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Correlation hard gap in antidot graphene
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We have measured low-temperature variation of resistance and nonlinear current-voltage behavior in antidot
graphene in the vicinity of the charge neutrality point. The data are found to be consistent with the manifestations
of a variable-range hopping electronic density of states (DOS) with a small hard gap of ∼ 1 meV around
the Fermi level, in conjunction with a parallel tunneling conduction channel that exists at the center of the
gap. The hard gap is confirmed by the appearance of a low-conductive plateau at low-bias electric field,
whereas the parallel tunneling conduction channel, with temperature-independent conductance, is manifest
through the nonlinear electric field variation. Unified good agreement between the temperature and electric field
dependencies of conductance, for both channels, is obtained with the predictions of a proposed DOS model. An
increase in the gap size with applied magnetic field is observed.
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I. INTRODUCTION

Graphene is gapless with a linear dispersion relation at
the Dirac point [1–5]. To open a gap, one can either break
the inversion symmetry by aligning graphene on h-BN [6–9]
or by etching graphene into nanoribbons [10–14] or antidot
graphene [15–26]. From tight-binding simulations, it is known
that, within the band structure gap (which is ∼ 20 meV in
our case) of the antidot graphene, there can be many lo-
calized states arising from those atoms at the edges of the
holes [18]. These defect-localized states give rise to the two-
dimensional (2D) variable-range hopping (VRH) conductance
G characterized by the lnG ∼ −T −1/3 behavior [21,22], in-
dicating a constant density of states (DOS) for such defect
states. Here, T denotes temperature. In this paper, however,
we find in two similarly made samples that, at the charge
neutrality point (CNP), both the temperature variation of G,
<14 K for one sample and <30 K for the other, as well
as the low-temperature nonlinear current-voltage (I-V) be-
havior are consistent with the opening of a small hard gap
around the Fermi level. We attribute this hard gap to the
electronic correlation effect. We further show that there is a
low DOS around the Fermi level, manifest as a parallel con-
duction channel that exhibits temperature-independent con-
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ductance, which exhibits 2D Anderson-localized states with
micron-scale localization length that was also previously ob-
served [22].

The two-conduction channel behavior, with a hard gap
for the VRH states and a low density of Anderson-localized
states, represents the main results of this paper. We attribute
the large localization length of the Anderson-localized states
to the suppression of the inelastic scatterings. This is in
sharp contrast to the VRH states, whose localization length
(<100 nm) is much smaller because of the cutoff by inelastic
(phonon-assisted) scatterings that are an inherent part of the
VRH mechanism. We speculate the reason for the existence of
the low DOS Anderson-localized states to be the coincidence
of the Fermi level with the CNP, where an equal number of
electrons and holes may imply a correlation energy ground
state. In fact, an estimate of the excitation energy of the charge
carrier from such a proposed model ground state is quantita-
tively consistent with the experimentally observed nonlinear
I-V behavior; hence, it can offer an alternative interpretation
to the nonlinear electrical behavior. Despite lacking an overall
first-principles theoretical framework for all observed phe-
nomena, our proposed DOS model is nevertheless noted to
offer a unified agreement with the experimental temperature
and electrical field variations of conductance, as shown below.
Hence, this paper may be regarded as an opening to further
investigations.

The antidot lattice has a significant impact on the electron-
electron interactions, i.e., correlation effect, in a graphene
system. The relative importance of the correlation effect can
be assessed by the magnitude of the ratio rS between the
Coulomb interaction energy and the kinetic energy of the
electrons. For pristine graphene on SiO2 substrate, rS = 0.9,
independent of the carrier density [4,5]. For antidot graphene,
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the dispersion relation is hyperbolic, and rS at CNP is
estimated to be 2.4 (see the Supplemental Material (SM) [27]
for details). We attribute the appearance of an effective corre-
lation hard gap, on the order of 1 meV, in the VRH DOS to this
enhanced Coulomb correlations. We note that this hard gap
is different from the previously reported Coulomb quasigap
[20–22], where the DOS is zero only at the Fermi level EF,
while finite at E �= EF. The correlation hard gap has been
theoretically proposed [28]. By stabilizing the ground state to
electronic polaron excitations, it was estimated that the magni-
tude of the correlation hard gap should be ∼ 1

5 of the Coulomb
quasigap. In our sample, it can be simply estimated as Ehard =
Equasi/5 ∼ 1.4 meV, in reasonable quantitative agreement
with our observed value, where Equasi = g0[e2/(4πε0κeff )]2 ∼
7 meV is the Coulomb quasigap energy. Here, g0 is the DOS
in our sample, which is ∼1010/(meV cm2) (see below), and
κeff is the effective dielectric constant under screening in the
long wavelength limit [5,29], taken to be 5.5.

