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Superconductivity and charge density wave order in the two-dimensional Holstein model
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The Holstein Hamiltonian describes fermions hopping on a lattice and interacting locally with dispersionless
phonon degrees of freedom. In the low-density limit, dressed quasiparticles, polarons and bipolarons, propagate
with an effective mass. At higher densities, pairs can condense into a low-temperature superconducting phase
and, at or near commensurate filling on a bipartite lattice, to charge density wave (CDW) order. CDW formation
breaks a discrete symmetry and hence occurs via a second-order (Ising) transition and therefore at a finite Tcdw in
two dimensions. Quantum Monte Carlo calculations have determined Tcdw for a variety of geometries, including
square, honeycomb, and Lieb lattices. The superconducting transition, on the other hand, in d = 2 is in the
Kosterlitz-Thouless universality class and is much less well characterized. In this paper we determine Tsc for the
square lattice for several values of the density ρ and phonon frequency ω0. We find that quasilong-range order
sets in at Tsc � t/20, where t is the near-neighbor hopping amplitude, consistent with previous rough estimates
from simulations which extrapolated to only the temperatures we reach from considerably higher T . We also
show evidence of a discontinuous evolution of the density as the CDW transition is approached at half filling.
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I. INTRODUCTION

The interactions of electrons with lattice degrees of
freedom (phonons) underlie many of the fundamental prop-
erties of solid-state materials. The many-body nature of
the problem, however, poses significant challenges to an-
alytic investigation. Hence, over the last several decades,
increasingly sophisticated computational methods have been
exploited to gain quantitative insight. Early quantum Monte
Carlo (QMC) work on electron-phonon models focused on
the dilute limit. As an electron moves through a material,
the polarization of the underlying medium causes a cloud of
phonons to follow. Simulations studied the resulting “single-
electron polaron,” identifying its size and effective mass
as functions of the electron-phonon coupling and phonon
frequency [1–9]. It was shown that if the interaction is suf-
ficiently large, it is possible for two polarons to pair. The size,
dispersion, and stability of the resulting bipolarons was eval-
uated [10–12], along with bipolaron physics across a range of
fillings [13].

As the density of these dressed quasiparticles increases,
they can condense into phases with long-range order (LRO).
One possibility is off-diagonal quasilong-range order, i.e.,
superconductivity (SC). At, and close to, special commen-
surate densities, on a bipartite lattice, diagonal LRO, i.e.,
charge density wave (CDW) states, are another possibility.
The competition between these two low-temperature phases
is a fundamental feature of both materials [14–16] and of
simplified models of the electron-phonon interaction.

One such model is the Holstein Hamiltonian [17], which
describes electrons hopping on a lattice and interacting locally
with dispersionless phonon degrees of freedom. At commen-
surate filling on bipartite lattices, it exhibits a transition to
CDW order at a finite Tcdw in two dimensions. Early QMC
studies of the Holstein model examined the competition be-
tween CDW and SC on square lattices of up to 8 × 8 sites,
observing the enhancement of SC correlations and a simul-
taneous reduction in the CDW structure factor as the system
is doped away from half filling [18–20]. Early estimates of
Tcdw were obtained using a finite-size scaling approach, al-
though computational constraints on lattice size limited their
accuracy.

The SC transition believed to occur away from half filling
(in two dimensions) belongs to the Kosterlitz-Thouless (KT)
universality class. Although similar attempts were made to
quantify its appearance, it remains much less well charac-
terized. Vekić et al. [20] provided estimates for Tsc based
on a finite-size scaling of QMC data for the same lattices
of up to 8 × 8 sites, which were analyzed for the CDW
transition, but reached only inverse temperatures β � 12/t .
The computational limitations on both temperature and lattice
size which restricted simulations to these ranges prevented
an accurate finite-size scaling to be performed. For phonon
frequencies ω0/t = 1, it was estimated that the SC transi-
tion occurs within an approximate range βsc = 30–40, more
than a factor of 2 colder than the lowest temperatures simu-
lated. Finite-size scaling estimates of the critical temperature
at higher phonon frequencies, which would tend to have
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higher, and hence more accessible, Tsc, were also limited in
accuracy.

