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Lattice gauge theories are a fascinating and rich class of theories relating to the most fundamental models
of particle physics, and as experimental control on the quantum level increases there is a growing interest in
nonequilibrium effects such as dynamical quantum phase transitions. To demonstrate how these physical theories
can be accessed in near-term quantum devices, we study the dynamics of a (1 + 1)D U(1) quantum link model
following quenches of its mass term. We find that the system undergoes dynamical quantum phase transitions
for all system sizes considered, even the smallest where the dynamics can be solved analytically. We devise a
gauge-invariant string order parameter whose zeros correlates with the structure of the Loschmidt amplitude,
making the order parameter useful for experimental study in near-term devices. The zeros of the Loschmidt
amplitude as well as the zeros of our order parameter are revealed by vortices in their phases, which can be
counted by a topologically invariant winding number. With noisy intermediate-scale quantum devices in mind,
we propose a class of superconducting circuits for the general implementation of U(1) quantum link models.
The principles of these circuits can be generalized to implement other, more complicated gauge symmetries.
Furthermore, the circuit can be modularly scaled to any lattice configuration. Simulating the circuit dynamics
with realistic circuit parameters, we find that it implements the target dynamics with a steady average fidelity of
99.5% or higher. Finally, we consider readout of the circuit using a method that yields information about all the
degrees of freedom with resonators coupled dispersively to only a subset of them. This constitutes a direct and
relatively straightforward protocol to access both Loschmidt amplitudes and the order parameter.
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I. INTRODUCTION

There is an increasing study of nonequilibrium quantum
dynamics as improving experimental quantum control makes
it accessible [1]. Quantum simulators have been realized with
cold atoms in optical lattices, ions, and superconducting quan-
tum circuits (SQCs), among others, and have already been
used to study exciting dynamical phenomena like time crys-
tals [2,3], many-body localization [4,5], prethermalization and
thermalization [6–8], and particle-antiparticle creation and an-
nihilation [9]. In particular, an interest in dynamical quantum
phase transitions (DQPTs) is emerging [10–22]. These occur
when the Loschmidt amplitude G(t ) = 〈ψ (0)|ψ (t )〉, which
is the overlap between the initial state and the state at time
t , becomes zero or shows nonanalytic behavior. In the con-
text of DQPTs, G(t ) formally takes the place of a partition
function. These points of vanishing or nonanalytic behavior
happen in the proper time evolution of the system, and herald
a transition between dynamical phases. This is to be com-
pared with equilibrium phase transitions which are heralded
by nonanalytical behavior occurring as system properties are
externally changed [23]. DQPTs have been studied experi-
mentally [24–27] and offer a broad spectrum of fascinating
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physics, like a connection to topology [28–31], allowing
for the definition of dynamical topological order parameters
[27,32,33], vortex dynamics [34], scaling and universality
[11] and both showing a connection to underlying equilib-
rium phase transitions [10,29,35] as well as being completely
independent of them [36–39] (the latter showing their truly
nonequilibrium nature). An interesting type of system for the
study of dynamics is gauge theories, specifically lattice gauge
theories (LGTs) [40–42]. Gauge theories are at the basis of
our understanding of particle physics and are notoriously dif-
ficult to handle both analytically and numerically. They are
thus ideally suited for analog simulation [43–50]. Recently, a
method for extracting defining information about a quantum
field theory from experimental data was proposed [51,52].
Furthermore, a direct observation of U(1) gauge invariance
and an equilibrium phase transition in a 71-site ultracold atom
system was reported in Ref. [53]. DQPTs in gauge theories,
on the other hand, have been studied numerically [17,31], as
well as analytically in the noninteracting limit in Ref. [31],
but have yet to be observed experimentally to the best of our
knowledge.

In this work, we show how to obtain LGTs, in the form
of quantum link models (QLM) [17,43,54–57], in SQCs in a
fully consistent way, showing that we get the desired Hamil-
tonians with very high fidelity. We use the example of U(1)
to demonstrate this, and we show that exploring the field of
DQPTs is possible with NISQ-era devices [58]. We study
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a particular U(1) symmetric system, the massive Schwinger
model [9,31,59–61], which exhibits DQPTs after a quench
for all system sizes considered. A recent study by Zache
et al. has considered DQPTs in continuum and LGT mod-
els. In Ref. [31], DQPTs were found through the study of
vorticity in an appropriate order parameter, implying that the
transitions have a topological nature. Here, we consider a
QLM over a larger range of parameters and write down a
gauge-invariant string order parameter that is accessible even
in small systems of relevance in near-term quantum devices.
We show how the zeros of both this order parameter as well
as those of the Loschmidt amplitude can be found by looking
for vortices in their respective phases. The zeros of the order
parameter correlate for all system sizes with the low points of
the Loschmidt amplitude

In the second part of this paper, we propose a su-
perconducting quantum circuit, which through use of the
eigenmodes of the capacitive network [62–66] implements
three spin-1/2’s interacting via Z-type couplings (i.e., cou-
plings consisting solely of products of Pauli-Z matrices) and a
direct three-body XXX coupling. Through appropriate tuning,
the XXX coupling yields the desired U(1) invariant inter-
action necessary for the analog simulation of a U(1) QLM.
The Z-type couplings essentially just shift the energy levels
of the system and do not disturb the desired feature of the
circuit but merely make more complicated numerical tuning
necessary. We find that with appropriately tuned parameters
the circuit implements the desired dynamics with an aver-
age fidelity of about 99.5% or higher, with most of the loss
caused by leakage to higher levels, which could be further
suppressed at the cost of slower dynamics. The circuit can be
scaled in a modular way to construct any desired spin lattice
configuration. Furthermore, we provide a readout scheme for
how to observe this in concrete setups, inspired by that of
Refs. [64,65]. This makes it possible now to use NISQ devices
to do precision studies of LGTs and DQPTs.

In Sec. II, we discuss the QLM, the quench of the
mass, and our order parameter. In Sec. III, we show our
method for finding the zeros of the Loschmidt amplitude and
our order parameter by looking at vortices in their phases.
Section IV contains our numerical results concerning these
quantities, showing how even at the smallest system size
considered we see DQPTs and vortex dynamics. In Sec. V,
we introduce and analyze the circuit used to implement
the direct XXX coupling. We then discuss tuning of the
circuit parameters in Sec. VI, showing an example in the
Supplemental Material [67] of viable circuit parameters which
yield good spin model parameters for the simulation of the
quench dynamics discussed in the first part of the paper. In
Sec. VII, we then go through our proposal for readout of
the circuit with intent to perform quantum state tomogra-
phy. Finally, in Sec. VIII, we summarize and conclude the
paper.

II. SYSTEM AND PROCEDURE

A. Hamiltonian

In this work, we study an example of an interacting LGT,
specifically the (1 + 1)D U(1) gauge theory, on a periodic

lattice. We represent the fermionic field with spinless, stag-
gered mass fermions on the sites of the lattice, and transform
these via the Jordan-Wigner transformation [57,68–70] into
spin-1/2’s. We will be working in the quantum link model
framework, where gauge fields, living on the links of the
lattice, are represented by spin-1/2’s. Thus, the entire model
is represented by a spin-1/2 system. The Hamiltonian for this
system is

H =
N−1∑
n=0

[
−(−1)n m

2
σ z

n + J

2
(σ+

n S+
n,n+1σ

−
n+1 + H.c.)

