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Whether self-correcting quantum memories can exist at nonzero temperature in a physically reasonable setting
remains a great open problem. It has recently been argued [S. Roberts and S. D. Bartlett, Phys. Rev. X 10,
031041 (2020)] that symmetry-protected topological (SPT) systems in three space dimensions subject to a
strong constraint—that the quantum dynamics respect a 1-form symmetry—realize such a quantum memory.
We illustrate how this works in Walker-Wang codes, which provide a specific realization of these desiderata. In
this setting we show that it is sufficient for the 1-form symmetry to be enforced on a subvolume of the system.
This strongly suggests that the SPT character of the state is not essential. We confirm this by constructing an
explicit example with a trivial (paramagnetic) bulk that realizes a self-correcting quantum memory. We therefore
show that the enforcement of a 1-form symmetry on a measure-zero subvolume of a three-dimensional system
can be sufficient to stabilize a self-correcting quantum memory at nonzero temperature.
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I. INTRODUCTION

A self-correcting quantum memory can robustly store
quantum information without need for active error correction,
because its native dynamics suppresses errors for a time that
diverges in the thermodynamic limit. The toric code in four
space dimensions [1] provides a paradigmatic example of a
self-correcting quantum memory, in which the self-correction
property survives to nonzero temperature. However, whether
these desirable properties can be realized in a physically rea-
sonable system remains a great open problem. As far as we
are aware, no such examples are currently known. “Fracton”
models like the Haah cubic code [2] come close, but alas,
at nonzero temperature the memory time saturates to some
temperature-dependent finite value, even in the thermody-
namic limit [3,4].

Roberts and Bartlett (R&B) have recently shown [5] that a
symmetry-enriched topological phase on the two-dimensional
boundary of a three-dimensional symmetry-protected topo-
logical (SPT) bulk can realize a self-correcting quantum
memory at nonzero temperature, if we enforce a strong
constraint—namely, that the dynamics respect a 1-form sym-
metry. A 1-form symmetry [6–12] is a symmetry that acts
on manifolds of codimension 1, and thus represents a very
strong constraint. This remarkable breakthrough serves as the
inspiration for the present work.

In this article we show how a self-correcting quantum
memory may be realized in Walker-Wang models, thereby
extending the R&B construction to a new family of models.
Additionally, we point out in this context that it is suffi-
cient for the 1-form symmetry to be enforced in a volume
which is measure zero in the thermodynamic limit. This
strongly suggests that it is inessential for the bulk to be in
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an SPT phase. We confirm this by constructing an example
whereby enforcement of a 1-form symmetry gives rise to a
self-correcting quantum memory on the boundary of a triv-
ial three-dimensional bulk. Thus we show that enforcement
of a 1-form symmetry in a measure-zero subvolume of a
three-dimensional system can be sufficient to give rise to
self-correction.

To set the stage for the discussion it is useful to first re-
view the well-known physics of toric codes [1]. The ground
states of the 2d toric code are loop gases, in that they can
be written as a product of closed-loop operators acting on a
reference state. The ground states of the 4d toric code are
membrane condensates in the same sense. We will refer to
these loops and membranes as nonlocal stabilizers, because
they are elements of the stabilizer group that have a large
support. All elements of the stabilizer group, both local and
nonlocal, are closed. One characteristic of topological order
is a ground-state degeneracy on manifolds with nontrivial
topology. Nontrivial operators on the ground space are non-
contractible versions of the nonlocal stabilizers. In the 2d
toric code they are noncontractible loops, while in the 4d toric
code they are noncontractible membranes. Excitations above
the ground state appear at the boundaries of open versions of
nonlocal stabilizers. For the 2d toric code these are pointlike
excitations on the ends of strings, while in the 4d toric code
they are flux-tube-like excitations on the boundary of open
membranes. Finally, the 3d toric code has one sector with sta-
bilizers that look like those of the 2d toric code and one with
stabilizers that look like those of the 4d toric code. As such, its
ground states can be written as loop gases or membrane gases.

All three toric codes have topological order at zero temper-
ature, but have different nonzero temperature behavior. In four
dimensions the toric code remains (quantum) topologically
ordered up to some transition temperature T∗ > 0, while the
2d toric code is trivially ordered for any nonzero temperature.
The 3d toric code remains topologically ordered for small
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nonzero temperatures, but the order is classical [13]. From the
information theory perspective this means the code can protect
a classical probabilistic bit but not a qubit.

In both the 2d and 3d toric codes the nonzero temperature
behavior can be traced to the finite-energy barrier � < ∞.
The bath can lend a constant amount of energy to create two
point defects and then transport them at no energy cost across
the system. When they annihilate they leave behind a noncon-
tractible nonlocal stabilizer, which we said acted nontrivially
on the ground space. For the 4d toric code, the bath must
create a membrane that stretches across the system. Since the
energy cost of open membranes is linear in perimeter, the en-
ergy barrier to membrane operators is linear in system size. In
the thermodynamic limit the energy barrier � is unbounded.

