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Higher Chern numbers in multilayer Lieb lattices (N � 2):
Topological transitions and quadratic band crossing lines
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We consider a hitherto unexplored setting of a stacked multilayer (N ) Lieb lattice which undergoes an unusual
topological transition in the presence of intralayer spin-orbit coupling (SOC). The specific stacking configuration
induces an effective nonsymmorphic two-dimensional lattice structure, even though the constituent monolayer
Lieb lattice is characterized by a symmorphic space group. This emergent nonsymmorphicity leads to multiple
doubly degenerate bands extending over the edge of the Brillouin zone (i.e., quadratic band crossing lines). In
the presence of intralayer SOC, these doubly degenerate bands typically form three N -band subspaces, mutually
separated by two band gaps. We analyze the topological properties of these multiband subspaces, using specially
devised Wilson loop operators to compute non-Abelian Berry phases in order to show that they carry a higher
Chern number N .
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I. INTRODUCTION

The discovery of topological materials [1,2] and their sub-
sequent tenfold symmetry classification within the Altland-
Zirnbauer scheme [3,4] has led to a rapid surge in the search
for new materials with nontrivial topological properties. This
primarily includes, for instance: (i) The time-reversal in-
variant topological insulators, commonly known as quantum
spin-Hall insulators in two dimensions, which were pre-
dicted to occur in strongly spin-orbit coupled materials [4–6],
(ii) the particle-hole symmetric band structures, which lead
to interesting topological phases, such as topological super-
conductors [7–9], and (iii) more recently, the topological
crystalline insulators, which are protected by a combination
of the time-reversal and the underlying point-group symme-
tries of the associated lattice [10–14]. As these systems are
generally understood within a single-particle picture, one typ-
ically characterizes their topology by associating a topological
invariant (Chern number) to the resulting band structure.

Finding new materials with tunable Chern numbers (C)
is enormously important as they are directly measurable in
terms of the quantized Hall conductance (Ce2/h) of two-
dimensional (2D) Chern insulators [15,16]. In the presence
of quasiparticle interaction, such an integer quantization of
conductance further breaks down into fractional values. In
the case of relatively high Chern numbers, even potentially
new phases (viz. topological nematic phases [17]) can emerge
due to the interplay of topology and strong quasiparticle cor-
relations. Evidence of such high Chern numbers for almost
flatband systems has been discussed in previous theoretical
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works [18] on various lattices, including kagome [19], triangle
[20], and checkerboard [21]. More interestingly, it was shown
in Ref. [19] that for a pyrochlore slab, the underlying stacking
arrangement leads to intriguing band structures with relatively
high Chern numbers.

Recently, there has been a renewal of interest in analyz-
ing the topological features of a closely related cousin of
the kagome lattice. This is called the Lieb lattice (which
is an example of a depleted-square lattice with space-group
p4mm); it can also be obtained by continuously shearing an
ideal kagome structure. The continuous evolution of the band
structure, including the flatband and its topological variation
between the Lieb and the kagome lattice, has been recently
studied in Refs. [22,23]. This lattice was previously studied
[24] in detail for its topologically protected quadratic band
crossing point (QBCP) in the band structure. QBCP—a Bril-
louin zone (BZ) point where two bands cross each other with
a quadratic dispersion—is a generic feature of certain type of
lattices where discrete crystal symmetries play an important
role [25]. However, unlike its linear band crossing counter-
part, namely, the Dirac point, a QBCP is not robust under an
arbitrarily weak interaction [26–28]. Here, we note that Lieb
lattices have been experimentally realized recently in photonic
[29–34], electronic [35], and cold-atom settings [36].

In this paper, we integrate these research directions and
consider a tight-binding (TB) model of intrinsically spin-
orbit coupled electrons on quasi-two-dimensional systems
composed of stacked multilayer Lieb lattices. We show that
for two distinct Bernal-type stackings the previously known
single-layer QBCPs evolve into extended degeneracy lines
along the BZ edge—which we designate as quadratic band
crossing lines (QBCLs). We further motivate that the QBCLs
are the generalization of QBCPs for nonsymmorphic lattice
structures and are protected by discrete symmetries. In the
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FIG. 1. (a) A schematic of the two-dimensional Lieb lattice with
all possible hoppings ti j between the sites. The arrows corresponding
to νi j show the unit vectors related to the intrinsic spin-orbit coupling
and are discussed in the text. The three-atom unit cell is marked
in a red-dashed line. (b) The Brillouin zone for the bilayer system
with the high-symmetry points illustrated by filled circles. (c) and
(d) A pictorial representation of a bilayer coupled Lieb lattice ar-
ranged in two different stackings—AB and ABC, respectively. The
blue-dashed region signifies the modified unit cell when a multilayer
structure is incorporated.

multilayer setup with spin-orbit coupling, these QBCLs form
well-separated band subspaces. Their topological features are
computed by analyzing the associated Wilson spectrum from
which we obtain the corresponding Chern numbers. Then, we
discuss one of our main results that the layer number N in
the multilayer structure offers natural tunability to generate
an emergent band structure with higher Chern numbers, and
as such, provides a unique platform for exploring hitherto
unknown topological phases of matter.

