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Topology of an anti-parity-time symmetric non-Hermitian Su-Schrieffer-Heeger model
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We propose an anti-parity-time (anti-PT ) symmetric non-Hermitian Su-Schrieffer-Heeger (SSH) model,
where the large non-Hermiticity constructively creates nontrivial topology and greatly expands the topological
phase. In the anti-PT -symmetric SSH model, the gain and loss are alternatively arranged in pairs under the
inversion symmetry. The appearance of the degenerate point at the center of the Brillouin zone determines
the topological phase transition, whereas the exceptional points unaffect the band topology. The large non-
Hermiticity leads to unbalanced wave-function distribution in the broken anti-PT -symmetric phase and induces
the nontrivial topology. Our findings can be verified through introducing dissipations in every other two sites
of the standard SSH model even in its trivial phase where the nontrivial topology is solely induced by the
dissipations.

DOI: 10.1103/PhysRevB.103.235110

I. INTRODUCTION

The discrete symmetries classify the Hermitian topologi-
cal phases into 10 folds [1] and classify the non-Hermitian
topological phases into 38 folds [2]. The many interesting
topological properties of non-Hermitian phases have been re-
ported [3], including the topological phase transitions [4,5],
non-Hermitian band theory [6–11], topological insulators
[12–19], topological metals [20–22], topological semimet-
als [23–28], topological invariants [29–37], and topological
edge modes [38–46]. The bulk boundary correspondence
(BBC) and bulk topological invariant play important roles in
the topological characterization. However, in non-Hermitian
systems with skin effect [47–61], the spectra between the
open-boundary condition (OBC) and the periodic-boundary
condition (PBC) can be dramatically distinct, and the con-
ventional BBC is invalid because of the Aharonov-Bohm
effect with imaginary magnetic flux [57]. To correctly de-
scribe the spectrum under the OBC, the non-Bloch band
theory is developed [58,62–64], the quasimomentum be-
comes complex and varies on a generalized Brillouin zone
(GBZ). A universal analytical method to obtain the GBZ is
given for one-dimensional non-Hermitian systems [65]. In
the presence of the non-Hermitian skin effect, the damp-
ing becomes unidirectional [66]. Zener tunneling becomes
chiral at the non-Bloch collapse point [67]. The relation be-
tween edge modes and bulk topology is formulated using the
Green’s-function method [68]. The non-Hermitian topological
systems can be implemented in many experimental platforms
including the passive (active) photonic crystals of coupled
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waveguides [69–75], coupled resonators [76–81], optical lat-
tice [82–84], electronic circuits [85–88], and acoustic lattices
[89,90].

The progress on the non-Hermitian Su-Schrieffer-Heeger
(SSH) models [88,91–109], Aubry-André-Harper models
[110–115], and Rice-Mele (RM) models [116–118] provides
fundamental understanding of the non-Hermitian topologi-
cal phase of matter. In the non-Hermitian SSH model with
asymmetric couplings, nonzero imaginary magnetic flux [57],
persistent current [63], and non-Hermitian skin effect ex-
ist. In the parity-time- (PT -) symmetric non-Hermitian SSH
model with gain and loss [92–98], the PT symmetry prevents
nonzero imaginary magnetic flux and ensures the BBC. In
the exact PT -symmetric region with a real spectrum, the
Berry phase for each separable band is quantized; in the bro-
ken PT -symmetric region with complex spectrum [119], the
Berry phase for each separable band is not quantized [97].
Topological interface states are experimentally observed in
PT -symmetric non-Hermitian SSH lattices [120–124].

The anti-PT symmetry can also protect the validity of the
BBC. In this paper, we propose an anti-PT -symmetric non-
Hermitian SSH model through alternatively incorporating the
balanced gain and loss under the inversion symmetry in the
standard SSH model. The band spectrum becomes partially
complex in the presence of non-Hermiticity, indicating the
thresholdless anti-PT -symmetry breaking. The gain and loss
help creating the nontrivial topology. The topological charac-
terization and the geometric picture of the topological phases
are elaborated. The topological phase transition occurs when
the band gap closes and reopens. The degenerated topological
edge states have zero energy with a net gain and localized at
two lattice boundaries, respectively. Exciting the edge states
enable topological lasing [122–128].

