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Ballistic transport through quantum point contacts of multiorbital oxides
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Linear and nonlinear transport properties through a quantum point contact based on oxides two-dimensional
electron gas is examined using the tight-binding method and the k · p approach. The ballistic transport is
analyzed in contacts realized at the (001) interface between band insulators LaAlO3 and SrTiO3 by using the
Landauer-Büttiker method for many sub-bands derived from three Ti 3d orbitals (dyz, dzx , and dxy) in the presence
of an out-of-plane magnetic field. We focus especially on the role played by the atomic spin-orbit coupling and
the inversion-symmetry-breaking term. Three different transport regimes stem out: The first, at low energies,
involving the first dxy-like sub-bands, where the conductance quantization is clearly observed; a second one, at
intermediate energies, entailing further dxy-like sub-bands, where the sub-band splitting induced by the magnetic
field is quenched; the third one, where the mixing between light dxy-like, heavy dyz-like, and dzx-like sub-bands
is so strong that the conductance plateaus turn out to be very narrow. Very good agreement is found with recent
experiments exploring the transport properties at low energies.
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I. INTRODUCTION

Since the first evidence of the conductance quantization
in 1988 [1], quantum point contacts (QPCs) have played a
relevant role in mesoscopic physics. In fact, they naturally of-
fer evidence of the quantum-mechanical nature of the charge
carriers through a constriction whose width is comparable
with the Fermi wavelength. The observation of well-defined
plateaus in the conductance of the device, quantized in in-
teger values of 2e2/h (where e is the electron charge and h
is Planck’s constant), indicates ballistic transport involving a
limited number of conduction channels which are spin de-
generate [2]. The quantization of G can be explained from
the formation of one-dimensional (1D) sub-bands in the con-
striction due to the lateral confinement. Then G is given by
the Landauer-type formula [3] G = 2Ne2/h, with N being the
number of occupied 1D sub-bands. A detailed analysis has
shown that a variation of the gate voltage VG changes the
width as well as the electron density of the constriction. Both
mechanisms move the Fermi energy EF in the channel through
the 1D sub-bands and, whenever it passes a sub-band bottom,
G changes by the quantized amount of 2e2/h.

Ballistic constrictions are routinely fabricated in semicon-
ducting heterostructures such as AlGaAs/GaAs [4] by means
of a metallic split-gate, which, through the application of
a negative gate voltage VG, forms a constriction by elec-
trostatic depletion. Moreover, the very low carrier density
(≈1011 cm−2) results in large values of the Fermi wave-
length λF (≈50 nm), and the extreme cleanliness of these
heterostructures also results in a large mean-free path that

can exceed several micrometers at low temperatures [5].
However, beyond these conventional materials, technological
efforts have been put forward for the fabrication of nan-
odevices in thin films and heterostructures based on oxides
exploiting the multifunctionality and the extreme sensitivity
of these materials to external perturbations [6]. Recently, the
two-dimensional electron gas (2DEG) formed at the (001)
interface between band insulators LaAlO3 and SrTiO3 (LAO-
STO) [7] has been much studied not only for its spin-orbit,
multiband, and superconducting properties [8–12], but also
for the possibility to realize nanostructures in the normal
and superconducting state [13–15]. Moreover, recent theo-
retical works have suggested the 2DEGs at the LAO-STO
interface as possible candidates for the realization of topolog-
ical superconducting phases in quasi 1D nanowires [16–18].
However, in comparison with semiconductor-based het-
erostructures, this 2-DEG typically involves a higher carrier
density (≈1013 cm−2) and has a reduced λF (≈10–50 nm),
imposing stronger constraints on the practical realization of
such devices.

At the LAO-STO interface, the conduction band is formed
by coupling the t2g3d orbitals (dxy, dxz, and dyz) at neighboring
Ti lattice sites through the 2p orbitals of the oxygen atoms.
Under strong quantum confinement in the direction perpen-
dicular to the interface, the degeneracy of the t2g bands is
lifted, resulting in a rich and complex band structure with
discrete 2D states separated by typical energies of tens of
meV [19,20]. The quantization of conductance in a ballistic
QPC formed by electrostatic confinement of the LAO-STO
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FIG. 1. Schematic view of the QPC simulated within the TB
method. The thinnest size is made of 64 sites with a lattice constant
a = 0.39 nm; the parabolic modulation of the transverse hard-wall
confinement has a coefficient β = 0.01 nm−1; the length of the TB
system ensures the convergence of the results for the conductance.

2-DEG with a split gate was recently demonstrated in the
normal state [15]. Moreover, the measurement of the g factor
under a magnetic field applied in the direction normal to
the interface was performed on the n = 2 conductance step,
providing a value in the range 0.85–0.9, which differs from
that of free electrons and is usually ascribed to the effect of
strong spin-orbit coupling [9,21]. By adding a finite source-
drain bias voltage VB, a comprehensive spectroscopic study
of the low energy levels inside the QPC was performed in
the depleted regime [15]. However, while in the depleted
regime, only the lowest dxy energy bands are filled, at higher
gate voltages or high carrier doping a multiband transport
can occur and stronger features related to the multi-orbital
nature of the subbands can emerge in the ballistic transport
of an oxide based constriction. This scenario encompasses
the comprehension of two effects in the ballistic transport of
oxide-based QPCs: The role of the atomic spin-orbit coupling
and the inversion-symmetry-breaking term, that can break the
picture of independent orbital channels and the multiband
transport that takes place at higher doping densities.

