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Electronic properties and quasi-zero-energy states of graphene quantum dots
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In this paper, research has been carried out on the electronic properties of nanostructured graphene. We
focus our attention on trapped states of the proposed systems such as spherical and toroidal graphene quantum
dots (GQDs). Using a continuum model, by solving the Dirac-Weyl equation, and applying periodic boundary
conditions of two types, i.e., either with zigzag edges only or with both armchair and zigzag edges, we obtain
analytical results for energy levels yielding self-similar energy bands located subsequently one after another on
the energy scale. Only for the toroidal quantum dot (owing to the lack of curvature) the distribution of electron
density is like Bohr atomic orbitals. However, although the quasi-zero-energy band exists for both spherical and
toroidal quantum dots, no electron density is present on this band for the toroidal quantum dot. This causes the
formation of a pseudogap between the hole and electron bands because of the absence of the electron density at
the quantum dot center, like in the case of an ordinary atom. Conversely, the confinement of the charge-carrier
density is observed for both geometries of GQDs.
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I. INTRODUCTION

Nanodimensional monolayer graphene patches are promis-
ing as a basis for the development of quantum devices.
Graphene physics is the physics of massless charge carri-
ers. The nanometer-sized quasicircular graphene monolayer
samples, called graphene quantum dots (GQDs), can be chem-
ically synthesized. Chemically synthesized nanoscale GQDs
have the form of a quasicircle with a radius in the interval
from 3 to 10 nm [1]. By scattering on the physical edges
of contacting graphene patches, charge carriers drastically
impair their mobility. Moreover, the fact that the Schrödinger
equation with a confining parabolic potential satisfactorily
describes at least the low-lying states of the synthesized dots
means that the distortion of electron-hole physics is possible
up to the loss of bipolarity of the material (see e.g., Refs. [2,3]
and references therein).

The problem of contacts in graphene electronics can be
solved by designing the so-called electrically confined GQDs
without physical termination. The electrically confined GQD
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is a part of the graphene monolayer, separated by a poten-
tial barrier from the rest of the monolayer. The electrostatic
geometric confinement in a graphene monolayer allows us to
finely tune the charge localization and scattering in graphene-
based devices. To form an electrically confined GQD, the
graphene monolayer deposited on the support is n(p) doped.
The local action of an electric field (screening) directed oppo-
site to the electric field of n(p) doping changes locally the type
of doping from n(p) to p(n). The resulting n-p or p-n junction
is an electrically confined GQD. The n(p) doping of a bulk
monolayer can be achieved by applying an electric voltage
VBG to the support.

The design of nanoelectronic devices based on
graphene n-p (p-n) junctions requires the knowledge of
model-independent realistic confining electrostatic potentials.
Model-confining potentials for GQDs have been currently
offered. However, their shape is determined by the specificity
of fabrication method. There are three techniques. First,
an electric field of the graphene-doping electrode (back
gate) contacting with the support can be locally screened by
forming an additional thin (needlelike) metal structure on the
surface of the tip of the scanning tunneling microscope (STM)
[4,5]. Such quantum dots are called tip-induced ones. Second,
under the local action of an electric voltage pulse VTG on
the STM tip, the nanometer-sized graphene region is doped
with charge carriers of the opposite sign with respect to bulk
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FIG. 1. Sketch of electrical fields creating circular graphene n-p and p-n junctions and the model potentials confining charge carriers in
the junctions. (a) The n-p junction is induced by a scanning tunneling microscope (STM) double tip, which consists of a large-radius tip and
a small-radius tip attached to the latter at the lowest point. Emerging at application of voltages VTG and VBG to the STM tip (top gate) and
support (back gate) an electric field �Edop dopes the bulk graphene with a positive charge. By polarizing the metallic thin tip, one creates an
electric field �Esc, which screens the graphene region located under the tip from the action of �Edop, that locally results in changing p-doping
to n-doping. The level of n-doping also depends on the electric field �EW = � �W /e produced by the difference between work functions Wg