More recent studies of the Holstein model have refined es-
timates of Tcdw at half filling on the square lattice [21–23] and
studied the interplay between SC and CDW order as electron-
phonon coupling is varied [24]. The influence of phonon
dispersion on both SC and CDW ordering has also been stud-
ied [23], with strong evidence found for the onset of SC at half
filling when phonon dispersion is present. A finite-size scaling
analysis obtained Tsc ≈ t/26 at a phonon frequency ω0/t = 4,
simulating lattices of up to 12 × 12 sites. Recently, the CDW
transition in the Holstein model was also investigated for both
the honeycomb and π -flux geometries [25–27], as well as for
the square lattice with anisotropic hopping amplitudes [28].
These studies focused on only the half-filled case and hence
did not advance our understanding of Tsc. Recent work on the
triangular lattice Holstein model [29] has shown that frustrat-
ing the charge order via a nonbipartite lattice can enhance
SC, and an estimate of Tsc ≈ t/10 was obtained at a phonon
frequency h̄ω/EF = 0.3 (where EF is the Fermi energy). This
estimate was obtained at half filling through a finite-size scal-
ing analysis, using lattices up to 12 × 12 sites. However, in
the work of [29], no analogous evidence of the SC transition
was observed for the square lattice for the parameters studied.

In the present paper, we resolve this situation by determin-
ing Tsc for the square lattice for several values of the phonon
frequency ω0 and electron density ρ away from half filling.
We perform QMC simulations of lattices up to 12 × 12 sites
at inverse temperatures up to β = 28/t . Through a finite-size
scaling analysis we find that SC sets in close to the lowest
temperatures simulated. That is, our study does not rely on
an extrapolation from temperatures much higher than Tsc. We
also investigate the variation of the CDW structure factor with
the wave vector as the system is doped away from half filling,
finding evidence for a possible incommensurate CDW phase
at low temperature.

We note that, in addition to the computational literature
cited above, considerable effort has gone into the analytic
solution of the Holstein Hamiltonian. The Migdal-Eliashberg
(ME) equations [30,31] form the basis for much of the analytic
work on strongly coupled electron-phonon models but dis-
agree with exact QMC simulations [18–20,32,33], especially
as the temperature is lowered at densities in the vicinity of
half filling where competing CDW formation occurs. This
comparison can be improved somewhat with “renormalized
ME” theory, in which the phonon propagator is dressed by
electron-hole bubbles [34]. Recently, there has been renewed
interest in examining the limits of ME theory and when it
breaks down [35–39]. Indeed, it has been shown that ME
can work well for ω0 � EF provided the electron phonon
coupling is not too large, enabling estimates of TSC to be made
by extrapolating determinant QMC (DQMC) results down to
lower temperatures using ME calculations [35]. However, we
note that several of the parameter sets we study in this work
are outside the limits of ME theory.

II. MODEL AND METHODS

The Holstein model is a tight-binding Hamiltonian which
describes the interaction between electrons and local phonon

modes in a lattice [17],

Ĥ = −t
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Here ĉ†
iσ (ĉiσ ) are creation (destruction) operators for an elec-

tron at site i with spin σ , μ is the chemical potential, and
n̂iσ = ĉ†

iσ ĉiσ . The first sum is taken over all nearest-neighbor
pairs 〈i, j〉 of a two-dimensional square lattice. t is the nearest-
neighbor hopping parameter which sets the energy scale (t =
1), with the electronic bandwidth given by W = 8t . At each
site are local harmonic oscillators of frequency ω0, with in-

dependent degrees of freedom X̂i =
√

1
2ω0

(â†
i + âi ) and P̂i =√

ω0
2 (â†

i − âi ), where â†
i (âi) are phonon creation (destruction)

operators at site i. The electron density n̂iσ couples to the
displacement X̂i through a local electron-phonon coupling λ.
In this work we measure the electron-phonon coupling in
terms of the dimensionless quantity λD = λ2/ω2

0 W .
We study the Holstein model using DQMC simula-

tions [40,41]. In DQMC, the inverse temperature is expressed
as β = Lt�τ , where Lt denotes the number of intervals along
the imaginary-time axis with discretization �τ . The partition
function Z = Tre−βĤ = Tre−�τ Ĥ e−�τ Ĥ · · · e−�τ Ĥ can then be
evaluated by inserting complete sets of phonon position states
|{xi,τ }〉 at each imaginary-time slice. Since the Hamiltonian
is quadratic in fermionic operators, these can be traced out,
giving

