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Universal superdiffusive modes in charged two dimensional liquids
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Using a hydrodynamic approach, we show that charge diffusion in two dimensional Coulomb interacting
liquids with broken momentum conservation is intrinsically anomalous. The charge relaxation is governed by
an overdamped, superdiffusive plasmon mode. We demonstrate that the diffusing particles follow Lévy flight
trajectories, and study the hydrodynamic collective modes under the influence of magnetic fields. The latter are
shown to slow down the superdiffusive process. The results are argued to be relevant to electron liquids in solids,

as well as plasmas.
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I. INTRODUCTION

Two dimensional electron systems are among the most
studied in condensed matter science: ultraclean graphene
sheets with impurity scattering lengths larger than 10 um [1]
allow the observation of viscous electron flows [2—6], which
were predicted almost 50 years ago [7,8]. Twisted bilayer
graphene is on its way to becoming an important model
system for strongly correlated electrons [9-11], and uncon-
ventional transport effects are observed in exceedingly pure
delafossite metals [12—14].

Hydrodynamic transport theories have been successfully
applied to predict the behavior of such systems [15-38]. A
particularly intriguing trait of hydrodynamics is its univer-
sality. It can be derived from general symmetry principles
without knowledge of the underlying microscopic theory. This
makes the hydrodynamic approach particularly interesting for
the study of systems where no microscopic picture has yet
been established, such as, e.g., strange metals [15,28,37].

In this paper, the mode spectrum of a charged two dimen-
sional liquid with weakly broken momentum conservation
is investigated within a hydrodynamic framework. We find
that, at large scales (or equivalently small wave numbers), the
diffusion of charges is governed by a superdiffusive mode,
which was described by Dyakonov and Furman [39], and
which we interpret as an overdamped plasmon. This mode is
shown to be universal in the sense that it does not depend on
any microscopic details of the system and is determined by
the rate of momentum relaxation, the charge density, and the
mass density alone. We also elaborate on the how the mode
arises from the Lévy flight random walks of the individual
charged particles. Intuitively speaking, diffusion in a charged
system is faster than in an uncharged, because particles tend
to spread out more due to their mutual repulsion. Using cou-
pled Langevin equations, we show that the particle motion is
dominated by Lévy flights and obeys heavy-tailed Lévy stable
statistics. Furthermore, we study the influence of magentic
fields on the mode spectrum and find that the superdiffusive
motion is slowed down by magnetic fields.
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Anomalous diffusion in two dimensional systems has been
discussed in the context of Yukawa liquids and dusty plasmas.
Numerical results implied that these systems are superdif-
fusive [40]; however, extensive simulations showed that the
diffusion process is ultimately governed by Gaussian dynam-
ics [41,42]. We reach a similar conclusion. In dusty plasmas,
where the charged particles are screened by mobile back-
ground charges and pair interactions are well described by the
Yukawa potential, ordinary diffusion prevails (see Sec. III B).
However, in one component Coulomb plasmas [43] and cer-
tain colloidal suspensions [44], we expect superdiffusion as
described in this paper.

Main results

The diffusion of charges in two dimensional systems is
shown to be intrinsically anomalous due to Coulomb inter-
actions and is described by the fractional differential equation

1
dpo = 2at|Al* po, (1)

which is derived in Sec. III. Here, pg is the charge density, ©
is the momentum relaxation time [see Eq. (8)], a is a constant
depending only on the background densities of charge and
mass [see Eq. (16) and below], and |A|% is the fractional
Laplacian [45,46]. Solving Eq. (1) with the initial condition
po(t =0,r) = Q4(r), we find [Eq. (22)] that the charge den-
sity follows a broadening Cauchy distribution:
2att
27 (Ratt)? 4+ r2)3/2°

Equation (2) was written down by Dyakonov and Furman
in Ref. [39]. Deriving Eqgs. (1) and (2) from hydrodynam-
ics, we show that superdiffusion prevails in virtually all two
dimensional, Coulomb interacting systems. Moreover, the su-
perdiffusive behavior is universal in the sense that the only
parameters that enter Eq. (1) are a and 7, and it does not
depend on microscopic parameters. In particular, we demon-
strate in Sec. III A that charge relaxation in quasirelativistic

po(t,r)=Q @)
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FIG. 1. Step size distribution p(Ar) of a random walk as
performed by Coulomb interacting, diffusing particles in two di-
mensions. At large step sizes, the distribution follows the p ~ Ar~3
power law which leads to the superdiffusive dynamics described by
Eq. (1). The data was obtained by integrating the system of coupled
Langevin equations of Eq. (56).

Dirac systems such as pristine graphene and twisted bilayer
graphene is also superdiffusive. Here, t has to be replaced by
7.—the relaxation time of charge currents [51].

The Cauchy distribution of Eq. (2) is a member of the fam-
ily of Lévy stable distributions. The general theory of Lévy
stability (see Refs. [47,48]) implies that if the superdiffusive
dynamics of Eq. (1) emerges from the random motion of
individual particles—a picture that is certainly true for classi-
cal particles—the step size distribution p(Ar) characterizing
the particles’ random walks must decay as a Ar~> power
law:

p(Ar) ~ Ar=3 Ar — oo, 3)

Such a slow power-law decay invalidates the central limit the-
orem, so that, in the limit of many random steps, the particle
distribution does not converge to a Gaussian, but to the heavy-
tailed Cauchy distribution of Eq. (2). Such random walks are
known as Lévy flights. To demonstrate the Lévy flight nature
of the charge relaxation process, we performed a computa-
tional experiment (see Sec. VI). The step size distributions
of diffusing Coulomb interacting particles were studied using
the coupled Langevin equations (56). As shown in Fig. 1,
the numerical step size distribution indeed obeys the power
law (3), demonstrating that the particles are traveling on Lévy
flight trajectories and their dynamics is governed by Eq. (1)
[49,50] at large scales. The distance traveled by the particles
scales as

r(t) ~ 2art, 4

which is much faster than the r(¢) ~ ~/2Dt law of normal
diffusion: the full width at half maximum of the Cauchy
distribution (2) broadens with a constant velocity v = 2ar.
Studying the collective mode spectrum of the charged two
dimensional liquid, we show that the superdiffusive mode can
be interpreted as an overdamped plasmon. In the presence
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FIG. 2. Dispersion relation of the damped plasmon mode is
shown. In the presence of momentum relaxation, the well known
+/g-plasmon mode is damped out, such that below a certain threshold
wave number Re[w4 (¢)] = 0 holds. The blue line corresponds to the
superdiffusive mode w, (¢g) [see Eq. (18)].

