a0 � |ω| � �q) = −ig2T�k

4π
sgn (ω)

[ |ω|
πT

(
1 + ln

�q

|ω|
)

− a0

2πT
ln

|ω|
2πT

+ σ0(�(T ),T )

]
. (8.25)

Here σ0 is retained to ensure a finite T → 0 limit

σ0(�(T ),T ) = ln
T

�(T )
+ ln�

⎛
⎝1 +

a0 −
√

a2
0 − 4�(T )2

4πT

⎞
⎠+ ln�

⎛
⎝1 +

a0 +
√

a2
0 − 4�(T )2

4πT

⎞
⎠ . (8.26)

Notice that in the ω → ∞ limit the sum in (8.21) is nothing but the constraint (B4), therefore we have

�(|ω| � �q) = −i�k

2
sgn (ω)

g2

γ
. (8.27)

C. Free energy

The free energy F is given by the value of saddle-point action
βF

N
= − ln det(∂τ + εk − μ + �) + 1

2
ln det

(−∂2
τ + ω2

q + iλ − �
)

−
∫

dτd2x
∫

dτ ′d2x′
(
�(τ ′, x′; τ, x)G(τ, x; τ ′, x′) − 1

2
�(τ ′, x′; τ, x)D(τ, x; τ ′, x′)

)

+
∫

dτd2x
∫

dτ ′d2x′ g
2

2
G(τ, x; τ ′, x′)G(τ ′, x′; τ, x)D(τ, x; τ ′, x′)δ(x − x′) −

∫
dτd2x

iλ(τ, x)

2γ
, (8.28)

where the variables should be substituted by their saddle-point
values. The complete evaluation of the above free energy is
given in Appendix B and we summarize the result here.

The free energy contains two contributions F = F1 + F2.
The first part is the free energy of the free fermion:

F1

NV
= −T�k

∫
dkx

2π
ln(1 + e−βkx ), (8.29)

where V is the spatial volume of the system and β = 1/T . The
second part F2 is the contribution due to interacting bosons.
It has a lengthy analytic expression in Appendix B, and the
numerical plot is given in Fig. 15.

Consequently the heat capacity can be written as
C = NV (γ1 + γ2)T , which corresponds to contributions
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FIG. 14. Plot of �(T ). �(0) = 0, a0 = 5, �q = 300. The blue
line is the numerical solution of the thermal mass from (B7). The red
line is the low-temperature asymptotics Eq. (8.20).

from F1 and F2, respectively. Here γ1 = (π/6)�k , and γ2 is
plotted in Fig. 16.

D. Conductivity

The computation of the conductivity in the spatially disor-
dered model is very similar to that in Ref. [36]. In particular,
the conductivity σDC is governed by the scattering rate set
by the imaginary part of the retarded fermion self-energy,
as vertex corrections vanish due to the isotropic momentum-
independent scattering of the fermions off the bosons. The
quantity of interest is5

1

τtr
� −Im[�R(ω = 0,T �= 0)] = g2�k

8π
T L1, (8.30)

where L1 ∼ ln{2 ln[a0eγ /(2πT )]/π} is very slowly varying
and we therefore just treat it as an O(1) constant. We have
set Planck’s and Boltzmann’s constants h̄ = kB = 1 so far, but
will restore them below.

5The transport scattering rate is actually set by averaging the life-
time over a frequency range � T [22,36], but, in this case, that only
makes a small difference in its numerical value vs just using the
zero-frequency lifetime.

FIG. 15. Plot of bosonic contribution to free energy (F/NV )2 as
a function of T . The zero-temperature part is subtracted. �(0) = 0,
a0 = 5, �q = 300. The total free energy also contains a free fermion
contribution Eq. (8.29) which is not shown here.

FIG. 16. Plot of bosonic contribution to heat capacity
C2/(NV ) = −T/(NV )(∂2F2/∂T 2) = T γ2(T ). �(0) = 0, a0 = 5,
�q = 300. The total heat capacity is the sum of two contributions
C = NV T (γ1 + γ2), where γ1 = (π/6)�k takes the free fermion
value.

