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Cascade of singularities in the spin dynamics of a perturbed quantum critical Ising chain
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When the quantum critical transverse-field Ising chain is perturbed by a longitudinal field, a quantum
integrable model emerges in the scaling limit with massive excitations described by the exceptional E8 Lie
algebra. Using the corresponding analytical form factors of the quantum E8 integrable model, we systematically
study the spin dynamic structure factor of the perturbed quantum critical Ising chain, where particle channels with
total energy up to 5m1 (m1 being the mass of the lightest E8 particle) are exhausted. In addition to the significant
single-particle contributions to the dynamic spectrum, each two-particle channel with different masses is found
to exhibit an edge singularity at the threshold of the total mass and decays with an inverse square root of energy,
which is attributed to the singularity of the two-particle density of states at the threshold. The singularity is absent
for particles with equal masses due to a cancellation mechanism involving the structure of the form factors. As
a consequence, the dynamic structure factor displays a cascade of bumping peaks in the continuum region with
clear singular features which can serve as a solid guidance for the material realization of the quantum E8 model.
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I. INTRODUCTION

Due to collective quantum fluctuations, exotic states of
matter can emerge near a quantum critical point (QCP) in
quantum many-body systems [1–6], which have been attract-
ing intensive research [7–16]. One such paradigmatic system
is the transverse field Ising chain (TFIC) in the presence
of a longitudinal field. At the QCP of the TFIC, conformal
invariance emerges in the scaling limit, corresponding to a
central charge 1/2 conformal field theory (CFT). Turning on a
small longitudinal field at the QCP gives a perturbation to the
conformal field theory, resulting in a massive relativistic field
theory model with an emergence of eight stable particles of
masses mi, i = 1, . . . , 8 (Fig. 1) [17]. The mass ratios of the
eight particles and their scatterings and form factors are beau-
tifully organized by the E8 exceptional Lie algebra, dubbed as
the quantum E8 integrable model [17,18].

A material realization has been long sought since the
discovery of the quantum E8 integrable model. One decade
ago, inelastic neutron scattering measurements in quasi-one-
dimensional (1D) ferromagnetic CoNb2O6 provided prelim-
inary evidence for the lowest two states of the quantum
E8 spectrum corresponding to the lightest two particles
with masses m1 and m2 [19], which further motivated
material-based studies of this exotic system [20]. Recently,
a combination of theoretical and experimental efforts led to a
full realization of the quantum E8 spectrum in the material
of BaCo2V2O8 (BCVO) [21,22]. In Refs. [21,22], besides
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a direct physical instruction to concretely guide the exper-
imental realization of the quantum E8 spectrum in BCVO,
we also provided a summary of an analytical form factor
framework to determine the corresponding dynamical struc-
ture factor (DSF). The analytical DSF data in Refs. [21,22]
have been broadened in accord with realistic experimental
energy resolution. The excellent agreement implies the first
experimental realization of the quantum E8 integrable model
in a real material. Motivated by this exciting progress, in this
paper we give a complete account of the details of the analytic
calculations, greatly expanding the discussion presented in the
recent experimental-theoretical work [21,22] on the material
realization of the quantum E8 model in BaCo2V2O8.

When unfolding details of the analytical framework, we
uncover rich features not revealed in Refs. [21,22], such as
the singular structure of the DSF spectrum smeared in the
broadened analytical DSF data [21,22]. We find that, besides
the well-known singularities from the single-E8-particle chan-
nels, the two-particle channels with different masses lead to a
cascade of edge singularities in the dynamic spectrum, where
the threshold for each edge singularity is the total mass of
the two particles. When energy is beyond the edge-singularity
threshold, the two-particle spectrum decays in a power of
an inverse square root. This singularity can be traced to the
divergence of the two-particle density of states (DOS) at
the threshold which, however, is accidentally canceled for
two-particle channels with equal masses due to the special an-
alytical structure of the form factors. We further demonstrate
the smoothness and quick decrease of the contributions of
three and more particle channels to the DSF. Due to the rapidly
decreasing spectral weight and exponentially increasing CPU
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FIG. 1. Blue solid line illustrates the region E8 physics emerges,
where parameters h and g for horizontal and vertical axes are from
the Hamiltonian Eq. (1). The masses of particles are displayed in
terms of the lightest two masses m1 and m2.

cost of carrying out the multifold integration with increasing
particle number, we choose the energy cutoff at 5m1 and focus
on zero total momentum in all DSF calculations. The DSF for
nonzero momentum as well as the corresponding dispersion
are deferred to future study.