and Wt of graphene and metal probe tip. (b) Cos-shaped potential reconstructed on experimental data [4]. (c) The p-n junction is induced
by a pulse of STM-tip voltage. The electromagnetic quanta γ polarize the hexagonal boron-nitride (h-BN) region directly underneath the
tip. The electric field �Esc in this h-BN region, functioning as a negatively charged local embedded gate, positively dopes the graphene region
underneath the tip. �Esc screens the p-doped graphene region from an action of the electric field �Edop, which dopes bulk graphene with a negative
charge. (d) Schematic of confining-potential measurements over two Dirac band touchings E in

D and E out
D inside and outside the electrostatically

confined graphene p-n junction, respectively. The Dirac-touching offset produces a radial step potential V (r). The chemical potential μ is
marked by a dashed line. (e) Model scattering potentials for the graphene quantum dot (GQD) of radius rdot: a long-wave approximation
Vi,Rk ∝ −εRk (qi )�(λi − R)�(a − r) of the pseudopotential in Eq. (2.20) (red curves) Rk = | �R − �r|; a parabolic potential (−κr2) with a large
repulsive potential outside the GQD (black curves); a cylindrical barrier potential V = +V0�(rdot − R) � 0, V0 > 0 (blue curves). The +, −
signs indicate the charge polarities in the tip and in graphene with support.

graphene [6]. A mechanism for creating a local p(n)-doped
region by the second method is the ionization of defects in
the hexagonal boron-nitride (h-BN) layer of support by an
electric-field pulse; the released (migrated) charges screen
the electric field acting from the side of the support, that
is, equivalent to local p(n)-doping. In this case, the support
plays a role of a back gate, and the local p(n)-doping is
equivalent to the fabrication of a local embedded gate. Third,
the shielding embedded gate can be effectively formed as
the part of metal support, which remains defect free during
the epitaxial growth of the graphene on its surface [7]. The
advantage of the field doping used in the first two methods
is the absence of a Fermi level shift under the action of the
chemical potential.

The confining potential of the tip-induced GQD is sub-
jected to the strong influence of electric fields due to
peculiarities of the field spatial configuration, schematically
presented in Fig. 1(a). Since the screened region is bound
to the STM double tip and, correspondingly, the tip-induced

GQD is bound functionally to the tip, while the structure of
such junctions was not observed in the images. The atomlike
nature of these graphene p-n junctions is revealed in the ex-
perimental dependence of a derivative of the tunneling current
dI/dV on voltages VTG and VBG. The dependence is like the
local density of states (LDOS) for a tight-binding Hamilto-
nian of graphene charge carriers moving in a potential of the
Thomas-Fermi atom model [5]. According to this estimate,
the quantum dot is an artificial atom with a huge number
of electrons, as the effective electric charge of Coulomb po-
tential or the Coulomb coupling β = (Z/εG)αc/vF , which
confines charge carriers in the tip-induced junction, takes
on values typical for a supercritical regime of ultraheavy
atoms. Here, Z is a local unscreened charge, c is the speed
of light, vF is the Fermi velocity, and εG is the effective
dielectric constant of bulk graphene εG ≈ 5 [8]. The atomlike
distribution of the electron (hole) density in such quantum
dots is fitted by a continuous Thomas-Fermi-like approx-
imation for a potential U (r) confining electrons (holes):
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U (r) = sgn(n)h̄vF
√

π |n(r)|. Here, n(r) is a charge density
(for holes in p-n junctions or for electrons in n-p junctions).
The confining model potential based on the Thomas-Fermi
model is a two-step potential [5], and ab initio full tight-
binding calculations with a Poisson’s equation predict a
staircase form for the confining potentials [see Fig. 1(b)]
[4,9,10].