]
, (1)

where N is the number of matter sites, which must be even
to conserve the symmetry between particles and antiparticles,
m is the staggered mass of the fermions, and J is the matter-
gauge coupling strength. The J/2 coefficient is usually written
as 1/2a, where a is the lattice spacing. However, since we
are not interested in the continuum limit a → 0, we prefer to
think of the coefficient as a coupling strength, J = 1/a. σα

n
with α = z,+,− are Pauli-Z , step-up, and step-down matri-
ces pertaining to the matter field spin at site n. Likewise, Sα

n,n+1
for α = z,+,− are spin operators for the gauge field spin on
the link connecting site n and site n + 1. The electric field
energy term E2

n,n+1 ∼ (Sz
n,n+1)2 has been neglected because it

is constant, when the gauge field is represented by spin-1/2’s.
The sign in front of (−1)n m

2 σ z
n is to make (1, 0)T and (0, 1)T

the ground and excited states respectively for even n. Our σ±
are correspondingly defined. We will consider quenches of
the sign of the mass m → −m; i.e., we will initialize in the
ground state of the above Hamiltonian, and then perform time
evolution with the Hamiltonian where the sign of the mass
has been switched. This corresponds to a maximal quench
of the vacuum angle. The vacuum angle is a parameter that
may be included in quantum chromodynamics as well as
the Schwinger model, relating to the nontrivial structure of
their vacua [71,72] and quantifying a charge-parity symme-
try violating term. For more information, see Refs. [60,71–
78]. However, we will not consider the vacuum angle itself
but rather focus on the quench and the subsequent DQPTs.
Explicitly, we will be initializing the system in the ground
state of the prequench Hamiltonian Hi = H (m, J ) at time
t = 0 and then perform unitary time evolution according to
the postquench Hamiltonian Hf = H (−m, J ). We study the
postquench dynamics by looking at the Loschmidt amplitude
G(t ) or Loschmidt echo L(t ) = |G(t )|2, as well as an order
parameter introduced below.

B. Symmetries

The system has several symmetries which are conserved
across the quench. We will therefore be simplifying numerical
simulation by only working in the symmetry sector of the
Hilbert space, to which the initial state belongs. The system,
of course, has a local U(1) symmetry, generated by

Gn = Sz
n−1,n − Sz

n,n+1 + σ z
n − (−1)n.

We will be working in the gauge sector of no background
charges, i.e., the physical states satisfy Gn|phys〉 = 0 for all
n. Furthermore, the system has parity and charge conjugation
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symmetries, P and C, implemented as

σ z
n

P−→ σ z
−n, σ±

n
P−→ σ±

−n,

Sz
n,n+1

P−→ −Sz
−n−1,−n, S±

n,n+1
P−→ S∓

−n−1,−n,

σ z
n

C−→ −σ z
n+1, σ±

n
C−→ σ∓

n+1,

Sz
n,n+1

C−→ −Sz
n+1,n+2, S±

n,n+1
C−→ S∓

n+1,n+2,

where the subscript index is calculated as modulus N . These
symmetries satisfy P2 = CN = 1. The fact that C is cyclic is
a consequence of the periodic boundaries of our system. The
symmetries make it possible to solve the dynamics analyti-
cally for small system sizes, N = 2, 4. That is, the Hilbert
space can be divided into symmetry sectors with different
eigenvalues for each of the symmetries, with so few states in
each of them that they can each be analytically diagonalized.
The diagonalization boils down to solving a characteristic
polynomial equation as is standard. As is well known by
Galois theory, this implies that for polynomial degree of 4 or
smaller, the solution can be given in rational form. For N = 6,
the sector containing the ground state we initialize in already
has five states. For the analytical solution of the N = 2, 4
systems, see the Supplemental Material [67]. For N = 2, it is
even possible to analytically determine the zeros of G(t ) and
thus the times of the DQPTs.

Because of these symmetries, the periodicity of the system,
and the state we initialize in, it can furthermore be shown that
(see the Supplemental Material [67])

〈
σ z

n

〉 = (−1)n
〈
σ z

0

〉
,

〈
Sz

n,n+1

〉 = (−1)n

〈
σ z

0

〉 − 1

2
. (2)

This is essentially a consequence of the fact that we have
periodic boundaries, and so the system is symmetric under
stepwise rotations; i.e., all particle sites must have the same
dynamics, and likewise for antiparticle sites. Coupled together
with the fact that we are working in the sector of equally many
particles and antiparticles (zero total charge), we get the above
relation between the 〈σ z

n 〉. The relation for the gauge link spins
is a consequence of fact that the dynamics of the gauge fields
are completely determined by the matter fields in a spin-1/2
QLM. Furthermore, 〈σβ

n 〉 = 〈Sβ

n,n+1〉 = 0 for β = x, y and all

n, which follows simply from the fact that σβ
n , Sβ

n,n+1 are gauge
variant, and so their expectation value within a certain gauge
sector is zero. This means that a single measurement of σ z

for any spin in the system reveals the equivalent quantity for
all spins in the system, and only σ z yields a nonzero mea-
surement. This will be a decisive observation for the readout
scheme in an experimental realization.

C. Order parameter

The order parameter we use to study the postquench dy-
namics is g(k, t ) = 〈ψ (0)|g(k)|ψ (t )〉, where

g(k) =
∑

m=0,1

N−1∑
n=0

e−ikdm (n)σ−
m

n−1∏
i=m

Sαm (n)
i,i+1 σ+

n .

This is a sum over two representative sites m = 0, 1 (a particle
site and an antiparticle site respectively) and over all sites of

(a) (b)

FIG. 1. Some examples of the paths taken by the string operators
which are summed over in the order parameter for a system size of
N = 8 matter sites. (a) Two examples, on originating from particle
site 0 and the other from the antiparticle site 1, showing the sign con-
ventions for clockwise and counterclockwise paths. (b) An example
of the case where m − n = N/2, where the equidistant clockwise and
counterclockwise paths are both taken into account.

the lattice n = 0, ..., N − 1. The summand is a Fourier coef-
ficient times a string operator, consisting of two matter site
operators, one at the representative site m and the other at n,
connected by the gauge link operators between the two sites,
making the total operator gauge invariant. Here the products
of link operators are over the shortest path between site m
and site n, i.e., either counterclockwise or clockwise along the
circular lattice; see Fig. 1. Likewise dm(n) is the distance from
site m to n along the shortest path, with dm(n) being positive
for clockwise paths and negative for counterclockwise paths.
Similarly, αm(n) = − for clockwise paths and αm(n) = + for
counterclockwise paths, ensuring the gauge invariance of the
summands. For sites on the exact opposite side of the circular
lattice, i.e., m − n = N/2, the two paths around the lattice
are equidistant and so both are included; see Fig. 1(b). Thus,
the operator g(k) is essentially the Fourier transform of the
gauge-invariant string operators connecting the sites 0 and
1 with all sites of the lattice. The order parameter g(k, t )
is then the Fourier transform of the amplitudes of a matter
excitation moving from either site 0 or 1 to site n, via the
shortest path, in the time between initialization and t . The
reason we have both a term for site 0 and one for site 1 is
to make the operator symmetric with respect to particles and
antiparticles. The Fourier parameter k takes its value in the
Brillouin zone [−π/a, π/a], though the periodic boundaries
of the system makes the order parameter symmetric around
k = 0. We therefore only consider k ∈ [0, π/a]. We define
the phase φg of the order parameter via g = |g|eiφg . As we
will see, this order parameter has zeros along the troughs of
the Loschmidt echo, L(t ), for all system sizes. These zeros
are accompanied by vortices in φg, which can be counted by
a winding number. The vortices show an interesting dynam-
ics of creation and annihilation as the coupling constant is
varied. Hence, even in the smallest interesting system, this
order parameter reveals the structure of L(t ), which repeats
itself as the system size is increased and exhibits nontrivial
vortex dynamics. The order parameter that we employ here is
related to the gauge-invariant time-ordered Green’s function
computed in the context of lattice gauge theory in Ref. [31],
which was shown to reduce to the Loschmidt amplitude in
the noninteracting case, and be correlated with the Loschmidt
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FIG. 2. (a) The modulus |g| and (b) the phase φg of the order parameter g for N = 4 and J/m = 1.95. The vortices of the phase,
corresponding to the zeros of g, as found by the method described in the text, have been marked with circles colored blue for right-winding
vortices and yellow for left-winding. In the inset, a 3D enlargement of a vortex can be seen, rotated to put the tear clearly into view.

amplitude in the interacting case. Our work demonstrates how
to transfer this to QLM models.