In this paper, we theoretically analyze the ballistic transport
through QPCs of multi-orbital 2DEG at the LAO-STO (001)
interface modeling the normal-state constriction of 25 nm
minimal size investigated in a recent experimental work [15].
To analyze the electronic structure of the QPC, we adopt
both the k · p approach and the tight-binding (TB) method,
including the effects of an applied magnetic field normal to
the interface. In Fig. 1, we report a schematic view of the
QPC simulated within the TB method with a curvature ex-
tracted from the recent experiment in Ref. [15]. We remark
that the curvature is smooth, therefore the electron trans-
port through the QPC is well within the so-called adiabatic
regime [1,22]. Magnetoconductance and nonlinear transport
properties have been calculated in the ballistic regime with
analytical approaches appropriate for an adiabatic QPC at low
carrier densities and with TB-based state-of-the-art numerical
methods at all the densities, including multi-orbital effects.

We make a comparative analysis of the normal-state
conductance, the differential conductance, and the transcon-

ductance in the absence and presence of a magnetic field
normal to the interface finding three distinct ballistic transport
regimes. The first one characterizes the low energy range
since it involves only the first dxy-like sub-bands. In the ab-
sence of magnetic field, the conductance is quantized in steps
of 2e2/h, while, as expected, in the presence of the field,
the conductance is quantized in steps of e2/h. The second
transport regime entails dxy-like sub-bands at higher energies
where standard strengths of the magnetic field do not induce
a splitting of the sub-bands hampering the conductance quan-
tization in steps of e2/h. Within these two transport regimes,
localized pin-like defects on the external sides of the QPC are
able to induce conductance oscillations whose amplitude gets
enhanced with increasing energy. Therefore, the conductance
quantization is clearly visible in the first transport regime,
while it gets altered in the second one. We point out that the
theoretical results provide an accurate description for many
features of the experimental data shown in Ref. [15], including
also the presence of conductance oscillations. Finally, the
third transport regime is at high energies where light dxy-like
strongly hybridize with heavy dyz-like and dzx-like sub-bands
so that the conductance quantization is weak against external
perturbations.

The paper is organized as follows. In Sec. II, the model
Hamiltonian for an oxide strip is presented and its energy
spectrum is discussed. In Sec. III, the low-energy transport
is investigated by using analytical approaches. In Sec. IV,
the transport is examined in all the energy ranges by the TB
method, with the last paragraph devoted to the analysis of
the transport properties when localized defects are present
on opposite sides of the QPC. Finally, conclusions and fur-
ther discussions are given in Sec. V. Appendix A provides
some details on the k · p method and the analytical approach
used for calculations of the transport in the limit of low
energy.

II. MODEL

The model Hamiltonian we employ for transition-metal
(TM) oxides describes the coupling of the t2g orbitals (dxy,
dxz, and dyz) at neighboring Ti lattice sites through the 2p
orbitals of the oxygen atoms. This TB Hamiltonian turns out
to be very accurate for the description of 2D bulk electronic
states [10] containing both an atomic spin-orbit coupling and
an inversion-symmetry-breaking term [17,23–26]:

H =
∑

k

D̂(k)†H (k)D̂(k), (1)

with

H (k) = H0 + HSO + HZ + HM , (2)

where D̂†(k) = [c†
yz↑k, c†

zx↑k, c†
xy↑k, c†

yz↓k, c†
zx↓k, c†

xy↓k] is a vec-
tor whose components are associated with the electron
creation operators for a given spin σ (σ = [↑,↓]), orbital α

(α = [xy, yz, zx]), and momentum k in the 2D square Bril-
louin zone. Then H0, HSO, HZ , and HM represent the kinetic
energy, the spin-orbit, the inversion symmetry breaking and
the Zeeman interaction term, respectively.
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In the spin-orbital basis, H0(k) is given by

H0 = ε̂k ⊗ σ̂0,

ε̂k =
⎛
⎝εyz 0 0

0 εzx 0
0 0 εxy

⎞
⎠,

εyz = 2t1(1 − cos kya) + 2t2(1 − cos kxa), (3)

εzx = 2t1(1 − cos kxa) + 2t2(1 − cos kya),

εxy = 4t1 − 2t1 cos kxa − 2t1 cos kya + �t ,

where σ̂0 is the unit matrix in spin space and t1 and t2 are the
orbital-dependent hopping amplitudes. �t denotes the crystal-
field potential as due to the symmetry lowering from cubic
to tetragonal also related to inequivalent in-plane and out-
of-plane TM-oxygen bond lengths. The symmetry reduction
yields a level splitting between the dxy orbital and dyz or dzx

orbitals.
HSO denotes the atomic L · S spin-orbit coupling,

HSO = �SO[l̂x ⊗ σ̂x + l̂y ⊗ σ̂y + l̂z ⊗ σ̂z], (4)

with σ̂i(i = x, y, z) being the Pauli matrix in spin space and
l̂α (α = x, y, z) being the projections of the L = 2 angular-
momentum operator onto the t2g subspace, i.e.,

l̂x =

⎛
⎜⎝

0 0 0

0 0 i

0 −i 0

⎞
⎟⎠, (5)

l̂y =

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠, (6)

l̂z =

⎛
⎜⎝

0 i 0

−i 0 0

0 0 0

⎞
⎟⎠, (7)

assuming {dyz, dzx, dxy} as orbital basis.
As mentioned above, the breaking of the mirror plane sym-

metry, due to the out-of-plane offset of the positions of the
TM and oxygen atoms, results into an inversion asymmetric
orbital Rashba coupling that is described by the term HZ (k):

HZ = γ [l̂y ⊗ σ̂0 sin kxa − l̂x ⊗ σ̂0 sin kya]. (8)

This contribution provides an inter-orbital process, due to the
broken inversion symmetry, that mixes dxy and dyz or dzx.

Finally, we consider the effects of a magnetic field perpen-
dicular to the plane of the 2DEG. The resulting Zeeman-type
interaction is described by the Hamiltonian HM , which char-
acterizes the coupling of the electron spin and orbital moments
to the magnetic field [27]:

HM = Mz[l̂z ⊗ σ̂0 + l̂0 ⊗ σ̂z], (9)

with l̂0 being the unit matrix in the orbital space. We notice
that the inclusion of the orbital coupling to the field is only
a correction which can be neglected because the spin-orbit
coupling is typically larger than the strength of the applied
magnetic field considered in the experiment and the Zeeman
coupling to the orbital degree of freedom is less relevant.
We also neglect the contribution of the vector potential in

the kinetic part of the Hamiltonian. Even thought the latter
assumption might appear a crude approximation, it can be jus-
tified by experimental considerations, which will be detailed
below.