The correlation hard gaps have been experimentally ob-
served in many other material systems such as magnetic
materials [30,31], amorphous In/InOx films [32], and ultra-
thin beryllium [33]. Such a hard gap size varies from 0.04
to 30 meV in these different materials. The hard gap was
also found to be suppressed [30], almost unchanged [32], and
enhanced [33] upon applying a magnetic field. There were
also correlation hard gaps reported in bilayer and twist double
bilayer graphene systems [34–36], with different magnetic
field dependencies attributed to either spin polarized or spin
unpolarized ground states [35,36]. These diverse observations
reflect the complexity of the correlation effect in various dis-
ordered electronic systems.

In our antidot graphene samples, the effective gap size was
found to increase monotonically with applied magnetic field
(see below). The existence of the hard gap was evidenced by
both the thermal activation behavior of zero-bias G(T ) and
a strong nonlinear I-V phenomenon at 100 mK. The lnG ∼
−T −1/3 behavior, the transition to the thermal activation be-
havior, plus the nonlinear I-V phenomenon, were found to be
explainable on a unified basis by a DOS model that exhibits
a correlation hard gap, plus a small bump in DOS, around the
Fermi level. In addition, we find that, in the low-temperature
tunneling conductance, the Anderson-localized states have
localization length on the order of micrometers. Such a large
localization length is consistent with previously reported 2D
Anderson-localized states [22] in antidot graphene. Further-
more, we present tight-binding calculations that show the
states in the band structure gap can have a localized region
around the edge of the antidot holes, attendant with a power-
law tail. The latter is proposed to be the source of the 2D
Anderson-localized states.

In what follows, we introduce the experimental method in
Sec. II, followed by the presentation of experimental results
in Sec. III. We examine the temperature dependence of CNP
conductance to find a linear relation between lnG and T –1,
indicating the existence of a correlation gap at the Fermi
level. In Sec. IV, we propose a DOS model with a hard gap
in the DOS of the VRH states; we show that the measured
temperature variation, from 2 to 100 K, can be well explained
within our DOS model. In Sec. V, we focus on the Anderson-
localized states, which dominate the electronic transport at

ultralow temperatures (<1 K). By exploring the electric field
dependence, we find the localization length of the Anderson-
localized states to be quite large (∼1 μm), which is consistent
with the results reported previously. To reconcile the existence
of both the VRH states and the Anderson-localized states, we
summarize the tight-binding simulation results in Sec. VI and
propose that both the VRH and the Anderson-localized states
originate from the quasiflat band states in antidot graphene.
In addition to the consistency between the VRH states density
and the estimated quasiflat band states density, these states’
wave functions are found to exhibit an extended power-law
decaying tail, which can be the origin of the Anderson-
localized states. We conclude by summarizing the important
points of this paper in Sec. VII.

II. EXPERIMENTAL METHOD

The graphene flake was first exfoliated onto Si substrates
capped with 285 nm SiO2. The antidot lattice and Hall bar
geometry structure were patterned by e-beam lithography,
followed by oxygen plasma etching. The width of the sample
was 0.5 μm, and electrode separation was 2 μm, as shown in
Fig. 1(a). The antidot lattice has a triangular lattice structure
with a lattice constant of 150 nm and hole diameter of 100 nm,
shown by the scanning electron microscope image in Fig. 1(a).
Subsequently, 5 nm of Ti and 70 nm of Au were deposited to
form the electrodes.

The electrical-transport measurements were carried out on
a BlueFors LD-400 dilution refrigerator with room- and low-
temperature low-pass filters. The insulation resistances of the
measurement wires were ∼10 G�, which were limited by
the leakage resistances of the capacitors used in the low-pass
filters. We used the sourcemeter Keithley 6430 with a pream-
plifier to apply a DC bias voltage (denoted as Vsd) as well
as to measure the current I. The voltage dropped across the
sample (denoted as V) was amplified by a SR560 preamplifier
(Stanford Research Systems) and measured by a Keithley 182
voltmeter. The gate voltage VG was applied by a Keithley 2635
sourcemeter in series with a 1 M� resistor. We have carried
out both 2-probe and 4-probe measurements, with consistent
results. That implied the contact resistance to be negligible.
The measured resistance was also found to scale with the
corresponding electrode separations, indicating a high degree
of uniformity for our antidot graphene samples.