Z =
∫

d{xi,τ }e−SBose{det[M({xi,τ })]}2, (2)

where
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[
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]
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The harmonic oscillator terms in Eq. (1) yield the “bosonic
action” term given by Eq. (3). The partition function also
includes the product of the determinant of two matrices
Mσ ({xi,τ }), one for each spin species σ = {↑,↓}. These ma-
trices depend on only the phonon field {xi,τ }. However, since
X̂i couples in the same manner to the two species, the ma-
trices Mσ are identical, giving the square of a determinant.
An important consequence is the absence of a sign problem
at any electronic filling. Physical quantities can be measured
via Monte Carlo sampling of the phonon field {xi,τ } and ac-
cumulating appropriate combinations of the fermion Green’s
function Gij = 〈ciσ c†

jσ 〉 = [M−1]ij. In our work we take �τ =
0.125. Trotter errors arising from the discretization of the
imaginary-time axis are less than the statistical errors asso-
ciated with the Monte Carlo sampling for the charge and pair
correlations given below.

The electron-phonon coupling term gives rise to an ef-
fective attractive electron-electron interaction Ueff = −λ2/ω2

0
which promotes the formation of local pairs. On bipartite lat-
tices this leads to CDW order at half filling (〈n̂i↑ + n̂i↓〉 = 1)
with alternating doubly occupied and empty sites favored.
This occurs at μ = −λ2/ω2

0, which can be shown via a
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particle-hole transformation. When the system is doped away
from half filling, superconductivity can arise at sufficiently
low temperature due to the electron pairs becoming increas-
ingly mobile. In this work we study the competition between
CDW and SC as electron density is varied using DQMC for
a range of inverse temperatures β = T −1 as low as β = 28.
We fix λD = 0.25 and study two fixed frequencies ω0 = 1 and
ω0 = 4 for lattices sizes with linear dimension up to L = 12.

We characterize the nature of the charge ordering by cal-
culating the real-space, equal-time, charge density correlation
function C(r), given by

C(r) = 〈(n̂i↑ + n̂i↓)(n̂i+r↑ + n̂i+r↓)〉, (4)

and its Fourier transform S(q), the CDW structure factor

S(q) = 1

N

∑
i,j

eiq·(i−j)〈n̂in̂j〉. (5)

In the CDW ordered phase, C(r) becomes long range, and
S(q) grows in proportion to the lattice size N = L2 at the
appropriate ordering wave vector q = (qx, qy). In the absence
of CDW order, the charge density correlations are short range,
and S(q) should exhibit no lattice size dependence. The super-
conducting response of the system is analyzed by the s-wave
pair susceptibility

Ps = 1

N

∫ β

0
〈�(τ )�†(0)〉dτ, (6)

where �(τ ) = ∑
i ci↓(τ )ci↑(τ ). Similarly, an enhancement in

the pair susceptibility and the observation of lattice size de-
pendence in Ps as the temperature is lowered can be used to
detect the onset of SC order. We use the susceptibility to study
SC, as opposed to an equal-time structure factor, because it
provides a more robust signal which is useful for exploring
off-diagonal long-range order of the KT type.

III. RESULTS AND DISCUSSION

At half filling, i.e., ρ = 〈n̂i↑ + n̂i↓〉 = 1, it is known that
checkerboard CDW order dominates on the square lattice
with ordering wave vector q = (π, π ). This occurs above the
inverse critical temperature βcdw = 6.0 ± 0.1 for ω0 = 1 and
βcdw ≈ 13 for ω0 = 4, with λD = 0.25 in both cases [23]. By
varying the chemical potential, we dope the system away from
half filling and study the behavior of both S(π, π ) and Ps as
a function of electron density, as shown in Figs. 1(a)–1(d) for
ω0 = 1 and ω0 = 4 at λD = 0.25. In both cases, S(π, π ) is
significantly enhanced at ρ = 1 when the inverse temperature
approaches βcdw but rapidly falls off when doped away from
half filling and is highly suppressed below ρ ≈ 0.75 for ω0 =
1. Simultaneously, the s-wave pair susceptibility becomes en-
hanced away from half filling, reaching a maximum within
the density range ρ = 0.6–0.7. When the phonon frequency is
increased to ω0 = 4, Ps increases in magnitude, while S(π, π )
is diminished and becomes highly suppressed at a density
closer to half filling, at approximately ρ ≈ 0.85.