With this motivation, considerable work has been done
to try to find 3-dimensional systems with unbounded energy
barriers, and a number have been found, such as Haah’s cubic
code [2] and Michnicki’s welded code [14]. They are col-
lectively referred to as marginally self-correcting [3]. These
codes have an energy barrier that grows less than linearly, ei-
ther logarithmically (Haah’s) or polynomially (Michnicki’s).
However, it has been shown that the bath still disorders these
models at any T > 0, so that the memory time is bounded in-
dependently of system size [3,4,15]. As in the 2d and 3d toric
codes, the marginally self-correcting models have pointlike
excitations. At nonzero temperature these excitations exist at
some nonzero density, leading to an energy barrier that is
bounded by a function of the temperature.

The R&B proposal directly removes the point excitations
from the picture. This is achieved by enforcing what is called a
1-form symmetry [8,9]. Enforcing the symmetry is equivalent
to giving the relevant Hamiltonian terms infinite coupling
constants. For example, consider the 2d toric code. If the
dynamics are restricted to states where the plaquette and ver-
tex terms have eigenvalue +1, then no point excitations can
exist. This is an example of an enforced 1-form symmetry,
defined in Sec. II B. However, this is not an example of a
self-correcting quantum memory, because the logical opera-
tors cannot be applied transversally, i.e., as a series of local
operations which respect the symmetry. Thus, enforcing a
1-form symmetry on the 2d toric code eliminates the pointlike
excitations, but at the cost of our ability to apply logical
operators.

The R&B proposal [5] instead creates a code that, when
the symmetry is enforced, behaves like the 4d toric code in
that logical operators can be applied transversally but with a
large enough energy barrier that the bath applies them with
probability 0 in the thermodynamic limit, at sufficiently low
but nonzero temperature. This is achieved using a 2d topolog-
ical order on the boundary of a 3d SPT.

In this paper we show how to achieve the same results using
the 3d 3-fermion model [16], a specific example of a confined
Walker-Wang model. We expect that this prescription should
work for any confined Walker-Wang model [17,18]. We show
that the relevant symmetry need only be enforced “close” to
the boundary, in a sense that we will explain. The boundary
between the symmetry-protected region and the unprotected
region is trivial and gapped, suggesting that the SPT nature
of the bulk may be inessential to the phenomenon. We then
show that a model with a trivial paramagnetic bulk can display

the same phenomena, albeit with a 1-form symmetry that is
not “on-site” [11]. The symmetry directly protects the quan-
tum memory by introducing an appropriate coupling between
pointlike excitations on the boundary and confined fluxes in
the bulk.

We should mention that we do not consider universal quan-
tum computation (UQC). In particular we only show that Pauli
X and Z operators can be performed transversally in both
of our models. Recent work has investigated UQC in the 3d
3-fermion model [19]. While the 4d toric code cannot perform
UQC, it is known that self-correcting UQC is possible in
seven space dimensions [20]. We conclude with a discussion
of 1-form symmetry protection in the topologically ordered
3d toric code and some discussion of possible future work.

II. SELF-CORRECTION IN THE THREE-FERMION
MODEL

In this section we will first define the 3d 3-fermion model
in the absence of the protecting symmetry and show it is
not self-correcting. We then define the 1-form symmetry and
show what nonlocal stabilizers and excitations can exist in
its presence. Finally, we show the 3d 3-fermion model is
self-correcting in the presence of the 1-form symmetry.

Confined Walker-Wang models—such as the 3d 3-fermion
model—are a natural setting for this procedure. Like the
model in Ref. [5], they describe 2d topological order on the
boundary of a 3d trivial bulk. As the name suggests, they can
be interpreted as models where anyons are deconfined on the
boundary and confined by a linear potential in the bulk. We
will see that the 1-form symmetry forces any anyons travel-
ing across the boundary to be connected to anyons traveling
through the bulk. Linear confinement in the bulk is then what
gives this model an unbounded energy barrier.

A. The model

The three-fermion model can be viewed as two copies of
the 3d toric code, “twisted” together so that flux from one code
confines the pointlike excitations of the other. To be concrete,
consider a cubic lattice with two qubits on each edge. We will
refer to them as σ and τ qubits, and they will be acted on
by Pauli matrices written as σα and τα , respectively, with α =
x, z. Two independent toric codes would have the Hamiltonian

HTC = −
∑

v

Aσ
v −

∑

v

Aτ
v −

∑

f

Bσ0
f −

∑

f

Bτ0
f ,

Aσ
v =

∏

e∈∂†v

σ x
e , Bσ0

f =
∏

e∈∂ f

σ z
e ,

Aτ
v =

∏

e∈∂†v

τ x
e , Bτ0

f =
∏

e∈∂ f

τ z
e , (1)

so that the two codes do not talk to each other at all. We
will refer to the two types of terms as vertex terms and face
terms. Here ∂ is the boundary operator and ∂† is the dual
boundary operator. These operators are related in that a ∈ ∂b
is equivalent to b ∈ ∂†a.