II. MONOLAYER LIEB LATTICE

We start from an extended TB model with intrinsic spin-
orbit coupling (ISOC) in the single-layer Lieb lattice [37], and
consider stacking them in a multilayer structure. The single-
layer Hamiltonian is written as

Hsl =
∑

iσ

εic
†
iσ ciσ −

∑
i jσ

ti jc
†
iσ c jσ + iλ

∑
〈〈i j〉〉

νi jc
†
iασ z

αβc jβ,

(1)

where c†
iσ creates an electron at site i with spin σ and σz is

the Pauli matrix. In the last term, we assume summation over
the repeated indices. The hopping amplitude ti j is considered
finite among the first (t), the second (t ′), and the third (t ′′)
nearest-neighbor sites, and εi labels the on-site energies for
the three sublattice sites [see Fig. 1(a)]. In general, the three
on-site energies can be different. Yet, the fourfold rotation
symmetry enforces the edge-centered site energies to be equal,
i.e., εB = εC . Therefore, without loss of generality, we assume
a finite εA with vanishing εB, εC . The longest hopping ampli-
tude t ′′ is considered only when there is no site in between
the relevant hopping process [24]. Finally, λ is the strength
of the ISOC between the next-nearest-neighbor sites and

FIG. 2. Topological phase diagram in the single-layer Lieb lat-
tice as a function of t ′′ and εA in the presence of intrinsic spin-orbit
coupling λ = 0.35t : (a) in the case of the next-neighbor hopping
t ′(= 0.3t ) < 0.5t and (b) t ′(= 0.75t ) > 0.5t . The intersection be-
tween the different colored areas indicates the closing of one of
the band gaps. The Chern number distribution for spin-up bands is
arranged from the lowest to the highest bands as shown in the inset of
panel (a). The inset: The band structure with finite intrinsic SOC with
the tight-binding parameters t = 1, t ′ = 0.3, t ′′ = 0.2, εA = −1, λ =
0.35. All values are in the units of eV.

νi j = d̂
1
i j × d̂

2
i j = ±1. Here d̂

1
i j and d̂

2
i j denote the two unit

vectors connecting the second-neighbor sites as illustrated in
Fig. 1(a). For an explicit construction of Hsl and its associated
band structure, we refer to Appendix A. For completeness, we
also add a brief discussion on the effect of Rashba spin-orbit
coupling (spin nonconserving part) in Appendix B.

The above Hamiltonian can be written in Fourier space
as Hsl = ∑

k �
†
k (I2 ⊗ Hk,sl )�k where the spinor �k is com-

posed of three operators ck,α,σ on the three sublattices α =
A, B,C with spin-projection σ . We note that the Hamiltonian
is composed of two uncoupled spin-projected Hamiltonians
Hk,sl. The spin degeneracy is not broken as a result of the in-
version symmetric ISOC. Therefore, for subsequent analysis,
we focus on only one of the spin-projected Hamiltonians.

The ISOC incorporates nontrivial topological character in
the band structure for the single-layer Lieb lattice. For a better
understanding, we compute the topological Chern number
for each band. An example of the gapped band structure is
shown in the inset of Fig. 2(a). For a detailed evolution of
the ISOC band structure with various TB parameters, we
refer to Appendix A. The Chern number for a particular
isolated band εn

k is defined as Cn = 1
2π

∫
BZ Ωn(k)dk, where

Ωn(k) = ∂xAn
y (k) − ∂yAn

x (k) is the Berry curvature. Here,
An

i (k) = i〈ψn
k |∂i|ψn

k〉 is the Berry connection for the corre-
sponding band εn

k with eigenfunctions |ψn
k〉. In this paper, we

numerically compute the Chern numbers using the method of
link variables [38] and obtain the Chern number distribution
for the gapped bands (arranged from the bottom to the top-
most band) as C = (1, 0,−1) in the absence of εA, t ′′ and for
t ′/t < 0.5. The topological evolution of such Chern number
distribution as a function of t ′ and λ has been analyzed in
detail in an earlier theoretical work [39].

A. Chern number distribution

Here, we identify that the on-site energy εA and the longest
hopping t ′′ produce an even richer phase diagram with
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versatile topological characteristics. We note that for t ′ <

0.5t , the three bands from bottom to top have a distribu-
tion C = (1, 0,−1) for small t ′′. It eventually changes to
C = (0, 1,−1) for larger t ′′ as shown in Fig. 2(a). However,
for t ′ > 0.5t we note three different topological phases. For
small enough t ′′ and εA, the distribution is C = (1,−2, 1). It
changes to (0,−1, 1) for an intermediate t ′′ and eventually
becomes (0, 1,−1) for sufficiently large t ′′ [see Fig. 2(b)].
The interface between the colored regions (phases) in Fig. 2
indicates the absence of gaps in the band structure. For this
analysis, we fixed the magnitude of the ISOC as λ = 0.35t .
Apart from quantitative changes in the overall size of the
individual phases in Fig. 2, our analysis remains qualitatively
valid for arbitrary λ, provided all three bands are fully gapped.

III. STACKED LIEB LATTICES

We now focus on the main part of this paper and dis-
cuss the implications for the stacked Lieb layers. For the
subsequent analysis, we primarily consider two Bernal-type
stackings: AB and ABC. A discussion of the conventional
AA stacking is provided in Appendix C. For a pictorial il-
lustration of the bilayer setup, see Figs. 1(c) and 1(d). In
AB stacking, the top layer is shifted by a half-lattice vector
(a1/2) along the horizontal direction with respect to the bot-
tom layer, whereas in ABC stacking it is shifted by the same
amount along both axial directions (a1/2, a2/2). This frac-
tional translation in the Bernal-stacked configurations leads
to an emergent nonsymmorphic crystal structure, even though
the single-layer Lieb lattice is characterized by a symmorphic
space-group p4mm. A fundamental difference between these
two symmetries stems from how the spatial origin evolves
under the allowed transformations: Symmorphic symmetries
preserve the origin, whereas nonsymmorphic symmetries lead
to a fractional shift of the origin [40]. Specifically, the layer
groups associated with AB and ABC stackings are pmma and
p4/nmm, respectively [41–43].