There have been several experimental claims of “Planck-
ian dissipation” in the recent literature [93–95] occurring
at putative QCPs with linear-in-T resistivity in correlated
electron materials. The meaning of this statement is that the
transport scattering rate defined with respect to an interaction-
renormalized effective mass m∗ is 1/τ ∗

tr � kBT/h̄. Therefore

1

τ ∗
tr

= ne2

σDCm∗ = ne2

σDCm

m

m∗ = 1

τtr

m

m∗ � kBT

h̄
, (8.31)

where m is the bare electron mass, e is the electron charge,
and n is the density of electrons.

There is also a theoretical argument for the consideration
of τ ∗

tr as the appropriate time: assuming a momentum indepen-
dent self-energy, 1/τtr is related to the imaginary part of the
electron self-energy at zero frequency, �(0), and so its scaling
behavior is tied up with the scaling dimension of the electron
operator. Only by computing the ratio �(0)/(∂�/∂ω) do we
obtain a quantity which scales with frequency alone, and this
yields 1/τ ∗

tr .
The effective mass m∗ is determined somewhat away

from the QCP in a Fermi-liquid regime, where the electron
quasiparticle is well defined at low energies, using quan-
tum oscillation measurements, specific-heat measurements,
or measurements of the fermion dispersion near the Fermi
surface via angle-resolved photoemission spectroscopy. In our
model we have, from the fermion propagator in the Fermi-
liquid phase that arises for γ > γc,

m∗

m
≡ 1 + i

∂�(iω)

∂ω

∣∣∣∣∣
ω→0,T →0

= 1 + g2�k

4π2
L2, L2 ∼ ln

(
�q√

a0

√
γ γc

γ − γc

)
∼ O(1).

(8.32)

We consider a regime of strong coupling, where g2�k � 1.
Our results in prior subsections about the various quantities
at the QCP then remain valid as long as we restrict our-
selves to energy scales � 1/g2, where we consider �k ∼ �q,
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as the boson and fermion self-energies then remain smaller
than their respective bandwidths. Then m∗/m � g2�k/(4π2).
Putting everything together, we then have

1

τ ∗
tr

� π

2

kBT

h̄

L1

L2
, (8.33)

which is O(kBT/h̄), i.e., “Planckian.” In fact, some of the
O(1) variations in the measured prefactor in the experimental
results may be attributable to where m∗ is measured relative
to the QCP, as that will introduce O(1) variations in L2, and
at what temperatures the measurements are carried out, as that
will introduce O(1) variations in L1.

E. Instabilities

For complex random gi jk , this model does not have any
pairing instability at large N , as is also the case for the
translationally invariant model. However, for real random gi jk ,
there is a pairing instability at low energies, and following the
methods of Sec. VII B we estimate the superconducting tran-
sition temperature TSC ∼ [�2

q/(g2�2
k )]e−1/(g2�k ). This can be

appreciably large in the strong-coupling regime g2�k � 1, in
which case we also expect superconductivity with real random
gi jk to set in at parametrically around the same scale as the
Planckian behavior sets in with complex random gi jk , and the
Planckian behavior may therefore be completely obscured by
superconductivity.

Following the analysis in Sec. V D of Ref. [23], we can see
that the scaling dimension of the 2kF vertex is not renormal-
ized by the momentum independent scattering of fermions.
Therefore, there is no 2kF CDW instability at large N .

IX. CONCLUSIONS

We have shown that a model with random Yukawa
couplings provides a large-N theory of a critical Fermi
surface. Many existing results are unified in a systematic
perspective, and a formalism is now available to determine
1/N corrections.