III. COUNTING VORTICES

We study the dynamics of the Loschmidt amplitude and
the order parameter introduced above over a range of the
coupling strength J (keeping m fixed) and a range of the
system size N . We are in particular interested in the zeros of
these quantities. Considering G(t ) as a complex function in
the (J, t ) plane and g a complex function in the (k, t ) plane
(with J fixed), we can find their zeros in a similar fashion,
namely by looking at their phase. This method for numerically
finding the vortices is an adaptation of the work in Ref. [79],
developed for computing Chern numbers in momentum space.
When a complex function, say f = reiϕ , becomes zero at
some critical point, its phase ϕ is undefined at that point. For
a complex function of two variables, f = f (x, y), this results
in a vortex in ϕ surrounding the critical point; see the inset of
Fig. 2(b) showing a vortex in the phase of g(k, t ). The intuition
of this is that while ϕ is undefined at the critical point it is
otherwise smooth, up to discontinuities of 2π . If there were no
discontinuity around the critical point there would obviously
be a meaningful, smooth extension of ϕ at the undefined
point, which contradicts the fact that ϕ is undefinable. The
phase must thus have a line of 2π discontinuity extending
from the critical point. Starting at this discontinuity and going
around the critical point, ϕ must then attain all possible values
between −π and π in a smooth way, as there would otherwise
again be a meaningful, smooth extension of ϕ. Such vortices
can be counted by a winding number

ν = 1

2π

∮
C

dl · ∇ϕ,

where C is a closed curve. This number may then be consid-
ered a dynamical topological order parameter [27,32], as it is
a parameter changing its value with time, taking on discrete
values which only depend on the topology of ϕ, i.e., its vor-
tices, and whether C encloses these vortices. Closing such a

curve tightly around a vortex, the winding number essentially
detects that a line of 2π discontinuity enters the area enclosed
by the curve without exiting again. Together with the image
of the vortices always being tailed by these lines, which we
will refer to as tears (as in torn fabric), we see that to find
the vortices we must simply be able to identify the tears and
their ends. The tears can only end either at the edge of the
considered parameter space or at a vortex. Hence, one only
needs sufficient resolution (in a simulated or experimental
data) to distinguish discontinuous jumps of 2π from the jumps
between the data points on a coarse grid in order to find the
zeros of the function f . This makes it possible to find and
study zeros and vortices with a minimal numerical compu-
tational effort, and we have used an algorithm based on this
idea to do so in our system. Furthermore, one can be certain
that these will be true zeros of the function and not points
where the complex function merely has a very small modulus.
This is otherwise in principle quite hard to do, as unavoidable
numerical imprecision would usually make it necessary to set
an arbitrary limit on when the modulus is small enough to
indicate that the function has actually become zero.

IV. SIMULATION OF DYNAMICS

A. Dynamics of g

In Fig. 2, we show an example of the modulus and phase of
g for a system size of N = 4 and a coupling strength of J/m =
1.95. The zeros of g, as found by the approach described in
the previous section, clearly do correspond uniquely to |g|
becoming very small, confirming the method. Furthermore,
looking at the plot of φg, the strength of this approach becomes
clear. It is easy to see that the tears in φg end in vortices or
at the edge of the Brillouin zone, and it is therefore easy to
find the zeros of the order parameter. The inset shows a 3D
enlargement of a vortex. This shows how the 2π discontinuity
ends at a point where the surface plot of φg is a vertical line,
i.e., where φg is undefined, and surrounding this point the
surface goes smoothly from −π to π in a helix structure.
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FIG. 3. The Loschmidt echo L(t ) (solid red line) and its rate
function λ(t ) (dashed blue line), following the mass quench, m →
−m with the same system parameters as in Fig. 2. The vertical dotted
lines indicate the times at which vortices occur in g, and the triangular
arrow heads indicate the orientation of the vortices, with arrow heads
pointing right, indicating right-winding vortices, and arrow heads
pointing left for left-winding vortices. There is a clear correlation
between the deepest minima of L(t ) [the sharpest peaks of λ(t )] and
the appearance of vortices, except when the vortices come in pairs
of opposite orientation. For slightly larger J/m, vortices appear at
times corresponding to the two minima of L(t ) [two peaks of λ(t )]
at t ≈ 2.5, 7.5.

Figure 3 shows the Loschmidt echo L(t ) for the param-
eters in Fig. 2. The time of the vortices in φg are marked
with vertical dashed lines and triangular, colored arrow heads,
indicating the orientation of the vortices. While we find that
the vortices in φg generally appear at values of (J, t ) where
L(t ) is small, we find that vortices of opposite winding which
are close in the (k, t ) plane can be found at larger values of
L(t ). Intuitively, one might think of the vortices as charges,
and when two charges of opposite sign are near each other,

they screen each other off. There are some additional dips
at approximately tm = 2.5, 7.5 not accompanied by vortices.
However, for slightly larger J/m, vortices will appear at these
dips. This temporary discrepancy is caused by the fact that
L(t ) varies smoothly as a function of J/m, while the appear-
ance and disappearance of vortices is sudden.

Looking at φg for different J/m, these vortices “move”
in the (k, t ) plane, being created or annihilated in pairs of
opposite orientation, or appearing and disappearing at the
edges of the Brillouin zone. This is how φg changes its number
of vortices in integer steps. In Fig. 4 are 10 plots of φg for
different consecutive values of J/m. At first we see three tears
stretching across the entire plot, but as J/m is increased these
tears detach from the right and left sides of the Brillouin zone,
via the creation of respectively left-winding and right-winding
vortices at their ends. These vortices remain connected by the
tear until they annihilate either with other, other vortices, or
disappear again at the edges. At J/m = 1.4, a pair of vortices
is created at tm 	 7 and k/m 	 3π/4. Thus, we see how
vortices appear and disappear at the edges or are created in
pairs, how they annihilate with each other, and how they are
always trailed by a tear whose ends must be at the edges or at
a vortex. Such vortex dynamics is known from other systems,
for example, Berezinskii-Kosterlitz-Thouless transitions, both
in equilibrium and nonequilibrium [80–83].