of momentum relaxation, the conventional plasmon mode
wp = +/2aq becomes purely imaginary for small g (see
Fig. 2). The superdiffusive mode then emerges as an imag-
inary branch of the plasmon dispersion relation: w; =
—2iat|q| [see Egs. (17), (18), and (33)]. In the context of elec-
tron hydrodynamics, the ~|q| dependence has been predicted
for a relativistic electron hole plasma [51] (as, e.g., realized in
pristine graphene; see also [52]).

We also study the collective modes in the presence of mag-
netic fields (Sec. V), and find that superdiffusion is slowed
down by a factor of (1 —wfrz), where . is the (small)
cyclotron frequency [see Eq. (55)]. The relaxation of charges
is then governed by the equation

o po = 2ar(1 — w§r2)|A|%pQ.
Apart from the superdiffusive mode, we derive the mag-

netoplasmon dispersion at finite t. The magnetoplasmon
dispersions are shown in Eqs. (51)—(54) and Figs. 3 and 4
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FIG. 3. Collective modes of a charged two dimensional liquid in
the presence of momentum relaxation and a perpendicular magnetic
field. The two damped magnetoplasmon modes " and ™ and
the superdiffusive mode "¢ are shown. The colored dashed lines
correspond to the approximations of Eqs. (52), (54), and (55). The
blue dashed line depicts the damped plasmon dispersion in the ab-
sence of magnetic fields w. given in Eq. (33), which is a reasonable
approximation to the magnetoplasmon dispersion at larger ¢. At
sufficiently large magnetic fields, the cyclotron resonance and the
damped plasmon mode merge. Here w, = 0.2t ! was chosen, where
w, is the cyclotron frequency and r~! is the rate of momentum
relaxation.

(see also Ref. [53]). It is noteworthy that the limits w, — 0
and g — 0 are not interchangeable and result in different dis-
persion relations. This behavior is discussed below Eq. (48).

In Sec. IV, we discuss the connection between the Einstein
relation and the superdiffusive behavior. We derive the Ein-
stein relation

_ aH(w—>0,0)
Xporo (0, q — 0)’

where ¥, is the charge susceptibility, from hydrody-
namics, showing that the diffusion constant D appears in a
diffusive pole of the nonlocal longitudinal conductivity oy.
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FIG. 4. Collective modes of a charged two dimensional liquid in
the presence of momentum relaxation and a perpendicular magnetic
field. In contrast to Fig. 3, a smaller magnetic field (w, = 0.057~")
was chosen. The two damped magnetoplasmon modes w'|*® and
™ and the superdiffusive mode ™ are shown. The colored
dashed lines correspond to the approximations of Eqgs. (52), (54), and
(55). The blue dashed line depicts the damped plasmon dispersion
in the absence of magnetic fields w. given in Eq. (33), which is
a reasonable approximation to the magnetoplasmon dispersion at
larger g. The cyclotron resonance and the damped plasmon mode are
well separated, whereas at larger fields strengths these modes merge

(see Fig. 3).

ot

Despite the presence of the diffusive pole wp = —iDg?, the
equilibration of inhomogeneous charge or current distribu-
tions is superdiffusive, and is not described by an ordinary
diffusion equation. This changes when a gate is located in
the vicinity of the two dimensional system. If the distance
between the gate and the 2D system is sufficiently small,
the long range Coulomb potential becomes subleading to the
capacitance of the gate. In this case, the relaxation of charges
indeed follows a diffusion equation, and the Einstein relation
gives the diffusion constant (see Sec. IV C).

Finally, the contribution of the superdiffusive mode to
the specific heat of a two dimensional liquid was calculated
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(Sec. VII). At low temperatures we find
cv =T — 7% + 3T — O(T?), 5)

where all higher order terms are of odd powers in 7. The coef-

i i - 4 I{E)) e
ficients are given by ¢ = and ¢, = S it where ¢* is a

24at
momentum cutoff. The coefficient in front of the T2 term does
not depend on g*. This term is due to the nonanalyticity of the
superdiffusive mode at ¢ = 0 [see Eq. (60)]. The result (5)
is very different from the ~T* specific heat of the undamped
plasmon mode w,; = +/2aq [54]. For a normal diffusive mode

in two dimensions we find

1
cvg=diT +d|T In (T) +d;T° +O(T7).  (6)

The T In (1/T) contribution, which is dominant at low tem-
peratures, is not uncommon for two dimensional systems. In
Sr3Ru,07, the T In (1/T) contribution has been observed ex-
perimentally [55]. Other mechanisms leadingtoa 7 In (1/7)
dependence of the specific heat are quantum critical fluc-
tuations of overdamped bosonic modes with a dynamical
exponent z = 2 [56] and scattering between hot Fermi pocket
and cold Fermi surface electrons in Sr3Ru,O7 [57].

In experiments, measurements of the superdiffusive modes
could involve pump probe setups which can monitor the re-
laxation of charge carriers at very short timescales (see, e.g.,
Ref. [58]). If surplus charge is induced at a given point ry, this
charge will relax as described by (2). The charge density right
at ry will decay according to p(ry,t) ~ 1/¢2. For Gaussian
diffusion, the decay at r scales as ~1/¢, which is much slower
for small ¢. The optical properties of the material, measured
by the probe signals, will follow this dynamics. Time of flight
measurements can be another way to probe the superdiffusive
behavior. Such measurements are used to measure electron
drift velocities in the presence of homogeneous electric fields
[59,60] and could be used to probe the r ~ ¢ scaling of Eq. (4)
(vs r ~ 4/t in the Gaussian case) directly.