The interlayer couplings are assumed to be (t⊥, J1, J2) as
illustrated in Figs. 1(c) and 1(d). The unit cell consists of
two dimer and two monomer sites [dashed lines in Figs. 1(c)
and 1(d)]. The dominant interlayer coupling t⊥ is considered
between the atoms in each layer within the dimer site, whereas
the remote hoppings J1, J2 are considered between the dimer
and the monomer sites [as illustrated in Figs. 1(c) and 1(d)].
Consequently, the Hamiltonian for the coupled system in
terms of a spinor �k = (c1Ak, c1Bk, c1Ck, c2Ak, c2Bk, c2Ck ) is
written as

Hk,ab/abc = Hk,sl ⊗ Iσ + Vk,ab/abc ⊗ σ1, (2)

where σ are the Pauli matrices representing the layer de-
grees of freedom, Iσ is a 2 × 2 identity matrix, Hk,sl is the
single-layer TB Hamiltonian defined in Eq. (1), and Vk,ab/abc

corresponds to the interlayer coupling Hamiltonian for the two
stackings defined as

Vk,ab = −2J1c1I3 − t⊥Γ1 − 4J2c1c2Γ4 − 2J1c2Γ6, (3a)

Vk,abc = −4J2c1c2I3 − 2J1c2Γ1 − 2J1c1Γ4 − t⊥Γ6, (3b)

FIG. 3. (a) and (b) The band structure along the high-symmetry
directions in the BZ for AB- and ABC-stacked bilayer Lieb lat-
tices, respectively. The TB parameters for each layer are chosen as
t = 1, t ′ = 0.3, t ′′ = 0.2, εA = −1 with the interlayer couplings
t⊥ = 0.45, J1 = 0.25, J2 = 0.15. All values are in the units of eV.
(c) and (d) The gapped spectrum with gap � in the presence of in-
tralayer intrinsic spin-orbit coupling λ = 0.35. The other parameters
remain identical as in panels (a) and (b). (e) and (f) The non-Abelian
Berry phases for the three two-band subspaces obtained from the
Wilson loop [Eq. (5)] for the AB-stacked bilayer Lieb lattice with
λ = 0.35. The apparently reduced C4 rotation in the AB stacking
leads to two inequivalent Wilson spectra along the two axial di-
rections in the BZ. For the ABC stacking the Wilson spectra (not
shown here) along both axial directions are equivalent and they are
identical to panel (e). (Color scheme: black: lowest QBCL; blue:
middle QBCL; and red: top QBCL).

Γ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, Γ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

Γ6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, (3c)

where ci = cos ki/2, ki = k · ai, and Γi’s are the traceless
Gell-Mann matrices. The energy spectrum is obtained by
diagonalizing the Hamiltonian Hk,ab/abc. The corresponding
band structures for both stackings are shown in Figs. 3(a)–
3(d). The top panel in Fig. 3 shows the dispersion without
the ISOC, whereas the middle panel displays the gapped
spectrum with intralayer ISOC. Here, the left and the right
panels correspond to AB and ABC stackings, respectively.
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Interestingly, the gapped band structures in (c) and (d) with
gap � are analogous to the indirect- and direct-gap semicon-
ductors, respectively.

A. Quadratic band crossing lines

The emergent nonsymmorphicity leads to a strikingly dif-
ferent feature in the resulting band structure—three pairs of
bands individually become degenerate along the extended
region of the BZ edge. In the case of AB stacking, the di-
rections X1 → N and X2 → M become inequivalent as shown
in Figs. 3(a) and 3(c) due to the partially broken C4-rotation
symmetry. It leads to band degeneracy only along X1 → M
whereas the degeneracy is lifted along X2 → M. In contrast,
for ABC stacking the band degeneracy exists along the en-
tire perimeter of the BZ as shown in Figs. 3(b) and 3(d).
To further understand the structure of these degenerate band
lines, we first focus on the lowest two bands in Figs. 3(a) and
3(b) without the ISOC as they remain well separated from
the other bands. Consequently, we consider the quasiparti-
cle dynamics near 1/6 filling (for the spin-polarized case).
In this case, the quasiparticles will mostly populate the two
A sites on each layer. To obtain an effective Hamiltonian,
we expand the 6 × 6 Hamiltonian in Eq. (2) close to the M
point and integrate out the other degrees of freedom [23] to
obtain

Heff
k,ab ≈

(
εA − t2

⊥ + t2k2

2t ′′ − εF

)
· I2 + 2t⊥tk1

2t ′′ − εF
σ1, (4a)

Heff
k,abc ≈

[
εA + t2(2t ′′ − εF)k2

S

]
· I2 + 2t⊥t2k1k2

S σ1, (4b)

where S = t2
⊥ − 4t ′′2 + 4t ′′εF − ε2

F and εF is the chemical
potential at 1/6 filling. Here, σ1 is the Pauli matrix corre-
sponding to the layer degrees of freedom. For simplicity,
we ignored the long-range interlayer hopping amplitudes
J1, J2, which will further renormalize the Fermi velocity.
For both stackings, we obtain quadratic dispersion along
M → X1 following Eqs. (4a) and (4b). A similar analysis
of the effective Hamiltonian around X1 yields analogous
quadratic dispersions for these band crossing lines in both
AB and ABC stackings. Here, we emphasize that the cor-
responding dispersions, of course, do not remain quadratic
all along the BZ edge as is evident from Figs. 3(a) and
3(b). However, because of the asymptotic behavior of the
band crossing lines at X and M points, we designate them
as QBCLs.