In each code there are stringlike operators with pointlike
excitations and membrane operators with looplike excitations.
We will call flipped Aσ

v terms e particles and flipped Aτ
v terms
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FIG. 1. Once we have fixed a projection, we can choose the O
and U legs to be the ones that lie over and under the plaquette. In this
illustration the O legs are red and the U legs are blue.

m particles. Since flipped Bσ
f and Bτ

f terms naturally come in
dual lines, we will refer to them as σ flux and τ flux, respec-
tively. e particles see σ flux (with nontrivial Berry phase) and
m particles see τ flux. Finally, e particles exist on the ends of
e strings, σ flux lives on the boundaries of σ membranes, etc.

We now twist the codes together by decorating the face
operators to create the 3d 3-fermion Hamiltonian,

H3d3f = −
∑

v

Aσ
v −

∑

v

Aτ
v −

∑

f

Bσ
f −

∑

f

Bτ
f ,

Aσ
v =

∏

e∈∂†v

σ x
e , Bσ

f = σ x
Oσ x

U τ x
U

∏

e∈∂ f

σ z
e ,

Aτ
v =

∏

e∈∂†v

τ x
e , Bτ

f = σ x
Oτ x

Oτ x
U

∏

e∈∂ f

τ z
e , (2)

where the edges O and U lie “over” and “under” the given
face, given a specific choice of 2d projection. This is shown
in Fig. 1, where the O edges are red and the U edges are
blue. We will see that the result of this decoration is that, for
example, a string of σ z operators that would usually create
two deconfined e particles now also creates a line of τ flux and
two lines of σ flux. This means point excitations are confined
in the bulk.

Membrane operators are the same as they were in the toric
code, being dual membranes of σ x or τ x operators. However,
a “bare” string operator consisting of σ z or τ z now creates
flux excitations along its entire length in addition to creating
point excitations on its ends. In particular, a bare string of σ z

operators creates two lines of σ flux and one line of τ flux. A
bare string of τ z operators creates two lines of τ flux and one
line of σ flux.

Since this is a model of Z2 topological order, the two lines
of σ flux that a string of σ z operators makes can be locally
removed. Explicitly, we can construct the decorated string
operator

Se
C =

∏

j∈under

τ x
j σ

x
j

∏

k∈over

σ x
k

∏

i∈C
σ z

i , (3)

FIG. 2. In order to define the Se
C on the red line C, first draw the

line C ′, which is the dashed blue line. Then the “over” decoration is
the purple legs and the “under” decoration is the green legs. In the
end, the shaded blue faces are τ flux. Compare to Fig. 4 in Ref. [16].

where C is a curve, possibly open. To understand the decora-
tions first draw a line C ′ that is equal to C offset infinitesimally
in the +x̂ − ŷ − ẑ direction (note this is a different direction
than in [16] because our axes are aligned differently and
we will access a different boundary). The decoration “over”
consists of all edges adjacent to C that lie over C ′ (in our 2d
projection), while the decoration “under” consists of edges
adjacent to C that lie under C ′. This configuration is shown
in Fig. 2.

The entire configuration leaves behind a string of τ flux,
which cannot be locally removed. We therefore find that e
particles, which are created at the end points of Se

C , are linearly
confined in the bulk.

There is also an Sm
C operator,

Sm
C =

∏

j∈under

τ x
j

∏

k∈over

τ x
k σ x

k

∏

i∈C
τ z

i , (4)

which creates m particles at its end points. It also leaves
behind a single line of σ flux, so the m particles are also
confined. Finally, there is a composite operator Sε

C = Se
CSm

C
that creates composite ε particles confined by composite flux.

The flux that confines the point particles is the same as
the flux on the boundary of membranes, in that both are
dual lines of flipped face operators. We can then view the
decorations on the string operator as a long narrow membrane
whose boundary excitations cancel the superfluous flux lines.
However, for both Se

C and Sm
C there is one line of flux that

cannot be canceled.
Confinement means the 3d 3-fermion model contains no

topological order in the bulk, because there is no way to
transport point particles across the system and return to the
ground space. The result is that the 3d 3-fermion model is
trivial when defined on manifolds without boundary.

On a manifold with a boundary, it is easy to terminate
the code in a way that creates topological order. To do this,
truncate the lattice using “smooth” boundary conditions, so
that no legs are sticking out. Then truncate any stabilizers to
include all their operators that act on qubits that have not been
removed. Such stabilizers are shown in Fig. 3. The result is a
2d Z2 topological order where all anyons are fermions [16].