The primary critical field characterizing the critical Fermi
surface is a fermion ψ with anomalous dimension ηψ . Its
correlations on a single patch of the Fermi surface are char-
acterized by a dynamic scaling exponent z, and anisotropic
scaling along the spatial directions perpendicular (x) and par-
allel (y) to the Fermi surface (see Fig. 1). We define scaling
dimensions with the choice dim[qy] = 1, and then a sliding
symmetry of the Fermi surface [9] implies dim[qx] = 2. The
large-N theory has z = 3 and ηψ = 0. A three-loop analysis
[9] found no correction to z = 3, and a small nonzero value for
ηψ . In our approach the expansion for ηψ is systematic in 1/N ,
and contained in the infinite set of graphs in Figs. 8 and 11,
which include the graphs in Ref. [9]. Further loop corrections
to the RPA theory have been studied in Refs. [15,16], and it
would be interesting to examine the consequences of bilocal
field propagators required by our 1/N expansion: it is possible
that the scaling described in our analysis will prevail.

Starting from the primary field ψ , we can now build com-
posite operators, as in the SYK model. In the single patch
theory of Fig. 1, in the particle-hole sector, we found only the
conserved density operators that have been studied in Ref. [5].
The saddle-point action does have time reparametrization

symmetry in the scaling limit, but we showed that, unlike
the SYK model, this did not translate into a singular time
reparametrization mode because of the nontrivial action of
the time reparametrization on the spatial coordinates. So
there is no corresponding expected violation of scaling here
at frequencies of order 1/N , in contrast to the SYK model
[44,49,65–69]. The particle-particle sector of the single patch
theory is also where the Amperean pairing operator [70,71]
resides, and we discuss it in Appendix A.

In a nonchiral system, we have to also consider the role
of antipodal patches on the Fermi surface, as in Fig. 9.
In this case, interesting composite operators do arise from
fermions on opposite patches, in both the particle-particle and
particle-hole sectors. In the particle-particle sector, we have
the Cooper pair operator, and its analysis in our N = ∞ theory
reduces to that of the γ model of Chubukov and collaborators
[24–27]. Section VII B obtained results for the scaling dimen-
sion of the Cooper pair operator for the case where there are
multiple scalars coupled to the fermions with both attractive
and repulsive interactions, as is needed for the models of
Refs. [86–88].

In the particle-hole sector of the antipodal patch theory,
we have the operator associated with charge density waves
at the 2kF wave vector. This has been studied earlier by Mross
et al. [10]. Our large-N theory leads to integral equations in
frequency and momentum, which we numerically solved in
the scaling limit in Sec. VII C. These solutions led to a rich
set of possibilities for the scaling dimension of the 2kF density
wave operator.

In Sec. IV we presented numerical solutions of the large-N
saddle-point equations while keeping the full Fermi surface in
a convenient lattice regularization. At the QCP, we found good
agreement with predictions of the low-energy patch theory for
the scaling behavior of the fermion and boson Green’s func-
tions. Even away from the QCP, the large-N phase diagram is
interesting in its own right, where we found the ordered side is
characterized by a rapid onset of strong thermal fluctuations,
in which M � T and the boson is essentially static, behaving
in a manner similar to quenched disorder for the fermions. We
also note that we have not found a superconducting transition
down to the lowest accessible temperatures. However, the
superconducting Tc should be finite (it can likely be accessed
in numerical calculations by increasing the coupling strength)
and it will be interesting to study the nature of superconduc-
tivity across the phase diagram presented here.

Finally, in Sec. VIII we presented a large-N theory for
a marginal Fermi liquid, obtained by considering a Yukawa
coupling which was random in both flavor and position space.
The results here are similar to Aldape et al. [36] for a different
model: there is a nearly linear-in-T contribution to the imag-
inary self part of the energy of the fermion, and Planckian
transport, as described in Sec. VIII D.