The energy separation between adjacent Landau levels
can be estimated in terms of the Landé g factor as h̄ωc =
4/gMz, with g ≈ 2 [27]. For the maximum value of the
magnetic energy considered in this work (Mz = 0.5 meV),
the Landau-level spacing corresponds to 1 meV. On the
other hand, the QPC confinement strongly affects the elec-
tron mobility μ at the LAO-STO interface [28], which is
estimated as 400 cm2 V−1 s−1 [15]. Accordingly, the corre-
sponding Landau-level broadening is h̄e/(m∗μ) ≈ 3.5 meV,
which largely overcomes the level separation. For these rea-
sons, the Landau levels appear to be irrelevant in affecting
the transport properties of the system, and thus the kinetic
contribution of the vector potential can be safely neglected.

Even enhanced values of the mobility (e. g.,
103 cm2 V−1 s−1), corresponding to an energy broadening
of 1.4 meV, do not modify the previous conclusion. So far,
we have presented arguments based on the assumption that
g ≈ 2. Nevertheless, an enhancement of the g factor could
take place in experiments due to the confining effect of the
QPC geometry [29]. In the latter case, previous conclusions
are even strengthened because, maintaining the same value
Mz of the Zeeman splitting, a smaller cyclotronic energy is
obtained.

In principle, the kinetic contribution of the magnetic
field could increase the value of the charge-carrier effective
mass [30]. Indeed, the mass renormalization is roughly de-
pendent on the ratio between the cyclotronic energy and the
mean level spacing induced by the transverse confinement.
This estimate leads to a factor [1 + (h̄ωc)2/〈�E〉2] ≈ 1.25,
representing a unimportant mass renormalization not affecting
the transport properties.

The electronic structure at the LAO-STO (001) inter-
face has been studied in the literature also within the k · p
approach [31–33], which is accurate in the limit of large
wavelengths. In this paper, we apply the k · p procedure di-
rectly to the TB Hamiltonian (1). Actually, as discussed in
Appendix A, the 2D energy eigenvalues and eigenvectors are
exactly determined for small values of the wave vector k.
In particular, in the limit of low energies [23], due to the
crystal-field splitting, one can derive an effective spin Rashba
interaction α for the xy-like band. Therefore, for small values
of the wave vector k, the dxy-like band is provided by the
solutions of the following effective Rashba Hamiltonian HR:

HR = E− + h̄2|k|2
2m1

+ α(σxky − σykx ) + Mzσz, (10)

where the energy E− is

E− = �SO

2

(
1 − εR −

√
ε2

R + 2εR + 9
)
, (11)

with εR = |�t |/�SO, m1 is the lighter mass (smaller than the
free electron mass me), associated with the higher hopping t1,

m1 = h̄2

2t1a2
	 0.8me, (12)
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FIG. 2. (a) Band structure for an infinite strip with 64 transverse
sites derived from the TB Hamiltonian of Eq. (1). (b) k · p approx-
imation for the lowest three sub-bands (blue circles) compared with
the tight-binding sub-bands (solid black lines).

and the Rashba coupling constant α is determined as

α =
√

2aγ exp (arcsinh ηR)

[1 + exp (2arcsinh ηR)]
, (13)

with

ηR = (εR + 1)

2
√

2
. (14)

We remark that, in the literature [17,23,27,33], the typical
estimate of the Rashba coupling corresponds to the limit of
Eq. (13) for very large εR:

α 	
√

2aγ

(2ηR)
	 2aγ�SO

|�t | , (15)

which is clearly an overestimation. In any case, the Rashba
coupling constant for the xy band depends on the atomic
spin-orbit energy �SO and the inversion-symmetry-breaking
energy γ .

In our work we follow the parameter setting of Ref. [17]:
The main hopping t1 = 300 meV, the weaker hopping term
t2 = 20 meV, the atomic spin-orbit coupling �SO = 10 meV,
the orbital Rashba interaction γ = 40 meV, and the tetragonal
crystal field potential �t = −50 meV. Hence, one gets that an
estimate of α in Eq. (13) is given by α 	 4.7 meV nm, a value
compatible with experimental measurements [10] in the range
of typical 2DEG charge densities. In Appendix A, we show
the perfect agreement between the spectrum obtained by the
Hamiltonian of Eq. (1) and that from Eq. (10) for small values
of the wave vector k. Moreover, we analyze also the behavior
of the spectrum with the inclusion of the effects of the Zeeman
energy Mz pointing out that the description provided by the
k · p procedure is accurate even for large magnetic fields.

Since the QPC investigated in the experiment [15] has a
minimal constriction of about 25 nm, we start by analyz-
ing an infinite strip with 64 transverse sites (64a 	 25 nm,
with lattice parameter a = 0.39 nm) with hard wall boundary
conditions in the transverse direction. As shown in the left
panel of Fig. 2, the spectrum is very complex. In fact, since
the tetragonal potential �t = −50 meV and the strip is not
very narrow, the first sub-bands are derived from the light
xy-like bands. Starting from around zero energy, the spectrum
is characterized by a large superposition of sub-bands derived
not only from the light xy-like bands, but also from the heavy

yz-like and zx-like bands. Therefore, at high energies, the
spectrum shows a quasicontinuum, while, at low energies,
the xy-like sub-bands are quite distinct. Moreover, we point
out that, in the left panel of Fig. 2, the first three xy-like
sub-bands show a clear double minimum close to k = 0, an
effect that can be typically ascribed to the Rashba coupling
in Rashba nanowires [34–39]. However, for the next xy-like
sub-bands, the double-minimum gets reduced with increasing
energy. Moreover, the separation between the minima of first
sub-bands follows the behavior expected for nanowires with
hard wall conditions, while the next xy-like bands show even a
reduction in the energy difference between the minima. These
effects are obviously enhanced close to the onset of the qua-
sicontinuum due to the contribution of heavy yz- and zx-like
bands. Actually, the multi-orbital character of the problem is
able to provide a complex behavior even in the case of the
infinite strip.