The rest of the paper is organized as follows. Section II
elaborates the necessary ingredients of our calculations. Sec-
tion III provides analytical calculations in detail. Then we
discuss our results with experimental realization and draw
conclusion in Sec. IV. The details of the analytic calculations
can be found in the Appendixes, including the complete and
correct set of recursive equations for systematically obtaining
the form factors of the quantum E8 model.

II. MODEL

We consider the transverse-field Ising chain (TFIC) at its
QCP g = gc = 1 perturbed by a longitudinal field hz,

Hpert = −J

(∑
i

σ z
i σ z

i+1 +
∑

i

σ x
i + hz

∑
i

σ z
i

)
, (1)

where J > 0, and σα
i at site i are the Pauli matrices re-

lated to the spin operators Sα
i = σα

i /2 (α = x, y, z) with the
Planck constant set to h̄ = 1. In the scaling limit, the QCP
is described by the conformal field theory of central charge
c = 1/2 corresponding to free massless fermions. The Hamil-
tonian (1) gives rise to a field theory obtained by perturbing
the CFT by one of its relevant primary operators [11,18,23],

HE8 = Hc=1/2 − h
∫

dx σ (x), (2)

where the operator σ (x) and the field h are the rescaled field
theory versions of the lattice magnetization operator σ z

i and
longitudinal magnetic field hz, respectively (for the precise
relations, cf. Appendix A). As shown by Zamolodchikov [17],
this perturbation opens a gap and leads to an integrable quan-
tum field theory, the so-called E8 model. The hallmark of this
model is the presence of eight stable particle excitations [24]
with the mass of the lightest particle being m1 ∼ |h|8/15 and all
the other masses can also be expressed in terms of m1 exactly,
as shown in Fig. 1.

The energy and momentum eigenstates of the Hamiltonian
can be written as asymptotic states |A(θ1), . . . , A(θn)〉a1,...,an

with the orthogonality and normalization relations

ai〈A(θi )|A(θ j )〉a j = 2πδaia j δ(θi − θ j ), (3)

where |A(θi)〉ai (ai = 1, . . . , 8) labels a state of an E8 particle
with mass mai and rapidity θi. The energy and momentum
eigenvalues written in terms of the relativistic rapidity param-
eter θ are E = ∑n

i=1 mai cosh(θi) and P = ∑n
i=1 mai sinh(θi ),

respectively.
In the following, we consider the two point correlation

function of the operators � = σ x,y,z:

〈�(x, t )�(0, 0)〉 = 〈0|e−iPxeiHt�(0, 0)e−iHt eiPx�(0, 0)|0〉,
(4)

where |0〉 stands for the ground state (vacuum) of the E8

Hamiltonian. By inserting a complete basis of the E8 eigen-
states into the correlation function, the dynamic structure
factor (DSF) with zero momentum transfer expressed in the
Lehmann representation follows as

D��(ω, q = 0)

=
∞∑

n=0

∑
{ai}

(∏
ai

1

Nai !

)
1

(2π )n−2

∫ ∞

−∞
dθ1 . . . dθn

× |〈0|�|A(θ1), . . . , A(θn)〉a1,...,an |2δ

×
(

ω −
n∑

i=1

Ei

)
δ

(
n∑

i=1

pi

)
. (5)

As Eq. (5) shows, the dynamic properties of the system are de-
termined by the combined effects from the on-shell particles
with total energy and momentum conservation. By choosing
a different number of particles in the complete basis, the
contributions of the DSF can be divided into different chan-
nels: single-, two-, three-particle channels and so on. Each
channel’s DSF contribution exhibits special features as shall
be discussed in the following sections. To calculate Eq. (5),
the form factors

F�
a1,...,an

(θ1, . . . , θn) = 〈0|�|A(θ1), . . . , A(θn)〉a1,...,an (6)

are needed, which can be derived following the form factor
bootstrap approach [24–29]. The detailed form of the recur-
sive equations and a discussion of the method of solving them
are presented in Appendix C.

For practical calculations, the infinite form factor series
must be truncated. In this work, we systematically calculate
the form factor contributions up to the energy cutoff at 5m1.