We close with some general remarks about “Eliashberg
theory,” a framework used to solve a variety of problems in
condensed matter physics involving the coupling of electrons
to a boson with a Yukawa-type coupling [31–35,96]. Two
long-standing questions with this framework have been the
following: is there a general systematic expansion the saddle
point of which is the Eliashberg theory, and what are the
systematic corrections to Eliashberg theory? We stress the
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importance of a systematic framework, because only then can
we ensure proper treatments of symmetries and anomalies
required for Luttinger-like theorems [64]. For problems with-
out spatial randomness, the answer from recent works [36,62]
and the present paper is that Eliashberg theory is the large-N
saddle point of a theory in which the Yukawa coupling is
a random function of indices in flavor space. Corrections to
this saddle point are obtained from a G-� theory which is, in
general, bilocal in spacetime. The propagators of the bilocal
fields resum infinite sets of diagrams in the underlying theory,
such as those in Figs. 8 and 11. All of this analysis has close
connections to random models in the SYK class [33–35],
which realize the simpler case with G-� fields bilocal only
in time. Numerical studies of the models in the SYK class
(see, e.g., Refs. [69,97,98]) have tested the predictions of such
large-N theories and shown that they are quite accurate at
finite N .

The structures of our saddle-point equations also have
similarities to those of extended dynamical mean field the-
ory [99–103], which become exact in the limit of large
dimensions. Note that their self-energies are momentum inde-
pendent, similar to those in Sec. VIII in the model with spatial
disorder. It would be interesting to extend our methods to
obtain systematic corrections to dynamical mean field theories
without introducing spatial disorder.
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APPENDIX A: AMPEREAN PAIRING

In this Appendix, we consider the fate of the “Amperean
pairing” instability within a single patch of the critical scaling
theory for real random gi jk . This instability was proposed by
Ref. [70], and involves finite momentum pairing of fermions
near the same point of the Fermi surface, given by the operator
�A = ∑

k,ωn
ψ+(k, iωn)ψ+(−k,−iωn), where both fermions

belong to the same patch. Reference [70] argued that since the
computation of the correlation function χA = 〈�A�A〉 for free
fermions (with the frequency integration done first, as per-
forming the kx integral first incorrectly returns zero) involves
momenta with |kx| < k2

y , the computation in the interacting
case must be similar, and they imposed a hard cutoff of k2

y
on the kx integrals in their analysis of the Amperean pairing
instability. However, due to the destruction of the quasiparticle
by the ω2/z self-energy, the cutoff on kx does not turn out
to be strictly k2

y , and integration regions with |kx| > k2
y also

contribute substantially to χA. We will therefore implement a
cutoff of �Ak2

y , on |kx|, where �A is a dimensionless parame-
ter on which the scaling dimension of χA will depend. We note
that �A must be taken to infinity at the end of the computations
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FIG. 17. Plot of the scaling dimension α of the Amperean pairing
vertex in the single patch critical theory with M/N = 1/2, vs the
cutoff parameter �A.

as the range of kx integration is actually unrestricted, and we
will therefore study the behavior of the scaling dimension in
this limit.

Considering a single patch and a single type of boson φ,
we have the equation for the renormalization of the Amperean
pairing vertex �A at T = 0:6

E�A(qx, qy, i
m)

= Mg2

N

∫
ky,ω

∫ �Ak2
y

−�Ak2
y

dkx

2π
G+(k, iωn)G+(−k,−iωn)

× |ky − qy|
|ky − qy|3 + g2|ωn − 
m|/(8π )

�A(kx, ky, iωn).

(A1)

We can see that �A does not depend upon qx, and therefore
we can drop the kx dependence of �A on the RHS. At low
energies, the equation then simplifies to

E�A(qy, i
m)

= Mg2

2Nπ

∫
ky,ω

tanh−1

(
2�A

1 + �2
A + |�(iωn)|2/k4

y

)

× |ky − qy|
|ky − qy|3 + g2|ωn − 
m|/(8π )

�A(ky, iωn)

k2
y

. (A2)

Note that the RHS vanishes in the limit �A → ∞: this re-
flects the fact that, in (A1), the poles in G+(k, iωn) and
G+(−k,−iωn) as a function of kx are in the same half plane, in
contrast to the situation with antipodal pairing in Sec. VII B.
Using the same kind of scaling function and manipulations as
in Sec. VII C, we obtain a one-dimensional integral equation:

E�A(i
m)

= M

2Nπ

∫ ∞

−∞

dωn

2π
�A(iωn) tanh−1

(
2�A

1 + �2
A + M2|ωn|4/3

3N2π4/3

)

×
∫ ∞

−∞

dky

2π

|ky − 1||ky|1−α

|ky − 1|3 + |ωn|ky|3 − 
m|/(8π )
. (A3)

6Our results for 2 < z < 3 are qualitatively similar to those for z =
3 below.
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We are again interested in values of α with 0 < Re[α] � 1,
for which E = 1, as in Sec. VII C. For the case of the spin-
1/2 U (1) spin liquid, with M/N = 1/2, we obtain α � 0.33
for �A = 1. As the value of �A → ∞, we find that α → 0
(Fig. 17), independent of M/N , implying that there is no
nontrivial renormalization of the Amperean pairing operator
or Amperean pairing instability in the physical limit, as for
α = 0, dim[χA(k, ω)] = 2(1 − α) = 2. This continues to be
the case at T �= 0: any transition temperature is suppressed

to zero as �A → ∞. Any occurrence of Amperean pairing
therefore requires consideration of physics beyond the low-
energy theory discussed in our paper.

APPENDIX B: LARGE-N THEORY WITH SPATIALLY
RANDOM COUPLINGS

This Appendix fills in some technical details of Sec. VIII.

1. Thermal mass

We determine �(T )2 = m2
b − �(0) as a function of temperature. In fact �(0) is temperature independent because it diverges

as
∑

ωn
1, and the sum over a constant is the same as integration over the same constant. Using the constraint (8.13), assuming

at zero temperature �(T = 0) = �0,∫
dν

2π

∫
d2q

(2π )2

1

ν2 + ω2
q + �2

0 − �̄(iν)
= T

∑
ν

∫
d2q

(2π )2

1

ν2 + ω2
q + �(T )2 − �̄(iν)

= 1

γ
. (B1)

We first evaluate the q integral using Pauli-Villars regularization:∫
d2q

(2π )2

1

ν2 + ω2
q + �2 − �̄(iν)

→
∫

d2q

(2π )2

(
1

ν2 + ω2
q + �2 − �̄(iν)

− 1

ν2 + �2
q + ω2

q − �̄(iν)

)

= 1

4π
ln

(
ν2 − �̄(iν) + �2

q

ν2 − �̄(iν) + �2

)
. (B2)

Equation (B1) becomes ∫
dν

2π
ln

(
ν2 − �̄(iν) + �2

q

ν2 − �̄(iν) + �2
0

)
= 4π

γ
, (B3)

and

T
∑
ν

ln

(
ν2 − �̄(iν) + �2

q

ν2 − �̄(iν) + �(T )2

)
= 4π

γ
. (B4)

For notational simplicity we substitute �̄(iν) = −a0|ν|, a0 = π [g�k/(2π )]2, and we can evaluate the left-hand side of (B3):

∫
dν

2π
ln

(
ν2 − �̄(iν) + �2

q

ν2 − �̄(iν) + �2
0

)
= 1

2π

[
2
(√

a2
0 − 4�2

0 − a0
)

ln

(
�q

�0

)
−2
√

a2
0 − 4�2

0 ln

⎛
⎝ 2�q

a0 +
√

a2
0 − 4�2

0

⎞
⎠

+ π

√
4�2

q − a2
0 − 2

√
4�2

q − a2
0 tan−1

⎛
⎝ a0√

4�2
q − a2

0

⎞
⎠], (B5)

where, to satisfy the constraint (B3), a0 must be the same order as �k and �q, and we assume 2�q > a0 > 2�0. By properly
choosing �k/�q to be an order 1 number, there is a solution for a0 around �0 = 0.