B. Dynamics of L
In Fig. 5, L(t ) can be seen for the considered range of J/m

and t , for system sizes N = 4, 8, 16. The zeros of L(t ) are
marked with circles using the same color code as previously.
Most of them are left winding with a few right winding at late
times in the middle and lower frames of Fig. 5. It is unclear
whether the orientation of the vortices in the phase of G(t )
has any physical significance or whether it is simply a mathe-
matical detail. In the phase of the order parameter φg, we saw
dynamics of the vortices including annihilation of oppositely
winding vortices as function of J/m, but we cannot speak of
something similar in the phase of G(t ). The zeros of L(t )
are found by applying the method described in the previous

FIG. 4. Ten plots of φg showing the dynamics of its vortices. Following the three tears extended across the first plot as J/m increases, we
see how they detach from the edges of the Brillouin zone via the creation of vortices and how these vortices eventually annihilate with each
other, with other vortices, or disappear at the edges. We can also see the creation of a pair of vortices at J/m = 1.4, tm 	 7, k/m 	 3π/4.
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FIG. 5. Contour plots of L(t ) for the considered range of J/m
and t , for system sizes N = 4, 8, 16 from top to bottom. The zeros,
as found by considering vortices in the phase of G(t ), are marked
with circles colored blue for right-winding vortices and yellow for
left-winding. A representative set of the vortices of the order pa-
rameter are plotted with arrow heads. White arrow heads indicate
right-winding vortices, and red arrow heads indicate left-winding
vortices. Particularly for N = 4, it can be clearly seen how vortices
of opposite orientation move around the (J, t ) plane and annihilate.
The structure of L(t ) and its zeros has a clear pattern that is present in
all three plots. For N = 16 L(t ), is very close to zero in large areas,
and its zeros, particularly at early times, trace out a curve following
the center of these lobes.

section to the phase, φG(t ), of G(t ). The zeros of the order
parameter are also shown in Fig. 5, indicated with triangles
and a different color code for distinguishability. We can see
how the zeros of the order parameter lie along the troughs
of L(t ), and for N = 4 in the upper panel of Fig. 5 it is par-
ticularly clear in, for example, the region 1 < J/m < 2 how
vortices in φg of opposite orientation move and annihilate as
function of J/m. There is a clear pattern of L(t ) being small in
large lobes that start at around J/m = 0.5 and stretch toward
higher J/m while L(t ) increases. The zeros of L(t ) occur near
the center of these lobes, along lines which are traced out by
the zeros of the order parameter. This pattern appears already

FIG. 6. All vortices of G(t ) for all considered system sizes plot-
ted together as circles, with a color code denoting which N each data
point pertains to. Some patterns and curves emerge here, particularly
for early times.

at N = 4 and repeats itself for larger system sizes, showing
see how the small system with N = 4 reproduces features of
the much larger N = 16 system. This means that even a small
experimental realization of this system could yield interesting
results. We discuss this possibility in greater detail later in the
paper. While the even smaller system with N = 2 does show
zeros both in g and L(t ), the behavior of these is considerably
different and simpler than for larger N ; see Supplemental
Material [67]. We explain this different behavior by the fact
that, as mentioned, the system is completely solvable for such
a small size and the zeros of L(t ) can found analytically.

For increasing system size L(t ) becomes very small in in-
creasingly larger areas and has more zeros. The large areas of
small value can be explained by the scaling of L(t ) = e−Nλ(t ),
where λ(t ) is the rate function of the Loschmidt echo, which
converges in the thermodynamic limit of N → ∞. That is,
the Loschmidt echo is exponentially suppressed by the system
size and thus naturally becomes very small for large systems.
The zeros of L(t ) appear to arrange themselves along curves
tracing out the center of the lobes where L(t ) is small. In
Fig. 6, the zeros of L(t ) are plotted together for all the consid-
ered N . Especially for small t there is a clear hook-shaped
curve along which the zeros arrange themselves. A similar
pattern seems to repeat itself a few times for larger t , defining
branches of zeros. While the exact position on the branches
of the individual zeros is dependent on N , the branches do
become more defined (at least for small t) for increasing N ,
where the number of zeros also increases. This condensation
of discrete vortices is similar to how the zeros of a partition
function are known to converge to lines in the thermodynamic
limit [10,15,21,29,84]. A plot of λ(t ) for each N considered
is shown in the Supplemental Material [67], including an
enlargement where the formation of the line of zeros at early
times can be clearly seen. The occurrence and quick con-
verge of these lines beginning already at N = 4 shows how
the interesting dynamical effects of our system are not just
finite-size effects but from early on reflect the dynamics of the
thermodynamic limit.

Figure 6 furthermore clearly shows how the zeros of L(t )
occur within an interval of J/m that expands slowly for
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increasing tm. For both J/m � 1 and J/m � 1, we expect
L(t ) to go unity. This is because for J/m � 1 the mass term
dominates and so the prequench ground state is still close to
being an eigenstate of the postquench Hamiltonian (the sign
of its energy will simply have changed). For J/m � 1, the
interaction term dominates and so the prequench ground state
is still the ground state after the quench, as the interaction term
does not change in the quench. For these reasons, it makes
sense that there is a limited interval of J/m in which the zeros
occur. We expect this interval to expand for increasing tm,
simply because the weak or suppressed dynamics responsible
for the zero will have more time to occur. For the same
reasons, we expect the order parameter to not show vortices
in these limits, which is consistent with Fig. 5.

C. Possibility of underlying equilibrium transition

One of the most observed cases for what causes a DQPT is
quenches across some underlying equilibrium phase transition
[21]. However, given that the DQPTs we observe occur at
unsystematic values of J/m and are dependent on the system
size, it is difficult to see how an equilibrium phase transi-
tion should be the cause of the DQPTs. Furthermore, while
equilibrium phase transitions are often discovered by look-
ing at average magnetizations and similar quantities, in our
periodic system we have found that 〈σ z

n 〉 = (−1)n〈σ z
0 〉 and

〈Sz
n,n+1〉 = (−1)n(〈σ z

0 〉 − 1)/2, meaning that any average of
these is identically zero. Indeed, since all expectation values
of σ z for both sites and links are given by 〈σ z

0 〉, and expecta-
tion values of σ x, σ y for sites and links are zero (since they
are gauge variant), the only local variable we could study is
indeed 〈σ z

0 〉. Alternatively, it might be possible to devise a
gauge-invariant, nonlocal order parameter, similar to g(k, t ),
which captures an equilibrium phase transition that is the
cause of the DQPTs we have found here. We expect such
an order parameter to be topological in nature, and thus the
equilibrium phase transition to topologically nontrivial. In this
context, the Kibble-Zurek mechanism [85,86] might be rele-
vant to consider to relate a possible equilibrium transition to
the DQPTs we see [87,88]. Whether an underlying transition
is the cause of the observed DQPTs and how such a transition
should be revealed are interesting questions for future research
in our system.

V. CIRCUIT REALIZATION OF QLM

To realize a QLM, you need discrete sites arranged in a
lattice, with links connecting them in some configuration. On
the sites live matter field degrees of freedom, which for a
fermionic field is equivalent to a discrete two-level system,
as discussed above. Likewise, on the links live finite degrees
of freedom, spin-S subsystems, representing the gauge field
coupling the matter fields. Compared to LGTs, where the
gauge fields have an infinite number of degrees of freedom,
the advantage of QLMs is thus a vastly reduced Hilbert space
as a consequence of the finite number of states available to the
gauge field. The QLM are valid and interesting gauge theories
in themselves but can also be seen as an approximation of
LGTs, as an LGT is recovered by letting S → ∞.

We now go on to discuss a possible experimental imple-
mentation of U(1) symmetric spin-1/2 systems using SQCs.