III. SPIN DYNAMIC STRUCTURE FACTOR OF THE
QUANTUM E8 INTEGRABLE MODEL

We now proceed to calculate the DSF D��(ω, q = 0)
with � = σ i and i = x, y, z (abbreviated as Dii) for the E8

model. There are two relevant operators, σ (x) (magnetization
density) and ε(x) (energy density), in the E8 model, corre-
sponding to σ z

i and σ x
i in the lattice model [24], respectively

(see also Appendix A). As a result, within the framework
of the quantum E8 integrable model, one is only able to
determine Dxx and Dzz. Dyy can be determined through an
exact relation Dyy(ω) = ω2Dzz(ω)/(4J2) [11]. Dxx(ω, q = 0)
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FIG. 2. Total Dxx (ω, q = 0) intensity as a function of ω with
0.05m1 broadening. (a) Several peaks associated with single or mul-
tiparticle excitations are labeled by Pi, where i = 1 to 10 as ω

increases. (b) The details of spectrum with excitation energy larger
than 2m1. Each dashed curve is the DSF from the corresponding
channel. The numbers in the legend are abbreviated labels for E8

particles. For example, “11” stands for m1 + m1 channel.

is shown in Fig. 2, and the results for Dyy(ω, q = 0) and
Dzz(ω, q = 0) can be found in Appendix G [30].

For illustration, in Fig. 2 we broaden the DSF with an
energy resolution of 0.05m1. When the transferred energy is
larger than 2m1, multiparticle excitations appear. Remarkably,
the high energy excitations retain visibility in the DSF con-
tinuum region (Fig. 2) up to m7. In particular, the various
two-particle spectrum contributions leave significant “reso-
nant” features with bumpy peaks in the continuum region
of the spectrum, whose origin will be discussed in detail in
Sec. III B. The clear observation of this theoretically expected
series of two-particle peaks at the corresponding transferred
energy in the material of BCVO [21,22] provides a smoking
gun signature for the material realization of the E8 model.

In the following, to analyze contributions from the single
and multiparticle excitations in detail, we specify the contri-
butions of the different channels according to the number of
particles and exhaust all possible cases with energy less than
5m1 > m8.

A. Single-particle channels

The single-particle contributions to DSF are given by

D��
1 (ω, q = 0) =

8∑
i=1

2π

∣∣F�
ai

∣∣2
mai

δ(ω − mai ), (7)

FIG. 3. Dxx
1 (ω, q = 0) contribution from the single-particle

channels are delta functions with different spectral weights for differ-
ent E8-particle species. The inset exhibits the spectral weights from
m5 through m8.

where the form factor F�
ai

is the single-particle form factor
for the E8 particle ai [25], and 2π |F�

ai
|2/mai gives the corre-

sponding single-particle spectral weight. In Fig. 3 we show
the spectral weight of Dxx

1 for each E8 particle.

B. Two-particle channels

From Eq. (5), we get the following two-particle contribu-
tions to the DSF:

D��
2 (ω, q = 0) =

∑
i� j

(
1

2

)δaia j |F�
aia j

(θ1 − θ2)|2
mai maj |sinh(θ1 − θ2)| , (8)

where

θ1 − θ2 = arccosh

(
ω2 − m2

ai
− m2

a j

2mai maj

)
, (9)

with the lower bound of energy as ωmin = mai + maj and the
spectrum threshold for a specific two-particle channel with
masses mai and maj .

Figure 4 shows the analytical two-particle DSF results
of Dxx

2 by considering all possible combinations with ω <

5m1. Edge singularities are exhibited for two-particle chan-
nels with different masses. In Eq. (8), the Jacobian term
1/|sinh(θ1 − θ2)|, which is just the two-particle density of
states, contributes a singular behavior at θ1 = θ2, correspond-
ing to ω = ω0 (ω0 = mai + maj ). A simple analysis gives
Dxx

2 ∼ 1/
√

ω − ω0 at ω � ω0 [30]. Apparently, this singular
behavior also appears in Dyy and Dzz. This scaling behavior is
further illustrated in Fig. 4(b) by the logarithmic fitting of Dxx

at m1m2 channel with fitting (ω − ω0)α , α = −0.5043. The
edge singularity disappears for two particles with the same
mass, which is due to the explicit form of the equal-mass-two-
particle form factor where a | sinh2(θ1 − θ2)/2| term appears
and cancels the sinh(θ1 − θ2) in the denominator of Eq. (8)
[30].
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FIG. 4. Two-particle DSF. (a) Dxx
2 (ω, q = 0) contributed from all

two-particle channels. The ω > 3.5m1 region is highlighted in the
inset. (b) The singularity near the peak arising at ω0 = m1 + m2 has
an inverse square root ∼(ω − ω0)−1/2 behavior, confirmed by the
logarithmic fit for the m1 + m2 channel shown in the inset.