II. MODEL

The schematic of the non-Hermitian SSH model is shown
in Fig. 1(a), which describes a one-dimensional coupled
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FIG. 1. (a) Schematic of the anti-PT -symmetric non-Hermitian
lattice of a coupled resonator array. The gain (loss) is indicated in
red (blue). The spectra are shown in (b)–(g) with system parameters
t1 = 1, t2 = 1/2, and γ = 0 for (b), γ = 1/2 for (c), γ = √

3/2 for
(d), γ = 9/10 for (e), γ = 1 for (f), and γ = 3/2 for (g). The red
lines indicate the real part of energy, and the magenta dashed lines
indicate the imaginary part of energy where the blue crosses indicate
the edge degenerate point (DP) for γ = 0 or exceptional points (EPs)
for γ �= 0, and the black cross indicates a central DP in (d).

resonator array. All the resonators have identical resonant
frequency. The staggered distance between the nearest-
neighbor resonators determines the lattice couplings t1 and t2
[120–124], which classify two sublattices in the SSH model,

H0 =
∑

j

(t1a†
j b j + t2b†

ja j+1 + H.c.),

where a†
j (b†

j ) and a j (b j ) are the creation and annihilation
operators for the sublattice site indexed j. To create the anti-
PT symmetry [129–134], the gain and loss are introduced in
the resonators under the inversion symmetry in the form of
{iγ ,−iγ ,−iγ , iγ } in the four-site unit cell,

H1 = iγ
∑

j

(a†
2 j−1a2 j−1 − b†

2 j−1b2 j−1 − a†
2 ja2 j + b†

2 jb2 j ).

(1)

The Hamiltonian of the anti-PT -symmetric non-Hermitian
SSH model reads

H = H0 + H1. (2)

As shown in Fig. 1(a), the anti-PT -symmetric non-Hermitian
SSH model is invariant under a π rotation of the left (right)
non-Hermitian dimer and glide half of the unit cell in the
translational direction [135].

In comparison to the PT -symmetric non-Hermitian SSH
model with the gain and loss {iγ ,−iγ , iγ ,−iγ } in the
four-site unit cell, the only difference between the anti-
PT -symmetric and PT -symmetric SSH models is that the
arrangement of the even number of gain and loss pairs;
the anti-PT -symmetric SSH model has the inversion sym-
metry, whereas the PT -symmetric SSH model does not.

Interestingly, the role played by the non-Hermiticity γ is com-
pletely different in these two models. The non-Hermiticity
γ in the anti-PT -symmetric SSH model constructively
create nontrivial topology. The topologically trivial phase
changes into the topologically nontrivial phase as the in-
creasing in non-Hermiticity γ . The nontrivial topology of the
anti-PT -symmetric SSH model can be directly verified in
many experimental platforms that used to demonstrate the
PT -symmetric SSH model. The topological aspect of the
anti-PT -symmetric SSH model completely differs from that
of the nonsymmorphic RM model [136].

Applying the Fourier transformation, the Bloch Hamilto-
nian of the lattice is obtained as

Hk =

⎛
⎜⎜⎝

iγ t1 0 t2e−ik

t1 −iγ t2 0
0 t2 −iγ t1

t2eik 0 t1 iγ

⎞
⎟⎟⎠. (3)

Hk has the anti-PT -symmetry (PT )Hk (PT )−1 = −Hk with
P = iσx ⊗ σy, and T = K is the complex-conjugation opera-
tion. Hk also has TRS† C+HT

k C−1
+ = H−k with C+ = σ0 ⊗ σ0,

PHS† T−H∗
k T −1

− = −H−k with T− = σ0 ⊗ σz, and chiral sym-
metry (pseudo-anti-non-Hermiticity) �H†

k �−1 = −Hk with
� = C+T−, where σ0 and σx,y,z are the two-by-two identical
matrix and Pauli matrix. The system belongs to the BDI† class
in the 38-fold topological classifications of non-Hermitian
systems, and the topological phase-transition of the BDI†

class is determined by the closure of the band gap of the real
part of energy bands [2]. The interplay between the couplings
and the non-Hermiticity alters the band topology and gener-
ates the nontrivial topology; furthermore, the loss can solely
induce the nontrivial topology if we consider a common gain
term iγ is removed from Hk . This greatly simplifies the verifi-
cation of the anti-PT -symmetric SSH model in experiments.