We emphasize that this is a choice of boundary conditions.
It is possible to add a 2d 3-fermion model to the boundary
and condense pairs, removing the topological order. However,
since the boundary order is topological, it cannot be removed
by arbitrarily small perturbations. Furthermore, it is possi-
ble to protect the boundary topological order by enforcing a
0-form time-reversal symmetry [16]. In that sense the bulk is
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FIG. 3. The stabilizers on the boundary are truncated versions of
the ones in the bulk. Red represents O edges and blue represents U
edges. The two face operators that reach into the bulk each have a U
edge that is not shown (they are not truncated), while the boundary
face operator does not have any O edge.

SPT-ordered. We will instead enforce a 1-form symmetry, as
described in the next subsection.

We will consider the 3d 3-fermion model defined on a
lattice with topology T 2 × I , where T 2 is the torus and I is
the unit interval [0,1]. This can be constructed from a cubic
lattice by identifying the boundaries in the x and z directions,
so that the only true boundaries are at y = 0, 1. We will refer
to these as the the right and left boundaries, respectively.
Each boundary supports two qubits. This configuration can
be found in Fig. 4.

FIG. 4. Orientation for the T 2 × I 3d 3-fermion model. The ±z
sides are identified and the ±x sides are identified. The “left” and
“right” boundaries at y = 1 and y = 0, respectively, both have the
topology of a torus. Both boundaries support two logical qubits.

FIG. 5. The deconfined boundary string operators are truncated
versions of the bulk string operators. The dashed blue line is once
again C ′, but now there are no “over” decorations. The green lines
are the “under” decorations.

We could call the topology T 2 × I the hollow donut, be-
cause it can be embedded in flat 3d space by taking the core
out of a solid donut. Then the two boundaries are the inner and
outer boundary. Both boundaries have the topology of a plain
old 2-torus.

If the topological order exists on the boundary, there must
be logical operators supported only on boundary qubits. For
the right boundary these are the deconfined string operators

Se
C =

∏

j∈under

τ x
j σ

x
j

∏

i∈C
σ z

i , (5)

Sm
C =

∏

j∈under

τ x
j

∏

i∈C
τ z

i , (6)

where C is now a line on the boundary. These are just truncated
versions of the bulk operators. Only the “under” legs get
decorated because the “over” legs have been removed from
the lattice.

These operators create excitations at the end points of C but
do not create flux along their length. In fact, if we compare
to Fig. 2, we see that the faces where the confining flux
would exist have been removed from the lattice. We can think
of the flux as having been removed at the boundary by the
decorations. Figure 5 shows these decorations.

Since there is no flux left, both types of string operators
create deconfined anyons. Thus we have topological order. If
C is a noncontractible closed loop on the boundary, then the
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corresponding string operators are nontrivial operators on the
ground space.

We will refer to a deconfined boundary string operator that
wraps the vertical direction as Svert and one that wraps the
horizontal direction as Shoriz. It is easy to check that

{
Se

vert, Sm
horiz

} = {
Se

horiz, Sm
vert

} = 0, (7)

while all other pairs commute. Thus we could encode the
logical operators as Z1 = Se

vert, X1 = Sm
horiz, Z2 = Sm

vert, and
X2 = Se

horiz, or any unitary transformation of that encoding.
Similar string operators exist on the left boundary.

We previously mentioned the membrane operators in the
model are the same as those in the 3d toric code. The
membrane operators also appear as logical operators for the
boundary topological order, with the caveat that they act non-
trivially on both boundaries. For example there is

Rσ
horiz =

∏

i∈M∗
σ x

i , (8)

which consists of σ x operators on every edge in a horizontal
dual membrane M∗. On the right boundary this acts as X1,
while it will also have a logical action on the left boundary.

The bath is able to transport deconfined point particles
across the a system at any temperature above zero. This is the
case in both the 2d and 3d toric code. In our case, all logical
operators can be applied by transporting a deconfined point
excitation across a boundary. The 3d 3-fermion model cannot
store any information, even classical, at nonzero temperature.
The same is true of confined Walker-Wang models in general.
The topological order behaves the same as a 2d topological
phase placed on the boundary of a trivial 3d bulk phase.
We can however couple the boundary and the bulk using a
higher-form symmetry as described below.

B. Enforcing a 1-form symmetry

Here we define p-form symmetries, which for p > 0 are
called higher-form symmetries. A p-form symmetry consists
of symmetry operators each associated with a closed (d −
p)-dimensional submanifold of our space. The simplest exam-
ples, 0-form symmetries, are just ordinary global symmetries.
They act on closed d-dimensional submanifolds, so they have
to act on the whole space.

It may be unintuitive to think about symmetry operators
that act on lower dimensional submanifolds. But toric codes
actually provide convenient settings to think about them. In
the 3d toric code, arbitrary products of vertex operators form
(dual) membrane operators. These operators commute with
the Hamiltonian, so they form a symmetry. The are defined
on (2 = d − 1)-dimensional submanifolds, so they form a
1-form symmetry.