C. Three- and four-particle channels

In this section we further determine the contributions of
multiparticle channels beyond two particles. From Eq. (5), we
have DSF contributions

D��
3 (ω, q = 0) =

∑
i� j�k

⎛
⎝∏

ai, j,k

1

Na!

⎞
⎠ 1

(2π )

×
∫ ∞

−∞
dθ3

∣∣F�
aia j ak

(θ1, θ2, θ3)
∣∣2

mai maj |sinh(θ1 − θ2)| (10)

for the three-particle channels and

D��
4 (ω, q = 0) =

∑
i� j�m�n

(∏
a

1

Na!

)
1

(2π )2

×
∫ ∞

−∞
dθ3dθ4

∣∣F�
aia j aman

(θ1, θ2, θ3, θ4)
∣∣2

mai maj |sinh(θ1 − θ2)|
(11)

FIG. 5. Dxx (ω, q = 0) from three-particle channels (a) and four-
particle channels (b) for ω < 5m1.

for the four-particle channels, whose results are shown in
Figs. 5(a) and 5(b). Note that in Eqs. (10) and (11) θ1 − θ2

is not the same as in Eq. (9) but is a function of the integration
variables and ω.

The threshold of the spectrum for each channel is the total
mass, and there is no singularity [30]. Compared with the
single- and two-particle channels, the spectral weight is two
to three orders smaller, which only slightly modifies the total
DSF spectrum shown in Fig. 2.

IV. DISCUSSION AND CONCLUSION

In this article, we provided a systematic theoretical anal-
ysis that greatly expands the theoretical treatment of Refs.
[21,22,31] and which will also be helpful in guiding a real-
ization of the E8 model in other possible materials, such as
CoNb2O6 [31]. In BCVO, the QCP of TFIC universality is
hidden in the 3D ordered phase with an interchain interaction
serving as the longitudinal perturbation [22]. The obtained
theoretical DSF can be directly measured by terahertz spec-
troscopy measurements [21,31] as well as inelastic neutron
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FIG. 6. Analytical spectra for different particle channels’ contributions to the Dyy. Panels (a)–(d) show the contribution from single-particle
channels to four-particle channels, respectively.

scattering experiments [22]. The experimentally measured
differential cross section is related to the DSF by [32]

d2σ

d
 dE
∼ |q f |

|qi|
∑

μ,ν=x,y,z

(
δμν − QμQν

|Q|2
)

Dμν (ω, Q), (12)

where the scattering vector Q is defined as Q = q f − qi with
qi and q f as the initial and final wave vectors, respectively.
For zero transferred momentum q f = qi + G, with G being
the reciprocal lattice vector of the crystal. After multiplying
by a factor to convert the field theory results to the lattice
system,

〈σα
i (t )σα

0 (0)〉lattice = 〈σα (x, t )σα (0, 0)〉(〈0|σα|0〉lattice)2,

(13)

where α = x, z, our DSF results can be compared with a
zone center inelastic neutron scattering or other spectroscopy
experiment on Dxx, Dyy, and Dzz.

To conclude, by using the exact analytic form factors of
the quantum E8 integrable model, we performed a detailed

calculation of the DSF of the model with zero total momentum
and total transferred energy up to 5m1. The obtained DSF
describes the spin dynamics of the TFIC at its QCP with a
longitudinal magnetic field perturbation.

In addition to the eight single-particle resonant peaks, the
two-particle DSF contributions with different masses exhibit
edge singularities at the thresholds and decay with an inverse
square root behavior. For the channels involving more than
two particles, there is no such singularity and their spec-
tral contribution decreases quickly with increasing energy
and particle numbers. The obtained DSF displays rich and
fine spectrum structure with a series of peaks not only from
single particles but also two particles, and especially two-
unequal-mass particles. Thus the obtained DSF fine structure
for the E8 model can guide and evince the material real-
ization of the model BCVO [21,22]. In the future, based
on the current theoretical results and calculation techniques,
we plan to study the E8 DSF with finite momentum to
extract the dispersion relation and explore physics beyond
integrability.
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FIG. 7. Analytical spectra for different particle channels’ contributions to the Dzz. Panels (a)–(d) show the contribution from single-particle
channels to four-particle channels, respectively.
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APPENDIX A: SCALING LIMIT OF THE ISING
SPIN CHAIN