Since the back gate and the created embedded gate exist
independently of the STM tip, the atomlike structure of GQDs
fabricated by the second and thid methods can be imaged by a
STM probing of their LDOS using voltages that practically do
not change the initial configuration of the gate electric fields
shown schematically in Fig. 1(c). The imaging allows us to
construct the confining electrostatic potential directly from
the experimental values of the touchings E (i)

D , i = 1, 2, . . .

between the Dirac graphene valence and conduction bands.
For example, a radial step potential is constructed based on the
two values of ED inside and outside the small-radius quantum
dot [see Fig. 1(d)]. A parabolic potential as an infinite set of
single-step radial potentials is used to describe large GQDs
[see Fig. 1(e)]. When constructing a model confining poten-
tial for the third fabricating method, it is also necessary to
anticipate an offset of the chemical potential μ for GQD after
doping of graphene with metal atoms.

A feature of the scattering Dirac fermions with mass m
is the existence of delocalized modes among scattered ones
under the condition V > 2m imposed on the potential bar-
rier V [11]. The delocalized modes are called transmission
resonances, and the tunneling process is called the Klein one
(see also Ref. [12] and references therein). The fermions pass
freely through the potential barrier at normal incidence on the
boundary of the barrier V for phases that are multiples of π ±
2πn; n = 0, 1, . . . [13]. For the massless graphene fermions,
the transmission resonances will always be present among the
scattered modes. Assuming that the effects of Klein tunneling
will always distort the electrostatic confinement of massless
charge carriers, the variety of solutions to the problem of
pseudo-Dirac fermions in electrostatically confined graphene
p-n(n-p) junctions can be narrowed down to the subvariety of
levels localized near the Fermi level (quasi-zero-energy levels
or whispering gallery modes). Due to the orbital motion of
charge carriers, the production of electron-hole pairs does not
occur. Unfortunately, for the massless fermions, a condition
selecting eigenstates, which are localized at the edge of the
radial step barrier and behave like to Dirac δ function, gives
a single level or has unphysical solutions, depending on the
GQD parameters [14,15]. In Ref. [7], the set of states with
one real eigenvalue is speculatively expanded by adding solu-
tions with complex eigenvalues, manipulating (juggling) with
them to achieve an apparent similarity between the calculated
LDOS and dI/dV . The nonrelativistic tight-binding Hamil-
tonians, which fundamentally do not possess Klein scattered
modes, narrow the possible types of edge spatial configura-
tions at which there is a zero-energy level in the quasicircular
GQD [16]. It turns out that the spectra of zigzag-edged qua-
sicircular GQDs (zigzag edges at the boundary prevail) and
zigzag-edged hexagonal GQDs host only one zero-energy
level, and the tight-binding GQD model of arbitrary shape
does not predict the modes localized at the boundary of
the cavity [17–20]. A simplified continuous pseudo-Dirac

Hamiltonian with a radial step potential hosts a zero eigen-
value at the zigzag-boundary condition. However, among
the eigenvalues of the Hamiltonian, there are no zero or
quasi-zero energies at the so-called infinite-mass boundary
condition, meaning that the region outside the dot is for-
bidden, or the type of all edges is an armchair one, and
correspondingly, the boundary is nonmetallic [18,21,22]. An-
other mechanism for the emergence of the zero-energy level
is associated with the exciton instability in graphene [23]. It
can be assumed that electron-hole pairs become Keldysh-type
exciton states, energetically favorable in a low-dimensional
system with the dielectric constant ε (in this case, in one
dimension). The screened electron-hole interactions added
to the continuous pseudo-Dirac fermion model with a radial
step potential at the infinite-mass boundary condition result
in a zero-energy level [24]. Unfortunately, even when using
the low dielectric constant εG = 2.5 (while experiments give
εG = 5), the exciton binding energy is very small, i.e., at least
two times less (∼50 meV) than the probing voltage (electro-
static potential) 0.1–1 eV. Therefore, the exciton polarization
cannot be the mechanism responsible for the existence of
zero-energy states.