We can write this symmetry group as G = 〈Av〉, which
means that G is the group generated by all the Av operators.
The face terms form a 2-form symmetry G′ = 〈B f 〉, but we
are not concerned with that here.

Since the vertex terms were not affected when we twisted
our toric codes together, the 3d 3-fermion model inherits the
same 1-form symmetry. In particular, the symmetry group is

G = 〈
Aσ

v

〉 × 〈
Aτ

v

〉
, (9)

the group generated by both types of vertex terms.
Recall that we wanted to get rid of pointlike excitations

on the boundary. We can do this by initializing the system
in a state |ψ〉 that satisfies g|ψ〉 = |ψ〉 for every g in G.
This includes the ground state and any state reached from
the ground state by acting with open membrane operators. We
then require that the dynamics obey the symmetry, so that no
point particles are created. We will refer to this process as
enforcing the symmetry G.

When we couple the system to a bath we can enforce G
by ensuring that all of the bath couplings commute with every
element in G. This procedure is equivalent to giving Aσ

v and
Aτ

v infinite coupling constants. Enforcing the symmetry also
prevents any open string operators. The symmetry still allows
closed strings and open or closed membranes.

Enforcing the symmetry G ensures that every state in a
local decomposition performed by the bath will respect the
symmetry G. We will refer to this type of decomposition as a
symmetric local decomposition [5].

Because the symmetry allows open membranes, any log-
ical membrane operator can be decomposed into a series of
local operations that do not break the symmetry. Logical string
operators, on the other hand, must include open strings in their
local decompositions. This means that while logical string
operators can be applied in the presence of the symmetry
(because they are closed), they cannot be applied transversally
without breaking the symmetry.

The “problem” operators in the 3d 3-fermion model are the
deconfined boundary string operators. Since the deconfined
strings only exist on the boundary, it is tempting to only
enforce the symmetry on the boundary. However, we can then
create a string operator that lies mostly on the boundary but
whose end points are in the bulk. Then the symmetry is only
violated in the bulk, but the energy barrier is small.

If we enforce the symmetry in the bulk, then configurations
that look like boundary anyons must be accompanied by bulk
flux. Consider a closed string that intersects the boundary
but is not entirely included in the boundary. Then on the
boundary this looks like an open string that would create point
excitations at its end points. However, at these “end points”
the string instead goes into the bulk, where it is now confined
and creates flux.

In this sense the 1-form symmetry couples bulk excitations
to boundary excitations. This perspective will become most
clear when we couple a 2d toric code to a paramagnet bulk in
Sec. III.

If the 1-form symmetry is enforced to a distance W from
the boundary, a nontrivial logical operator can be symmetri-
cally decomposed into a series of strings whose end points
are at least a distance W from the boundary. In the following
subsection we will define the symmetric energy barrier as the
amount of energy the bath must provide in order to perform
a logical operation. For the partially symmetry-protected 3d
3-fermion model it is � ∼ W .

C. Diverging symmetric energy barrier

Since we assume the bath couples to the system locally,
it can only apply a logical operator by decomposing it into
a series of operators that differ by local operations. These
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FIG. 6. The 1-form symmetry will be enforced within a distance
W from the right boundary.

operators generically create excitations in the system. Infor-
mally, the energy barrier is the energy of these excitations. We
define the energy barrier more formally following Ref. [5].

First assume the bath couples to the system through lo-
cal Pauli operators. Let 	̄ be a (nontrivial) logical operator.
Define the local decomposition of 	̄ as a series of opera-
tors D(	̄) = {	(k)|k = 1, . . . , N}, where 	(1) = I and 	(N ) = 	̄.
Furthermore, 	(k) and 	(k+1) differ only by a local (constant-
range) set of Pauli operators. Since every Pauli operator either
commutes or anticommutes with each stabilizer, each of the
	(k) anticommutes with a finite number of stabilizers and
commutes with the rest.

If |ψ0〉 is a ground state of the Hamiltonian, then 	(k)|ψ0〉
is an eigenstate with energy E (k). Define the energy barrier for
this particular local decomposition as

�D(	̄) = max
k

(E (k) − E0), (10)

where E0 is the ground-state energy. Then the energy barrier
for the system is

� = min
	̄,D(	̄)

�D(	̄), (11)

where the minimization is taken over all local decompositions
of all logical operators. Thus the system energy barrier � can
be thought of as the minimum amount of energy that the bath
must supply to perform a nontrivial logical operation.

We now turn our focus to the L × L × L 3d 3-fermion
model, with the 1-form symmetry enforced within distance W
of the boundary as in Fig. 6. We want to show that the energy
barrier for a boundary string operator is of order W . For
concreteness let the string be Se

vert, but similar constructions
exist for the other strings.