In the scaling limit, the lattice constant a is sent to zero
with the coupling J sent to infinity and hz sent to zero in the
manner

a → 0, J → ∞, hz → 0, (A1)

� ∼ Jh8/15
z = fixed, 2Ja = h̄c = fixed, (A2)

where � is the energy gap and c is the effective speed of light
in the field theory. Using the field theory normalization con-
ventions and h̄ = c = 1, the relations between the magnetic
fields and operators read [33]

h = 2

s̄
J15/8 hz, (A3)

σ (x = ja) = s̄J1/8σ z
j , (A4)

ε(x = ja) = −J−1σ x
j , (A5)
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FIG. 8. Total DSF of (a) Dyy and (b) Dzz with 0.05m1 broadening
of analytical data.

with s̄ = 21/12e−1/8A3/2, where A = 1.2824271291 . . . is
Glaisher’s constant. The mass of the lightest E8 particle is
given in terms of the field h as [34]

m1 = 4.40490858 h8/15. (A6)

APPENDIX B: E8 FORM FACTOR THEORY

The definition of the form factor in the E8 model has been
shown in the main paper; here we recall the definition and give
a detailed discussion. The form factor is introduced as

F�
a1,...,an

(θ1, . . . , θn) = 〈0|�|A(θ1), . . . , A(θn)〉a1,...,an , (B1)

where θi, i = 1, . . . , n represent the rapidities, and the asymp-
totic state with n particles carries energy and momentum as

En =
n∑

i=1

mi cosh θi, Pn =
n∑

i=1

mi sinh θi. (B2)

Let us first focus on the two-particle form factor. Denoting two
particles in m1, . . . , m8 as a, b, the two-particle form factor
follows,

F�
ab (θ ) = Q�

ab(θ )

Dab(θ )
F min

ab (θ ), (B3)

where θ = θa − θb and Q�
ab(θ ) are polynomials in cosh θ

whose explicit form depends on local operator � [24].
In our calculation, we denote Q1/2

ab (θ ) and Q1/16
ab (θ ) for

〈ε(x, t )ε(0, 0)〉 and 〈σ (x, t )σ (0, 0)〉, respectively. In addition,

F min
ab (θ ) =

[
−i sinh

(
θ

2

)]δab ∏
α

[Gα (θ )]pα , (B4)

where

Gα (θ ) = exp

{
2
∫ ∞

0

dt

t

cosh(α − t/2)

cosh(t/2) sinh(t )
sin2 (iπ − θ )t

2π

}
(B5)

and

Dab(θ ) =
∏
α

[Pα (θ )]iα [P1−α (θ )] jα , (B6)

with

iα = n + 1, jα = n, if pα = 2n + 1,

iα = n, jα = n, if pα = 2n (B7)

and

Pα (θ ) = cos πα − cos θ
1
2 cos2 1

2πα
. (B8)

The parameters α and pα are listed in Table 1 of Ref. [24].
Then for the single-particle form factors, using the bound

state singularities, we obtain

F�
s = Res

[
F�

ab (θ )|θ=iuc
ab

]
i�c

ab

, (B9)

with �c
ab = √

i Res[Sab(θ )|θ=iuc
ab

]. Sab(θ ) refers to the S matri-
ces in E8 theory,

Sab(θ ) =
∏
α

[
tanh 1

2 (θ + iπα)

tanh 1
2 (θ − iπα)

]pα

. (B10)

For an arbitrary number n(n � 3) of particles, the form factor
follows by

F�
a1,...,an

(θ1, . . . , θn)

= Q�
a1,...,an

(θ1, . . . , θn)

×
∏
i� j

F min
aia j

(θi − θ j )

(eθi + eθ j )δaia j Daia j (θi − θ j )
. (B11)

Q�
a1,...,an

(θ ) are polynomials in cosh θ . Details of Q�(θ ) can
be found in Refs. [26,35]. In the following section we will
give a conclusion to show the main process for the form factor
bootstrap method.