Next, we analyze the effects of ISOC on the double layer
system and explore the possibility of any topological tran-
sitions. The degenerate QBCL structure in the spectrum is
preserved in both AB- and ABC-stacked bilayer systems [see
Figs. 3(c) and 3(d)], even in the presence of ISOC. We envis-
age that the origin of this degeneracy for the QBCLs is tied to
the fractional glide transformations {gx|( 1

2 , 0)} and {gy|(0, 1
2 )}

of the underlying layer groups. For perpendicular axial glide
transformation, the QBCL degeneracy remains intact (see Ap-
pendix D for details) [43,44]. Here, ( 1

2 , 0), (0, 1
2 ) represent the

half-translations along respective crystal directions. We ob-
serve that within a finite region of the parameter space in our
model, the three different QBCLs form two-band subspaces

well separated by the two bandgaps of almost equal magnitude
� [see Figs. 3(c) and 3(d)].

B. Wilson loop computation

As the spectra in Figs. 3(a)–3(d) contain nonseparable
bands, we utilize a different scheme (from the monolayer
Lieb lattice case) to compute the Chern number by analyzing
the multiband non-Abelian Berry phases [45–49] for each of
the two-band subspaces. The Chern number is then computed
from the nontrivial windings of these Berry phases. The latter
are computed from the overlap matrices Fmn(k; k + �k) =
〈um(k)|un(k + �k)〉, where |um(k)〉 are the Bloch wave func-
tions obtained by diagonalizing the Hamiltonian in Eq. (2).
We multiply these overlap matrices to construct the Wilson
loop operator,

Wkα
=

∏
kβ

F(kβ |kβ + �kβ ), α, β = x, y, (5)

where F(kβ |kβ + �kβ ) is the 2 × 2 matrix composed of Fmn

for each of the two-band subspaces, and 
 implies path-
ordered product of the overlap matrices along a closed loop
in the two-dimensional BZ, i.e., for kβ’s ranging between
0 and 2π . For the purpose of this paper, we consider two
different loops in the BZ: (i) By fixing kx, we consider a
Wilson loop along ky between 0 and 2π , and (ii) for fixed ky,
the loop is considered from kx = 0 to kx = 2π . Because the
discretization of the BZ incorporates nonunitary effects on the
overlap matrices, one needs to fix a gauge when performing
the numerical computation. Here, we implement a periodic
gauge at the two ends of the respective Wilson loop, i.e., at
kβ = 0 and kβ = 2π . We set |um(k0 + G)〉 = e−iG·r |um(k0)〉,
where k0 = 0 and G corresponds to the reciprocal lattice vec-
tor. For the rest of the k points in the loop, such a gauge fixing
is not required [46]. The Berry phases φk⊥ are then computed
from the eigenvalues λk‖ of the Wilson loop operator Wk‖ as
φk‖ = −Im ln λk‖ .

The non-Abelian Berry phase spectra (along both the axial
directions in the BZ) for AB-stacked bilayer Lieb lattice with
ISOC are shown in Figs. 3(e) and 3(f). For the lowest QBCL
(black curve), we note the Berry phase does not wind at all
between π and −π , and, hence, the Chern number for the
lowest two-band subspace is 0. However, the middle (blue
curve) and top (red curve) QBCLs along with their respec-
tive two-band subspaces contain a nonzero Chern number as
the respective Berry phases exhibit nontrivial winding. By
counting the winding number, we find that the middle and
top QBCLs acquire Chern numbers 2 and −2, respectively.
Note that the horizontal glide in AB stacking reduces the
C4-rotation symmetry, and, hence, the Wilson spectra along
the two axial directions in the BZ become inequivalent as
contrasted in Figs. 3(e) and 3(f). In comparison, for ABC
stacking the glide is applied in both the axial directions, and,
hence, the Wilson spectra (not shown here) are equivalent
along both directions and are identical to Wkx eigenvalues
for AB-stacked case [Fig. 3(e)]. However, the Chern num-
ber distribution (bottom to top QBCLs) remains the same
as (0, 2,−2). Since, the analysis is performed for one spin
component (see the monolayer discussion), we can compute
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FIG. 4. The spectrum for trilayer (a) and quadrilayer (b) AB-
stacked Lieb lattices with the emergent QBCLs in the presence
of intrinsic spin-orbit coupling in each layer. The associated non-
Abelian Berry phase for the middle band subspace computed from
the Wilson loop operator for the trilayer (c) and the quadrilayer (d),
respectively.

the spin Chern number Cspin as Cspin = C↑ − C↓. As the Chern
number for spin-up and spin-down components differs in
sign for a time-reversal symmetric system [39,50], we obtain
Cspin = (0, 4,−4), which has implications for the spin-Hall
conductivity σsh = e2/h̄

∑
ε<εF

Cspin [51].

C. Multilayer stacking

Motivated by the observation of Chern number 2 for the
bilayer stacking, we now consider a multilayer generaliza-
tion. Considering the two basic stackings (AB and ABC), the
number of possible orientations for an N -layer system grows
exponentially as 2N−1. However, for simplicity we always
keep the stacking between any two adjacent layers as either
AB or ABC type. The interlayer couplings [t⊥, J1, and J2 as
in Figs. 1(c) and 1(d)] are considered only between the two
adjacent layers. Again within a finite region of our parameter
space, we note that the spectrum is divided into three band
subspaces well separated from each other. For an N -layer sys-
tem, each band subspace contains N bands with �N

2 
 QBCLs
along the BZ edge. Consequently, for even number of layers
the spectrum consists of only QBCLs along the BZ edge [see
Fig. 4(b)], whereas for odd number of layers, each of the three
band subspaces contains one lone band [see Fig. 4(a)] along
with �N

2 
 QBCLs.
The other properties of spectrum simply follow from our

analysis of the bilayer Lieb system and hold true for the
multilayer setup as well. The topological character of the
gapped bands are again analyzed with the Wilson loop tech-
nique. Consequently, we compute the non-Abelian Berry
phases and find that for the N -layer system, the Chern
number distribution is arranged as C = (0,N ,−N ). An illus-
tration of the band structure and the associated non-Abelian

Berry phases (for the middle band subspace) is shown in
Figs. 4(a) and 4(b) for the AB-stacked tri-(odd) and quadri-
(even-) layer setups. We have explicitly checked the validity
of this result for the number of layers up to ten (see Ap-
pendix E for more details). Hence, we propose it to be a
generic feature of the nonsymmorphic Lieb multilayers. The
layer number N naturally offers tunability to the topological
Chern number, and, hence, is measurable in the spin-Hall
conductivity σsh.