In order to symmetrically decompose the operator, we just
need to make sure the string never has an end point in the
protected region. We start with a small loop near the boundary,
as in Fig. 7. Any part of the loop on the boundary will create
no flux, while any part of the loop in the bulk will create flux.

It is possible to move the string operator using local sets
of Pauli operators since if C and C ′ only differ in a single
region, then Se

C and Se
C′ only differ in the same region. We

use this method to pull the edge of the loop into the un-

FIG. 7. Symmetric decomposition of a boundary string operator.
Dashed blue lines represent deconfined boundary strings and solid
blue lines represent bulk strings with flux. Red asterisks are point
excitations. (i) Start with a small loop near the boundary and expand
it away from the boundary. (ii) Open the loop when it is outside
the symmetry-protected region. (iii) Move the bulk anyons and flux
vertically, stretching the boundary deconfined string. (iv) Annihilate
the bulk excitations, leaving behind a boundary deconfined logical
string operator. Compare to Fig. 12 in Ref. [5].

protected region so that we are allowed to open it, breaking
the 1-form symmetry. At this point [Fig. 7(ii)] we have a
deconfined string operator on the boundary and two confined
string operators reaching into the bulk. The excitations are two
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point excitations with energy cost ∼2 and two flux tubes with
energy cost ∼2W .

We now move the confined strings in the vertical direc-
tion until they annihilate, leaving behind a deconfined logical
string operator on the boundary. As W → ∞ the largest en-
ergy cost comes from the flux tubes, so the symmetric energy
barrier is � ∼ W .

As long as we ensure that W grows without bound as we
take the thermodynamic limit, this shows that 1-form sym-
metry protection can endow the 3d 3-fermion model with a
diverging energy barrier. Furthermore, Ref. [5] shows that in
this type of model, a diverging energy barrier is sufficient to
ensure self-correction.

Note that this means that W need not scale as any particular
function of L. We could take the thermodynamic limit in such
a way that W/L → 0 as long as both grow without bound, for
example by taking W ∼ log L. Then the symmetry would be
enforced in a measure-zero subvolume in the thermodynamic
limit. In this sense the quantum memory only requires that
the symmetry be enforced near the boundary, not in the whole
bulk.

Furthermore, the boundary between the protected and un-
protected regions is uninteresting. There is no topological
order there, and there are no protected gapless modes. In
addition, it is possible to terminate the lattice in such a way
that even if we enforce the symmetry in the whole lattice,
there may be boundaries that are gapped and trivial. This is
our first signal that we are not relying on the existence of an
SPT phase.

We could have let the two noncontractible directions have
lengths L1 and L2 and not required L1, L2 > W . In that case
the energy barrier scales as � ∼ min{L1, L2,W }, reproducing
the above scaling when W > L1, L2. This scaling is remi-
niscent of the behavior in Ref. [5]. If the vertical direction
is smaller than W , then it is more energy efficient to first
make the loop very large in the vertical direction until it splits
into a nontrivial boundary loop and a nontrivial bulk loop, as
in Fig. 12 of [5]. The bulk loop can then be moved to the
unprotected region, broken, and removed.

Before moving on we will mention what happens if we
enforce the symmetry everywhere in the bulk, as in the R&B
proposal [5]. In that case, any logical operator with a symmet-
ric local decomposition must have a nontrivial logical action
on both boundaries. Comparing to Fig. 7, the closed string
may never open, so it has to end up as a nontrivial loop on the
left boundary.

We previously said that membrane operators had to have
logical actions on both boundaries. In confined Walker-Wang
models, for any closed string operator there is some dual
membrane operator with the same action on the ground space.
This is because arbitrary products of face operators Bσ

f and
Bτ

f create open dual membranes with string operators around
their perimeters.

Under a certain encoding of logical qubits 3 and 4 in
the left boundary, the logical operators that can be locally
decomposed are

X1X3 = Rσ
horiz, Z1Z3 = Rτ

vert,

X2X4 = Rτ
horiz, Z2Z4 = Rσ

vert. (12)

Note that these operators can generate any Pauli on a given
qubit, but they are constrained to commute with each other.
This is analogous to the 3d toric code, where 1-form sym-
metry protection means that only membrane operators can be
symmetrically decomposed.

The 3d 3-fermion model is a confined Walker-Wang model.
All models in this family have confined anyons in the bulk and
deconfined anyons on the boundary. Thus, all these models
have trivial bulks with 2d topological order on the boundary.
For any confined Walker-Wang model it should be possible to
follow the above procedure of enforcing the 1-form symmetry
within a distance W of the boundary to achieve a energy
barrier that scales as � ∼ W .

To close this section, we should connect to the 3D cluster
state model of Raussendorf, Bravyi, and Harrington, the RBH
model, which was the original setting for the R&B proposal
[5]. Like the confined Walker-Wang models, this model is
trivial in the bulk and can have boundary conditions that create
topological order. When defined on the topology T 2 × I with
the symmetry enforced within a distance W of one bound-
ary, the RBH model protects two qubits at that boundary at
nonzero temperature.