Thus, the problem of an existing zero-energy level for
a graphene junction with arbitrary-edged configurations is
still unsolved. Moreover, the stability of the experimentally
observed quasi-zero-energy levels can be not only and not
that much related to the peculiarities of the Klein tunneling
process. There are experimental indications that long-lived
scattered resonances can be at deep enough levels of confining
staircase potentials [5]. Also, large p-n (n-p) junctions fab-
ricated by the second technique are characterized by a huge
number of quasistationary levels far from the GQD edge. This
could be an indication that the GQDs can exist for quite a long
time in states other than quasi-zero-energy modes. The con-
finement of massless fermions in the multistep potential can
be considered simplistically as the confinement of a pseudo-
Dirac fermion in a parabolic potential. Unfortunately, since
the quasi-zero-energy levels at the edge of such a GQD are
spurious ones, the assignment of the levels in the parabolic
confining potential to the long-lived Klein resonances cannot
be considered as correctly justified [8].

Generally speaking, since GQDs are many-body artificial
atoms, their models must have a lot of quasi-zero-energy
modes. The phase condition for the existence of transmission
resonances has nothing in common with their spatial config-
uration and can expand the search for the solutions to the
region of Klein transmission modes delocalized in a limited
GQD region. In addition, the experimental LDOS of electro-
statically confined junctions is polarized [6]. Until now, no
models of such exotic states have been proposed. The amazing
fact that the modern GQD models cannot have quasi-zero-
energy levels, except for the actual zero-energy level, should
be interpreted as a huge problem. Without a solution to such a
problem, there can be no talk of the physics of GQDs.

Therefore, the search for the selection criteria of GQDs
with quasi-zero-energy levels and transmission resonances,
delocalized in a limited spatial area, is a difficult and unsolved
problem. The lack of models, in which a quasi-zero-energy
band emerges, prevents the development of methods to tune
up the graphene junction in such a way that its modes
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FIG. 2. Scheme of a graphene quantum dot (GQD): (a) the ith atom C is located at the ith site with radius vector �Ri, and �r is a radius
vector of the pz electron relative to the ith lattice site, O is a reference point. (b) The GQD supercell used to calculate a quantum dot with
torus topology includes 51 × 51 primitive cells (100 × 150 Å). Splitting of Dirac cone into replicas for graphene in the Dirac-Hartree-Fock
quasirelativistic approximation q4 for the exchange interactions. Two W1, W2 of the six pairs of Weyl nodes-antinodes: (c) two sources and
two sinks and the Dirac valley K (K ′) are indicated. In (d) and (e), we describe model quantum dots produced by three and six rhombic unit
supercells, respectively. Edges of these quantum dots are zigzag ones. In (f) and (g), we depict model quantum dots produced by four and eight
rectangular unit supercells, respectively. The quantum dot in figure (f) holds zigzag as well as armchair edges. The edges of the quantum dot
in figure (g) are in the armchair configuration. Radius of the yellow-colored circumference in figures (d)–(g) can be interpreted as a radius of
the quasicircular quantum dot. Rectangular unit cells are labeled by dotted lines.

do not turn out to be short-lived resonances, and Klein
transmission resonances are delocalized in a limited area of
space. Therefore, realization of devices based on the tailored
charge confinement in a graphene monolayer is still challeng-
ing.

In this paper, we simulate electrostatically confined GQDs,
using a quasirelativistic tight-binding Hamiltonian of mass-
less fermions in monolayer graphene. We present a discrete
model of the GQD and its continuous limit to describe realistic
electrostatically confined GQDs. To do this, we use a high-
energy �k · �p massless-fermions Hamiltonian. A band structure
obtained from the Hamiltonian holds the Dirac touching and
six Weyl node-antinode pairs as minibands near the valley
K (K ′) of the graphene Brillouin zone. Then we look for a
pseudopotential barrier given by a set of well potentials for
distinct carbon atoms of the GQD. We discover two topologi-
cally different scenarios of the confinement in a quantum dot.