The remainder of this paper is organized as follows: in
Sec. II we introduce the hydrodynamic framework that is
used throughout the paper. Section III presents a derivation of
Egs. (1) and (2). Yukawa liquids and two dimensional Dirac
systems are discussed. Section IV deals with the Einstein
relation and with gated 2D systems. The influence of magnetic
fields on the spectrum of collective modes is investigated
in Sec. V. Section VI presents the numerical results on the
Langevin dynamics of charged particles. Finally, Sec. VII
deals with the contributions of collectives modes to the spe-
cific heat.

II. HYDRODYNAMICS

The motion of a charged two dimensional liquid are gov-
erned by the laws of momentum and charge conservation
and the corresponding continuity equations. Introducing the
flow velocity u, the charge denstiy po, and mass density
P, we can write the charge current as jo ; = pou; and the
momentum density as g; = paqu;. In the case of a Galilean
invariant system, we have prq = mp, po = ep, where p is
the particle number density and m, e are the mass and charge
of the particles that constitute the liquid. If the Galilean in-
variance is broken, u can be introduced as a field sourcing the

conserved crystal momentum, and the densities pgo and paq
can be defined using the memory matrix formalism [20,37]
(see Appendix A for details).

The hydrodynamic equations that we will use in the fol-
lowing are continuity equations for the charge density pgo

0 pg + 0;(pou;) =0 @)

and the Navier-Stokes equation, which is the continuity equa-
tion for the momentum density

1
O (ppmu;) + 0,11 = _;pMui_pQqu- (8)

Here, IT;; is the momentum current tensor and ¢ is the elec-
trostatic potential. 7 is the relaxation time of the momentum
density and accounts for momentum dissipation, e.g., due
to impurities. The above equations are very similar to the
equations of classical hydrodynamics [61,62]. However, since
charged liquids are considered, we need to take care of elec-
trostatic forces induced by an inhomogeneous charge density.
The electrostatic potential ¢ in Eq. (8) therefore depends
not only on externally applied fields but also on the charge
density: ¢ = ¢[po]. In general one can write

Iij = pruju; + pdij — wj. )

Here, paq is the mass density and p is the fluid’s pressure.
The viscous stress tensor 7;; can be written as 7;; = 1;jx Okl
using the viscosity tensor 7; ;. We limit ourselves to isotropic
systems where the viscous stress tensor can be written in terms
of the shear viscosity n and bulk viscosity ¢:

Tij = nBijui—l—{B,-ajuj. (]0)

The hydrodynamic equations (7), (8) describe the macro-
scopic dynamics of translation invariant fluids with or without
Galilean invariance without making assumptions on the na-
ture of microscopic interactions. Therefore, they are useful
tools to study the dynamics of strange metals and other ma-
terials where a microscopic theory is currently out of reach
[15,18,37].

III. SUPERDIFFUSION

Particles undergoing normal diffusion spread in space ac-
cording to the law r ~ ¢!/2. Superdiffusion, on the other hand,
is characterized by a faster dynamics: r ~ t'/%, where 0 <
a < 2. If we picture diffusion as a random walk of colliding
particles, its speed crucially depends on the so called step size
distribution: the distribution of distances that particles travel
between collisions. If this distribution has a finite variance,
the resulting diffusion process will always be Gaussian for
large times and will obey the r ~ t!/2 scaling, which is a
consequence of the central limit theorem. If, on the other hand,
the step sizes are distributed according to a power law and
their variance is infinite, we enter the realm of superdiffusion.
Another important notion is that of stability. A distribution
function p(r) is called stable (sometimes Lévy-stable or a-
stable) if the scaled sum of random variables (1/c,) Y " r;,
with each r; distributed according to p(r), is itself distributed
according to p(r). It can be shown that ¢, = n'/® is the
only possible choice [48]. Letting n =t/At, where At is
the time between collisions, we obtain the r = Z:Z rp ~ /e
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scaling mentioned above, where o = 2 again corresponds
to a Gaussian distribution. In this sense superdiffusion is a
generalization of normal diffusion for heavy-tailed step size
distributions with infinite variance [47,48]. In this section, we
describe how superdiffusive modes arise in two dimensional
materials from the hydrodynamic equations introduced in the
previous section.

In the following it will be useful to separate the densities
po, pam into a homogeneous background and a small fluctu-
ating term:

an

In the absence of external fields, the electrostatic potential is
determined by the inhomogeneous part of the charge density:

_1 2/'05)0’1‘)
¢<r)—g/dx P D)

Ir —r'|

0 1
P@M205M+0&MUJ)

(12)

where ¢ is the dielectric constant of the substrate. The poten-
tial ¢ in Eqgs. (8) and (12) is the hydrodynamic analog of the
self-consistent potentials of the Landau-Silin [63] and Vlasov
[64] theories. After a Fourier transform the above equation
reads

1 M
¢(q) = EV(q)pQ (w, q),

with V(q) = 2n/q. We will be interested in the system’s
response to small inhomogeneities at small q. Let us therefore
sort out the higher order terms. The ][))ressure term in Eq. (8)
can be written as Vp = (K/ p(go))V,o(Q with the bulk modulus
K = po(dp/dpo). Using the continuity equation for pg, we
find that the pressure term is of order ¢*: V;p  giq juj. The
viscous terms 9;7;; also are of order qz. On the other hand,
using Eq. (7) one finds

4
po) (@, q) = jpg)ui(w, Q).