IV. DISCUSSION AND CONCLUSION

The Lieb lattice is unique in that it provides an ideal
depleted lattice in two dimensions and also has its depleted
three-dimensional analog. Moreover, it is the sheared limit of
the kagome lattice when the 120◦ angle becomes 90◦. Inter-
estingly, the kagome lattice is maximally frustrated whereas
the Lieb lattice is unfrustrated when one considers spin phe-
nomena on such lattices. For in-between shear angles, there
is an intermediate Lieb-kagome (or depleted oblique) lattice
[22] which interpolates between the two limiting lattices and
is of interest in its own right. The stacked Lieb lattice pro-
vides an even more elaborate platform for exploring novel
topological phenomena, phases, and transitions—QBCLs and
higher Chern numbers being two such examples. In doing
so we had to generalize the Wilson loop method to QBCLs,
which is a tour de force technique for extended band de-
generacies and can be adopted in a wide variety of physical
contexts.

In conclusion, our main findings are as follows: (i) A
bilayer Lieb lattice provides a natural harbor for hosting
QBCLs, (ii) QBCLs are a generalization of QBCPs, and
(iii) nonsymmorphicity is a necessary condition for QBCLs.
To calculate non-Abelian Berry phases and Chern numbers
around QBCLs we devised a powerful Wilson loop method
computationally [52]. (iv) We found higher Chern numbers
in the band subspace and (v) novel topological transitions
including phases involving higher Chern numbers. (vi) The
multilayer Lieb lattice band structure is labeled by Chern
numbers that are proportional to the number of layers. Given
that Lieb lattices have been experimentally realized recently
in photonic, electronic, and atomic settings [29–36] with the
possible fabrication of the bilayer Lieb lattice our results in-
dicate that unique topological signatures, such as spin Chern
numbers, associated spectral functions, etc., can be measured
in realistic materials. Recently, a bilayer Lieb lattice system
has been fabricated on an acoustic crystal [53] and has been
shown to possess similar QBCL-like features. Finally, we
mention that Mielke and T3 are among the possible other
lattices [54,55] where the physics discussed here can also be
realized. It would also be interesting to analyze a bosonic
analog of our system [53].
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APPENDIX A: SINGLE-LAYER LIEB LATTICE:
INTRINSIC SPIN-ORBIT COUPLING

In this Appendix, we analyze the evolution of the Lieb
lattice band structure with various TB parameters as incorpo-
rated in Eq. (1) in the main text. The Hamiltonian is rewritten
as

Hsl =
∑

iσ

εic
†
iσ ciσ − t

∑
〈i j〉σ

c†
iσ c jσ − t ′ ∑

〈〈i j〉〉σ
c†

iσ c jσ − t ′′ ∑
〈〈〈i j〉〉〉σ

c†
iσ c jσ

︸ ︷︷ ︸
H0

+iλ
∑
〈〈i j〉〉

νi jc
†
iασ z

αβc jβ, (A1)

where the parameters are defined as in the main text. As ISOC does not break the spin degeneracy, we consider only the
spin-up electrons as mentioned in the main text. The Hamiltonian in Eq. (A1) is now rewritten in terms of a three-spinor
�k = (cAk, cBk, cCk )T as

Hsl =
∑

k

�
†
kHk�k,

Hk,sl =

⎛
⎜⎝

εA −2t cos k1
2 −2t cos k2

2

−2t cos k1
2 −2t ′′ cos k2 −4t ′ cos k1

2 cos k2
2 − 4iλ sin k1

2 sin k2
2

−2t cos k2
2 −4t ′ cos k1

2 cos k2
2 + 4iλ sin k1

2 sin k2
2 −2t ′′ cos k1

⎞
⎟⎠, (A2)

where c†
αk creates an electron on sublattice site α with mo-

mentum ki = k · ai. The unit vectors are assumed to be a1 =
(a, 0) and a2 = (0, a) with a being the lattice constant. The
energy spectrum is obtained by diagonalizing the Hamilto-
nian Hk,sl. The corresponding band structures for different
TB parameters are shown in Figs. 5(b)–5(e) (solid lines).
The ideal Lieb lattice (a finite hopping amplitude t with
all other parameters vanishing) has a completely flat and
two dispersing bands which cross each other at the M point
in the BZ as shown in Fig. 5(b). We note that the com-

plete flatness of the middle band is reduced to a partial one
along the BZ edge ( X → M point) in the presence of the
next-nearest-neighbor hopping t ′. With further increasing the
strength of t ′, this middle band becomes more dispersive and
eventually touches one of the two other dispersing bands at
the � point at t ′ = 0.5t as shown in the inset of Fig. 5(c)
[39]. Whether the middle band touches the top or bottom
band depends on the sign of the hopping parameters. Yet, in
both these cases, all the three bands cross each other at the
M point [24,39].