III. CORRELATION HARD GAP IN ANTIDOT GRAPHENE

We have measured two antidot graphene samples and
found both to exhibit similar behavior. The I-V curves were
measured at 100 mK under zero magnetic field. A strong
nonlinear behavior was seen in the vicinity of the CNP with a
flat plateau, i.e., a very low-conductance region, implying the
existence of a gap. A plot of dI/dV as a function of both the
bias voltage Vsd and the gate voltage VG is shown in Fig. 1(b).
It is seen that a gap appeared around the CNP VG = 2.8 V,
with a 10 mV “width” of the plateau region. However, the
width of the measured plateau is not equivalent to the gap size.
Instead, it indicates that there is a critical electric field given
by 5 mV/10 μm = 0.5 mV/μm (where 10 μm is the sample
length between the source and drain electrodes) that can help
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FIG. 1. Measurement setup and hard gap in antidot graphene. (a) Experimental setup with a microscope image of antidot graphene sample
indicated by the red region. The black scale bar denotes 5 μm. The scanning electron microscopic image of the antidot lattice is shown in the
top left corner. The magnetic field was applied perpendicular to the sample. (b) A two-dimensional (2D) map of dI/dV as a function of the gate
voltage and the source drain bias voltage Vsd. An insulating region (blue color) was observed at VG ∼ 2.8 V, which disappears as VG deviates
away from the charge neutrality point (CNP). (c) Arrhenius plots of conductance G − G0 as a function of 1/T. Conductance is measured at
CNP under various magnetic fields. The conductance shows good linear relation with different slopes at different magnetic fields, implying a
different thermal activation gap. Inset summarizes fitted slopes as a function of the applied magnetic fields. (d) Derived sheet resistance as a
function of the gate voltage. Data in (b) and (d) were measured at 100 mK under zero magnetic field.

the carriers to overcome the gap. As VG is tuned away from
the CNP, the size of the correlation gap decreases, which is
clearly evidenced by the narrowing width of the low dI/dV
plateau in Fig. 1(b).

To estimate the gap size, we measure the temperature de-
pendence of the zero-bias conductance at the CNP. In the
Arrhenius plots in Fig. 1(c), we summarize the subtracted con-
ductance G − G0 (where G0 is the temperature-independent
conductance at low temperatures [shown in Fig. 2(b)] that
represents the parallel channel of tunneling conduction) as a
function of T –1 (detailed discussion about conductance as a
function of temperature [37] is included in the SM [27]); good
linear relations were observed for different magnetic fields.
Their slopes are seen to increase with the applied magnetic
field, as summarized in the inset of Fig. 1(c). Since the slope is
directly correlated with the size of the gap, this implies that the
correlation gap is enhanced under an applied magnetic field.

The sheet resistance R� as a function of the gate volt-
age is summarized in Fig. 1(d). The resistance was ∼1 M�

at the CNP and decreased to 1 k� when gate voltage was
tuned to be 20 V away, yielding a large on-off ratio of
∼1000. Note that the largest measured sheet resistance ∼1
M� is much smaller than the insulation resistance (∼10 G�)
of our low-pass filters, indicating that the detected signals
arise from the sample instead of from any leakage currents.

The high-resistance region is highlighted by the blue shaded
region in the figure, which covers a gate range ∼4.4 V. This
gate variation can be translated to a carrier density variation
∼ 3.3×1011/cm2, which is very close to the number of VRH
states per unit area in our samples. Given the band structure
gap is ∼20 meV, as estimated from tight-binding calculations
[15,25], this carrier density translates into a VRH DOS of
∼ 1.6×1010/(meV cm2).