We present a circuit which implements two matter site spins
and a gauge link spin interacting via a direct three-body XXX
coupling, which through appropriate tuning yields the desired
U(1) interaction in the rotating wave approximation (RWA).
The circuit scales naturally in a modular fashion and could be
used to create 1D chains, 2D lattices, or any other configura-
tion of matter sites interacting through gauge links. Hence, the
circuit could be used to experimentally implement dynamics
in 1D or 2D models to study, for example, vacuum quenches
similar to what we looked at above or strong CP breaking
in gauge models. Figure 7(c) shows a diagrammatic imple-
mentation of a plaquette of four sites, hinting at how a 2D
configuration would have to be made. Early work was done
to indicate that circuits could be used for simulating LGTs
[70,89–97], but this work did not consider concrete cases in
detail nor any checks on whether the circuits actually realize
the right dynamics with high fidelity. In the next section, we
directly compare the time evolution operator implemented by
our circuit with the desired time evolution operator of the U(1)
spin-1/2 QLM presented in previous sections [see Eq. (1)]
using average fidelity [98]. Average fidelity is a measure of
how well a certain process implements a desired operation.
In our case, the process is the time evolution of the circuit
and the operation we compare this with is the time evolution
according to the target Hamiltonian. The average is over all
possible initial states.

A. The circuit

The circuit can be seen in Fig. 7(a). It consists of four
all-to-all connected nodes, and we may divide the branches in
two groups. The blue and red branches have the same circuit
elements but each their own circuit parameters. They will be
shown to each implement a spin representing a matter field.
The purple branches likewise have the same circuit elements,
with identical parameters, and they connect the blue and red
branches to each other. These branches will altogether imple-
ment a spin representing a gauge link. A similar circuit was
designed and experimentally tested in Ref. [99] to realize a
qubit with a very long lifetime. Each node in our circuit has
been coupled capacitively to ground via an identical capaci-
tance K . Ideally this capacitance is zero but has been included
to study the effects of coupling to ground as well as capac-
itive coupling to control or readout devices. There are four
external fluxes, �i for i = 1, 2, 3, 4, threaded through loops,
each consisting of two Josephson junctions in parallel, in
the purple branches. The Josephson junctions themselves are
imagined to be implemented with superconducting quantum
interference devices (SQUIDs) such that the Josephson energy
of each has an increased interval of possible values and high
tunability. In Fig. 7(b), the layout of the circuit is chosen such
that the �i only pass through the circuit loops with the Joseph-
son junctions pertaining to Es, using air bridges [100–105],
and the modular scalability of the circuit has also been made
explicit. The idea is to make copies of the circuit in sequence,
while using the same branches for the matter site spins. If the
circuit parameters are chosen with the same symmetries as in
Fig. 7(a), the eigenmodes of the capacitance network will not
be affected by the additional copies. The shared branch of two
connected blocks will precisely represent a matter connected
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(a) (b)

(c)

FIG. 7. (a) The diagram of the circuit used to implement three spins interacting via a direct three-body XXX coupling. Notice the identical
circuit parameters. The identical grounding of each node has been included only for completeness of the study. We implement the spins via the
eigenmodes of the capacitive network. The branches pertaining to each of these modes have been colored separately. The blue and red branches
will implement matter sites spins, while the purple branches implement the gauge link spin. (b) The same circuit but now folded to make the
modular scalability of the circuit completely clear. Multiple copies of the circuit, sharing the matter site branches pairwise, will implement a
chain of matter sites coupled via gauge links. (c) A simple diagram of how four copies of the circuit could be put together to implement the
periodic N = 4 version of Eq. (1).

to two gauge links, and only the desired interactions will be
present. The circuit can thus be quite intuitively scaled to a
chain of matter sites interacting through gauge links. A matter
site branch could potentially also be shared by more than
two copies of the circuit, making it possible to realize more
complicated configurations. This would, however, result in
many wires connecting to the same branch and require many
bridges. The ability to cross conductors via air bridges makes
SQCs a suitable platform to implement periodic boundary
conditions. Bridges make it possible to access all points in
a complicated circuit, while keeping it planar. In order to
simulate the periodic system considered in the first part of
this paper for the simplest interesting case, i.e., N = 4, we
would have four copies of the circuit put together in this way,
forming a square. A simple diagram of such a circuit and the
resulting spin system can be seen in Fig. 7(c). In Sec. VII, we
will consider readout of the circuit by dispersively coupling
resonators to just the matter site branches; i.e., readout of the
square would be done by coupling resonators to its corner
branches.

B. Hamiltonian

In the following, we will consider only a single copy of
the circuit. If we put several together to form a square or
some larger system, the circuit parameters would have to
be retuned. However, only the spin model parameters of the
modes on the branches which are shared with the new copies
will be affected by them, i.e., the matter field modes. These do,
however, have their own circuit parameters, which affect only
the matter modes. These are the parameters with a subscript

in Fig. 7(a) on the red and blue branches. Hence, the effect of
the new copies could be compensated for by changing these
parameters correspondingly.

We define the node fluxes of the circuit φ =
(φ1, φ2, φ3, φ4)T [66] but will be working in the
eigenmodes of the capacitive network [62–65,106],
ψ = (ψCM, ψ0, ψg, ψ1)T , defined through

φ =

⎛
⎜⎜⎜⎝

1 1 1
2 0

1 −1 1
2 0

1 0 − 1
2 1

1 0 − 1
2 −1

⎞
⎟⎟⎟⎠ψ.

This results in no interactions through the capacitors, greatly
reducing the complexity of the interactions in the system. We
will se how the modes ψ0 and ψ1 will represent two matter
sites, and ψg will represent the gauge link between them.
We will furthermore introduce a new set of external fluxes,
�0, �g, and �1, of which the �i are certain simple, linear
combinations. We set these external fluxes to be constant
� j = −π/2 for j = 0, g, 1. For details on the external fluxes
and the derivation of the Hamiltonian, see the Supplemental
Material [67]. In these coordinates and with these choices of
external fluxes, the circuit Hamiltonian becomes

Hc = K−1
00

2
q2

0 + K−1
gg

2
q2

g + K−1
11

2
q2

1

− E0 cos ψ0 − E1 cos ψ1

− 4Ec cos ψ0 cos ψg cos ψ1

− 4Es sin ψ0 sin ψg sin ψ1, (3)
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where q j are momentum variables conjugate to the ψ j , and
K−1

j j are the diagonal entries of the inverse capacitance ma-
trix in the basis of the ψ j coordinates. This Hamiltonian
describes three transmon-like [107] anharmonic oscillator
modes, interacting only through the interesting triple cosine
and sine interactions. These are direct, completely even, and
completely odd three-body interactions, respectively. The sine
functions come about as a consequence of setting � j =
−π/2. Recasting each of the ψ j and q j variables in terms
of harmonic oscillator operators, i.e., bosonic creation and
annihilation operators, a†

j and a j , and truncating the system
to the two lowest levels of each yield the following spin
Hamiltonian:

Hs = − 1
20σ

z
0 − 1

2gσ
z
g − 1

21σ
z
1

+ Jz
0gσ

z
0σ z

g + Jz
01σ

z
0σ z

1 + Jz
g1σ

z
gσ z

1

+ Jz
0g1σ

z
0σ z

gσ z
1 + Jx

0g1σ
x
0 σ x

g σ x
1 , (4)

where the ’s and J’s are spin model parameters. To calculate
the parameters, we use a method introduced by the authors
in Ref. [106], which avoids approximating the trigonomet-
ric functions via a Taylor expansion but instead takes their
full effect into account. This gives more accurate parameters,
when truncating the flux Hamiltonian, and can be used for
any sine or cosine of a linear combination of the flux coor-
dinates. The exact dependence of the spin model parameters
on the circuit parameters and details on their derivation can
be seen in the Supplemental Material [67]. However, we note
that the XXX -coupling strength is proportional to Es, and Es

does not appear anywhere else in the spin model parameters,
making the XXX coupling separately tunable. The circuit has
thus resulted in three spins interacting through several Z-type
couplings, and a direct XXX coupling. As we detail below,
the XXX coupling can be tuned to σ+

0 σ+
g σ−

1 + H.c., which is
exactly the U(1) gauge coupling in Eq. (1), σ+

0 S+
0,1σ

−
1 + H.c.