FIG. 5. (a) The square-shaped Brillouin zone for the two-dimensional Lieb lattice with high-symmetry points labeled by the filled circles.
(b)–(e) A comparison between the band structures of the Lieb lattice with (dashed lines) and without (solid lines) the spin-orbit coupling
along the high-symmetry directions in the Brillouin zone for various TB parameters: (b) the nearest-neighbor hopping t = 1 with all the other
parameters set to zero, (c) next-neighbor hopping t ′ = 0.3 with finite t = 1 (the rest of the parameters are zero), (d) t = 1, t ′ = 0.3, t ′′ =
0.0, εA = −1, and (e) t = 1, t ′ = 0.3, t ′′ = 0.2, εA = −1. The spin-orbit coupling strength is λ = 0.35t . The inset (c): The middle band
touches the top band at the � point for t ′ = 0.5t . All values are in the units of eV.
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FIG. 6. (a) The spectrum for the monolayer Lieb lattice with
Rashba spin-orbit coupling. The RSOC strength is chosen to be λR =
0.4 eV. There are six bands as the spin conservation is destroyed.
(b) The spectrum in the presence of both the Rashba and intrinsic
SOC (λ = 0.2 eV). The ISOC further splits the bands. The other TB
parameters remain the same as in Fig. 5.

The band crossing at the M point in Figs. 5(b) and 5(c)
provides an impression that two of the bands cross each other
linearly, and there is a Dirac point. However, the structure
of the low-energy quasiparticles around the M point is dif-
ferent from a Dirac structure. The three-band crossing point
is the example of an accidental crossing, which is, indeed,
eliminated in the presence of a finite on-site energy εA or
second-neighbor hopping t ′′. Finite εA induces a gap at the
M point where the top two bands are separated from the
bottom band [see Fig. 5(d)], still retaining the partial flatness
of the middle band along the BZ edge. A finite t ′′ completely
destroys the flatness, as shown in Fig. 5(e). However, the band
degeneracy at the M point is still preserved [see Figs. 5(d)
and 5(e)], yielding a QBCP [24]. In the presence of a finite
ISOC all the bands are gapped from each other as illustrated
by the dashed blue lines in Figs. 5(b)–5(e). The consequent
topological classification is discussed in the main text.

APPENDIX B: SINGLE AND BILAYER LIEB LATTICE:
RASHBA SPIN-ORBIT COUPLING

As mentioned in the main text, here we discuss the implica-
tion of the Rashba SOC (RSOC) in the monolayer Lieb lattice.
For simplicity, we ignore the intrinsic SOC and only focus
on the spin nonconserving Rashba effect. The corresponding
Hamiltonian is written as

Hsl-R = H0 + iλR

∑
〈i j〉αβ

c†
iα (σ × d̂ i j )zc jβ, (B1)

where λR is the strength of the RSOC and d̂ i j is the unit vector
connecting the nearest-neighbor sites. Since the SOC breaks
the spin conservation, the Hamiltonian can be written in the
momentum space as Hsl-R = ∑

k �
†
kHk,sl-R�k with

Hk,sl-R =
(Hk,sl(λ = 0) Hk,R

H†
k,R Hk,sl(λ = 0)

)
, (B2)

where Hk,R is a 3 × 3 Hamiltonian written as

Hk,R =

⎛
⎜⎝

0 −iλR sin k1
2 −λR sin k2

2

iλR sin k1
2 0 0

−λR sin k2
2 0 0

⎞
⎟⎠. (B3)

The spectrum for the monolayer system with Rashba SOC is
obtained by diagonalizing the Hamiltonian in Eq. (B2). The

FIG. 7. The band structure for the (a) AB- and (b) ABC-stacked
bilayer Lieb lattices in the presence of both the Rashba and the
intrinsic SOC. The TB parameters for each layer are chosen the same
as before in Fig. 6, whereas the interlayer couplings remain the same
as in Fig. 3 in the main text. The degenerate QBCL bands are present
along the BZ edge.

band structure is shown in Fig. 6(a). As RSOC breaks the spin
degeneracy, there are six bands as compared to the three bands
in Fig. 5. For completeness, we also show the band structure
with both the Rashba and intrinsic SOC.

Finally, we provide the details of the analysis for the
nonsymmorphically stacked bilayer systems: AB- and ABC-
stacked Lieb lattices with both the Rashba and intrinsic SOC.
Surprisingly, the QBCL structure remains preserved even in
the presence of Rashba SOC in both layers. Note that, we
consider the sign of the RSOC (λR) to be the same in both lay-
ers. The corresponding spectrum for AB- and ABC-stacked
bilayer Lieb lattices is shown in Figs. 7(a) and 7(b). Again the
broken spin degeneracy due to the Rashba SOC leads to six
(instead of three) QBCLs along the BZ edge.

APPENDIX C: AA-STACKED BILAYER LIEB LATTICE

In the main text, we focused on two unique stackings:
AB and ABC with the emergent nonsymmorphic structure.
Here, we analyze the properties of the band structure for the
conventional AA-stacked bilayer Lieb lattice. In comparison
to Eq. (2) in the main text, the corresponding Hamiltonian is
written as

Hk,aa = Hk,sl ⊗ Iσ + Vk,aa ⊗ σ1, (C1a)

Vk,aa = −t⊥c1I3 − 2J1c1Γ1 − 2J1c2Γ4 − 4J2c1c2Γ6, (C1b)

Γ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, Γ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

Γ6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, (C1c)

where ci = cos ki/2 and Γi’s are the traceless Gell-Mann ma-
trices as discussed in the main text. To illustrate the evolution
of the single-layer QBCP, we assume all the TB parameters
in Eq. (C1a) to be nonzero and further consider nonvanish-
ing interlayer couplings t⊥, J1, and J2. The unit cell for AA
stacking is composed of three dimer sites as illustrated in
Fig. 8(a). The band structure (without intrinsic spin-orbit cou-
pling) is obtained by diagonalizing the Hamiltonian Hk,aa. The
spectrum for the AA-stacked bilayer Lieb lattice is shown in

235125-7



SAIKAT BANERJEE AND AVADH SAXENA PHYSICAL REVIEW B 103, 235125 (2021)

FIG. 8. (a) An illustration of the bilayer Lieb lattice with conventional AA stacking. The unit cell for the effective 2D bilayer lattice is
composed of three dimer sites as marked by the dashed lines. The interlayer couplings (t⊥, J1, J2) are assumed between the dimer sites. The band
structure [without (b) and with (c) the intrinsic spin-orbit coupling] along the high-symmetry directions in the BZ, obtained by diagonalizing
the Hamiltonian in Eq. (C1a). The tight-binding parameters for each layer are the same as in Fig. 5(e) with nonvanishing interlayer couplings
t⊥ = 0.45, J1 = 0.25, and J2 = 0.15. All values are in units of eV. The spin-orbit coupling strength λ = 0.35 in panel (c).