We notice that the sub-band occupation in the experi-
ment [15] corresponds only to the first three xy-like ones.
Actually, the range of the charge densities considered in this
experiment is below 1013 cm−2. Therefore, as discussed in
Appendix A, we adopt a k · p procedure to analyze the prop-
erties of the first xy-like sub-bands in the strip setting up the
Hamiltonian HS derived from Eq. (10):

HS = E− +
(
h̄2k2

x + p2
y

)
2m1

+ α

(
σx

py

h̄
−σykx

)
+Mzσz+V (y),

(16)
where py = −ih̄d/dy is the momentum operator along the
y direction, and V (y) imposes hard wall conditions on the
transverse boundary along y (lateral size equal to 64a). We
explicitly fix the parameters E−, m1, and α as derived from
the 2D bulk. As discussed in Appendix A, the exact solution
of HS can be obtained analytically for small values of k.
Particularly interesting are the effects due to the spin-orbit
Rashba coupling which can be quantified through the wave
vector kR = m1α/h̄2. In fact, the single-particle spectrum of
the xy-like sub-bands not only shows minima centered at ±kR,
but it is globally reduced of the energy h̄2k2

R/2m1. In the next
section, we discuss how these effects determine the behavior
of the conductance as a function of the gate voltage VG and
the bias voltage VB. As shown in the right panel of Fig. 2,
the results of the k · p approximation are able to provide an
accurate description for the lowest three xy-like sub-bands for
small values of kx. Tiny deviations from the TB scheme are
present only for the third sub-band. We stress that the k · p
approximation captures the correct position of the minima
of the sub-bands, therefore, as shown in the next section, it
will provide a simplified but accurate model for the transport
through the adiabatic QPC.

III. LOW-ENERGY TRANSPORT

In this section, we discuss the low-energy transport in
order to analyze and clarify some aspects of recent exper-
imental data given in Ref. [15]. As discussed in previous
sections, within this experimental setup, only the first three
xy-like sub-bands are occupied by charge carriers which cross
the QPC with 25 nm minimal constriction and a smooth
curvature. Therefore, in this section, we adopt the adiabatic
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approximation, briefly discussed in Appendix A, for the treat-
ment of the transport [1,2,40]. We remark that all the results
discussed in this section have been confirmed by analogous
simulations done with the more realistic TB scheme which
will be exposed in the next section. Indeed, the scheme used in
this section provides transport properties in the energy range
of the first two sub-bands which are in very good agreement
with the TB method.

As discussed in Appendix A, for the description of the
QPC, we adopt the Hamiltonian HQ derived from Eq. (10):

HQ = E− +
(
px

2 + p2
y

)
2m1

+ α

h̄
(σx py − σy px )+Mzσz+V (x, y),

(17)
where px = −ih̄d/dx and py = −ih̄d/dy are the momen-
tum operators along the x and y directions, respectively, and
the potential V (x, y) imposes hard wall conditions on the
x-dependent transverse boundary determined by W (x)/2 and
−W (x)/2 [41]. Clearly, according to the experimental setup
of Ref. [15], W (0) = 64a and W (x) = W (0) + βx2, with β 	
0.01 nm−1, that is the curvature of the QPC is small.

For small values of the parameter β, the adiabatic ap-
proximation [42] can be implemented for the treatment of
Hamiltonian (17). As discussed in Appendix A, at first, the
eigenvalue problem is solved in the “fast” variable y consider-
ing the “slow” variable x as fixed, then the resulting equation
in the slow variable x is considered. Actually, this procedure
can be analytically implemented not only in the presence of
Rashba spin-orbit coupling, but also in the presence of an out-
of-plane magnetic field. As a result, the effects of the small
curvature can be quantified for the QPC. Indeed, as detailed
in Appendix A, within the adiabatic approximation, for the
slow variable x, one gets the potential of an inverted harmonic
oscillator whose angular frequency ωn = nω1 depends on the
sub-band label n. The frequency ω1 depends on the square root
of β. For β = 0.01 nm−1, h̄ω1 	 0.26 meV, which is much
smaller than all the energy differences between sub-bands
considered in this work. Therefore, for the first sub-bands,
the adiabatic approximation can be used to accurately predict
the transport properties. The main effect of the finite small
curvature is to slightly smooth the conductance steps of the
conductance even at very low temperatures. We remark that
the rounding of the conductance steps is present in the experi-
mental data of Ref. [15], which we thoroughly discuss below.

As discussed in Appendix A, we analytically calculated
the current I as a function of the gate voltage VG and the
bias voltage VB in the presence of an applied magnetic field
normal to the interface. Since many experiments show that
the Rashba coupling constant α can change with varying the
gate voltage VG [10,11], we consider three different values for
this parameter: α = 0, α = 2 meV nm, which should corre-
spond to a minimum at the LAO-STO interface, for charge
densities less than 1013 cm−2, and α = 4 meV nm, which is
slightly smaller than the value corresponding to typical 2DEG
electron densities [9]. We discuss transport properties both in
the absence and in the presence of an applied magnetic field.