III. PARAMAGNETIC BULK

In the previous section we saw how enforcing a 1-form
symmetry on an SPT system could give rise to self correction.
We also saw that the symmetry need not be enforced in the
whole bulk, which leads one to wonder if the SPT nature of
the bulk was really necessary. Here we present a construction
inspired by Sec. III G of [5], in which the symmetry provides
self-correction, using a noninteracting paramagnet for the
bulk Hamiltonian. Since trivial paramagnets are by definition
not in an SPT phase, this makes clear that the self-correction
seen in these models is not an SPT effect, but rather follows
purely from the 1-form symmetry.

Consider qubits placed on faces and edges of a cubic
lattice. As before, let the lattice have topology T 2 × I . On
the boundaries, only put qubits on edges. For simplicity we
will refer to the sets of bulk cubes, faces, edges, and vertices
as Q, F, E , and V , respectively. We will refer to the sets
of boundary faces, edges, and vertices as ∂F , ∂E , and ∂V ,
respectively.

The Hamiltonian in the bulk is

Hpara = −
∑

f ∈F

Xf −
∑

e∈E

Xe, (13)

acting on all face and edge qubits. The boundary Hamiltonian
is just a toric code,

HTC = −
∑

v∈∂V

A∂
v −

∑

f ∈∂F

B∂
f , (14)

where A∂
f and B∂

f are the normal 2d toric code terms, acting
only on the boundary edge qubits. Recall there are no bound-
ary face qubits.

The symmetry operators in the bulk are simply

Av =
∏

e∈∂†v

Xe, Aq =
∏

f ∈∂q

Xf , (15)
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FIG. 8. Symmetry operators at the boundary of the lattice. The
A′

v operator (lower left) consists of five Xe terms, while the A′
q

operator (upper right) has five Xf terms and four Ze terms on the
boundary. Restricting these terms to the boundary edges results in
the terms in the boundary toric code Hamiltonian.

with one operator for each vertex and each cube. These clearly
commute with the bulk Hamiltonian. We will give explicit
definitions of the boundary symmetry operators but they are
rather complicated so they are depicted in Fig. 8.

On the boundary vertices, the symmetry operators are

A′
v =

∏

e∈∂†v

Xe, (16)

which is a five-body operator because v is on the boundary.
For any cube whose boundary contains a boundary face, the
symmetry operator is

A′
q =

∏

e∈∂ f (0)

Ze

∏

f ∈∂q

Xf , (17)

where f (0) is the unique face in ∂q on the boundary lattice.
Recall the boundary faces have no qubits on them so A′

q con-
tains 5 X -type operators. In addition, it is dressed by a 4-body
Z-type term on boundary qubits. See Fig. 8 for illustrations.

The symmetry operators in Eq. (17) are not “on-site” in
the sense of Ref. [11]. Similarly, the symmetry operators are
not simply truncated versions of the bulk symmetry operators,
and instead have a Z-type decoration. This is in contrast to the
symmetries in the 3d 3-fermion model above and in the R&B
proposal, which are on-site.

The group generated by Aq, Av , A′
q, and A′

v is a 1-form
symmetry because elements of the group act on codimension-
1 objects. Elements generated by Av and A′

v consist of X

FIG. 9. In order to decompose the boundary logical operators in
the presence of the 1-form symmetry, we need to connect boundary
strings to bulk strings. The Z-type boundary string can simply be
connected to a Z-type bulk string defined on edges, so that the entire
string has no end points. The X -type boundary string anticommutes
with two A′

q operators at its end points. These can also be seen as the
end points of a bulk dual Z string, so a combination of a boundary
dual X string on edges and a bulk Z string on faces commutes with
the symmetry. In both cases the bulk string creates excitations, and is
linearly confined.

operators on sets of edges forming dual membranes. These
dual membranes may terminate at the lattice boundary. Ele-
ments generated by Aq and A′

q consist of X operators acting
on sets of faces forming direct membranes. A membrane M
may terminate at the lattice boundary if it is decorated by Z
operators on the edges that make up ∂M. This decoration
comes from the decoration in Eq. (17).

Unsurprisingly, the topological order lives in the 2-
dimensional toric code at the lattice boundary. The logical
operators are, as always, either direct strings of Z operators
or dual strings of X operators.

Neither of these strings can be symmetrically decomposed
using open boundary strings, the way they would be decom-
posed in a 2d toric code. Open Z strings anticommute with Av

operators at their end points. This can be fixed by pairing with
a string of Z operators through the bulk. Similarly, open dual
X strings anticommute with Aq operators at their end points
and must be paired with dual Z strings through the bulk. See
Fig. 9 for these local symmetric decompositions.