Fig. 8(b). Quite intuitively, we note that the individual QBCP
in each layer eventually generates two distinct QBCPs at the
M point of the BZ. Based on this result, we conclude that
an AA-stacked N -layer Lieb lattice hosts distinct N QBCPs
at the M point in the corresponding spectrum. The QBCPs
become gapped and are lost when the intrinsic spin-orbit
coupling is turned on for each layer. Unlike the other stackings
discussed in detail in the main text, we do not observe any
extended degeneracy along the BZ edge. It becomes evident
that the QBCLs are only generic features of the emergent non-
symmorphic structure in the case of AB and ABC stackings.

APPENDIX D: SYMMETRY ANALYSIS FOR THE
DEGENERATE QBCLs IN THE BILAYER LIEB LATTICE:

AB AND ABC STACKINGS

In the main text, we mentioned that the degenerate QBCL
structure is probably tied to the fractional glide transforma-
tions for AB- and ABC-stacked bilayer Lieb systems. In order
to analyze the robustness of the QBCL bands, we employ
various distortions to the nonsymmorphically stacked bilayer
Lieb systems. First, we apply a uniaxial strain to the lattice. In
this case, the apparent C4-rotation symmetry is reduced to a
C2-rotation symmetry. Surprisingly, in this case the spectrum
still contains the degenerate QBCL bands along the edge of
the BZ (see Fig. 9).

However, for an oblique analog of the stacked Lieb sys-
tems, the QBCLs are completely destroyed in the band
structure. To demonstrate this, we consider two coupled

FIG. 9. The spectrum for (a) AB- and (b) ABC-stacked bilayer
Lieb lattices under uniaxial strain along the horizontal direction. In
both cases, the QBCL bands exist along the edge of the Brillouin
zone. For AB stacking the degeneracy extends only along X1 → M
(reduced path because of the uniaxial strain). The tight-binding pa-
rameters are chosen to be the same as in Fig. 3 in the main text.

oblique Lieb lattices in the two Bernal-stacked configurations
(AB and AB�) as shown in Figs. 10(b) and 10(c). The filled
and double-filled circles in the unit cell label the monomer
and the dimer sites, respectively. For the double-filled circles,
the outer color specifies atoms on the top layer. Each mono-
layer oblique Lieb structure, characterized by angle θ as in
Fig. 10(a), is obtained by applying a continuous shear along
the (11) direction to an ideal Lieb lattice. For θ = 90◦ we
obtain the Lieb lattice, whereas for θ = 120◦ we generate the
kagome lattice. Here, we build upon the band-structure cal-
culation for the single-layer oblique Lieb lattice in Ref. [22],
and show that an arbitrary small shear destroys the degeneracy
lines [see Figs. 10(d)–10(i)].

For simplicity, the single-layer Hamiltonian for the oblique
Lieb lattice is constructed in the presence of only two
tight-binding parameters: nearest-neighbor hopping t and the
next-nearest-neighbor hoppings t ′

1, t ′
2, respectively [22]. As θ

increases from 90◦ to 120◦, the hopping t ′
1 increases, and

t ′
2 decreases. The lattice unit vectors are defined as a1 =
(1, 0) and a2 = (− cos θ, sin θ ). The corresponding hexag-
onal parallelogon BZ is shown in Fig. 10(a). The reciprocal
lattice vectors are obtained as b1 = 2π (1, cot θ ) and b2 =
2π (0, csc θ ). Consequently, the � → X path is determined
by π (1, cot θ ). The path from the X to the K point is obtained
by finding the vector perpendicular to the previous vector
as (− cos θ, sin θ ). However, pinpointing the K point in the
oblique Lieb BZ is a little tricky. To determine the K point,
we first find the M point which is easily obtained as

M =
�b1 + �b2

2
= π (1, cot θ + csc θ ). (D1)

Now, we find a vector which is perpendicular to the one
connecting the � point to the M point. The goal is now to
determine the intersecting point between this vector and the
vector along the X to the K point. The latter one is easily
obtained from the vector � → X . Consequently, we obtain
the K point as

K = π

(
1 − 2 cos θ

1 − cos θ
, cot θ + cot

θ

2

)
. (D2)
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FIG. 10. (a) A pictorial representation of a single-layer oblique Lieb lattice [22] and its corresponding Brillouin zone. The high-symmetry
points are denoted by the filled red circles in the BZ. (b) and (c) A schematic of the bilayer oblique Lieb lattice stacked in AB and AB�

configurations, respectively (c axis top view). The monomer sites are labeled by filled circles whereas the filled double circles signify the
dimer sites. The outer color marks which sublattice site is on the top layer. The color coding for each layer is chosen in the same way as in
Fig. 8(a). (d)–(f) Evolution of the band structure as a function of the oblique angle θ (97.5◦ → 105◦ → 112.5◦) for the AB stacking. (g)–(i)
Similar evolution for the AB� stacking. The tight-binding parameters are assumed as t = 1, t⊥ = 0.45, J1 = 0.25. The other parameters
t ′
1, t ′

2, JB
2 , and JC

2 are interpolated between the Lieb and the kagome limits. The Brillouin zone edge is illustrated by the region between X
and M points (dashed arrow). All values are in the units of eV.