(13)
Therefore, linearizing Eq. (8) in u; and pg; M and performing
a Fourier transform we obtain, to first order in q,
(02
P . q;
%(w»vm)—’u,
Pa€ w

(—iw+ 7 D = — (14)

Being interested in the longitudinal solutions to Eq. (14), we
set u  q. The above equation then reduces to

.0 (002
. _ AV
olio —t7") = ((%)) 7'V (@). (15)
ME
It follows
! +./2 ! (16)
@x =750 4= g

. 2 .
with a = n(,og)) /(e pf&). In the absence of momentum dis-

sipation, i.e., in the limit T — oo, Eq. (16) reduces to the
well known 2D plasmon dispersion w = +/2aq [65]. Equation
(16) describes a damped out plasmon mode, which is purely
imaginary below a threshold wave vector ¢* = 1/(872%a). This
purely imaginary branch of the dispersion corresponds to a
superdiffusive mode, as we will shortly see. For Fermi liquids,
Eq. (15), which describes the plasmon pole in the presence of

disorder, has been derived diagrammatically in Ref. [66]. As
shown here, it can be justified on much more general grounds.
Expanding Eq. (16) for small g we find

i
w_ ~ —— 4+ 2iatlql,
T

a7
(18)

Finally, there exists a transverse mode with u - ¢ = 0, which
is given by

wy & —2iat|q|.

w1 =—i/T + O0(g). (19)

The dispersion relation of Eq. (18) describes a superdif-
fusive mode for the charge density po. In contrast to the |g|
dependence of Eq. (18), simple diffusive modes are governed
by a dispersion relation @ = —iDq?, where D is the diffusion
constant. In space-time coordinates this translates to the well
known diffusion equation 9,09 = DV?pg. On the other hand,
Eq. (18), via Eq. (14), leads to a fractional diffusion equation
for the charge density:

8,po = 2at|A|* pg. (20)

The fractional Laplace operator |A|% is defined via its
properties under the Fourier transform: JF [|A]Z flg) =
—|ql*F[f1(g) [45,46]. The special case o =1 is used in
Eq. (20).

Fractional diffusion equations [50] are used to describe
superdiffusion in systems as different as random media [67]
and financial markets [68]. In physics they can be motivated
by general symmetry considerations [69]. The fractional dif-
fusion equation that we arrived at can be interpreted as the
continuous time limit of a stochastic process involving Lévy
flights. To see this, let us solve Eq. (20). Taking the Fourier
transform of the spatial portion of the equation and using the
initial condition pg (fo, r) = Q&(r), where Q is the charge, we
find

pg(Al, q) — Qe—ZiurquAt'

Here, we have abbreviated Ar =t — #;. Taking the inverse
Fourier transform one obtains

@D

2at At
27 ((2at At)? + r2)3/2°

This function is interpreted as the probability distribution for
the distances a particle travels in a period of time Af starting
atr = 0, i.e., the step size distribution of a random walk. Its
mean value vanishes by symmetry and its variance is infinite,
(r?) = oo, while its width grows linearly with ¢. The distance
r that a particle travels therefore scales as

po(Ar,T) = Q

(22)

r~t,

which is much faster than for normal diffusion processes,
where the distance scales as r ~ ¢1/2.

In general, Lévy flights in d dimensions are characterized
by heavy-tailed power-law step size distributions which scale
as [70]

—(a+d) (23)
for large step sizes r [47,48]. The word “flight” is used to
stress that, due to its slow decay for r — oo, p(r) allows for

pir)~r

235116-5



EGOR I. KISELEV

PHYSICAL REVIEW B 103, 235116 (2021)

very large steps which would be extremely improbable for
normally distributed step sizes. The exponent o with 0 < o <
2 fully characterizes the Lévy stable distribution function [48]
and the distance traveled by a random walker scales according
to r ~ t%, as described in the beginning of this section. Thus
Egs. (18) and (20) indeed describe a Lévy flight with exponent
o = 1. Another way to see that Eq. (20) describes a Lévy
flight is to remember that the characteristic function of a
(symmetric) Lévy stable distribution is

(e—iQ-r> — e—V\q\"7 (24)

where y characterizes the width of the distribution [47,48].
For @ = 1 this indeed corresponds to the solution of Eq. (20)
in Fourier space given in Eq. (21).

A. Dirac liquids

The prime example of a Dirac liquid is graphene at the
charge neutrality point. At finite temperatures, equal num-
bers of particles and holes are excited, such that the system
remains charge neutral. Thus p(QO) = 0 holds. Homogeneous
electric currents consist of equal numbers of electrons and
holes. However, at finite wave vectors, pg) = ‘15 Jjo.i holds,
such that the self-consistent potential (12) must be included
[71]. In charge neutral graphene, electric currents are relaxed
by interaction effects since they are not protected by mo-
mentum conservation [72]. The corresponding relaxation time
7. damps out the plasmon mode just as T does in Eq. (16).
The collective mode structure of this system was studied in
Ref. [71]. The damped plasmon mode is given by

i vg 1
wy=——=F [—— —. (25)
21, v 412
. . 2mksT i
Here, v is the electron group velocity and 1y = =% ﬁiT(z)
. 2 .
with the fine structure constant « = -%-. 1y characterizes the

evh
strength of the electrostatic repulsion. For small g we find a

superdiffusive mode

VT
wy = —1

q- (26)
v

Similar physics will prevail in other charge neutral systems

such as twisted bilayer graphene (TBG), since at small wave

numbers the electric current will always follow the dynamics

1 /

@ + t)jg)(t, r)=-V [d® ifr)(_t’rr/l), which, together with
the continuity equation, will result in a superdiffusive mode.
The conclusion that charge relaxation in pristine graphene is
a Cauchy process was reached by Kolomeisky and Straley
in Ref. [52] extending the original arguments of Ref. [39].
Interestingly, the phase space behavior of Dirac liquids is also
superdiffusive [73].