II. MODEL OF AN ELECTRICALLY CONFINED
GQD AND THEORY

A graphene monolayer quantum dot consisting of carbon
atoms is shown schematically in Fig. 2(a). Let a model quan-
tum dot be considered as a “large atom.” Its core ith electrons,
by definition, are pz electrons of jth C atoms, j �= i. The kth
pz electron of the kth C atom plays the role of an external
valence electron. Let the kth C atom be placed at the lattice
site with a radius vector �Rk . The radius vector �r will be

calculated with respect to the nearest lattice site and is a radius
vector of the electron in the atom. The radius vector �Xk of the
valence electron of the kth atom is given by the expression

�Xk = �Rk + �r. (2.1)

A model GQD has been constructed in the following
way. The graphene primitive cell has basic vectors �b1 =
a(3/2,

√
3/2), �b2 = a(3/2,−√

3/2), and two atoms (A and
B) in the cell. Here, a is the length of the sp2-hybridized C-C
bond. We construct a rhombic region consisting of (2n1 +
1)(2n2 + 1) primitive cells of graphene for n1 = 25, n2 = 25,
which is shown in Fig. 2(b).

A. Folding zone approximation

The energy levels of a GQD can be approximately found
by the “folding zone” method in the same way as for single-
walled carbon nanotubes (CNTs). Electronic states of CNTs
are restricted to wave vectors that fulfill the quantization con-
dition [25]

�k⊥ · �C = 2πm, m = −N

2
+ 1, . . . ,

N

2
, (2.2)

where �k⊥ is a wave vector in the direction perpendicular to the
CNT axis, �C is a chiral vector of the CNT, N is the number of
graphene hexagonal unit cells within a CNT unit cell, and m
is an index of a one-dimensional (1D) band. The condition in
Eq. (2.2) is the so-called “Born–von Karman” condition.
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Contrary to the CNT case, the wave vector �k = (kx, ky)
of a charge carrier in the dot is quantized in two direc-
tions. Moreover, the quantum dots can be constructed with
topologies: sphere S2 and torus S1 × S1 in the following way.
The dot topologically equivalent to the sphere is formed by
rhombuses inscribed into rectangular supercells. Such a geo-
metrical structure can be obtained by a shift on a half-period
of the rectangular lattice. The sphere topology is obtained by
identifying all vertices of the rhombus and gluing adjusting
its sides. In the case of the rectangular unit cell, a quantum
dot can be produced, for example, by four or eight supercells.
The quantum dots of this type are presented in Figs. 2(f)
and 2(g). All edges of the eight-supercell dot are in armchair
configurations. The edges of the four-supercell dot are both
in armchair and zigzag configurations. Since the symmetry
group for the superlattice with the rectangular unit cell is a
nonsymmorphic one, there are no punctured points.

Since the basis vectors of the rectangular unit are �C1 =
(2n1 + 1)�b1 + (2n2 + 1)�b2 and �C2 = (2n1 + 1)�b1 − (2n2 +
1)�b2, the quantization conditions for the S2-type GQD read

[(2n1 + 1)�b1 + (2n2 + 1)�b2] · �k =2πm1,

m1 = − Ndot

2
+ 1, . . . ,

Ndot

2
;

[(2n1 + 1)�b1 − (2n2 + 1)�b2] · �k =2πm2,

m2 = − Ndot

2
+ 1, . . . ,

Ndot

2
.

(2.3)

Here, Ndot = (2n1 + 1)(2n2 + 1) is the total number of
graphene hexagonal unit cells within the supercell. For the
model quantum dot shown in Fig. 2(b), the number of levels
(Ndot + 1)2 ≈ 6.7 × 106.