This shows how the ψ0 and ψ1 modes will represent matter
site spins, while the ψg mode has the role of gauge link spin.
The circuit could be simplified a great deal, by removing the
Ec junctions, which would seemingly not disturb any of the
desired terms in the Hamiltonian. However, this is not quite
true, as the triple cosine term is the only source of anhar-
monicity for the ψg mode. The anharmonicities α j of the three
modes, which justify the truncation to the two lowest level of
each anharmonic oscillator, can be seen in the Supplemental
Material [67].

C. Higher levels

Let us briefly consider the effect of interactions between
the spin-1/2 subspace and the higher levels of the circuit.
There will generally be even interactions like a†

j a
†
j a j′a j′ +

H.c. or a†
j a

†
j a

†
j′a

†
j′ + H.c., where there is an even number of

creation and annihilation operators for each mode, as well as
odd interactions where there is an odd number of creation and
annihilation operators. The even interactions will generally be
suppressed if their coupling strengths are much smaller than
the spin transition energies, while the odd interactions will
generally be suppressed if their coupling strengths are much
smaller than the anharmonicities. As Jz and Jx

0g1 represent the

coupling strengths of higher order even and odd couplings re-
spectively, this means that we must have Jz �  j and Jx

0g1 �
α j in our system. However, even in this regime, where the
dynamics mainly take place in the spin-1/2 subspace, there
will still be the important question of the exact effect of the
higher levels in the anharmonic oscillator degrees of freedom,
both for effective interactions and leakage [63,106–114]. Be-
low we will include higher levels in our numerics to judge
the impact directly and show the regimes necessary to reduce
these effects. In particular, the system will undergo virtual
excitations and de-excitations, which effectively renormalize
the spin model parameters. This results in having to tune
effective parameters and not the explicit ones which appear
in Eq. (4). This is what we have done numerically, and we
will discuss it in detail in the next section.

D. Connecting to the QLM Hamiltonian

In order to achieve a staggered mass for the matter site
spins, and no mass for the gauge link spin, we use an approach
from Ref. [70]. Let Hs = H0 + Hint, where H0 contains all the
Z-type terms and Hint is just the XXX coupling. Consider then
Hs in a frame rotating with respect to Hm = H0 + 1

2 m(σ z
0 −

σ z
1 ):

HR = eiHmt [Hs − Hm]e−iHmt

= −1

2
mσ z

0 + 1

2
mσ z

1 + Jx
0g1

∑
p,r,s ∈ {+,−}

e−iωprstσ
p

0 σ r
g σ s

1 ,

(5)

where the sum is over all eight combinations of the three σ±
i

and the frequency of their phase is given by

ωprs = p(0 − m) + rg + s(1 + m) + 2prsJz
0g1.

If the system is now to tuned such that for example ω++− =
−ω−−+ = 0, then the operator σ+

0 σ+
g σ−

1 + H.c. will be reso-
nant, as desired. All other combinations will be off resonant
and would disappear in a RWA, as long as the spin transition
frequencies and their differences are much larger than the Jz,
which is already something we must fulfill to justify the trun-
cation to the spin- 1

2 subspace. Furthermore, we have recovered
the staggered mass of Eq. (1) via the terms − 1

2 mσ z
0 + 1

2 mσ z
1 .

Thus, in an appropriately rotating frame, the Hamiltonian
in Eq. (4) implemented by the circuit indeed recreates the
one-dimensional U(1) quantum link model of Eq. (1) for two
matter sites and the link between them.

The circuit design principles we have used here, i.e.,
looking at the eigenmodes of the capacitive network in a
symmetric circuit to achieve multibody couplings and sup-
pressing as many undesired interactions as possible, could be
used to achieve other interesting gauge-invariant systems. It
would be an obvious next step to work toward higher gauge
symmetries, like SU(2), or to attempt to implement gauge link
operators with three levels. The latter would allow for the
study of confinement and might be implemented by using two
spin-1/2’s to represent one gauge field.
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VI. OPTIMIZING CIRCUIT PARAMETERS
AND AVERAGE FIDELITY

A. Initial considerations

We now go through some considerations necessary for
the optimization of circuit parameters. As mentioned, higher
order contributions from interactions with states outside the
spin- 1

2 subspace mean that we must consider effective spin
model parameters when optimizing the circuit parameters.
We are in particular interested in the effective detuning, �eff ,
between |↑0 ↑g↓1〉 and |↓0 ↓g↑1〉 (with ↓i and ↑i referring to
the ground and excited states of the ith spin) corresponding
to ω++− in the above, and the effective coupling strength,
Jeff , of the XXX coupling corresponding to Jx

0g1 in the above.
Furthermore, we want the numerical value of the anharmonic-
ities of the modes to be about 100 × 2π MHz or larger [108].
For details on how to numerically determine �eff and Jeff , see
the Supplemental Material [67]. We want to show that this
circuit can be used to realize the quench dynamics studied in
the first part of this paper. In this case, the effective detuning
should not be zero, but rather it defines the staggered mass
m. Considering the rotated Hamiltonian HR in Eq. (5), it can
be seen that we get the desired mass term when �eff = 2m.
Likewise, if J is the desired strength of the matter-gauge
coupling in Eq. (1), then we must have Jeff = J/2, because
of the factor 1/2 in the interaction term in Eq. (1). We will
thus be tuning J/m = 4Jeff/�eff .

Since only the Josephson energies of a SQC can be tuned in
situ, it is difficult to actually perform the appropriate quench
of the circuit. Instead, we intend for the circuit to be con-
structed with the postquench parameters. The quench will then
be implemented by initializing the system in the ground state
of the prequench Hamiltonian. Whether we have the system
in its prequench setup, go into its ground state, and then
quench to the postsetup, or simply start with the system in
the postquench setup and then quickly initialize in the ground
state of the prequench Hamiltonian, we will see the same
resulting dynamics. This moves the difficulty from performing
a fast quench to performing a fast initialization.

B. Optimizing with respect to average fidelity

With all this in mind, we tune the circuit parameters to
yield a negative J/m (as the quench is to a negative mass, m →
−m), corresponding to postquench parameters. After finding
appropriate circuit parameters, we do a check of the overall
behavior of the circuit, ensuring that it works as intended,
including no disturbing interactions with higher levels. To
do this, we use average fidelity [98]. As mentioned, average
fidelity is a measure of how well a certain process implements
a desired operation. It is calculated as the fidelity of the
process implementation of the operation, averaged over initial
states. In our case, the process is the time evolution of the
circuit, determined by Hc in Eq. (3), in a frame rotating such
that the resulting Hamiltonian is HR in Eq. (5), where m is
set to �eff/2 and the bare coupling strength Jx

0g1 is replaced
with Jeff . To take contributions from higher level interactions
into account, we truncate to the lowest four levels. We only
rotate the spin-1/2 states; i.e., we use a four-level version
of H0 + 1

2 m(σ0 − σ1), where all entries pertaining to levels

higher than the spin-1/2 states are just zero. Furthermore, we
must use an effective version of H0, where contributions to
the energy levels from virtual interactions are included. In
an experimental setting, this H0,eff could be determined in
a separately, by setting Es = 0 via flux tuning, thus turning
off the XXX coupling and then initializing in each of the
spin-1/2 states, which would then be very close to eigenstates
of the system, such that their phase over time would yield their
effective energy.