IV. DOS MODEL AND THE VRH CONDUCTION CHANNEL

To explain the observed T –1 dependence as well as the
nonlinear I-V behavior, we propose that there is a hard gap
in the VRH DOS centered around the Fermi level with a
magnitude of 2kBT1, where kB is the Boltzmann constant.
This is shown schematically in Fig. 2(a). There is also a
small DOS bump at the CNP (center of the gap) that can
give rise to a conduction channel parallel to the thermally
activated/VRH conduction. It originates from the power-law
delocalized tail of the states at the CNP, Anderson localized
by weak random scatterings. Here, T1 should be ∼10 K, as
expected from the slope of the Arrhenius plots; this hard gap
is one order of magnitude smaller than the band structure gap
2� = 20 meV estimated by the tight-binding calculations
[15,25]. In the upper right inset of Fig. 2(b), it is shown that
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FIG. 2. Proposed density of states (DOS) model and
temperature-dependent transport. (a) A schematic figure of the
model DOS distribution. A hard gap 2kBT1 in the variable-range
hopping (VRH) states opens around the Fermi level, where the
correlation gap kBT1 is much smaller than the band structure gap
�. A small DOS bump at the center of the gap [charge neutrality
point (CNP)] signifies the parallel conduction channel that arises
from the Anderson-localized states. (b) ln(G − G0) is plotted as a
function of T −1. Open circles are measured data, and blue line is the
prediction of the proposed DOS model. The top right inset gives the
raw conductance data plotted as a function of T −1/3. A saturating
temperature-independent parallel channel G0 is clearly seen at
T <1 K, as indicated by the red dashed curve. The bottom left inset
is ln[dln(G − G0)/dln(T )] plotted as a function of ln(T ), where
a crossover from T −1 to T −1/3 is seen as shown by the fitted red
straight lines.

the conductance saturates at G0 when T < 1 K. It should be
emphasized that the conductance measured at low tempera-
ture is that from the sample instead of any leakage current
of the measurement system. This point is confirmed by the
observation of the dependence of the low-temperature con-
ductance on both sample length and magnetic field. In other
words, we have confirmed that the measured CNP resistance
scales with the corresponding electrode separations shown in
Fig. 1(a). This temperature-independent conductance chan-
nel is the manifestation of the spatial tunneling between the
Anderson-localized states around the CNP. As temperature in-
creases, the parallel VRH channel dominates. To demonstrate
the temperature dependence, ln[dln(G − G0)/dln(T )] is plot-
ted as a function of ln(T ) [32,38], as shown in the lower left

inset of Fig. 2(b). The numerical derivative is obtained based
on raw data smoothed by a Gaussian filter. The temperature
dependence clearly exhibits a crossover at 14 K, from the
thermal activation T –1 behavior to the VRH behavior with
a constant DOS [39], i.e., T –1/3. It should be noted that the
crossover from T –1 to T –1/2 and T –1/4 has been reported in
other thin-film three-dimensional (3D) systems, as discussed
in Refs. [32,37]. Here, in our 2D antidot graphene system,
only the T –1 to T –1/3 crossover is observed, consistent with
the fact that our system is 2D.

With this proposed DOS model [Fig. 2(a)], we apply the
VRH mechanism to evaluate the conductance behavior. The
VRH conductance is given by σ = σ0 exp(−R), where R is
the spatial and energy range defined as [40,41]

R = x

l
+ ω

kBT
, (1)

where x/l describes spatial tunneling, with x being the spa-
tial distance and l the effective size of the localized wave
functions; ω/kBT describes the thermal activation, with ω

being the energy difference between the initial and final states.
The temperature-dependent conductance, based on the DOS
model, is given by [27]

ln(G − G0) = C − T1

T
−

(
3

πg0l2kBT

)1/3

, (2)

where G − G0 is the subtracted conductance, and g0 is the
constant VRH DOS beyond the gap. Equation (2) predicts a
crossover between T –1/3 and T −1 dependence that perfectly
fits our experimental data, as shown in Fig. 2(b). The fit-
ting yields T1 = 7 K and g0kBl2 = 0.03 K−1. Based on the
Einstein relation and the room-temperature conductance of
graphene, it is estimated that g0 is ∼1×1010/(meV cm2),
which is close to the value reported previously [22] and also
on the same order as what we estimated above. It follows that
the localization length l for the VRH states is ∼66 nm for
the VRH states. It should be noted that the parameter g0l2

should remain invariant [22], owing to the fact that the average
separation ri j is always comparable with l while the DOS g0

is proportional to r−2
i j . It follows that g0l2 should be a constant

to the first order approximation. We fix g0kBl2 = 0.03 K−1

and obtain the hard gap T1 as a function of the magnetic field.
The results are summarized in Fig. 3(a), shown by the black
squares.