First, we discuss the effects of the spin-orbit Rashba cou-
pling α on the behavior of the conductance G (defined as
∂I/∂VB in the limit VB → 0+) as a function of the gate

potential VG. As reported in the left panel of Fig. 3, the con-
ductance shows plateaus corresponding to quantized values
of the conductance quantum G0 = 2e2/h in agreement with
experimental results [15] which indicate a ballistic transport
in the QPC. From the comparison with low-energy bands
in Fig. 2, we notice that the onset of the plateaus does not
precisely coincide with the minima of the bands. Actually,
as discussed in Appendix A, the smoothing of the step be-
tween two consecutive plateaus is due to the small but finite
spatial curvature of the adiabatic QPC shown in Fig. 1. We
remark that the value of the curvature is extracted from the
experimental setup in Ref. [15], and that the Rashba coupling
provides a small but finite shift of the conductance curves,
in agreement with the effects discussed in Fig. 2 about the
energy spectrum. Additional effects are not expected in the
low-energy regime since the Rashba term is proportional to
the momentum operator and therefore to the first derivative of
the wave function which is slowly changing in the adiabatic
QPC with increasing the coordinate x. In the next section,
however, we will find that effects due to the atomic spin-orbit
and the inversion-symmetry-breaking term get enhanced with
increasing energy range.

For the discussion of the differential conductance and the
transconductance in the absence of magnetic field, we con-
sider a Rashba coupling constant α = 2 meV nm, since it is
close to experimental estimates in the limit of low charge
density. In the middle panel of Fig. 3, we plot the differential
conductance (defined as the derivative of the current with
respect to VB) as a function of bias potential VB for several
values of the split-gate potential. The differential conductance
presents plateaus not only at nG0 but also at (n + 1/2)G0.
Actually, additional plateaus at (n + 1/2)G0 can be obtained
when the number of modes available for left-going and right-
going charge carriers differs by one [43–45]. This effect takes
place when the energy eVB exceeds the splitting between two
sub-bands. Moreover, in our 2D model, at odds with experi-
mental results, we find a perfect symmetry between positive
and negative values of bias potential VB.

In the right panel of Fig. 3, we show contour plots of the
transconductance ∂2I/∂VG∂VB as a function of bias potential
VB and gate potential VG in the absence of magnetic field.
Therefore, we analyze again the nonlinear transport, empha-
sizing now the transitions between the conductance plateaus.
The maxima of the transconductance form a diamond-like
structure centered at VB = 0. Apparently, the maxima de-
crease with increasing energy, while, at the same time, the
diamond-like structure gets enlarged. Therefore, the edges
of the diamonds provide directly the separation between two
consecutive energy levels. We point out that the results for the
differential conductance and the transconductance are in good
agreement with experiment [15] in the absence of magnetic
field.

We investigate now the effects of a magnetic field per-
pendicular to the 2-DEG plane on the transport properties.
As seen in the left panel of Fig. 4, the plateaus of conduc-
tance are quantized in half-integer values of G0, indicating
that the spin degeneracy is lifted. In analogy with Fig. 4, we
first analyze the effects of three different values of Rashba
coupling, then we consider α = 2.0 meV nm for the study of
further transport properties. In particular, in the middle panel
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FIG. 3. QPC in the presence of Rashba coupling. (a) Conductance G of the QPC as a function of gate voltage VG for three different values
of the Rashba coupling constant α. (b) Differential conductance as a function of bias potential VB for several values of the split-gate potential at
Rashba coupling constant α = 2 meV nm: Colored curves correspond to values of eVG from −55 to −45 meV through steps of 1 meV. (c) Map
of transconductance as a function of VG and VB at Rashba coupling constant α = 2 meV nm.

of Fig. 4, we plot the conductance G for several values of
the magnetic energy Mz focusing on the halving of the step.
Apparently, the additional plateau at half G0 gets enhanced
with increasing strength of the magnetic field. Finally, in the
right panel of Fig. 4, we show contour plots of the transcon-
ductance as a function of VG and VB in the presence of the
magnetic field. Seemingly, making the comparison with the
right panel of Fig. 4, the magnetic field involves a duplication
of the diamond-like structure. We remark that most features
of the conductance and the transconductance are in good
agreement with experimental results [15] even in the presence
of a magnetic field.

IV. MULTI-ORBITAL TRANSPORT

In this section we describe the electronic transport proper-
ties of the QPC within the TB approximation by numerically
implementing a finite-size system described by the Hamil-
tonian (1). This description allows us to go beyond the
low-energy regime, which has been significantly character-
ized by the k · p method. We show that the TB approach is
necessary to get insights on the multi-orbital ballistic transport
characteristic of higher doping densities. The conductance of
the QPC, which is schematized in Fig. 1, is calculated within

the TB method by using the KWANT [46] and NUMPY [47]
libraries.

By looking at Fig. 5(a) we see that, while the atomic
spin-orbit term mainly introduces an orbital-dependent energy
shift, the orbital Rashba coupling, weighted by γ , acts more
intriguingly: Low-energy subbands are left unchanged while
high-energy ones are squeezed toward negative energies.
The width of the plateaus is almost constant or decreasing,
while it should be expected to be linearly increasing because
of the hard wall confinement in the transverse direction. In-
deed, it is possible to see in Fig. 2 that the distance between
the lowest type of sub-bands (related to the orbital dxy) is not
increasing. Therefore, hybridization at higher energy between
sub-bands with similar orbital character is able to change
the energy spectrum and the conductance of the adiabatic
QPC. Finally, we notice that, at higher charge densities, where
the hybridization takes place between all three orbitals, the
plateaus are very narrow. At the highest densities consid-
ered in this paper, the plateaus completely disappear, so that
the conductance curve does not show any quantization. In
fact, as seen in Fig. 2, the yz- and zx-like sub-bands are
heavier than the xy-like sub-bands, therefore, they gather
more easily at energies of the order of 0–40 meV, creating a
quasicontinuum.