APPENDIX C: FORM FACTOR RECURSIVE EQUATIONS
AND THEIR SOLUTION

1. Iteration process

We use the following ansatz for the n-particle form factor
of the lightest particle m1:

Fφ
n (ϑ1, ϑ2, . . . , ϑn)

≡ Fφ

1...1︸︷︷︸
n

(ϑ1, ϑ2, . . . , ϑn)

= Hn
�n(x1, . . . , xn)

[ωn(x1, . . . , xn)]n

n∏
i< j

F min
11 (ϑi − ϑ j )

D11(ϑi − ϑ j )(xi + x j )
, (C1)

235117-7



XIAO WANG et al. PHYSICAL REVIEW B 103, 235117 (2021)

where x ≡ exp(ϑ ) and ωn denotes the elementary symmetric
polynomials generated by

n∏
k=1

(x + xk ) =
n∑

j=0

xn− jω j (x1, . . . , xn), (C2)

and Hn is a constant factor. The operator dependence is carried
by �n(x1, . . . , xn) that is an n-variable symmetric polynomial
that can be expressed in terms of the elementary symmetric
polynomials ω. D11 can be expressed as

D11(ϑ ) = P2/3(ϑ )P2/5(ϑ )P1/15(ϑ ). (C3)

The minimal form factor can be written in the form

F min
11 (ϑ ) = −i sinh(ϑ/2)G2/3(ϑ )G2/5(ϑ )G1/15(ϑ ).

(C4)

The expression of the recurrence relation is
�n+2(x eiπ/3, x e−iπ/3, x1, . . . , xn)

x4
∏n

i=1(x − e−11iπ/15x j )(x − e11iπ/15x j )(x + x j )

= (−1)n�n+1(x, x1, . . . , xn), (C5)

provided the Hn are chosen to satisfy

Hn+2

Hn+1
= �1

11 sin
(

2π
15

)
sin

(
11π
30

)
sin

(
8π
15

)
sin

(
3π
10

)
2 cos2(π/3) cos2(π/5) cos2(π/30)G11(2π i/3)

×
[

sin2(11π/30)γ

4 cos2(π/3) cos2(π/5) cos2(π/30)

]n

. (C6)

The kinematic equation is
(−1)n�n+2(−x, x, x1, . . . , xn)

= AnU (x, x1, . . . , xn)�n(x1, . . . , xn), (C7)

with

U (x, x1, . . . , xn) = 1

2
x5

n∑
k1,k2,...,k6=0

(−1)k1+k3+k5 x6n−(k1+···+k6 )

× sin
( π

15
[10(k1 − k2) + 6(k3 − k4) + (k5 − k6)]

)
ωk1 . . . ωk6 (C8)

and

An = 4γ sin2
(

11π
30

)[
cos

(
π
3

)
cos

(
π
5

)
cos

(
π
30

)]2[
G11

(
2π i
3

)]2[
�1

11 sin
(

2π
15

)
sin

(
11π
30

)
sin

(
8π
15

)
sin

(
3π
10

)]2

(
sin

(
2π
3

)
sin

(
2π
5

)
sin

(
π
15

)
8 sin4

(
11π
30

)
G11(0)γ 2

)n

. (C9)

2. Solving for the two operators

The E8 field theory has two scaling fields σ (x) and ε(x)
with conformal weights 1/16 and 1/2, respectively. Both
operators have form factors with polynomial structure de-
termined by the recurrence relations Eq. (C5) and Eq. (C7).
Consequently, the solution of the forementioned equations is
ambiguous in the sense that the general solution corresponds
to a field φ that is the linear combination of the two fields:

φ = ασ + βε. (C10)

This means that there are two independent initial conditions
from which one can start the recurrence. They were obtained
first in [36] where they made use of the clustering property of
form factors which provides the nonlinear condition necessary
to resolve the linear combination. The clustering property
reads [36]

lim
�→∞

Fφ

r+l (ϑ1 + �,ϑ2 + �, . . . , ϑr + �,ϑr+1, . . . , ϑr+l )

= 1

〈φ〉Fφ
r (ϑ1, ϑ2, . . . , ϑr )Fφ

l (ϑ1, ϑ2, . . . , ϑl ). (C11)

Once the initial conditions are known, the solutions for the
recurrence can be found up to a single coefficient at each level;
the remaining coefficient can be fixed using the clustering
property.