The increase in the gap size with increased magnetic field
has been reported previously [23], but here, our gap size is
smaller, and the magnetic field dependence is much weaker. If
we attribute the gap variation to the Zeeman energy coupled
to the spin, then the linear fitting of the dependence of the
gap on the magnetic field will yield a g factor ∼1.6, close
to the in-plane g factor reported in twisted double bilayer
graphene [36]. Here, the gap enhancement under a perpendic-
ular magnetic field can be either due to a spin polarized ground
state [36] or the increase of Landau level energy separations
[23]. A brief discussion about the magnetic field dependence
of the gap variations is given in the SM [27]; however, the
microscopic mechanism of the enhancement remains a topic
to be further investigated.
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FIG. 3. Electric-field-dependent transport under different mag-
netic fields. (a) The hard gap T1 (black squares) and conductance G0

(red circles) are plotted as a function of the magnetic field. Dotted
curves serve as a guide to the eye. (b) Conductance G is plotted
as a function of electric field. Different colored symbols represent
G measured at different applied magnetic field. Black curves are
the theory predictions obtained by the proposed density of states
(DOS) model [using Eq. (3)] with a hard gap as shown in Fig. 2(a).
The inset shows the linear relation between the inverse of fitted
localization length ξ and the plateau conductance G0 observed at low
temperatures. All data were measured at T = 100 mK.

V. TUNNELING CONDUCTION CHANNEL
WITH ANDERSON-LOCALIZED STATES

At extremely low temperatures (much lower than T1),
the hopping/thermal activation conductance diminishes in
magnitude, and the temperature-independent parallel chan-
nel becomes dominant. This temperature-independent channel
was reported previously in different gapped graphene systems,
such as graphene aligned to h-BN [7,9] and antidot graphene
[22,25]. Here, we show this temperature-independent chan-
nel to be related to the Anderson-localized states in antidot
graphene.

There is strong evidence that the VRH states originate from
the quasiflat band/defect states inside the band structure gap of
antidot graphene, as their corresponding carrier densities are
very close to each other. By analyzing the wave function am-
plitudes of the simulated quasiflat band states (shown below),

we find the Anderson-localized states also to result from these
quasiflat band states since they have naturally (power-law)
delocalized decaying tails that can contribute to the tunneling
conduction at low temperatures. However, the VRH states and
Anderson-localized states are very different in their DOS as
well as in their localization length. This difference can be
explained as follows.

Due to the correlation effect, the formation of a quasigap or
a hard gap implies a low DOS, if not a zero DOS, at the Fermi
level. The lack of states in the neighboring energy regions
implies that the inelastic scatterings must be suppressed at low
temperatures, owing to the lack of final states to realize such
an inelastic process. That leaves multiple elastic scatterings
that can lead directly to Anderson localization. Hence, the low
DOS of the Anderson-localized states itself is evidence for
the strong correlation effect in antidot graphene. Suppression
of inelastic scatterings also means that, at low temperatures,
where the accessible DOS is very low, conduction can only
be by tunneling between the Anderson-localized states. In
contrast, when the temperature increases, the charge carri-
ers can access a much higher DOS with available states to
enable inelastic phonon-assisted scatterings, which is part of
the VRH conduction mechanism. A direct consequence is that
the short localization length of the VRH states is determined
by the inelastic scattering cutoff rather than by the coherent
backscattering effect of Anderson localization that is due to
multiple elastic scatterings. Hence, it is expected that the VRH
states can hop from one hole edge to a nearby hole edge with
a distance ∼50 nm. This is indeed close to our experimen-
tally estimated VRH localization length (∼66 nm). Hence,
the localization length of the VRH states is on the order of
the separation between neighboring hole edges, i.e., after one
inelastic scattering with the defect state of the neighboring
hole edge, the state is localized by losing its phase coherence.