FIG. 4. QPC in the presence of Rashba coupling and out-of-plane magnetic field. (a) Conductance G as a function of gate potential VG for
three different values of Rashba coupling constant α at magnetic energy Mz = 0.5 meV. (b) Conductance G as a function of gate potential VG

for several values of the magnetic energy Mz at a Rashba coupling α = 2.0 meV nm. (c) Map of transconductance as a function of VG and VB

at magnetic energy Mz = 0.5 meV at a Rashba coupling α = 2.0 meV nm.
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FIG. 5. (a) Conductance of the QPC as a function of energy for three different set of Hamiltonian parameters, as indicated in the legend.
(b) Differential conductance as a function of VB for several values of the split-gate potential. (c) Map of the transconductance as a function of
VG and VB.

In analogy with the results reported in Fig. 4, Figs. 5(b)
and 5(c) show the differential conductance and the map of
the transconductance. The differential conductance presents
plateaus at nG0 and (n + 1/2)G0 in a large range of energies.
Furthermore, the symmetry between positive and negative
values of bias potential VB is kept for all the sub-bands an-
alyzed in the paper. Likewise, the transconductance shows
maxima forming a diamond-like structure centered at VB = 0
up to large energies. The diamonds are visible up to energies
of the order of −25 meV, hence well beyond the range of
energies studied in the previous section. Indeed, some fea-
tures of the nonlinear transport are similar to those found in
the low-energy limit. However, both pictures emphasize the
nonincreasing energy distance between sub-bands determined
by the orbital Rashba coupling γ .

Finally, we analyze the effects of the magnetic field on
the linear and nonlinear transport properties in the energy
range where xy-like sub-bands provide the relevant spectrum.
Quite surprisingly, the effect of the turning-on of an out-of-
plane magnetic field is only visible for low energies. Indeed,
in complete analogy with the results discussed in the previ-
ous section, we see in Fig. 6(a) that the expected halving of

plateaus occurs only for the first two or three sub-bands. On
the other hand, higher-energy plateaus are only smoothed, as
visible also from the differential conductance in Fig. 6(b) and
the transconductance in 6(c). We stress that this effect is due
to the strong interplay between the orbital Rashba coupling γ ,
the atomic spin-orbit energy �SO and the Zeeman term MZ .
In fact, with increasing energy, the splittings induced by the
magnetic field are quenched, therefore the sub-band spectrum
is strongly affected by other energy terms mixing different
sub-bands and orbitals.

Effects of localized defects on the conductance. In this
paragraph, we provide a possible explanation for the oscilla-
tions of the conductance observed in the experiment of Jouan
et al. [15]. Although the oscillation could be due to different
experimental motivations, here we try to understand if the
existence of such oscillations can be ascribed to the presence
of specific “defects.” In particular, we focus on the presence
of localized defects present on opposite sides of the QPC
(see Fig. 7). Indeed, we show that defects can induce con-
ductance oscillations whose amplitude gets enhanced with
increasing energy.

FIG. 6. (a) Conductance of the QPC as a function of energy in presence of an out-of-plane magnetic field. (b) Differential conductance as
a function of VB for several values of the split-gate potential at the magnetic energy Mz = 0.5 meV. (c) Map of transconductance as a function
of VG and VB at the magnetic energy Mz = 0.5 meV.
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FIG. 7. Conductance G of the QPC as a function of the gate
potential VG for different lengths � of the holes on the two sides
of the QPC. In the inset the position of the two defects, one on top
side of the QPC, the other on the down side.

First, we have considered the effect of an extended spatial
modulation on the border of the QPC. We have found that
this perturbation is not able to strongly affect the conduc-
tance. Next, we have examined the effects of two localized
defects close to opposite borders of the QPC as shown in
the inset of Fig. 7: Two pin-like irregularities with variable
depth �. In fact, the couple of defects induces a progressive
reduction of the value of the conductance at the plateaus
with increasing the energy. Moreover, as seen in Fig. 7, this
value of the conductance gets lowered with increasing length
of the defect. Finally, this reduction is accompanied also by
numerous oscillations of the conductance. We have checked
that neither the atomic spin-orbit coupling nor the asymmetric
Rashba coupling are able to hamper the decreasing value of
the conductance and its oscillating behavior, which can be
entirely ascribed to interference effects between the two holes.
Moreover, we have investigated the behavior of the conduc-
tance as a function of the distance between the two localized
defects (Fig. 8). The analysis shows oscillations related to

FIG. 8. Conductance G of the QPC as a function of the gate
potential VG for different distances d between the two defects. In the
inset, the variation of the conductance due to the defects as a function
of the distance between the two defects, for three different values of
the gate potential VG, as indicated in the main plot.

a Fabry-Perot-like interference effect, in which one expects
a maximum of the conductance when the distance between
the two defects matches the electron wavelength with even
multiples. However the multi-orbital character of the consid-
ered Hamiltonian does not allow a quantitative description of
this phenomenon. This paragraph completes our work which
hence provides a comprehensive description of the ballistic
transport in several regimes.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have analyzed linear and nonlinear ballis-
tic transport properties within the Landauer-Büttiker method
using the TB model and the k · p approach for the elec-
tronic structure of an adiabatic QPC at the (001) LAO-STO
interface in the nonsuperconducting state. We have focused
on the interplay between the atomic spin-orbit coupling, the
inversion-symmetry-breaking term, and the out-of-plane mag-
netic field pointing out three transport regimes. The first one
takes into account the first xy-like sub-bands, therefore it is
limited to low energies. In this regime, the quantization of the
conductance is quite marked both in the absence and presence
of the magnetic field. The second transport regime is found at
intermediate energies, since it involves further dxy-like sub-
bands. In this regime, the conductance quantization is less
pronounced since typical strengths of the magnetic field are
not able to induce the splitting of the sub-bands hindering the
increase of transport channels. Moreover, due to the orbital
Rashba coupling γ , the energy distance between sub-bands
does not increase with increasing energy at odds with what
occurs for the first xy-subbands. Finally, the third transport
regime is characterized by the mixing between light dxy-like
and heavy dyz-like, dzx-like sub-bands so that the conductance
plateaus become very narrow, indicating that the conductance
quantization is weak.