The CDW ordering which occurs at half filling above
βcdw on the square lattice is a checkerboard pattern of al-
ternating doubly occupied and empty sites. This becomes
evident by plotting the real-space charge density correlation

FIG. 1. (a) s-wave pair susceptibility Ps as a function of elec-
tron density ρ for ω0 = 1 and λD = 0.25. (b) Ps vs ρ for ω0 = 4
and λD = 0.25. (c) CDW structure factor S(π, π ) as a function of
electron density ρ for ω0 = 1 and λD = 0.25. (d) S(π, π ) vs ρ for
ω0 = 4 and λD = 0.25. Data are shown for a 12 × 12 lattice for
inverse temperatures β = 2, 4, 6, 8, and 11.

function C(r) against site separation, as shown in Fig. 2
for a 12 × 12 lattice at β = 12, for ω0 = 1 [Fig. 2(a)] and
ω0 = 4 [Fig. 2(b)]. The alternating high and low correlations
at ρ = 1 are smoothed out as the density is lowered, with C(r)
becoming flat around ρ � 0.75 for ω0 = 1 and ρ � 0.85 for
ω0 = 4. Increasing the phonon frequency inhibits CDW order,
which is reflected by the smaller charge density correlations
(at β = 12) for ω0 = 4 and the fact that the alternating CDW

FIG. 2. (a) Charge density correlation function C(r) as a func-
tion of site separation r for a 12 × 12 lattice at β = 12, with r =
(0, 1)–(0, 6) in units of the lattice spacing. Results are shown for
ω0 = 1 and λD = 0.25 for fixed electron densities: ρ = 1, 0.9, 0.85,
0.8, and 0.75. (b) C(r) vs r for ω0 = 4 and λD = 0.25.
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FIG. 3. Variation of S(q) with wave vector q for a 12 × 12 lattice for ω0 = 1, λD = 0.25. A triangular path through the Brillouin zone
is taken from q = (0, π/6) to (0, π ) to (π, π ) to (π/6, π/6). Results are shown for inverse temperatures β = 4, 8, 16, and 24 for electron
densities in the range ρ = 0.3–1.0, specified in the upper right corner of (a)–(h). In each plot the dashed line indicates the location of q =
(π, π ).

pattern is more rapidly suppressed for this frequency when
doped away from half filling.

At half filling the square lattice exhibits perfect Fermi
surface nesting (FSN) at q = (π, π ) in the absence of any
next-nearest-neighbor hopping term, resulting in a peak in
S(q) at this wave vector. However when doped away from half
filling, the Fermi surface becomes distorted, and perfect FSN
no longer occurs. In Figs. 3(a)–3(h) we show the variation of
S(q) with wave vector q = (qx, qy), taken on a triangular path
through the Brillouin zone, for a 12 × 12 lattice at β = 4, 8,
16, and 24 for λD = 0.25, ω0 = 1. Results are shown for a
range of electron densities from ρ = 0.3 to 1.0. S(q) is not
shown for small dopings away from half filling. This will be
further discussed in the interpretation of ρ(μ) shown in Fig. 7
below. Away from half filling the peak magnitude of S(π, π )
is rapidly suppressed, reduced by a factor of 10 by ρ ≈ 0.8
and falling by another order of magnitude by ρ ≈ 0.5 (note
the vertical scale of each plot).

There is an important comment to make concerning the
behavior at ρ ≈ 0.8, where the location of the peak appears to
shift to the wave vector nearest (π, π ), i.e., q = (5π/6, π ), as
shown in Fig. 3(d), with the shift occurring at low temperature
(β ≈ 24). The magnitude of S(5π/6, π ) at ρ ≈ 0.8 grows as
the temperature is lowered, becoming substantially enhanced
at β = 24. Although this suggests the possible existence of
an incommensurate CDW phase at ρ ≈ 0.8, the rather coarse
discrete momentum grid q = 2π

L {0, 1, . . . , L} precludes any
conclusive statement.

When the system is doped even further from half filling,
as in Figs. 3(c)–3(h), we do not observe any significant en-
hancement in S(q) at any wave vector as the temperature
is lowered from β = 4 to β = 24. The magnitude of S(q)
remains approximately constant over this temperature range
for all values of q, as shown in Figs. 3(c)–3(h) for ρ � 0.75.

In particular, within the density range ρ = 0.6–0.7, for which
we observe a peak in the s-wave pair susceptibility, we find no
indication of a coexisting CDW phase for any ordering wave
vector.