In Fig. 3(a), the tunneling conductance G0 under differ-
ent magnetic fields is shown by the red circles, where G0

peaks at 2 T and then decreases as the magnetic field fur-
ther increases. We attribute this G0 variation to the change
in the Anderson-localization length that underlies this par-
allel conductance channel. However, it is a bit surprising
to see the nonmonotonic magnetoresistance effect associated
with increasing magnetic field. The increase in the Anderson-
localization length in the low magnetic field regime may be
attributed to the negative magnetoresistance in the localiza-
tion regime (see Fig. S5(b) in the SM [27]); however, the
decrease in G0, corresponding to a decrease in the localization
length, is not yet understood. In fact, since G0 is the spatial
tunneling channel, it can be expressed as G0 ∼ exp(−ri j/ξ ),
where ri j is the spatial separation between two localized
wave functions, and ξ is the Anderson-localization length.
It should be noted that, despite the nonmonotonic behav-
ior of the localization length as a function of the magnetic
field, the G0 ∼ exp(−ri j/ξ ) behavior is still well followed,
as seen in the inset to Fig. 3(b). A value of ri j = 1.4 μm is
obtained from the slope of the linear fit to ln(G0) vs ξ−1.
The Anderson-localization length ξ , on the other hand, can
be obtained from the electric field dependence of the con-
ductance at 100 mK (see below); it has the value ranging
from 0.5 μm at 9 T to the peak value of 2.6 μm at 2 T.
The micron-scale localization length is in good consistency
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with that reported previously [22]. Here, the increase in the
Anderson-localization length can be attributed to the phase
breaking of the coherent backscattering loop pairs, while the
decrease of ξ for magnetic field >2 T can be interpreted as
indicating a wave function shrinkage. However, a detailed
explanation of the nonmonotonic behavior of the localization
length is the task of future studies.

In the presence of an electric field, the carriers can ac-
celerate under an applied electric field within the dephasing
length to overcome the gap T1. In this manner, the midgap
states can access the VRH sites even at low temperature. Here,
we show that the electric field dependence can be understood
on a unified basis with the information obtained from the
temperature variation of G.

In Fig. 3(b), we summarize the conductance at CNP as a
function of electric field measured under different magnetic
fields at T = 100 mK. We can see that all data show similar
behavior, i.e., there is a low-conductance plateau at low bias,
and with increasing field, the conductance increases dramati-
cally when the field exceeds a critical value. This behavior can
be modeled by VRH with an applied electric field; Eq. (1) is
modified by inserting an electric field term [40,41] as follows:

R = x

ξ
+ ω − eE cos (θ ) min (x, lϕ )

kBT
, (3)

where E is the electric field, θ is the angle between electric
field direction and hopping vector x , min takes the minimum
value between x and the dephasing length lϕ , the distance
within which the carriers can accelerate to gain kinetic energy.
Beyond the lϕ , the hot carriers lose the extra energy due to
inelastic electron scatterings. The heating power due to the
applied electric field is found to be on the order of 10–10 W,
which is negligible as compared with the dilution refrigerator
cooling power 460 μW.

Equation (3) establishes a connection between
conductance σ = σ0 exp(−R) and the electric field E. We use
the relation G(E ) = G0 + G1 exp(−R) to fit the electric field
dependence of G, with G0 being the plateau conductance and
G1 a constant. Parameters g0 and T1 of the proposed DOS
model are obtained from temperature-dependence fittings
of zero-bias G(T ), leaving three parameters G1, ξ , and lϕ .
For all the G vs E curves measured at different magnetic
fields, we scan ξ from 100 nm to 4 μm and lϕ from ξ to
10ξ . By minimizing the error between the fitting curves
and experimental data, (ξ , lϕ) can be accurately determined.
Details are given in the SM [27].

The fitting results are shown by the black curves in
Fig. 3(b); they are seen to agree very well with the experi-
mental data under various applied magnetic field. Moreover,
for different magnetic fields, the fittings give different values
of ξ ; the fitted localization length 1/ξ scales well with ln(G0)
as shown in the inset of Fig. 3(b). From the slope of 1.4 μm,
we obtain an average area density of the Anderson-localized
states on the order of 1/(1.4 μm)2, i.e., 5×107/cm2. There-
fore, at CNP of antidot graphene, it is expected that there
are electrons and holes with an average spatial separation
∼1.4 μm at the Fermi level. It seems that, inside the correla-
tion gap of the VRH states, the Anderson-localized electrons
and holes can form a correlation energy ground state. A simple
back-of-the-envelope estimate of the electron-hole correlation
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FIG. 4. Tight-binding simulated quasiflat band and wave func-
tions of antidot graphene. (a) Tight-binding simulated band structure
of antidot graphene with red curve being the quasiflat bands inside
the band structure gap. (b) The wave function for the quasiflat bands
at sublattices A and B. (c) Log-log plot of the wave function density
ρ as a function of r − r0, as shown by the black squares. The blue
line is the linear fitting. Red circles denote the total wave function
density within the distance r, i.e., N(r) as a function of r − r0. The
red curve serves as a guide to the eye.