The operation we compare this with is the time evolution
according to the target Hamiltonian, i.e., H from Eq. (1) with
two matter sites and a gauge link between them. We compare
only the dynamics of the spin-1/2 states; i.e., time evolution
of the circuit takes place with four levels included for each
mode, and the result is then projected down to the spin-1/2
subspace, before comparison with the time evolution of H .
For details on how the average fidelity is calculated, see the
Supplemental Material [67].

The average fidelity will thus be comparing the very time
evolution operators themselves for the circuit and the target
system. The mass and coupling strength of the target Hamil-
tonian are chosen to be �eff/2 and 2Jeff . The fidelity would
thus a priori be expected to be quite high, but since this is all
done with four levels included in each anharmonic mode, the
fidelity will be a measure of how much the higher levels affect
the dynamics of the circuit beyond just the renormalization of
the mass and coupling strength. In particular, some population
will be lost to the higher levels, and just as virtual processes
contribute to the strength of the XXX coupling, they will
also to some extent induce other effective interactions. These
will disturb the desired dynamics and might be gauge variant,
resulting in population moving outside of the Gn = 0 gauge
sector of the spin-1/2 subspace.

C. Result

In the Supplemental Material [67], we show an example
of a realistic set of circuit parameters satisfying our de-
mands, yielding J/m = 4Jeff/�eff = −2.0, which according
to Figs. 5 and 6 would result in interesting dynamics of the
order parameter and Loschmidt amplitude within a time of
tm = 2, corresponding here to t = 49.5 ns (remember that
we optimize for postquench J/m, i.e., negative values, while
Figs. 5 and 6 show prequench values of J/m). In our work
with tuning the circuit, we have found that it is well capable
of implementing the interval of J/m considered in the first part
of this paper. If a circuit is made that implements an interest-
ing value of J/m, other nearby values could be achieved by
varying just the Josephson energies, making it possible to use
the same circuit to study different values of J/m.

All calculations of dynamics are performed without includ-
ing noise. The effect of different types of noise in analog
simulation of LGTs and how to suppress it has already
been studied extensively [44,115–121]. Our results here in-
stead highlight the basic high quality of the presented circuit
implementation of a QLM. Furthermore, with present super-
conducting qubit lifetimes [99,122,123], we do not believe
noise would significantly disturb the results presented here.
While we have explained how the XXX coupling in a RWA
yields the desired U(1) interaction term, we do not actually
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FIG. 8. In black: The average fidelity of the circuit’s implemen-
tation of the target dynamics in a rotating frame. The fidelities are
close to or above 99.5% and keep steady over long times, with an
oscillation on a short timescale. In green: The fidelity without taking
leakage to the higher levels into account. From this, we see that the
largest part, 0.2–0.45%, of the lost fidelity is due to population imme-
diately leaking into the higher levels and then partly oscillating back
and forth. A smaller contribution, about 0.05%, is from the effective
interactions induced by virtual processes involving the higher levels.

use the resulting approximate Hamiltonian in our numerics
but instead retain all terms to show directly that they do indeed
not disturb the desired dynamics significantly. In Fig. 8, the
calculated average fidelity of the circuit’s implementation of
the target dynamics using the circuit parameters presented in
the Supplemental Material [67] can be seen in black. The
fidelity is about or above 99.5% at all times, and while it
oscillates on a short timescale, it seems to keep steady over
the plotted interval. Hence, the implementation of the desired
dynamics is good, and stable in the sense that we are not
accumulating error or continuously losing population to the
higher levels. We seem to lose a small fraction of the pop-
ulation immediately, which then partly oscillates back and
forth. The same average fidelity plus the leakage to higher
levels is plotted in green; i.e., this plot shows the fidelity
if we do not take leakage into account. Hence, we can see
that about 0.2–0.45% fidelity is lost because of population
leaking to the higher levels of the circuit, while about 0.05%
is lost due to effective interactions induced by virtual pro-
cesses involving the higher levels. These high and steady
fidelities show directly how our superconducting circuit truly
implements the desired dynamics, with circuit parameters
available to experiments. Hence, the circuit is a strong can-
didate for studying the U(1) QLM with present NISQ-era
devices.

VII. READOUT FOR STATE TOMOGRAPHY

A. Reading out G(t ) and g(k, t )

An important thing to note is that the Loschmidt am-
plitude in the circuit’s own frame will not be the same as
in the rotating frame. This is because under unitary trans-
formations like e−iHct → Ue−iHct , where the operators are
simultaneously transformed as A → UAU †, quantities like
G(t ) = 〈ψ (0)|e−iHct |ψ (0)〉 or the order parameter g(k, t ) =
〈ψ (0)|g(k)e−iHct |ψ (0)〉 get an odd number of U operators.
Hence, these operators cannot cancel and the quantities are not

invariant. The Loschmidt amplitude and our order parameter
are therefore not invariant under rotations like the one we
performed to find HR. However, the Loschmidt amplitude is
often measured by performing state tomography [124–128]
and then calculating G(t ) from the results [21,24–27,34]. With
full information about the state of the circuit at any time, the
Loschmidt amplitude can easily be calculated.

B. Dispersive readout of coupled qubits

To perform readout of the circuit, we would use a method
inspired by Refs. [64,65]. Here they perform quantum state
tomography of two qubits by measuring the dispersive shift of
a resonator coupled to just one of them. The idea is that strong
ZZ couplings shift the energy of one qubit conditioned on the
state of the other sufficiently such that it can be seen in the
dispersive shift of the resonator. Hence, where normally one
observes two shifts of the resonator corresponding to the two
eigenvalues of σ z, one would see four shifts corresponding
to the four combinations of eigenvalues from the two qubits.
Single-qubit rotations are used to measure the qubits along
their x and y axes allowing for full state tomography. For
details, see Refs. [64,65] and their Supplemental Materials.
Similarly, here we imagine doing readout of just the matter
site spins. A resonator coupled through identical capacitors
to the two nodes pertaining to a matter site mode will couple
to just that mode. Hence, usual dispersive readout of the spin
can be performed. The ZZ couplings between this mode and
its neighboring gauge and matter modes will make it possible
to derive some information about them as well. In particular,
we want to extract information about the gauge modes by
coupling to just the matter modes. It is easier to couple to the
matter modes, as they live on a single branch between two
nodes, while the gauge modes live on four branches between
four nodes. We therefore propose measuring on all matter
modes and comparing the data to extract information about
the whole system. For a single module of our circuit, measure-
ments on either of the matter modes give information on both
matter modes and the gauge mode between them. For a 1D
chain of modules, measurement on a matter mode would give
information on that matter mode and the two matter modes
and the two gauge modes to which it is coupled.