Increasing the phonon frequency to ω0 = 4, we find qual-
itatively similar results, as shown in Figs. 4(a)–4(i); however,
there is no indication of CDW ordering at any particular wave
vector for any electron density, other than at q = (π, π ) at
low temperature. The magnitude of S(π, π ) near half filling
is also considerably suppressed compared to ω0 = 1, which is
expected since increasing the phonon frequency inhibits CDW
order. Although the peak in S(q) shifts to q = (5π/6, π ) at
ρ ≈ 0.8 as the temperature is reduced, there is no significant
enhancement in the magnitude of S(q) at this wave vector as
temperature is lowered from β = 4 to β = 24, in contrast to
the behavior at ω0 = 1 (Fig. 3).

In order to determine the critical inverse temperature βsc

for the SC transition, we first tune the chemical potential
to achieve a fixed target density and study Ps as a function
of β for several different lattice sizes. Since Ps appears to
peak in the range ρ = 0.6–0.7 for ω0 = 1, λD = 0.25, we
choose to study two fixed densities, ρ = 0.6 and ρ = 0.7, for
this phonon frequency. For ω0 = 4, λD = 0.25, since CDW
correlations appear highly suppressed closer to half filling,
we fix ρ = 0.85 and also study ρ = 0.6 for comparison. In
Figs. 5(a)–5(d) we show Ps(β ) for lattices of linear dimension
L = 6, 8, 10, and 12 for these four parameter sets. For each
case, we find at low β (high T ), Ps is relatively small and
is independent of lattice size; however, as the temperature
is lowered, Ps grows and becomes dependent on L. This
suggests the onset of the SC phase because when correla-
tions become long range, they will be sensitive to the lattice
size for a finite system. We can therefore apply a finite-
size scaling analysis to confirm the existence of a critical
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FIG. 4. Variation of S(q) with wave vector q for a 12 × 12 lattice for ω0 = 4, λD = 0.25. A triangular path through the Brillouin zone
is taken from q = (0, π/6) to (0, π ) to (π, π ) to (π/6, π/6). Results are shown for inverse temperatures β = 4, 8, 16, and 24 for electron
densities in the range ρ = 0.3–1.0, specified in the upper right corner of (a)–(i). In each plot the dashed line indicates the location of q = (π, π ).

inverse temperature βsc for the SC transition and determine its
value.

In the two-dimensional superconducting transition, the or-
der parameter possesses U (1) gauge symmetry, and thus, the
universality class is the same as the two-dimensional XY

FIG. 5. s-wave pair susceptibility as a function of inverse tem-
perature β for lattice sizes of linear dimension L = 6, 8, 10, and 12
for the four fixed densities studied: (a) ρ = 0.6 and (b) ρ = 0.7 for
λD = 0.25, ω0 = 1. For increased phonon frequency ω0 = 4, we fix
(c) ρ = 0.6 and (d) ρ = 0.85 with the same dimensionless coupling
λD = 0.25 in (a) and (b).

model. Hence, we expect a KT transition to a quasilong-range
ordered phase, for which the critical exponents and scaling
behavior of the order parameter are known [42]. For a finite-
size system of linear dimension L, we have that

Ps = L2−η f

(
L

ξ

)
, (7)

with η = 1/4, and as T → T +
sc , the correlation length ξ scales

as

ξ ∼ exp[A(T − Tsc)−1/2], (8)

where A is a constant and Tsc is the critical temperature. There-
fore, near Tsc, plotting PsL−7/4 as a function of L exp[−A(T −
Tsc)−1/2] for a range of lattice sizes should result in a data
collapse onto a single universal curve, as shown in Figs. 6(a)–
6(d) for the four parameter sets studied. For λD = 0.25, ω0 =
1, we find the best data collapse occurs at βsc ≈ 28.5 ± 1.0
for ρ = 0.6 and βsc ≈ 27.5 ± 1.0 for ρ = 0.7. Keeping the
dimensionless electron-phonon coupling fixed at λD = 0.25,
increasing phonon frequency to ω0 = 4 raises the critical
temperature, and we find the best data collapse at βsc ≈
22.5 ± 1.0 for ρ = 0.6 and βsc ≈ 23.5 ± 1.0 for ρ = 0.85.
Our value of βsc for ω0 = 1 lies slightly below the range
of βsc = 30–40 suggested by Vekić et al. [20], although
their estimate was performed using data rather far from the
scaling region. Indeed, as might be expected, to obtain a
precise value we find it essential to access temperatures as
close as possible to Tsc rather than extrapolate from higher
T , as discussed in the Appendix. Meanwhile, our estimate
of βsc for ω0 = 4 at ρ = 0.85 is higher than the previ-
ous βsc ≈ 12 at ρ = 0.8. The larger values of L and β