energy is ∼e2/(4πεri j ) ∼ 0.4 meV, which is on the same
order of the observed correlation gap of VRH states. This
observation is intriguing and requires further theoretical in-
vestigation.

VI. TIGHT-BINDING SIMULATIONS
OF ANTIDOT GRAPHENE

The origin of the Anderson-localized wave functions is
previously unknown; here, we propose that it originates from
the quasiflat bands in the close vicinity of the CNP. In the
tight-binding simulations, the unit cell we used is a hexagon
with a circular hole in the middle. We set the periodicity of the
antidot lattice to be L = 13 nm and the average hole radius
r0 = 1.8 nm. Randomness is introduced by considering the
angular-dependent radius r(θ ) [27]. The simulated band struc-
ture is shown in Fig. 4(a). Apart from the regular gapped band
structure for antidot graphene (black curves), there are quasi-
flat bands (red curves) inside the band structure gap. Here,
we have selectively shown a few of them. The quasiflat bands
are related to the local imbalance between two sublattices
A and B [18,42]. They represent the defect states inside the
band structure gap, hence different from the quasiflat bands
observed in twisted bilayer graphene system [35,36]. The
number of the quasiflat band states in the unit cell of exper-

imental samples can be estimated by
√

πd/
√

3a = 36 [18],
where d = 100 nm, and a = 0.142 nm is the carbon-carbon
distance. It follows that the density is 36/S = 3×1011/cm2

where S is the area of the unit cell. This density is very close
to the density of the shaded region in Fig. 1(d), implying that
the high-resistance region around CNP must have originated
from the quasiflat band states.
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A typical simulated wave function for the quasiflat band
around CNP is plotted in Fig. 4(b); the different magnitudes
of the wave functions at sublattices A and B are related to
the local imbalance between two sublattices [18,42]. The
wave function exhibits a peak located near the edge of the
hole. We calculate the total wave function within a radius
r, i.e., N (r) = ∑

|r′|<r |ϕ(r′)|2 and wave function density
ρ(r) = dN (r)/dr/2πr; they are shown in Fig. 4(c) by the red
circles and black squares, respectively. While 90% of the wave
functions are located near the edge (|r − r0| < 8a), the wave
functions decay in a power-law fashion away from the edge,
as seen from the linear relation between log ρ(r) and log(r −
r0). With different randomness, the power-law decay ρ(r) ∼
(r − r0)−β behavior is repeated with β varying from 1.5 to
4. These delocalized wave function tails can contribute to the
low-temperature tunneling conduction, e.g., at T <1 K [see
Fig. 2(b)]. As the carrier density of Anderson-localized states
is ∼ 5×107/cm2, we can estimate the DOS of these tunneling
wave functions by assuming the relevant energy range to be
∼0.1 meV (∼1 K). It follows that the DOS of the Anderson-
localized states is ∼5×108/(meV cm2), which is on the same
order as the value previously reported [22] and more than
one order of magnitude smaller than the DOS of the VRH
states.

VII. CONCLUSIONS

To recapitulate, the measured temperature- and electric-
field-dependent conductance in antidot graphene can be well

explained by the VRH mechanism together with the hard gap
DOS model, attendant with a parallel conduction channel that
comprises the states in the close vicinity of the CNP that
are Anderson localized from the power-law delocalized wave
function tails. The latter can be quantitatively understood
within the tight-binding simulations. The fitted localization
length is consistent with the parallel tunneling conductance
at low temperatures. However, both the hard gap size en-
hancement under a magnetic field and the nonmonotonic
magnetic field dependence of the localization length remain
to be addressed in future investigations. Nevertheless, our
experimental results suggest that, even inside a hard corre-
lation gap, there can still be a coherence network that spans
over the sample at ultralow temperatures, which might be
observed in a tunneling spectroscopy setup as that shown in
Ref. [43].
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