An estimation of the value ¢* = 1y /(472v) below which
superdiffusion prevails in charge neutral graphene can be
made with the scattering times calculated in Ref. [71]: ty =
272/ [4aksT In(2)], ©. =In(2)i/(0.80%3sT), and v =
10% m/s. Here o is the fine structure constant. We obtain
q" =~ 3x105$, where we used a temperature of 7 =50 K
and a substrate dielectric constant of € = 6, giving o =~ 0.1.
The above value of g* corresponds to sample lengths of tens

of micrometers. Notice, however, that g* ~ «>. Thus the typ-
ical length scales of the superdiffusive regime will strongly
decrease for larger values of «, as they are typical for TBG.

B. Yukawa liquids

In a Yukawa liquid charges interact with a Yukawa pair
potential

27
g+«

Vy(q) = 27
where « is the inverse screening length. Such a screened
interaction potential arises when the considered charges are
screened by mobile background charges, as for example in
dusty plasmas [74]. Two dimensional Yukawa liquids are
widely studied (see, e.g., Refs. [43,75,76]). In particular, su-
perdiffusion has been discussed [40], but ultimately ruled out
in favor of normal diffusion [41].

Within our hydrodynamic model, it is readily shown that
diffusion in a 2D Yukawa liquid is indeed Gaussian. To this
end we replace V (q) in Eq. (15) by the Yukawa potential (27).
Instead of Eq. (16) we then obtain

L 2aq? 1
w, = —— - —,
+ 27 g+ 4r?
j 2aq? 1
of = —— [ (28)

27 g+x 412

For small g, Eq. (28) reduces to

i 2at
ol ~——+i——¢,
K
2at
ol ~ T (29)
K

The mode w, describes normal diffusion where the diffusion
constant is given by Dy = 2Z_r If « is large, the bulk and shear
viscosities, which also give a contribution of order O(g?), will
enter the expression for the diffusion constant. Equation (29)
is therefore a good approximation, if the screening is weak,
ie., k = 0. In this case, the dynamics of a weakly inho-
mogeneous charge distribution is described by the diffusion
equation

dhpo = DVpg. (30)

IV. BEHAVIOR AT LARGER WAVE NUMBERS,
EINSTEIN RELATION, AND GATING

A. Behavior at O(¢?)

The full dispersion relations w(g) which are also valid at
larger g can be efficiently obtained from the well known con-
dition for collective excitations &(w, q) = 0, where e(w, q) =
Gext(w, qQ)/P(w, q) is the dielectric function of the 2D mate-
rial. Here ¢ = ¢ex¢ + @ing 1s the total electric potential, where
Pext 18 due to external sources and ¢yq is sourced by the inho-
mogeneous charge carrier density pg) . From the definition of
& we find

8(('0’ q) =1- XpQ,OQ ((,(), q)v(q) (31)
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Here x50, is the charge susceptibility which is defined via
the relation

PO (@. @) = X popo (@ D@, ). 32)

The condition ¢(w, q) = 0 together with Egs. (35) and (37)
then gives

&+
wi(q) =—i— —iq’
* 2 2,05\0/1)1'
K 1 (ec+m )
q q n
2ap t P

(33)

For small g, Eq. (33) reduces to the expression given in
Eq. (16). A third mode w, is easily found by settingu - q = 0
in the Navier-Stokes equation (8). This transverse mode obeys
the dispersion relation
i
wL=—_- ing’. (34)

The modes of Egs. (33) and (34) are shown in Fig. 2.

B. Einstein relation

Although the charge dynamics in a two dimensional liquid
is superdiffusive, transport coefficients obey the Einstein re-
lation: the longitudinal conductivity oy is defined via Ohm’s
law: jo i(w, q) = o)(w, Q)Ei(w, q) with E o< q, where the
electric field is determined by the gradient of the total electro-
static potential: E = —V¢. In the regime of linear response,
we find from Eq. (8)

r(pg) /o

. . 2
| —iwt+itL X 14
w
Prm

oj(w, q) = (35)

277+0€'
P

Here we have again used the relation Vp = (K/,og))v,og),

where K = po(dp/dpgo) is the bulk modulus. We also as-
sumed an isotropic system where the viscous stress tensor
reduces to t;; = 19;9d;u; + £0;0;u;, with the shear and bulk
viscosities 7, ¢. Let us relate the bulk modulus to the charge
susceptibility y ,,,,- In the static case w = 0, forces stem-
ming from fluctuations of ¢(x) are balanced by pressure
changes: —iqu)q&(o, qQ) = (K/pg))iqu)(O, q). It follows
that

2
Xpora (0.4 —> 0)=—(p) K. (36)
This is a special case of the relation
iw
o ((,(), q) = ;X,DQPQ (('07 (I)a (37)

which can be obtained from the Kubo expression for o and the
continuity equation [77]. The conductivity (35) has a diffusive
pole

(38)

for small g [see Eq. (40) for the full expression]. Here, D is the
diffusion constant D = Kt/ ,05\0/2. However, the pole (38) does
not coincide with the superdiffusive mode w, (q) of Eq. (18),
because the electric conductivity characterizes the system’s

wp(q) = —iDg*

response to the total electric field E = —V¢. For a given
electrostatic potential ¢, the charge density is fixed through
Eq. (32). Indeed, a charge distribution evolving according to
Eq. (38) would not solve Eqgs. (8) and (7) (see also Ref. [78]
for a similar discussion). Combining (35) and (36) we obtain
the Einstein relation

D= aH(a)—>0,0)
Xpopo(0,q — 0)

(39)

The order of limits for w and q is essential, since at finite w,
q Eq. (37) determines the ratio oy/x .- Finally we note
that, even though diffusion is normal for Yukawa interacting
charges [see Eq. (30)], the diffusion constant Dy is not equal
to the D of Eq. (39).