In fact, the case for σ (x) is even simpler, since it is pro-
portional to the trace of the stress-energy tensor [25], so
the form factor has to contain a factor P+P− with P± =∑n

i=1 p±
i and p± = p0 ± p1 = m(cosh ϑ ± sinh ϑ ). Conse-

quently when solving for σ (x) the ansatz can be reduced solv-
ing only for symmetric polynomials with ω1(x1, . . . , xn) 	= 0
and ωn−1(x1, . . . , xn) 	= 0. This modification alone is enough
to solve for the polynomials of the σ operator without utilizing
the clustering property. [This can be checked by verifying the
identity P+P− = ω1ωn−1/ωn, with the latter factor coming
from the ωn in the denominator of the ansatz Eq. (C1).]

Nevertheless it has to be used when solving for ε. To this
end, one has to calculate the asymptotic behavior of the min-
imal form factors and the bound state pole factor D11. They
read

lim
ϑ→∞

Gλ(ϑ ) = −icλ exp(ϑ/2), (C12)

where cλ is a real constant that can be obtained from the
numerical evaluation of Eq. (B5), so

lim
ϑ→∞

F min
11 (ϑ ) = − 1

2 c1/15c2/5c2/3 exp(2ϑ ). (C13)

For the bound state pole factor we have

lim
ϑ→∞

D11(ϑ )

= −1

8

1

2 cos2(π/30)2 cos2(π/5)2 cos2(π/3)
exp(3ϑ ).

(C14)

These can be combined to impose the constraint coming
from the clustering property on the symmetric polynomials,
in the simplest case “clustering” only a single rapidity [i.e.,
r = 1 and l = n − 1 in the notation of Eq. (C11)].
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APPENDIX D: DERIVATION OF THE DYNAMIC STRUCTURE FACTOR

The two point correlation function for a local operator � can be organized by the Lehmann representation,

〈0|�(x, t )�(0, 0)|0〉 = 〈0|e−iPxeiHt�(0, 0)e−iHt eiPx�(0, 0)|0〉

=
(∏

ai

1

Nai !

)∫ ∞

−∞

dθ1 . . . dθn

(2π )n
〈0|e−iPxeiHt�(0, 0)e−iHt eiPx|θ1, . . . , θn〉〈θ1, . . . , θn|�(0, 0)|0〉

=
(∏

ai

1

Nai !

)∫ ∞

−∞

dθ1 . . . dθn

(2π )n

∣∣F�
a1,...,an

(θ1, . . . , θn)
∣∣2eiPnxe−iEnt . (D1)

At zero momentum transfer q = 0, the DSF becomes

S��(ω, q = 0) =
(∏

ai

1

Nai !

)
1

(2π )n−2

∫ ∞

−∞
dθ1, . . . , dθn

∣∣F�
a1,...,an

(θ1, . . . , θn)
∣∣2δ(ω − En)δ(Pn), (D2)

where En = ∑n
i=1 mi cosh(θi ) and Pn = ∑n

i=1 mi sinh(θi ).

APPENDIX E: DERIVATION OF THE EXPRESSIONS TO
CALCULATE DSF FROM DIFFERENT CHANNELS

1. One-particle channel

By Eq. (D2), setting n = 1, we obtain the DSF for a single-
particle channel,

S��
1 (ω, q = 0) = 2π

8∑
ai=1

∣∣F�
ai

∣∣2δ(ω − mai ). (E1)

Equation (E1) shows that the single-particle resonant peaks
arise at ω = mai .

2. Two-particle channel

From Eq. (D2), setting n = 2, we obtain the expression for
two-particle channel’s DSF,

S��
2 (ω, q = 0) =

∑
i� j

(
1

2

)δaia j

∣∣F�
aia j

(θ1 − θ2)
∣∣2

mai maj |sinh(θ1 − θ2)| , (E2)

where the denominator comes from Jacobian, i.e., density of
states at zero momentum. We do the variable transformation
by defining

y = ω − En = ω − (mai cosh θ1 + maj cosh θ2),

z = Pn = mai sinh θ1 + maj sinh θ2.
(E3)

Then we get the Jacobian that

dθ1dθ2 = dy dz∣∣∣∣ ∂y
∂θ1

∂y
∂θ2

∂z
∂θ1

∂z
∂θ2

∣∣∣∣
= dy dz

mai maj |sinh(θ1 − θ2)| . (E4)

And the energy-momentum conservation constraints give

ω = mai cosh θ1 + maj cosh θ2,

0 = mai sinh θ1 + maj sinh θ2.
(E5)

From Eq. (E5), θ1 − θ2 can be expressed in terms of ω, mai ,
and maj , i.e.,

θ1 − θ2 = arccosh

(
ω2 − m2

ai
− m2

a j

2mai maj

)
. (E6)

Since all rapidities are all real, Eq. (E6) immediately implies
that the threshold for the two-particle DSF is ω = mai + maj .