Next we evaluate (B4):

T
∑
ν

ln

(
ν2 − �̄(iν) + �2

q

ν2 − �̄(iν) + �(T )2

)
= −2T log�

⎛
⎝a0 − i

√
4�2

q − a2
0

4πT
+ 1

⎞
⎠− 2T log�

⎛
⎝a0 + i

√
4�2

q − a2
0

4πT
+ 1

⎞
⎠

+ 2T log�

⎛
⎝a0 −

√
a2

0 − 4�(T )2

4πT
+ 1

⎞
⎠+ 2T log�

⎛
⎝a0 +

√
a2

0 − 4�(T )2

4πT
+ 1

⎞
⎠+ T log

(
�2

q

�(T )2

)
. (B6)

We can calculate �(T ) by equating (B5) and (B6):

0 = − 2T log�

⎛
⎝a0 − i

√
4�2

q − a2
0

4πT
+ 1

⎞
⎠− 2T log�

⎛
⎝a0 + i

√
4�2

q − a2
0

4πT
+ 1

⎞
⎠+ T ln

(
�2

q

a2
0

)
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− 1

2

√
4�2

q − a2
0 + 1

π

√
4�2

q − a2
0 tan−1

⎛
⎝ a0√

4�2
q − a2

0

⎞
⎠+ a0

2π
ln

(
�2

q

a2
0

)

+ 2T log�

⎛
⎝a0 −

√
a2

0 − 4�(T )2

4πT
+ 1

⎞
⎠+ 2T log�

⎛
⎝a0 +

√
a2

0 − 4�(T )2

4πT
+ 1

⎞
⎠+ T ln

(
a2

0

�(T )2

)

+ 1

2π

⎡
⎣(a0 −

√
a2

0 − 4�2
0

)
ln

(
a2

0

�2
0

)
+ 2

√
a2

0 − 4�2
0 ln

⎛
⎝ 2a0

a0 +
√

a2
0 − 4�2

0

⎞
⎠
⎤
⎦. (B7)

We can remove the cutoff by expanding in large �q and obtain

a0

2πT

[
ln

(
�(0)

2πT

)
− 1

]
+
√

a2 − 4�(0)2

2πT
ln

(
a +

√
a2 − 4�(0)2

2�(0)

)

+ ln

(
�(T )

T

)
− ln�

(
1 + a −

√
a2 − �(T )2

4πT

)
− ln�

(
1 + a +

√
a2 − �(T )2

4πT

)
= 0. (B8)

At criticality �0 = 0, and the critical low-temperature solution is given by [104]

�(T )2 = −πaTW0
[− 1

π
ln
(

2πT
a0eγ

)]
ln
(

2πT
a0eγ

) , (B9)

where W0 is the principle Lambert W function and γ is Euler’s constant. The above result can be obtained by writing �(T )2 =
a0T g(T ) and then expanding (B8) in small T/a0, and solving g(T ) using the leading-order constraint.

2. Free energy

We compute the free energy of the theory. The free energy F is given by the value of saddle-point action

βF

N
= − ln det(∂τ + εk − μ + �) + 1

2
ln det

(−∂2
τ + ω2

q + iλ − �
)

−
∫

dτd2x
∫

dτ ′d2x′
(
�(τ ′, x′; τ, x)G(τ, x; τ ′, x′) − 1

2
�(τ ′, x′; τ, x)D(τ, x; τ ′, x′)

)

+
∫

dτd2x
∫

dτ ′d2x′ g
2

2
G(τ, x; τ ′, x′)G(τ ′, x′; τ, x)D(τ, x; τ ′, x′)δ(x − x′) −

∫
dτd2x

iλ(τ, x)

2γ
, (B10)

where the variables should be substituted by their saddle-point values.
We integrating out c.m. coordinates and expand the determinant in momentum space, and also split �(iω) = �̄(iω) + �(0),

iλ = �(T )2 + �(0), and use the constraint (8.13), to obtain

F

NV
= −T

∑
ωn

∫
d2k

(2π )2
ln [εk − μ − iωn + �(iωn)] + 1

2
T
∑
νn

∫
d2q

(2π )2
ln
[
ν2

n + ω2
q + �(T )2 − �̄(iνn)