C. Gated systems

Two dimensional solid-state systems can be manipulated
by gates [79,80]. In particular, if the distance between the 2D
channel and the gate is smaller than the length scales of the
charge inhomogeneities inside the 2D layer, the Poisson term
(12) on the right of Eq. (8) can be replaced by a capacitive
term ¢¢c = ,o(Q) /C, where C is the gate capacitance per unit
area. This is the local capacitance approximation, which is
appropriate for many gated devices [8§1-84]. The force —V¢¢
stemming from the capacitive term can be absorbed into the
pressure term of the Navier-Stokes equation with the substitu-
tion

pY
K— K=K+ —.
C

The absence of the Poisson term (12) changes the dispersion
relations of the hydrodynamic modes. Instead of Eq. (15), the
hydrodynamic modes are now determined by

i+ ivg® K (1 +vg?)’
(,!)gi = — 3 W 2 — T (40)
T 'OM T

The subscript g indicates that we are considering a gated
system with a uniform electrostatic potential. For small g we

have
j K
we =L i L =20, 1)
& T T pﬁa
iKg*t
Pm

While w,_ is gapped, w,y is an ordinary diffusive mode with
a diffusion constant D = Kt/ ,0583. For a gated structure the
diffusion constant governing the diffusion of charges is indeed
equal to the one obtained from the Einstein relation (39).

V. MAGNETIC FIELDS

Magnetic fields qualitatively change the spectrum of col-
lective excitations of a charged liquid. Under the influence
of a magnetic field B charges oscillate at the cyclotron
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frequency
= Bpg'/Pjic- (43)

At finite wave vectors, the cyclotron resonance merges with
the plasmon and gives rise to the magnetoplasmon mode. We
are interested in how the dispersion relations of collectives
modes change when both a momentum relaxation time 7 and
a uniform magnetic field are added. This can be studied by
adding a uniform magnetic field oriented perpendicular to the

J

fluid plane to the Navier-Stokes equation:

1 B
Bt(pMu,-)—i—ajHij:—;PMMt poVeo + Slj]QJ (44

The last term in Eq. (44) describes the Lorentz force exerted
on the fluid by the magnetic field. We assume that the mag-
netic field is weak, such that Landau quantization effects,
as well as the localization of electrons on cyclotron orbits,
can be neglected. Linearizing Eq. (44) in u;, pj\l/l, and ,o(l)
performing a Fourier transform, and writing the equatlon in
terms of matrices, we find

D(w, q)u(w, q) =0, (45)
with
(_lw+r—1)+(i_thl+ p(lol)(w+ (0))q1 +Vq (%Z‘i_p(lol)(w + (U))qlq2_w(_
D= A A (46)
(i,_aql"‘ (lo[)( + <0)>‘11‘I2+Q)L (—iw+fil)+(%+ (lolf + (0>)512+ (0)‘]
P @ q P @

Here v = n/ ,0(0) is the kinematic viscosity. The dispersion relations of collective modes can be found by setting

det (A) =0 (47)

In the limit T — oo, Eq. (47) gives the magnetoplasmon dispersion [85,86]

Omp,+ = £4/2aq + @2, (48)

where the conventional square-root plasmon spectrum is gapped out by the magnetic field. It is interesting to note that in Eq. (48)
the two limits ¢ — 0 and w? — 0 are not interchangeable, yielding

Omp,+ ~ 21161 +

and

a)mp,+ ~ e + aq/a)m

w;
2/2aq’

w? L aq (49)

ag < . (50)

Either the cyclotron motion or the plasmon waves dominate the collective behavior. This behavior is even more striking at finite

7. The modes w_, w, of Egs. (16) and (19) then become

i

c

o™ —— — e + 2iat(1 — wztz)q —icg — i—3, 603 <K agq, 6D
T q
o™ ~ —w,(1 + at’q) — — + iat(1 — wt%)q, aq < o, (52)
W]~ _; +ic) +icg + ii’ w; < aq, (53)
mag 2 N i : 2.2 2
w, - ~o(l+ar’q) . + lat(l w,T )q, aq L wy, 54)

where we have used the abbreviations = a)f%
2 4a?7’ vp(/(\J,)t+r2K2+§2—2§Kr opm
w: 3
c 8a373( p(O))
but finite magnetic fields, the modes a)_ag, '™ acquire a
dispersive real part of +w.(1 + at?q) and become wavelike,
albeit heavily damped. The mode spectrum for larger g is
quite complicated and is depicted in Figs. 3 and 4. Magne-
toplamon spectra for different values of w, and t are the
subject of Ref. [53]. The authors point out that electrody-
namic retardation effects may play an important role. For
2D undamped plasmons in the absence of magnetic fields

retardation becomes important for ¢ — 0, when the phase

€=

~<. In the limit of small

,and ¢c3 =

(

velocity approaches the speed of light c. In the case of damped
magnetoplasmons, the interplay between w.t, ¢, and the dc
conductivity ¢ which can approach ¢ becomes important.
However, the superdiffusive mode, which is under consider-
ation here, is saved from these effects. For the superdiffusive
mode (18) the two limits ¢ — 0 and a)f — 0 are interchange-
able. In both cases the superdiffusive dispersion reads

W™ = =2iat (1 — ;1%)q. (55)

The superdiffusion is thus slower by a factor of 1 — w?z? for
w.T K 1.
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VI. LANGEVIN EQUATIONS AND LEVY FLIGHTS

Diffusion processes can be modeled with Langevin-type
stochastic equations. Here, we demonstrate that charged par-
ticles interacting via the Coulomb potential, while undergoing
diffusion, indeed follow Lévy flight trajectories that produce
the superdiffusive dynamics of Eq. (18). Our starting point is
coupled Langevin equations for the particle coordinates r;(z)
[41,43,87]:

o gl 1 1. 1,

(i) __ @)

r ———E —— — —r+ —p"". 56
m o [r) —r®) T +m77 (56)

Q is the particle charge and ; is an uncorrelated stochas-
tic force for which holds (n,(f)(t)nl(")(t/)) = Kk8;j0udt —1).
Equation (56) could describe a one-component Coulomb
plasma [43] (as, e.g., realized by macroions in colloidal
suspensions [44,88]). Here « = 2mkgTt~! holds due to the
Einstein relation.