This work has been partly motivated by recent experi-
ments [15] exploring low-energy transport in the normal state.
In particular, in experimental data, oscillations of the conduc-
tance can be observed on the plateaus. To address this issue,
we have analyzed the effects of localized pin-like defects
present on external sides of the QPC. Indeed, it is found that
localized defects are able to induce conductance oscillations
whose amplitude gets enhanced with increasing energy. As
a result of our analysis, these oscillations can be ascribed
to interference effects associated with the geometry of the
constriction.

In this paper, the focus has been on the transport properties
of the normal state. Therefore, this work represents only the
starting point for the theoretical analysis of superconducting
QPCs which can be very relevant for addressing the possibility
of topological superconductivity and Majorana fermions [48]
at the LAO-STO interface [17,18,49]. Work in this direction
is in progress.
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results in the k · p and the TB method.
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APPENDIX A: METHODS FOR CONTINUUM MODELS

In this Appendix we briefly discuss the k · p approach used
for analytical calculations of the electronic structure of the 2D
bulk, the strip and the QPC. Finally, we provide some details
on the calculation of the conductance of the adiabatic QPC
starting from the k · p energy levels.

1. k · p method for two-dimensional bulk

In this section, we apply the k · p procedure directly to the
TB 2D Hamiltonian in Eq. (1) getting energy eigenvalues and
eigenvectors which are exact for small values of the wave vec-
tor k. In particular, at k = 0, the inversion-symmetry-breaking
term (8) vanishes, therefore the TB Hamiltonian can be ana-
lytically diagonalized, providing, in the case of zero magnetic
field, the eigenvalues E±:

E± = �SO

2

(
1 − εR ±

√
ε2

R + 2εR + 9
)
, (A1)

with εR = |�t |/�SO, and the eigenvalue E0 = −�SO. Then,
one considers the matrix elements of the k-dependent
inversion-symmetry-breaking term and the kinetic energy
between the exact eigenstates obtained at k = 0 finding ap-
proximate eigenvalues at finite k.

We recall that, in this paper, the following parameters are
used for the 2DEG at LAO-STO (001) interface [17] with
typical carrier densities: t1 = 300 meV, t2 = 20 meV, �SO =
10 meV, γ = 40 meV, �t = −50 meV. Therefore, as shown in
Fig. 9, at k = 0, one gets three eigenvalues which are doubly
degenerate. Then, the degeneracy is broken at finite k. In
particular, we point out the different behavior as a function of
k = 0 for the first xy-like and the third zx-like doublet. This
behavior indicates the possibility to describe the spectrum in

FIG. 10. 2D strip low-energy eigenvalues (in units of meV) as a
function of the wave vector kx (in units of π/a) for magnetic energy
Mz = 0.25 meV: Comparison between the results in the k · p and the
TB method.

terms of an emergent Rashba coupling constant α, which, for
the first doublet, has been specified in previous sections of the
paper. For the first xy-like doublet, the term quadratic in the
wave vector depends on the mass m1 defined in Eq. (12). On
the other hand, the second doublet corresponding to yz-like
bands starts at the atomic energy E0 and cannot be interpreted
in terms of a Rashba term linear in the wave vector [17].

Finally, we use the k · p method to get the 2D band
structure in the presence of an out-of-plane magnetic field.
Seemingly, the method is able to grasp the gap at k = 0
induced by the applied magnetic field and provide the bands
at finite but small values of the wave vector.

2. k · p method for strip

We adopt the k · p procedure to analyze the properties of
the first xy-like sub-bands in the strip. Toward this end, we
explicitly consider the parameters E−, m1, and α as derived
from k · p procedure in the 2D bulk. Once these parameters
are fixed, the corresponding Hamiltonian for the strip given in
Eq. (16) can be solved exactly at kx = 0 and complex matrix
elements of the Hamiltonian operator (at small kx) between the
eigenvectors at kx = 0 can be evaluated analytically. This pro-
cedure provides an accurate description for the lowest three
xy-like sub-bands for small values of kx [Fig. 1(b)]. In Fig. 10
we compare the k · p approximation for the lowest bands of
the strip with the TB one in presence of a magnetic field.

3. Adiabatic approximation for the quantum point contact

As before, we explicitly consider the parameters E−, m1,
and α as derived from k · p procedure in the 2D bulk. There-
fore, we use the k · p procedure to set up the Hamiltonian
given in Eq. (17), which is solved by exploiting the small
curvature of the QPC. Hard wall conditions imposed by the
potential V (x, y) on the x-dependent transverse boundary are
determined by W (x)/2 and −W (x)/2, where W (x) = W (0) +
βx2, with W (0) = 64a and β 	 0.01 nm−1, which represents
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the small parameter at the basis of the adiabatic procedure. We
will provide details of the adiabatic approximation including
the effects of the spin-orbit Rashba coupling. The procedure
in the presence of the out-of-plane magnetic field can be easily
generalized since the typical strengths of the magnetic fields
mainly affect the sub-bands already split by the spin-orbit
coupling.

At first, the eigenvalue problem is solved in the fast vari-
able y, considering the slow variable x as fixed. The adiabatic
approximation is implemented for the treatment of Hamil-
tonian (17) including the spin-orbit coupling, therefore one
starts from the following eigenvalue problem with Mz = 0:

h0(x, y)χn,β (x, y) = En(x)χn,β (x, y), (A2)

where χn,β (x, y) is the spinor corresponding to the twofold
degenerate x-dependent energy level En(x) eigenvalue, with
n sub-band labels and β = 1, 2, labels of the eigenfunction.
Moreover, the operator h0(x, y) is

h0(x, y) = p2
y

2m1
+ α

h̄
σx py + V (x, y), (A3)

with py = −ih̄d/dy being the momentum operator along the y
direction, and x treated as a parameter. This problem is exactly
solved [34], providing the following expression for the energy
level En(x):