]

− T
∑
ωn

Ḡ(iωn)�(iωn) + T

2

∑
νn

D̄(iνn)�̄(iνn) + g2

2

∫
dτ Ḡ(τ )Ḡ(−τ )D̄(τ ) − �(T )2

2γ
. (B11)

The interaction term cancels the D̄�̄ term, leaving a �(0) term which is assumed to be temperature independent. We try to
evaluate the remaining terms.

a. Fermion determinant

We regulate the fermion determinant by the free fermion counterpart:

( F

NV

)
1

= − T
∑
ωn

∫
d2k

(2π )2
ln

(
εk − μ − iωn + �(iωn)

εk − μ − iωn

)
− T

∑
ωn

∫
d2k

(2π )2
ln (εk − μ − iωn) − T

∑
ωn

Ḡ(iωn)�(iωn).

(B12)
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The second line is the standard free fermion result

−T
∫

d2k
(2π )2

ln
(
1 + e−β(εk−μ)

) = −T�k

∫
dkx

2π
ln(1 + e−βkx ). (B13)

For the first line, we use the sliding symmetry to set

εk − μ → kx,

∫
d2k

(2π )2
→ �k

∫
dkx

2π
,

and then we perform the kx integral in principal value, which yields( F

NV

)
1

= − i

2
�kT

∑
ωn

sgn (ωn)�(iωn) − T�k

∫
dkx

2π
ln(1 + e−βkx ) − T

∑
ωn

Ḡ(iωn)�(iωn)

= − T�k

∫
dkx

2π
ln(1 + e−βkx ). (B14)

Here the first line and the third line of (B14) canceled, and we are left with a free fermion result. This part yields a specific heat:

C1 = NV γ1T, γ1 = π

6
�k . (B15)

b. Boson determinant

We consider the boson determinant term( F

NV

)
2

= 1

2
T
∑
νn

∫
d2q

(2π )2
ln
[
ν2

n + q2 − �̄(iνn) + �(T )2
]− �(T )2

2γ
. (B16)

The difference from zero temperature can be written as(
F (T )

NV

)
2

−
(

F (0)

NV

)
2

= I1 + I2, (B17)

where

I1 = 1

2

∫
dν

2π

∫
d2q

(2π )2

[
ln

(
ν2 + q2 − �̄(iν) + �(T )2

ν2 + q2 − �̄(iν) + �(0)2

)
− �(T )2 − �(0)2

ν2 − �̄(iν) + q2 + �(0)2

]
, (B18)

I2 = 1

2

∫
d2q

(2π )2

[
T
∑
νn

ln
(
ν2

n + q2 − �̄(iνn) + �(T )2
)−

∫
dν

2π
ln[ν2 + q2 − �̄(iν) + �(T )2]

]
. (B19)

Since I1 is sufficiently convergent, we expect we can exchange the order of integrals. We perform the momentum integral for I1

first [we recall that a0 = π ( g�k

2π )
2
]:

I1 = 1

8π2

∫ ∞

0
dν

[
[�(T )2 − �(0)2] − [�(T )2 + ν2 + a0ν] ln

ν2 + a0ν + �(T )2

ν2 + a0ν + �(0)2

]

= 1

96π2

[
−2a0[�(T )2 − �(0)2] + 2a0

[
6�(T )2 − a2

0

]
ln

(
�(T )

�(0)

)

+ [
a2

0 − 4�(T )2
]3/2

ln

⎛
⎝a0 −

√
a2

0 − 4�(T )2

a0 +
√

a2
0 + 4�(T )2

⎞
⎠+

√
a2

0 − 4�(0)2
[
6�(T )2 − a2

0 − 2�(0)2
]

ln

⎛
⎝a0 −

√
a2

0 − 4�(0)2

a0 +
√

a2
0 − 4�(0)2

⎞
⎠].