It is a textbook result that, without the Coulomb term in
Eq. (56), the particles will undergo Brownian motion. Indeed,
for Q = 0 the response to the stochastic force is given by

t , .
ri(@) = = / dr' (1 —e 5 @),
m Jo

where we assumed that § was switched on at # = 0. For the
variance r(¢) follows

2

0@) D 0) ~ 8

t
m? "’

which corresponds to an ordinary Gaussian diffusion pro-
cess. To demonstrate how the non-Gaussian superdiffusive
dynamics of Eq. (18) emerges once the Coulomb interac-
tions are turned on, we integrate Eq. (56) numerically. In
the simulations, we used periodic boundary conditions and
have chosen t. = /mr2/Q? as our unit of time. The length
7. is chosen arbitrarily (box size L = 25r,) but can be related
to the Wigner-Seitz radius a: a = /7n ~ 1.54r.. Att =0,
the system consists of a uniform background distribution of
particles ,08) =0.72/r? and a small number of nonequilib-
rium particles (n = 20) localized completely within the unit
square O(1 — 2|x|)®(1 — 2|y|). The coupling parameter I" is
small I' = Q?/(akgT) ~ 0.05 and the damping is substantial:
T =0.1¢,.

The movements of the particles at # > O can be interpreted
as random walks. From the discussion of Sec. III, one expects
that the distances traveled by the particles during an inter-
val At are distributed according to the Cauchy distribution
Eq. (22). That is, if the diffusion is indeed anomalous with a
coefficient o = 1, the step sizes Ar of the random walk will
follow a fat-tail power-law distribution decaying as

1
p(Ar) ~ — (57)

Ar3’
The superdiffusive behavior manifests itself at small wave
vectors, i.e., large distances; therefore, the behavior for small
step sizes will deviate from the Ar—2 law. Since the variance
of the Cauchy distribution is not defined, we cannot iden-
tify the superdiffusive dynamics by measuring the correlation
function (r'’(¢) - r')(¢)). Instead, the step size distribution of

Eq. (57) can be used to study the Lévy flight nature of the
diffusion process.

Figure 1 shows the step size distribution obtained in our
computational experiment. The power-law decay of Egs. (22)
and (57) for large Ar is clearly observed. Thus the diffusive
random motion of Coulomb interacting two dimensional par-
ticles is a non-Gaussian, Lévy stable random walk. From the
general properties of such random walks, we know that the
mean traveled distance of a particle grows as ¢, in contrast to
the /7 scaling of normal diffusion [47,48].

VII. SPECIFIC HEAT

Finally, we want to discuss the contributions of the (su-
per)diffusive modes to the specific heat C of a charged
two dimensional liquid. The thermodynamics of collective
excitation has been the subject of many studies (see, e.g.,
Refs. [54,89-91]). In Appendix B, we show that the modes’
contribution to internal energy density E is given by

o0
E:/ de
0

where 8 = 1/kgT and v(e) is the density of states of the
modes:

ev(e)
efe — 1’

1 (9 gd
v(e) = ——f 199y 1G(e, q)). (58)
T Jo s

2

G(e, q) is the Green’s function of the diffusion equation. g*
serves as a momentum cutoff. The specific heat is defined as

oE
- AT
To simplify the analysis, we will focus on low temperatures,
where the relevant modes will be the superdiffusive mode of
Eq. (18) while the gapped mode (17) will only gain impor-
tance at higher temperatures. We begin with the superdiffusive
mode w; = —2ialq| and obtain

Cy

2aq*t — ¢ tan~! (2ag*t/¢e)

8a212m? '
The superdiffusive mode contribution to the heat capacity for
small temperatures is then given by

cv =T —aaT?+ ;T3 — O(T?),

v(e) = (59)

where all higher orders are of odd powers in 7. For the co-
efficient of the linear term we obtain ¢; = %. Surprisingly,
= 81{;23 T)z does not depend on the momentum cutoff ¢g* and
has a negative sign (although C is always positive). This is
due to the fact that the T2 dependence can be traced back to
the nonanalyticity of the superdiffusive mode at small g. We
observe that the integrand of Eq. (58) depends on &2, yet the
density of states v(¢) has a linear term in e. We can extract
this term from the integral of Eq. (58):

. v(e) —v(0)

lim —

e—0 &

i 1 /ff dqg 1 4a’t*g?
= 11m _
e—~02mwat)y 2w e\ &2+ 4at2q? 1

l oo
=—— dq(q). 60
loma?s2 /m q4(q) (60)
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For small energies, the DOS is

* €

v(e) = (61)

dr2ar  16wa?tr?’
giving the above values of cj, ¢;. It is well known that, to
leading order at low temperatures, the specific heat C of
Galilei invariant Fermi liquids is linear in the temperature,
just as for free fermions. However, the analogy does not
hold beyond the leading order term. Nonanalytic terms in the
fermion self-energy of two dimensional Fermi liquids result in
corrections to the specific heat SC which behave as §C ~ T2
[92-94]. This result is true for both Coulomb and short range
interactions [95]. Here we show that, in the presence of mo-
mentum relaxation, the nonanalytic superdiffusive mode of
Eq. (18) as well contributes an ~T?2 correction to the specific
heat, however, with an opposite sign. This is in contrast to
the plasmon resonance of a two dimensional charged system
where the plasmon dispersion is given by w = /2aq and only
contributes a sub-subleading ~T* term [54].