In contrast to the PT symmetry ensures the energy levels
to be conjugate in pairs, the anti-PT symmetry ensures the
energy levels in pairs with identical imaginary part and oppo-
site real part. The four energy bands are

E±,± = ±
√

t2
1 + t2

2 − γ 2 ± 2t2
√

t2
1 cos2 (k/2) − γ 2. (4)

In the absence of the gain and loss (γ = 0), the lattice is
the Hermitian SSH model. At the topological phase-transition
point t1 = t2, two bands ±2t1 cos(k/2) of the SSH model are
connected at the DP k = ±π ; the four-band spectrum E±,±
of Hk can be regarded as the spectrum of the SSH model
folded at k = ±π/2 and stretched to the entire BZ. Thus,
the central band gap closes at the DP at the center of the BZ
k = 0, and the band folding generates another DP at the edge
of the BZ k = ±π . At t1 �= t2, the SSH model is gapped, and
the central gap is open as shown in Fig. 1(b); however, the
spectrum of Hk still has a DP at the edge of BZ protected by
the nonsymmorphic symmetry in the four-site unit cell of the
SSH model [135].

In the presence of the gain and loss (γ �= 0), the non-
Hermiticity splits the edge DP into two EPs associated with
the anti-PT -symmetry breaking [Fig. 1(c)]. As the increase
in the non-Hermiticity, the two EPs gradually move, and the
complex energy region expands from the edge to the center of
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FIG. 2. (a) Phase diagram for the anti-PT -symmetric non-
Hermitian SSH model. The real part (b) and the imaginary part
(c) of the energy spectrum as a function of the non-Hermiticity; the
parameters are t1 = 1 and t2 = 1/2.

the BZ as shown in Figs. 1(d) and 1(e). When γ 2 = t2
1 , two

EPs merge to one EP at the center of the BZ [Fig. 1(f)] and
disappear for γ 2 > t2

1 [Fig. 1(g)].
The band gap of the central two bands closes at E = 0

as presented in Fig. 1(d), which requires (γ 2 + t2
2 − t2

1 )2 +
4t2

1 t2
2 sin2(k/2) = 0. The central two bands touch at the DP

k = 0 associated with the topological phase transition at the
critical non-Hermiticity,

γ 2 + t2
2 = t2

1 . (5)

III. PHASE DIAGRAM

The anti-PT -symmetric non-Hermitian SSH model re-
duces to the SSH model for γ = 0, which has the topo-
logically nontrivial phase for t2

2 > t2
1 and the topologically

trivial phase for t2
2 < t2

1 . However, the situation changes in
the presence of non-Hermiticity as shown in the phase di-
agram Fig. 2(a). The non-Hermiticity creates the nontrivial
topology and the topological region expands in the anti-PT -
symmetric non-Hermitian SSH model, where γ 2 + t2

2 < t2
1 is

the topologically trivial phase and γ 2 + t2
2 > t2

1 is the topo-
logically nontrivial phase. The nontrivial topology of the
anti-PT -symmetric SSH model can be solely created by the
non-Hermiticity because large non-Hermiticity induces un-
balanced distributions of the wave-function probability. The
non-Hermiticity generates nontrivial topology in the uniform
chain at t2

1 = t2
2 [137] and even in the trivial phase of the

Hermitian SSH model at t2
2 < t2

1 .
The real part and the imaginary part of the energy bands

under the OBC as a function of the non-Hermiticity are shown
in Figs. 2(b) and 2(c), respectively. The anti-PT -symmetric
non-Hermitian SSH lattice under the OBC has one pair of
edge states in the topologically nontrivial phase. To further
elucidate the band structure, the energy bands on the complex
energy plane for the non-Hermitian SSH lattice under the
OBC are plotted as shown in Figs. 3(a)–3(f); the correspond-
ing PBC spectra are shown in Figs. 1(b)–1(g). For γ 2 � t2

1 and
γ 2 + t2

2 �= t2
1 , the real part of the energy bands is gapped (the

central gap is open). However, the energy bands E1 and E2 (E3

and E4) are inseparable [6] because of the existence of edge
DP or EPs (blue crosses) as shown in Figs. 1(b), 1(c), 1(e),
and 1(f); in this sense, the four energy bands can be regarded
as two energy bands Er (cyan) and El (magenta) according
to the real part of energy bands as shown in Figs. 3(a), 3(b),
3(d), and 3(e). For γ 2 + t2

2 = t2
1 (topological phase transition),

the real gap is closed (the central gap is closed) and the two
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FIG. 3. Energy bands on the complex energy plane under the
OBC. The parameters in (a)–(f) are similar as those in Figs. 1(b)–
1(g). The black stars indicate a pair of edge states for topological
nontrivial phases as shown in (d)–(f).

energy bands Er and El become single band [Fig. 3(c)]. For
γ 2 > t2

1 , the EP disappears between E1 and E2 (E3 and E4),
and the four energy bands are separated [Fig. 3(f)]. In the
topologically nontrivial region γ 2 + t2

2 > t2
1 , there exist one

pair of degenerated zero modes (black stars) with gain for the
lattice under the OBC as shown in Figs. 3(d)–3(f).