accessed in this study allow a more robust finite-size scal-
ing for the KT transition. We also note that for the lower
phonon frequency we study, for which the ME approxima-
tion would be more justifiable than for ω0 = 4, recent ME
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FIG. 6. Finite-size scaling of the s-wave pair susceptibility data
obtained for the four parameter sets shown in Figs. 5(a)–5(d). The
critical inverse temperature βsc and scaling factor A which yields the
best data collapse are indicated in the inset of each plot.

calculations [43] have estimated Tsc for the parameters shown
in Fig. 5(a), yielding a value within approximately 10% of our
result.

We note that increasing phonon frequency simultaneously
raises Tsc for the SC transition and lowers Tcdw for the CDW
transition at half filling (from Tcdw ≈ t/6 at ω0/t = 1 to
Tcdw ≈ t/13 at ω0/t = 4 [23]), illustrating the competition
between SC and CDW order in the Holstein model. This is
as expected since as ω0 is lowered, the harmonic oscilla-
tors on each site become more classical, reducing quantum
fluctuations. As a result, bipolarons localize more readily,
enhancing CDW order [29]. Conversely, it is known that in
the antiadiabatic limit (ω0 → ∞) the Holstein model can
be mapped onto the attractive Hubbard model [18–20] with
Ueff = −λ2/ω2

0 = −λDW [44], which has been shown to pos-
sess a finite-temperature superconducting KT transition away
from half filling [45–47]. Thus, one expects SC correlations
to be enhanced in the Holstein model at larger values of ω0,
as we have confirmed here. Furthermore, in the attractive
Hubbard model, the SC and CDW correlations are degener-
ate at half filling, leading to a continuous order parameter
in the Heisenberg universality class and the absence of a
finite-temperature transition (i.e., Tc = 0) in two dimensions.
At half filling, the CDW order parameter S(π, π ) is there-
fore reduced, with Ps increasing simultaneously in the limit
T → 0. We thus expect similar behavior in the Holstein model
as ω0 → ∞, which we have observed as an enhancement
in Ps and a reduction in S(π, π ) at ω0 = 4 at half filling,
as shown in Figs. 1(a)–1(d). We also note that studies of
the attractive Hubbard model have found Tsc is maximal at
around U/t ≈ −5, for which Tsc/t ≈ 0.15 occurs at a filling
ρ = 0.7 [48]. Since this effective coupling corresponds to a

FIG. 7. Density ρ as a function of chemical potential μ ap-
proaching the CDW transition at half filling. Results are shown for
L = 12 lattices with λD = 0.25 for phonon frequencies (a) ω0 = 1
and (b) ω0 = 4. The data suggest a discontinuous jump prior to entry
to the incompressible CDW region. Individual data points, and their
large error bars, within the discontinuous jump are shown only to
emphasize the difficulty of Monte Carlo sampling in this region.

larger λD value than we study in this work, it suggests raising
λD could enhance Tsc at large phonon frequencies. We have
determined Tsc values for −λDW = −2 in this work, which
one can compare to recent estimates of Tsc in the attractive
Hubbard model [49]: for U = −2.0, βsc = 19.0 at ρ = 0.7,
and βsc = 13.5 at ρ = 0.87, while for U = −2.5, βsc = 23.0
at ρ = 0.5. However, for ω0 = 1 and ω0 = 4, the actual on-
site interaction will be smaller than in the antiadiabatic limit
(i.e., |U | < 2), giving a lower Tsc, and the attractive Hubbard
model thus provides an upper bound on Tsc in the Holstein
model. Our estimates of Tsc at ω0 = 1 and ω0 = 4 are there-
fore quite consistent with those of the attractive Hubbard
model.