Direct and dual Z strings in the bulk commute with the
1-form symmetry because they intersect every cube or vertex
term twice. However, they have linear energy cost because
they anticommute with the paramagnet Hamiltonian. We can
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once again call them fluxes. The 1-form symmetries enforce
that the fluxes can only end on the end points of open line
operators on the toric code boundary or in regions where the
symmetry is not enforced.

We find ourselves in a position similar to the 3d 3-fermion
model, where boundary anyons are confined by flux strings
in the bulk. Thus, we can decompose logical operators using
the steps in Fig. 7. Once again we find that the topologically
nontrivial operators can be symmetrically decomposed into
strings that intersect the boundary but end deep in the bulk.
Bulk strings are linearly confined, so the symmetric energy
barrier for this system diverges.

IV. DISCUSSION

The purpose of this paper has been to relate the R&B
construction to other existing models and to determine what
aspects of the construction are most important for achieving
self-correction. We showed that enforcing the 1-form sym-
metry in any confined Abelian Walker-Wang model results in
self-correction. Reference [5] conjectured that this might be
possible, and indeed it is. In the process we discovered that it
suffices to enforce the symmetry in a measure-zero subvolume
of the system, and that the boundary of the enforced region
need not be anomalous. This then led us to conjecture that it
might be possible to achieve self-correction with a paramag-
netic bulk, and indeed, we were able to demonstrate this by
explicit construction.

Thus, while the boundary topological order is indeed “pro-
tected” by the symmetry, the bulk is not in any SPT-ordered
phase. This strongly suggests that it is the 1-form symmetry
that does the heavy lifting, and any “exotic” nature of the bulk
is optional.

We leave open the question of what exactly constitutes a
1-form SPT phase. Since 1-form symmetries are more varied
than 0-form symmetries, it is possible that the definition of
1-form SPT order might be more restricted or more expansive
than the familiar 0-form case. The strongest evidence that the
current class of symmetry-protected self-correcting memories
are not SPT phases comes from their possession of “uninter-
esting” boundaries. However, there may still be some subtle
manner in which the boundaries of higher-form SPT phases
may differ from the usual case.

The approaches we have discussed achieve self-correction
by giving anyons effective long-range interactions, by ty-
ing them to confined bulk flux strings. Thus they could be
compared to earlier literature that also tried to utilize long-
range interactions to achieve self-correction [21–28]. Those
attempts were limited by requirements for unbounded oper-
ator strength and/or instability to perturbation [29,30]. If we
enforce the 1-form symmetry by endowing certain terms in the
Hamiltonian with infinite coupling constants, then the R&B

proposal (and our extensions thereof) suffer from the same
limitations.

Since we do not use any exotic bulk properties, we should
ask if we can improve the construction by using a more
interesting bulk. A key direction for future work is whether
1-form symmetry can naturally emerge in the dynamics of
some quantum system. In this context, R&B conjectured that
the 3d gauge color code [31] (gcc) might realize an emergent
1-form symmetry (including at nonzero temperature). How-
ever, the proof or disproof of this conjecture remains an open
problem [32], as does identification of other potential plat-
forms for emergent 1-form symmetry at nonzero temperature.
An alternative direction to pursue might be to seek quantum
computational architectures where 1-form symmetry may be
natively enforced, for instance through single-shot error cor-
rection [33,34].

The appeal of the 3d gauge color code is that the flux tubes
do not end in the bulk. The reason for the 1-form symmetry in
the bulk in the R&B proposal and in this paper was to prevent
the flux tubes from terminating, so the 3d gcc would not need
this constraint. The 3d toric code is a useful point of compar-
ison for the 3d gcc. Like the 3d gcc, the 3d toric code has flux
tubes that do not terminate in the bulk. If it were possible to
couple the end points of these flux tubes to boundary anyons
this may result in some nonzero-temperature stability, even
without higher-form symmetry enforcement. The difficulty
of understanding emergent higher-form symmetry can also
be seen in the 3d toric code, which has an emergent 1-form
symmetry at T = 0 but not at nonzero temperatures.

We could consider enforcing a 1-form symmetry in the
bulk of a pure 3d toric code, with no boundary anyons. This
prevents the creation of point excitations, so the stringlike
operators cannot be locally decomposed. In the case of the
3d toric code this does promote the code to be self-correcting.
The cost is that some logical operators now have no symmetric
local decomposition.

Lastly, we wonder what ingredients can be added to these
models to improve the finite-temperature behavior. Possibili-
ties could include a mix of 3-dimensional and 2-dimensional
topological order or boundaries between different phases in-
stead of boundaries with the vacuum. It might be useful to
use the process of welding [14], which is known to create a
code with a power-law energy barrier at T = 0. Furthermore,
fracton phases (see [35] for a review) give access to new kinds
of bulk order that could be also useful in this quest. We leave
these explorations to future work.
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