En(x) = E− + h̄2

2m1

[
n2π2

W (x)2 − k2
R

]
, (A4)

with kR being the spin-orbit Rashba wave vector.
To solve the full Hamiltonian (17), one chooses its eigen-

vector �(x, y) corresponding to the eigenvalue E as

�(x, y) =
∑
nβ

φn,β (x)χn,β (x, y), (A5)

where the spinor χn,β (x, y) solves the eigenvalue problem
given by h0(x, y) in Eq. (A3). Therefore, exploiting the adia-
batic regime, one can neglect the derivative of χn,β (x, y) with
respect to the slow variable x, obtaining the following equa-
tions for the functions φn,β (x) at the energy E = En relative to
each sub-band n:[

p2
x

2m1
+ En(x)

]
φn,1(x) − α

h̄
An

1,2(x)pxφn,2(x) = Enφn,1(x),

[
p2

x

2m1
+ En(x)

]
φn,2(x) − α

h̄
An

2,1(x)pxφn,1(x) = Enφn,2(x),

(A6)

where the matrix elements An
β,γ are defined as

An
β,γ (x) =

∫ W (x)/2

−W (x)/2
χ∗

n,β (x, y)σyχn,γ (x, y), (A7)

with σy being the Pauli matrix relative to the y spin compo-
nent. We point out that An

1,1(x) = An
2,2(x) = 0 and An

2,1(x) =
−An

1,2(x). Actually, as expected within the adiabatic approach,
the energy En(x) plays the role of the potential for the slow
variable x. In the limit of a small curvature for the QPC,
one can consider the lowest-order expansion for the quantities

En(x) and An
1,2(x), getting

En(x) 	 En0 − 1
2 m1ω

2
nx2, (A8)

with

En0 = E− + h̄2

2m1

[
n2π2

W (0)2 − k2
R

]
, (A9)

and ωn determined by the second derivative W ′′
0 = 2β of the

function W (x) at the center point x = 0 of the QPC,

ωn = n

√
h̄2π2W ′′

0

2m2
1W (0)3 , (A10)

and An
1,2(x) 	 An

1,2(0) = −iKn0, with

Kn0 = sin [kRW (0)]

kRW (0)

n2π2[
n2π2 − k2

RW (0)2
] . (A11)

Even for n = 1, the values of the Rashba spin-orbit coupling
are not so large that the denominator of Eq. (A11) does not
vanish.

The coupled equations for the functions φn,β (x) relative to
sub-band n can be recast for the rotated functions δn,β in the
same following equation:[

p2
x

2m1
+ Ẽn0 − 1

2
m1ω

2
nx2

]
δn,β (x) = Enδn,β (x), (A12)

where Ẽn0 is defined as

Ẽn0 = En0 − h̄2k2
R

2m1
K2

n0, (A13)

with En0 given in Eq. (A9) and Kn0 in Eq. (A11). As discussed
in the main text, the Rashba spin-orbit coupling provides not
only a small rigid shift for all the sub-bands but also weak
corrections dependent on the sub-band level. Both corrections
are quadratic in the Rashba wave vector kR.

Once the energy levels Ẽn0 and the level-dependent
quantities ωn are known, using the Landauer-Büttiker ap-
proach [2,40], the contribution of each channel to the
conductance of the QPC is given by its transmission Tn:

Tn(E ) = 1

1 + exp (−πεn)
, (A14)

where εn = 2(E − Ẽn0)/h̄ωn. The total transmission is the
sum of the transmission of each of the channels. Therefore,
the quantities ωn provide a smoothing of the transmission
steps depending on the curvature of the QPC. Finally, from the
transmission, we have calculated the current I as a function of
the gate voltage VG and the bias voltage VB in the presence of
an applied magnetic field normal to the interface.

In Fig. 11, we compare the conductance of the QPC cal-
culated within the continuum model in the absence of the
magnetic field with that evaluated numerically within the one-
band Rashba spin-orbit TB model. Actually, in 2D, this TB
model represents the discretized version of the 2D continuum
model used for the analytical calculation of the conductance
and it has been investigated in the past for clarifying the
effects of Rashba spin-orbit coupling in different transport
regimes [50]. In any case, the calculation of the conductance
within the TB model is performed in a way similar to what
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FIG. 11. Conductance (in units of e2/h as a function of the gate
energy in meV) for the TB model (solid black line) and the contin-
uum model of the QPC (red dashed line) at finite values of Rashba
spin-orbit coupling.

is done in the literature [50]. The energies have been shifted
by −E−, so that the minimum of the 2D electronic bands
is at zero energy for both the continuum and TB models.
As discussed in the main text, the conductance due to the
first two sub-bands is accurately described by the continuum
model. Only the conduction from the second sub-band starts
from energies slightly smaller than those predicted by the TB

approach. This is an effect of the curvature of the QPC since,
in the continuum model, we have explicitly used the expan-
sion in terms of low curvature, which is an approximation that
is not exploited within the numerical TB scheme.

APPENDIX B: DIFFERENTIAL CONDUCTANCE
AND TRANSCONDUCTANCE

The current at finite bias is calculated as

I (eVG, eVB) = e

h

∑
n

∫ ∞

−∞
Tn(E )[ fL(E ) − fR(E )]dE , (B1)

where

fL,R(E ) = f0(E ∓ eVB/2), (B2)

and f0(E ) is the Fermi-Dirac distribution calculated with μ =
eVG,

f0(E ) = 1

1 + e(E−eVG )/(kBT )
. (B3)

Tn(E ) are evaluated as in Eq. (A14) for the low-energy trans-
port and via the tight-binding scattering matrix by using the
KWANT [46] and NUMPY [47] libraries for the multi-orbital
transport. The differential conductance is then evaluated as
dI

dVB
, and the transconductance is evaluated as d2I

dVGdVB
. The

usual conductance G is the limit of dI
dVB

for VB → 0, which

at zero temperature reduces to G(eVG) = e2

h

∑
n Tn(eVG).
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