We conclude the presentation of our results by noting that
ρ(μ) appears to exhibit a discontinuous jump approaching
the CDW transition at half filling, as shown in Figs. 7(a)
and 7(b) for ω0 = 1 and ω0 = 4. In both cases, we have
that half filling (ρ = 1) occurs at a chemical potential of
μ = −λ2/ω2

0 = −2. Below Tcdw, the formation of a plateau at
ρ = 1 indicates the opening of the CDW gap. However, well
below the transition temperature (βcdw = 6.0 ± 0.1 for ω0 =
1 and βcdw ≈ 13 for ω0 = 4) we observe a discontinuous
jump in electron density as the chemical potential is varied,
occurring for ρ � 0.8 for ω0 = 1 and ρ � 0.9 for ω0 = 4
(with λD = 0.25 in both cases). We note that these density
ranges correspond roughly to the regions over which S(π, π )
grows rapidly, occurring closer to half filling for greater ω0,
as shown previously in Figs. 1(c) and 1(d). The jump is less
abrupt for ω0 = 4 but becomes apparent at β = 24, whereas a
clear discontinuity emerges for β � 16 for ω0 = 1. This indi-
cates finite-temperature fluctuations smooth the jump more at
higher frequencies.

In both cases, the jump is accompanied by an increase
in the error in ρ for data close to half filling, possibly
indicating fluctuations of the system between densities on
either side of the discontinuity. This discontinuity may be
related to the zero-temperature transition from SC to com-
mensurate CDW order, which has been observed to be first
order [50].
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IV. SUMMARY AND CONCLUSIONS

In previous QMC studies, the CDW transition temperature
Tcdw of the Holstein model at half filling has been deter-
mined for various two-dimensional systems, including the
square, honeycomb, and Lieb lattices. However, the super-
conducting transition away from half filling in the square
lattice has been much less well characterized since it occurs
at challengingly large values of the inverse temperature β as
well as scaling in the spatial lattice size L. Moreover, away
from half filling, no analytical expression for ρ(μ) can be
used to achieve a fixed target density [51], necessitating a
cumbersome tuning of μ for each lattice size and β. In this
work, we have studied larger systems (up to L = 12) and
lower temperatures (up to β = 28) than in previous work and
have determined several estimates of Tsc for various electron
densities (fixed via tuning the chemical potential) and phonon
frequencies ω0, through a finite-size scaling analysis of pair
susceptibility. We observed the onset of SC at temperatures
Tsc � W/160 in each case studied. Here W = 8 t is the non-
interacting bandwidth, and t is the nearest-neighbor hopping
amplitude.

Specifically, for dimensionless electron-phonon coupling
λD = 0.25 and phonon frequency ω0/t = 1, we estimated
Tsc ≈ W/228 = t/28.5 for ρ = 0.6 and Tsc ≈ W/220 =
t/27.5 for ρ = 0.7. For λD = 0.25, ω0 = 4, we estimate Tsc ≈
W/180 = t/22.5 for ρ = 0.6 and Tsc ≈ W/228 = t/23.5 for
ρ = 0.85.

Several features illustrating the competition between CDW
order and SC in the doped Holstein model emerge from our
analysis. In particular, the strong checkerboard CDW order
present at half filling below Tcdw [corresponding to a peak in
S(π, π )] is rapidly suppressed as the system is doped, with
SC correlations becoming maximal in the region ρ = 0.6–0.7
for λD = 0.25, ω0 = 1. However, at an intermediate electron
density of approximately ρ ≈ 0.8, we observed evidence of
a possible incommensurate CDW phase, with the peak in
S(q) shifting slightly from q = (π, π ) to q = (5π/6, π ) at
low temperature. Definitive analysis of this point is precluded
by the finite-momentum grids currently accessible to present
QMC capabilities. No evidence of a distinctly different kind
of charge ordering (e.g., stripe order) is observed away from
half filling.

It is interesting to note that our estimates of Tsc in the doped
Holstein model are similar in magnitude to Tsc in the half-
filled case with nonzero phonon dispersion �ω/ω0 = 0.1,
where DQMC simulations [23] have determined Tsc ≈ t/26
for λD = 0.25, ω0 = 4. Further, it has been proposed [52]
that an upper bound on Tsc exists which is Tsc � ω̄/10, where
ω̄ � ω0 is a characteristic phonon frequency no larger than the
bare phonon frequency, and that for an optimal value of λD, Tsc

should roughly saturate at this value. Since our estimates of
Tsc lie below this upper bound, it may be possible to increase
the transition temperature by increasing λD. Recently, a QMC
method based on Langevin updates of the phonon degrees of
freedom [53,54] has also made studies of the cubic Holstein
model amenable to simulation, and it has been found that Tcdw

at half filling is increased roughly by a factor of 2 compared to
various two-dimensional geometries [55]. We anticipate that
in future studies of the three-dimensional Holstein model one

might similarly expect higher values of Tsc away from half
filling since the model will exhibit a more robust transition
to long-range superconducting order, in contrast to the KT
transition in two dimensions observed in this work.
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APPENDIX: EXTRAPOLATING Tsc FROM HIGHER
TEMPERATURE