3. Three-particle channel

By Eq. (D2), similar to the previous analysis, three-particle
DSF follows by

S��
3 (ω) =

∑
i� j�k

⎛
⎝∏

ai, j,k

1

Na!

⎞
⎠ 1

(2π )

×
∫ ∞

−∞
dθk

∣∣F�
aia j ak

(θi, θ j, θk )
∣∣2

mai maj |sinh(θi − θ j )| , (E7)

with the constraints due to energy and momentum conserva-
tions

ω = mai cosh θi + maj cosh θ j + mak cosh θk,

0 = mai sinh θi + maj sinh θ j + mak sinh θk .
(E8)

4. Four-particle channel

From Eq. (D2), the expression for the four-particle DSF is

S��(ω) =
∑

i� j�k�l

⎛
⎝∏

ai, j,k,l

1

Na!

⎞
⎠ 1

(2π )2

×
∫ ∞

−∞
dθkdθl

∣∣F�
aia j akal

(θi, θ j, θk, θl )
∣∣2

mai maj |sinh(θi − θ j )| , (E9)

with constraints

ω = mai cosh θi + maj cosh θ j + mak cosh θk + mal cosh θl ,

0 = mai sinh θi + maj sinh θ j + mak sinh θk + mal sinh θl .

(E10)
With i � j � k � l and ω from zero to 5m1, there are only
three sets of four particle channels: m1m1m1m1, m1m1m1m2,
and m1m1m1m3.
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APPENDIX F: ANALYSIS OF THE EDGE SINGULARITY

Without loss of generality, we consider the m1m1 channel in Dxx to show the absence of edge singularity for two equal-mass
channels,

Sxx
11(ω) = 1

2

∣∣∣∣Qxx
11(θ )

[
−i sinh

(
θ

2

)]
Gα (2/3, θ )Gα (2/5, θ )Gα (1/15, θ )

Pα (2/3, θ )Pα (2/5, θ )Pα (1/15, θ )

∣∣∣∣2 1

m1m1|sinh(θ )| , (F1)

where θ = θ1 − θ2 can be obtained from Eq. (E6). The product of Q(θ ), Gα (θ ), and Pα (θ ) is regular; the singularity given by
1/ sinh(θ ) is canceled by the square of sinh(θ/2) term in the form factor, leaving us a regular DSF spectrum. This can be applied
to all two-particle channels with equal masses.

Then we focus on the mai maj (ai 	= a j ) channels with | sinh(θ/2)|2 vanishing in the corresponding DSF. As such, the edge
singularity is given by the 1

|sinh(θ )| ,

1

|sinh(θi − θ j )| = 1∣∣∣∣∣sinh

[
arccosh

(
ω2 − m2

ai
− m2

a j

2mai maj

)]∣∣∣∣∣
= 2∣∣∣∣∣∣∣∣∣∣

ω2 − (mai + maj )
2

mai maj

√
ω2 − (mai + maj )

2

ω2 − (mai − maj )2

∣∣∣∣∣∣∣∣∣∣

,

ω∼mai +ma j−−−−−−→ =
∣∣∣∣ 1√

[ω − (mai + maj )](ω + mai + maj )mai maj

∣∣∣∣
∼ 1√

ω − ω0
,

(F2)

where ω0 = mai + maj ; then we have that

ln[S(ω)] ∼ − 1
2 [ln(ω − ω0)]. (F3)

The prefactor depends on the two-particle state and varies for different DSF expressions. In the main text, Dxx
12 is shown as an

example.

APPENDIX G: DSF OF Dyy AND Dzz

We also calculated the DSF Dzz for the system and Dyy can
be obtained through the relation Dyy(ω) = ω2Dzz(ω)/(4J2)
[11]. The contributions from different particle channels with
energy up to 5m1 are shown in Fig. 6 and Fig. 7 for Dyy

and Dzz, respectively. After broadening the analytical data
in Figs. (6) and (7) energy resolution of 0.05m1, all chan-
nels’ contributions are combined together and displayed in
Fig. 8, which are consistent with the Dxx discussed in the main
text.
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