C. Effective dispersive shifts

We now consider the shifts one would measure for a single
module of our circuit. The effective resonance frequency of a
resonator dispersively coupled to a qubit is [107]

ω′
r = ωr − g2

r

� + α
−

(
g2

r

�
− g2

r

� + α

)
σ z. (6)

Here ωr is the bare resonance frequency, σz pertains to the
qubit, � = ωq − ωr is the detuning between the transition
frequency ωq of the qubit and ωr , α is the anharmonicity of
the qubit, and finally gr is the strength of the dispersive cou-
pling. Here σz is not to be understood as an operator, but the
appropriate eigenvalue of the state that the qubit has collapsed
to. The transition frequency ωq is in our case a combination of
the bare spin transition frequency and ZZ-coupling strengths.
If we consider coupling a resonator to spin 0 in Hs of Eq. (4),
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FIG. 9. Left and right, the shift χi jk of the resonance frequency of a resonator dispersively coupled to spin 0 or spin 1, respectively, for
all eight spin-1/2 states of the circuit. The shifts are plotted as functions of the bare detuning �n = n − ωr for n = 0, 1 respectively. The
indices i jk =↓,↑ denote the state of each of the three spins. Assuming a resonator coupling strength of gr = 20 × 2πMHz, we get the energy
scale shown on the right y axis. The insets show intervals of the bare detunings where the dispersive shifts of each state are distinct enough
to distinguish between the eight spin state with just these two measurements, particularly when the information from each measurement is
compared. To be in the dispersive regime, we must have χi jk � gr ; i.e., we must stay well away from the points where χi jk diverges, which are
marked with vertical dashed lines.

then we can see that

ωq = 0 − 2
(
Jz

0gσ
z
g + Jz

01σ
z
1 + Jz

0g1σ
z
gσ z

1

)
where the operators, like the σ z in Eq. (6), are to be understood
as some specific eigenvalue corresponding to the state of the
circuit, which has collapsed as we measured it. We can now
consider the dispersive shift χi jk = ω′

r − ωr of the resonator
frequency as a function of the bare detuning �0 = 0 − ωr ,
where i, j, k =↓,↑ refers to whether spin 0, g, 1, respectively,
has collapsed to |↓〉 or |↑〉. In Fig. 9, the eight shifts, cor-
responding to the eight spin-1/2 states of the circuit, for
both coupling to spin 0 and 1 are plotted, using the same
circuit parameters is in our previous plots. We now want to
find values of �0 and �1 such that the eight shifts are as
distinct as possible, and where comparing shifts from both of
the spins helps to determine the state of the gauge link spin.
In order to remain in the dispersive region, we must satisfy
gr/|�|, gr/|� + α| � 1, where � now has a different value
for each of the spin-1/2 states. Looking at Eq. (6), we can
see that χi jk ∼ g2

r/|�|, g2
r/|� + α|, and thus the conditions

for the dispersive regime can be written as χi jk � gr . This
essentially means we must stay well away from the regions
where χi jk diverges. These are marked with vertical dashed
lines in Fig. 9. If for the sake of example we consider a
resonator coupling strength of gr = 20 × 2πMHz, we get the
energy scale shown on the right y axis of Fig. 9. In the insets
of Fig. 9 can be seen enlargements of the regions between
χi jk = ±4 × 2πMHz. If we choose a bare detuning within
these regions, we could use the shift of the first resonator
(the left inset) to distinguish between the dashed and solid
lines, i.e., the state of spin 0, and use the second resonator
(the right inset) to distinguish between the blue-navy and
the red-brown lines, i.e., the state of spin 1. This is similar
to dispersive measurement of qubits, but we can further use
this information to distinguish between the shifts caused by

the state of the gauge link spin, g. With a resolution of 1 ×
2πMHz in a measurement of the dispersive shift, which is ex-
perimentally feasible [25,64,65,129], it would be possible to
distinguish the states of the circuit with this or even a smaller
choice of gr .

The above analysis is approximate, as it uses only the bare
spin model parameters, and the formula Eq. (6) is derived for
a single qubit with some specific bare transition frequency
coupled to a resonator. In our case, it is clear that the higher
levels of the circuit would affect these calculations, and it is in
fact a resonator, or several, coupled to the circuit, a system of
multiple interacting qubits or spins. A more accurate analysis
using numerical methods could be carried out to find the
actual shifts of the resonance frequency of the resonator de-
pendent on the circuit state. However, the quantitative results
would be the same, namely that the different states would
result in different shifts. It would then be a matter of deter-
mining whether those shifts would be sufficient to distinguish
the states in a measurement, using the comparative method
outlined above. Whether or not this is the case is in the end
a consequence of the chosen circuit parameters, so one could
optimize the circuit parameters with respect to these consid-
erations in addition to the conditions we outlined previously.
These dispersive readouts could then be used to perform a full
quantum state tomography, yielding all information about the
Loschmidt amplitude or the order parameter we introduced in
the first part of this paper.

An alternative to performing full state tomography is to
have multiple copies of the circuit and to perform the quench
experiment in just one of them while initializing the other in
the appropriate initial state. The circuits are then connected
using some appropriate scheme to make their states interfere,
potentially yielding information about the quantities we are
interested in. Such an approach is used in the context of
atoms in an optical lattice in Refs. [130,131] to measure the
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Rényi entropy. This has in fact been experimentally probed
[132–134].

VIII. CONCLUSION

We have shown how to realize lattice gauge theories
through quantum link models in superconducting quantum
circuits. Specifically, we have provided a method for gen-
eral circuits to implement quantum link models with a high
average fidelity. This opens up the possibility for experimental
study of quantum link models in NISQ-era devices. As a
demonstration of the principles in our work, we have studied
a periodic (1 + 1)D spin-1/2 quantum link model with local
U(1) gauge symmetry, corresponding to the Schwinger model
in the continuum. Even with the smallest lattice considered,
the system undergoes dynamical quantum phase transitions
after a quench of the sign of the mass. With this in mind,
we have proposed a superconducting circuit, which realizes
three spin-1/2’s interacting via a direct XXX coupling, which
through appropriate tuning becomes the matter-gauge inter-
action necessary for a U(1) quantum link model. The circuit
can be modularly scaled in an intuitive way and for a single
module of the circuit realizes the desired U(1) QLM dynam-
ics with an average fidelity of about 99.5% or above, using
realistic circuit parameters. From this, we expect that the
dynamical quantum phase transitions we have found should
be observable in an experimental realization of the circuit.

We studied an order parameter, which is essentially the
Fourier transform of the gauge-invariant string order param-
eters connecting a representative particle and antiparticle site
to all other sites of the system. This order parameter had zeros
that correlated with the minima of the Loschmidt amplitude
and its zeros. The zeros of both the Loschmidt amplitude
and our complex order parameter were found by looking for
vortices in their phases. These vortices, which appear exactly
when the function goes to zero, are much easier to find numer-
ically, as they are extended structures, and their center point
can be found by looking at the line of discontinuity, which
extends from it. The vortices are topological in nature; in par-
ticular, they can be counted by a winding number which then
constitutes a dynamical topological order parameter of the

system. The vortices of the order parameter showed dynamics
of creation and annihilation. We found that the structure of
the Loschmidt amplitude, as well as its zeros in the parameter
space of matter-gauge coupling strength and time, quickly
converges to a certain pattern, with the zeros lying along
lines. Hence, even the smallest system size considered would
reveal the tendencies of the larger systems in an experimen-
tal realization. Finally, we considered readout of the circuit,
using a method of resonators coupled dispersively to a subset
of the circuit spins, but which nonetheless gave information
about all the spins, by exploiting their pairwise ZZ couplings.
To use this in the context of the quench dynamics we have
studied, we imagine that quantum state tomography of the
circuit is performed to extract the data necessary to calculate
the Loschmidt amplitude and our order parameter.

In future work, it would be interesting to study dynamics
of more complicated lattice configurations and gauge theo-
ries. For example, periodic 2D (i.e., toric) QLMs could be
considered, which would likely show interesting topological
aspects. Additional degrees of freedom could be added to
the link operators; indeed simply promoting them to spin-1’s
would allow for the study of confinement and pair production.
It would be natural to work toward a superconducting circuit
realization of such models using the same design principles
we have presented here. A similarly modular circuit realizing
SU(2) symmetric interactions between fermions or some other
interesting gauge symmetry like Zn would be interesting to
develop. Further work could also be done on the specific sys-
tem studied here. It would be interesting to link the dynamical
quantum phase transitions found here to a potential underlying
equilibrium phase transition or entropy production [19,21,24].
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