(B20)

This expression agrees with numerics. The I2 can be brought into an integral form

I2 = −
∫

d2q
(2π )2

∫ ∞

0

dz

π
nB(z) tan−1

(
a0z

q2 + �(T )2 − z2

)
, (B21)

and the tan−1 function should vary continuously from zero to π . We rewrite the I2 integral as

I2 =
∫

d2q
(2π )2

∫ √
q2+�(T )2

∞
ηdη

∫ ∞

0

dz

π i

nB(z)√
4η2 − a2

0

(
2z

z2 + u2+
− 2z

z2 + u2−

)
, (B22)
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where

u± =
a0 ∓ i

√
4η2 − a2

0

2
. (B23)

Using the formula

h(a0) ≡
∫ ∞

0
dznB(z)

2z

z2 + a2
0

= ln
a0

2πT
− πT

a0
− ψ

( a0

2πT

)
, Rea0 > 0, (B24)

we can evaluate the z integral as

I2 =
∫

d2q
(2π )2

g[
√

q2 + �(T )2], (B25)

and

g(η) = − 1

4π

{
i
√

4η2 − a2
0

[
log
(
a0 − i

√
4η2 − a2

0

)− log
(
a0 + i

√
4η2 − a2

0

)]

+ 4πT

[
log�

(
a0 − i

√
4η2 − a2

0

4πT

)
+ log�

(
a0 + i

√
4η2 − a2

0

4πT

)]
+ 2a0 log

(
πT

η

)

+ a0[2 + log(4)] − 4πT log

(
T

η

)
− 8πT log(2π )

}
. (B26)

The remaining momentum integral is log divergent because

g(η) = −a0πT 2

6η2
+ O(1/η3), (B27)

which yields a term − a0T 2

12 ln �q

�(T ) in the self-energy. The total contribution of I2 is

I2 =,−a0T 2

12
ln

�q

�(T )
+
∫ ∞

�(T )

ηdη

2π

(
g(η) + a0πT 2

6η2

)

= −a0T 2

12
ln

�q

�(T )
+

a2
0

√
a2

0 − 4�(T )2 coth−1
( a0√

a2
0−4�(T )2

)
48π2

−
�(T )2

√
a2

0 − 4�(T )2 coth−1
( a0√

a2
0−4�(T )2

)
12π2

+ 2πT 3ψ (−3)

⎛
⎝a0 −

√
a2

0 − 4�(T )2

4πT

⎞
⎠+ 2πT 3ψ (−3)

⎛
⎝a0 +

√
a2

0 − 4�(T )2

4πT

⎞
⎠

+ 1

2
T 2
√

a2
0 − 4�(T )2ψ (−2)

⎛
⎝a0 −

√
a2

0 − 4�(T )2

4πT

⎞
⎠− 1

2
T 2
√

a2
0 − 4�(T )2ψ (−2)

⎛
⎝a0 +

√
a2

0 − 4�(T )2

4πT

⎞
⎠

−
a3

0 log
(

2πT
�(T )

)
48π2

− a2
0T

16π
− 5a3

0

288π2
− a0T 2 log(A) + 7a0�(T )2

48π2
+ 1

12
a0T 2 log

(
2πT

�(T )

)

+ a0T 2

12
+

a0�(T )2 log
(

2πT
�(T )

)
8π2

− T 3ζ (3)

2π
− �(T )2T

8π
−

�(T )2T log
(

4π2T
�(T )

)
4π

, (B28)

where A is Glaisher’s constant log A = 1/12 − ζ ′(−1). If we assume �(0) �= 0, the low-temperature asymptotics is

I2 = −a0T 2

12
ln

�q

�(T )
+ a0π

2
[
a2

0 − 6�(T )2
]
T 4

360�(T )4
, (B29)

and for the critical case �(0) = 0 there is no simplification. The boson free energy is the sum of I1 and I2.
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