IV. EDGE STATE

The inversion symmetry and TRS† ensure the validity of
the conventional BBC because both of them lead to real wave
numbers for the anti-PT -symmetric non-Hermitian lattice
under the OBC [2,57]. The lattice under the OBC supports
two degenerate edge states localized at the left and right
boundaries of the lattice, respectively. The eigenvalues of edge
states are imaginary,

ε = i{λ + [
4γ 2 − 3

(
t2
2 + t2

1

)]
/λ − γ }/3, (6)

where λ = 3
√

α + √
β with α = (18t2

2 + 8γ 2 − 9t2
1 )γ and

β = 27{[4(2t2
2 + 4γ 2 − 5t2

1 )t2
2 − t4

1 ]γ 2 + (t2
1 + t2

2 )3}. The left
edge state localizes at the left boundary of the lattice. Without
loss of generality, the wave functions in the jth unit cell of
the left edge state |ψL〉 can be expressed as χ j−1{1, (ε −
iγ )/t1,−χt2/t1, 0} with χ = (iγ − ε)/(iγ + ε). For γ = 0,
the edge states reduce to zero modes with ε = 0 and the wave
functions in the jth unit cell as (t1/t2) j−1{1, 0,−t1/t2, 0}. The
right edge state |ψR〉 is the mirror reflection of the left edge
state |ψL〉. The edge states have net gain rate and are useful
for topological lasing.

V. GEOMETRIC PICTURE OF BAND TOPOLOGY

The topology of the anti-PT -symmetric non-Hermitian
SSH model relates to the geometry of the Bloch Hamiltonian
winding around the degeneracy points in a two-dimensional
parameter space, we show how the non-Hermiticity creates
the nontrivial topology. For the Bloch Hamiltonian Eq. (3), we
replace eik by hx + ihy to create a two-dimensional parameter
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FIG. 4. Complex energy bands and geometric picture of the
topology in the two-dimensional parameter space (hx, hy ) for the
anti-PT -symmetric non-Hermitian SSH model. The upper panels
depict the complex energy bands where the value indicates the real
part and the color indicates the imaginary part of the energy; the
lower panels depict the geometric picture of the topology. The unit
circle indicates the anti-PT -symmetric non-Hermitian SSH model,
the blue crosses indicate the edge DP or EPs, and the black crosses
indicate the central DP. The parameters are (a) γ = 0, (b) γ = 1/2,
(c) γ = √

3/2, (d) γ = 9/10, (e) γ = 1, and (f) γ = 3/2; other
parameters are t1 = 1 and t2 = 1/2.

space (hx, hy),

H (hx, hy) =

⎛
⎜⎝

iγ t1 0 t2(hx − ihy)
t1 −iγ t2 0
0 t2 −iγ t1

t2(hx + ihy) 0 t1 iγ

⎞
⎟⎠,

(7)
where the k-dependent Bloch Hamiltonian Eq. (3) corre-
sponds to a unit circle h2

x + h2
y = 1 in the two-dimensional

parameter space (hx, hy).
Figure 4 depicts the complex energy bands extended to

the two-dimensional parameter space (hx, hy) for the anti-
PT -symmetric non-Hermitian SSH model at fixed parameters
t1 = 1 and t2 = 1/2 for the different non-Hermiticity γ . The
edge DP (blue cross) on the unit circle at γ = 0 splits into
two EPs on the unit circle at nonzero non-Hermiticity γ < 1;
and the two EPs are symmetrically distributed about hy = 0
because the EPs are symmetrically distributed about k = 0 in
the BZ [see Figs. 1(c)–1(e)]. As the non-Hermiticity increases,
the two EPs move on the unit circle from (hx, hy) = (−1, 0) to

(a) (b) (c)
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FIG. 5. Zak phase and partial global Zak phase. The parameters
are t1 = 1, t2 = 1/2, and γ = 1/2 for (a), γ = 9/10 for (b), and γ =
3/2 for (c).