The modified single-layer Hamiltonian is written as

Hk,sl =

⎛
⎜⎝

0 −2t cos k1
2 −2t cos k2

2

−2t cos k1
2 0 −2t ′

1 cos
( k1+k2

2

) − 2t ′
2 cos

( k1−k2
2

)
−2t cos k2

2 −2t ′
1 cos

( k1+k2
2

) − 2t ′
2 cos

( k1−k2
2

)
0

⎞
⎟⎠, (D3)

where ki = k · ai and the parameters t, t ′
1, and t ′

2 have been defined earlier. In a similar fashion to the intralayer hoppings
t ′
1, t ′

2, we assume different interlayer couplings t⊥, J1, JB
2 , and JC

2 [not shown in Figs. 10(b) and 10(c)]. The first two couplings
t⊥, J1 are defined in the same way as in the main text, whereas the remote couplings JB,C

2 become dependent on angle θ : JB
2

monotonically increases to J1 and JC
2 keeps decreasing as θ varies between 90◦ and 120◦. The bilayer coupling Hamiltonian for

AB and AB� stackings are defined as

Hk,ab/abθ = Hk,sl ⊗ Iσ + Vk,ab/abθ ⊗ σ1, (D4a)

Vk,ab =

⎛
⎜⎜⎜⎝

2J1 cos k1
2 t⊥ Sk

t⊥ 2J1 cos k1
2 2J1 cos k2

2

Sk 2J1 cos k2
2 2J1 cos k1

2

⎞
⎟⎟⎟⎠,

Vk,abθ =

⎛
⎜⎜⎜⎝

Sk 2J1 cos k2
2 2J1 cos k1

2

2J1 cos k2
2 Sk t⊥

2J1 cos k1
2 t⊥ Sk

⎞
⎟⎟⎟⎠, (D4b)
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where Sk is defined according to

Sk = −2JB
2 cos

(
k1 + k2

2

)
− 2JC

2 cos

(
k1 − k2

2

)
. (D5)

The band structure for the two different Bernal-type stack-
ings are obtained by diagonalizing the bilayer Hamiltonian
[Eq. (D4a)]. The corresponding spectra for the two stack-
ings are shown in the middle and bottom panels in Fig. 10,
respectively. The broken C4-rotation symmetry in both cases
results into gapped bands along the BZ edge: X → K → M,
where K is the edge point in the oblique BZ [Fig. 10(a)].
The variations of the spectrum for different oblique angles
θ = 97.5◦, 105.5◦, 112.5◦ are shown in Figs. 10(d)–10(f) and
10(g)–10(i) for AB and AB� stackings, respectively. For θ =
120◦, we obtain a bilayer kagome structure and reproduce the
spectrum analyzed in Ref. [56]. As θ decreases progressively,
the gap between the pair of bands along the BZ edge also
decreases and eventually vanishes at 90◦ where the QBCLs
reappear as in Figs. 3(a) and 3(b) in the main text.

Based on the above analysis, we anticipate that the
degenerate QBCL bands are a generic feature of nonsymmor-
phically stacked 2D Bravais lattices with dihedral point-group
symmetry [42].

APPENDIX E: MULTILAYER LIEB LATTICE:
WILSON LOOP ANALYSIS

In this Appendix, we provide the tight-binding analysis
for the multilayer stacked Lieb lattices. As the properties of
the band structure for the bilayer stacked lattice are simply
inherited in the multilayer structure, we primarily focus on
the band structure for the AB stacking. Here, we show the
dispersion for nine- and ten-layer stackings. For each case,
the stacking is considered to be of the AB type in between any
two adjacent layers [we consider the interlayer coupling again
the same as (t⊥, J1, J2)]. The band structures for the two cases
are shown in Figs. 11(a) and 11(b) for nine and ten layers, re-
spectively. Again, we observe that within a finite region in the
parameter space, the spectrum consists of three gapped band
subspaces, and each of the subspaces contains QBCLs. For
an odd number of layers (the nine-layer or nonalayer stacked
case) there are four QBCLs and one lone band, whereas for

FIG. 11. The band structure for the (a) nine- and (b) ten-layer
stacked Lieb lattice system in the presence of only intralayer intrinsic
spin-orbit coupling λ. The stacking is considered of only the AB type
between any two adjacent layers. The tight-binding parameters used
are chosen to be the same as used in the main text. (a) There are four
QBCLs and one lone band in each band subspace, whereas (b) each
band subspace contains only QBCLs (five in this case) and no lone
band.

an even number of layers (the ten-layer or decalayer stacked
case), the subspace only consists of QBCLs (in this case the
number is 5). Of course, the same qualitative features hold
true for the corresponding ABC-stacked cases (not shown
here). We compute the Wilson loop spectrum for each of the
band subspaces and analyze the winding of non-Abelian Berry
phases (in the same way as explained in the main text). Con-
sequently, we obtain the Chern number distribution for these
two cases arranged as C = (0, 9,−9) and C = (0, 10,−10),
for nine and ten layers, respectively.

We finally illustrate the key steps of the computation of
the Wilson loops. As stressed in the main text, the gauge
fixing is only needed for the two end points of a Wilson loop.
Consequently, we consider a periodic gauge and incorporate
such features by suitably constructing a matrix TG [48] such
that the following constraint is satisfied

TG · Hk+G = Hk · TG, (E1)

where G is the reciprocal lattice vector and Hk is the corre-
sponding Hamiltonian of the underlying system. In the last
step of the Wilson loop computation, we consider the follow-
ing Bloch function at the end point of the loop as:

|um(k + G)〉 = TG · |um(k)〉. (E2)
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