In this work, we have determined estimates of Tsc by
accessing low temperatures (up to β = 28) close to the super-
conducting transition temperature, rather than extrapolating
from higher T data as done in previous work. In [20], inverse
temperatures up to β = 12 are accessed, and a broad range
of βsc = 30–40 is proposed (for ω0 = 1). To investigate how
the determination of Tsc changes when one extrapolates from
higher temperature, we have taken our data and excluded the
lower-temperature results and performed Kosterlitz-Thouless
scaling fits in order to mimic the capabilities of earlier work.
Specifically, we have analyzed our data using only values
T � Tmin = 1/12 (that is, β � 12).

We have fit a fourth-order polynomial curve to the scaled
data shown in Fig. 6 and determined the quality of these
fits for various values of βsc and A, shown in Figs. 8 and 9
above for the case ω0 = 1, ρ = 0.6. In each plot, the quantity
shown is the sum of squared residuals for the polynomial fit,
with lower values indicating a closer fit to the scaled data. In
Fig. 8, we use all our low-temperature data (up to β = 28),
and Fig. 9 shows the results using data with β � 12. If one

FIG. 8. Finite-size scaling for ω0 = 1, λD = 0.25, ρ ≈ 0.6, us-
ing data up to min(βsc, 28). The quantity shown is the sum of
squared residuals for a fourth-order polynomial fit to PsL−7/4 vs
L exp[A(T − Tsc )−1/2] using low-temperature data up to β = 28. The
marker indicates the best-fit parameters: A ≈ 0.22 and βsc ≈ 28.0.
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FIG. 9. Finite-size scaling for ω0 = 1, λD = 0.25, ρ ≈ 0.6, using
data up to min(βsc, 12), which corresponds to those available in
the original studies of this model. Extrapolating Tsc from higher
temperature, we show the sum of squared residuals for a fourth-order
polynomial fit using data up to only β = 12. The marker indicates the
best-fit parameters: A ≈ 0.25 and βsc ≈ 33.7.

attempts the Kosterlitz-Thouless scaling using data with only
β � 12 (Fig. 9), one can fit a curve to the data with relatively

low error. However, in Fig. 5(a), we observed that Ps is com-
pletely independent of L for β � 12 (indicating the absence
of quasilong-range order since this is far from βsc). Therefore,
plotting PsL−7/4 vs L exp[A(T − Tsc)−1/2] yields a curve with
an approximately exponential form with little to no overlap
between the smallest and largest lattice sizes. In attempting
to find Tsc from these data, we find the best collapse occurs
at A ≈ 0.25, Tsc ≈ 1/33.7, and naively, using the β � 12 re-
stricted data appears to provide a better fit. However, as shown
in Fig. 9, the quality of the fit is essentially unchanged over a
very large range of βsc values (note the innermost contour,
which ranges from βsc ≈ 25 to well beyond βsc = 50). We
thus find it is essential to use low-temperature data as close
as possible to the critical temperature (as shown in Fig. 8,
which uses data with β � 28), not only to make the value of
Tsc convincing but to pin down the value more precisely than
the broad range given in previous work [20].

Note that in Figs. 8 and 9, the scaling collapses are
performed using data with inverse temperatures up to
min(βsc, 28.0) and min(βsc, 12.0), respectively. This is be-
cause the Kosterlitz-Thouless scaling requires computing
( 1
β

− 1
βsc

)−1/2, and thus, for each attempted collapse, data for
temperatures lower than βsc cannot be used. Furthermore, the
lack of smoothness to the contours in Fig. 8 comes from
the fact that our Ps(β ) data (shown in Fig. 5) are relatively
sparse, so the best value of the scaling parameter A can change
abruptly when additional data points are included in the col-
lapse, which occurs as βsc is increased.
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