(hx, hy) = (1, 0); at γ = 1, the two EPs merge into single EP
at (hx, hy) = (1, 0); and the EP vanishes for γ > 1. The edge
DP or the EPs remain on the unit circle, and the topology is
fully determined by the central DP (black cross). From the
unit circle winding around the central DP, we can observe
how the nontrivial topology is created by the non-Hermiticity
γ . For γ = 0 in Fig. 4(a), the central DP is outside the unit
circle; thus, the system is in the topologically trivial phase.
The nonzero non-Hermiticity γ moves the central DP along
hy = 0 towards the negative hx direction in the parameter
space. For γ = 1/2 in Fig. 4(b), the central DP moves to
(hx, hy) = (3.284, 0), and the system enters the white region
of the phase diagram as shown in Fig. 2(a). For γ = √

3/2 in
Fig. 4(c), the central DP moves to (hx, hy) = (1, 0) and locates
on the unit circle; the system is at the boundary of the white
and cyan regions. For γ = 9/10 in Fig. 4(d), the central DP is
enclosed in the unit circle, the topology of the system changes,
and the system enters the cyan region. For γ = 1 in Fig. 4(e),
the central DP keeps inside the unit circle; the system is in
the nontrivial phase for the nonzero t2, but the energy bands
are not completely separated. For γ = 3/2 in Fig. 4(f), the
central DP is still inside the unit circle; in this situation,
the four bands are completely separated and the system is
in the nontrivial phase.

VI. ZAK PHASE AND PARTIAL GLOBAL ZAK PHASE

When the four complex energy bands are separated at γ 2 >

t2
1 , each energy band is associated with a Zak phase,

�n = i
∮

dk〈ϕn|∂k|ψn〉. (8)

In the definition of �n, |ϕn〉 is the left eigenstate, and |ψn〉 is
the right eigenstate, Hk|ψn〉 = En|ψn〉 and H†

k |ϕn〉 = E∗
n |ϕn〉,

where the subscript n is the band index. E1 denotes the band
with positive real and imaginary energies, E2 denotes the band
with positive real and negative imaginary energies, E3 denotes
the band with negative real and imaginary energies, and E4

denotes the band with negative real and positive imaginary
energies as shown in Figs. 3(f) and Fig. 1(g). Their wave
functions are |ψ1〉, |ψ2〉, |ψ3〉, and |ψ4〉, respectively. The
system has the inversion symmetry, which ensures that the
Zak phase for each separated energy band is an integer of π .
Thus, the Zak phase is used for topological characterization.
In Fig. 5(c), the Zak phases for the bands E1 and E4 are π ,
and the Zak phases for the bands E2 and E3 are 0; which
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are consistent with the geometric picture in Fig. 4(f), the
central DP belongs to energy bands E1 and E4 and predicts
the existence of one pair of the topological zero modes with
gain for the system under the OBC.

For the energy bands embedded with EPs (γ 2 � t2
1 and

γ 2 + t2
2 �= t2

1 ), there are only two energy bands Er and El . The
two-state coalescence EP212 exists only in the energy bands
E1 and E2, and the two-state coalescence EP234 exists only
in the energy bands E3 and E4. In this sense, we define two
partial global Zak phases,

�r = �1 + �2; �l = �3 + �4. (9)

In the calculation of the partial global Zak phase, the momen-
tum ranges [kEP − �k, kEP + �k] are removed because that
the coalesced wave functions are self-orthogonal at the EPs
[137], where �k is an infinite small positive real number. The
partial global Zak phase is valid for the topological character-
ization.

For γ 2 � t2
1 and γ 2 + t2

2 < t2
1 , both partial global Zak

phases �r and �l are 0 as shown in Fig. 5(a). This indicates
the phase is topologically trivial without any edge state under
the OBC. However, for γ 2 � t2

1 and γ 2 + t2
2 > t2

1 , both partial
global Zak phases �r and �l are π as shown in Fig. 5(b). This
indicates the phase is topologically nontrivial and one pair of
topological edge states appear under the OBC.

VII. CONCLUSION

We propose the anti-PT -symmetric non-Hermitian SSH
model as a prototypical anti-PT -symmetric topological lat-
tice. The gain and loss are alternatively introduced in pairs
in the standard SSH model through holding the inversion
symmetry. The inversion symmetric gain and loss result in
the thresholdless breaking of anti-PT symmetry, and the
energy spectrum is partially or fully complex. We provide
novel insights on the roles played by the anti-PT symme-
try and non-Hermiticity in the topological phases. The large
non-Hermiticity constructively creates the nontrivial topol-
ogy and greatly expands the topologically nontrivial region
of the SSH model. The topological edge states localized at
two boundaries of the lattice are degenerate and suitable for
topological lasing. Besides, the dissipation can solely induce
the nontrivial topology. In comparison to the PT -symmetric
non-Hermitian SSH model, only the arrangement of gain and
loss in the anti-PT -symmetric non-Hermitian SSH model
is different; the proposed anti-PT -symmetric non-Hermitian
SSH model can be easily implemented in the microring res-
onator arrays, coupled optical waveguides, photonic crystals,
electronic circuits, and acoustic lattices [69–87,89,90].
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