For the specific heat contribution of the diffusive mode w,.
of gated 2D systems we obtain

1
cvg=dT+d|T In (?> +d;T? + O(T). (62)

Gating thus qualitatively changes the specific heat of a
charged two dimensional system. The low temperature behav-
ior will be dominated by the T In(1/7) term. Interestingly,
several mechanisms have been discussed that lead to a
T In (1/T) temperature dependence of the specific heat in two
dimensional systems, such as quantum critical fluctuations
of overdamped bosonic modes with a dynamical exponent
z = 2 [56] and scattering between hot Fermi pocket and cold
Fermi surface electrons in Sr3Ru,O; [57]. For Sr3Ru,07,
the T In (1/T) contribution has been observed experimentally
[55].
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APPENDIX A: CHARGE AND MASS DENSITIES IN
SYSTEMS WITHOUT GALILEAN INVARIANCE

In Galilean invariant systems the notions of mass and
charge densities are straightforward. If p is the particle num-
ber density, the mass density is given by paq = mp and the
charge density by pg = ep, where m and e are the mass
and charge of a particle. However, many solid state systems
do not exhibit Galilean invariance, and it is useful to extend
the definitions of mass and charge densities to non-Galilean
invariant, yet translation invariant systems, where momentum
conservation ensures the validity of hydrodynamics. Here the
velocity u;(x) is defined as a source of the conserved crystal
momentum [37]. With the shift

H— H— /dzxu,-(t, x)P.(x), (A1)

where H is the full Hamiltonian of the system and P;(x) is
the momentum operator, the densities pa(f, X) and pgo(t, X)
can be defined as response functions and calculated using the
memory matrix formalism [20,37]. Memory matrices allow
one to construct a hydrodynamic approximation to a quantum
system by restricting the infinite-dimensional space of possi-
ble observables to a few conserved quantities and quantities
which decay at very long time scales. Sticking to the notation
of Ref. [37], we will call these quantities X4. Their thermody-
namic conjugate shall be called Ug. An important object is the
generalized conductivity o4p. The memory matrix formalism
provides efficient means for its calculation. The generalized
conductivity relates the quantities X to the fields Up:
(Xa) = —oupUs, (A2)
where a summation over the index B labeling the
(quasi)conserved quantities is implied. o45 can be expressed
in terms of retarded Green’s functions
[Gﬁg(Zv q) — Gﬁs(iO, (1)],

oas(z, q) = (A3)

1
iz
with

GRy(1, %) = —iO®(1)([Xa(r, X), X3 (0, 0)]).

As is customary in memory matrix literature, we used the
Laplace transform

GRozr q) = / dt ¢ GRy(t, ).
0

In our case the quantities X4 include the momentum P,
which, following Eq. (A1), is sourced by the velocity u;. Using
Eq. (A2), we write

(P) = —izop, . (Ad)
The above equation suggests that the mass density should be
defined as ppq = —izop, ,,. It follows that

(P)(t,x) = /dz’dzx/ om(t —t',x —xDut', x).  (A5)

Finally, we should keep in mind that the scales of hydro-
dynamic temporal and spatial inhomogeneities #, and [, are
much smaller than any time or length scale 7, [ characterizing
the Hamiltonian H. Since the Green’s functions in Eq. (A3)
are calculated at vanishing flow velocities, they will decay on
scales given by |t —t'| ~ 7, |x — x| & [. On the other hand,
the flow velocity u; varies on scales #,, /. Thus, in the hydro-
dynamic limit 7 < t,, [ < I, Eq. (A5) can be approximated
by the local relation

gi(t, X) = ppa(t, X)ui(t, X). (A6)
pm(t, x) is the mass density used throughout the text. Simi-
larly, we arrive at pg = —izoy, .4, Where Jg ; is the electric
current operator, and finally

Jo.i & polt, X)u;(t, X). (A7)
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APPENDIX B: SPECIFIC HEAT CONTRIBUTION
OF COLLECTIVE MODES

We begin with the partition function

7 = /D[(pq]e* g Paion G (100, Qbg.iv, (B1)
Here, G(iw,, q) is the Green’s function of the damped bosonic
plasmon mode
1

_lwn + w+(‘l) '
where w,(q) was introduced in Eq. (18). ¢ is representing
the bosonic plasmon fields. The heat capacity can be calcu-
lated from the internal energy E, which is given by [96,97]

Gliwn, q) = (B2)

E__i d’q Zln[ﬁG—‘(z‘w )] (B3)
=5 ) Grr 2 s Q)]

First, we evaluate the Matsubara sum over bosonic frequen-
cies w, = 2mn/B by rewriting it as a contour integral around
the imaginary axis of a variable ¢:

9 d’q / de B
g ) @) Je Qi) efs —

In the following, it will be convenient to use the abbreviation
wi(q) ~ —2iatig =§. (B4)

] In{B[—¢ + o (@]}

The integrand has a branch cut at Ree > 0 and Ime = &.
Correspondingly, the contour can be deformed such that it
encircles the line Ime = —2iat;q running from O to infinity
and back. The internal energy is then given by

9 d®q [ de B
E="% ) ./0 (2mi) { e —1
x [—(e +&+i0") + &)

- eﬂ(s+§) — InBl=(e +§& —i07) + S]}} (BS)

or

Im(In [B(—¢ + E)]).
(B6)

9 d?q /"Ode B
08J) ) Jo mefr—1

Simplifying the expression we obtain

E _i ﬁ/md_e{i[ln(l_eﬁs)_ﬁg]
a8 (271)2 o T |0de

x Im(In[B(—¢ + S)])}

_ [ L [ 5 ma e - pe
) ey 1TV
(=52
x Im .

—e+&

/ d’q /00 de ¢ ImG(e. q)
=— — ——ImG(e, q).
Qr)rJo mePr—1 q

Keeping in mind that the imaginary part of the Green’s func-
tion determines the spectral function A(e, q) via

B7)

1
——ImG(e, q) = A(e. q) (B8)
i
and the density of states v(¢) is given by
d’q
£) = A(e, q), B9
v(e) /(mz( @ (B9)

formula (B7) can be interpreted as an energy average over
the Bose-Einstein distribution weightened by the density of
states:

po [ e 0
0 €ﬂs — 1

(B10)
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