In the case of the rhombic unit cell, a quantum dot can be
generated by, for example, three or six supercells with one
common vertex. Since the vertex is the punctured point of
the circle, the topology of these dots is a toroidal one. The
quantum dots of this type have zigzag edges only and are
presented in Figs. 2(d) and 2(e). The torus is obtained by
identifying of the opposite sides of the rhombic supercell (at
first by gluing with twisting into a cylinder, then by gluing the
latter into a torus).

The basis vectors of the rhombic supercell are
�C1=(2n1+1)�b1, �C2 = (2n2 + 1)�b2. Therefore, quantized
wave vectors for the toroidal-type dot are determined as

(2n1 + 1)�b1 · �k =2πm1, m1 = −Ndot

2
+ 1, . . . ,

Ndot

2
;

(2n2 + 1)�b2 · �k =2πm2, m2 = −Ndot

2
+ 1, . . . ,

Ndot

2
.

(2.4)

The pair of numbers (m1, m2) entering the formulas in
Eqs. (2.3) and (2.4) is a multi-index of a superlattice band.
Inverse-superlattice wave vectors �G = n1 �G1 + n2 �G2 lie inside
the single-layer graphene Brillouin zone. Here, �G1, �G2 are ba-
sic vectors of the inverse-superlattice, and n1, n2 are integers.
The superlattice Brillouin zone is very small, and accordingly,
quasiparticle momenta �ps, (n1 �C1 + n2 �C2) · �ps = 2πL, which

are due to the translational symmetry of the problem, are
small also. Here, L is an integer. Therefore, we can neglect
�ps, assuming that the bands are degenerated over �ps (a depen-
dence on wave number ps is absent). These zero-dimensional
(0D) bands is what we name energy levels of our quantum
dot model. The first advantage of the proposed “momentum”
boundary conditions in Eqs. (2.3) and (2.4) is in a small
number of variants (only two). The nodes of the wave function
on the boundary signify that the source of the wave and,
correspondingly, an outward current, are absent. The second
advantage is that the radius of a quantum dot with a given
topology determines uniquely a supercell combination form-
ing the dot and, accordingly, the zigzag and armchair edge
configuration of its boundary.

Thus, we assume that the STM experiment probes the
many-electron structure formed under the action of an electric
field in a region consisting of supercells. Valence electrons
of the structure move in an electric field of core electrons.
The latter will be described within a pseudopotential method.
The pseudopotential corrections are considerably larger than
contribution of momenta �ps.

Further, using a folding zone approach, we will calculate
pseudopotential-bending 0D bands of single-layer graphene
in a superlattice potential. In addition, the topology of toroidal
or spherical types is a sign of the charge density distribution
on circular orbits. The above makes it possible to assign simu-
lated quantum dots to a quasicircular type. The latter will also
be confirmed by the simulation results.

We use a monolayer graphene model �k · �p Hamiltonian
ĤD to determine the energy levels ε(qm1,m2 ) of the GQD
in the folding zone approximation. Meanwhile, one has to
work with the whole Brillouin zone rather than the first one.
Let a wave vector �km1, m2 , satisfying either the quantization
conditions in Eq. (2.3) or Eq. (2.4), be associated with the
reduced wave vector �qm1,m2 as the difference between �km1,m2

and the nearest Dirac point (valley) K (K ′) of the Brillouin
zone. The Hamiltonian ĤD is obtained within the quasirela-
tivistic Dirac-Hartree-Fock self-consistent field approach (see
Refs. [26,27]). It is a high-energy �k · �p Hamiltonian in a
q4 approximation for the quasirelativistic quantum exchange.
The approximation is the series expanded around the Dirac
point �K ( �K ′) in powers of difference �q = �p − �K between the
quasiparticle momentum �p and �K ( �K ′). The expansion on
q ≡ |�q| is produced up to the terms of O(q4) inclusively.
The deviations of eigenvalues of ĤD from the low-energy
massless pseudo-Dirac fermion model are of the order of |q|4.
Contrary to the nonrelativistic graphene model, energy levels
of the quasirelativistic graphene model are Kramer’s doublets.
The Kramer’s doublet represents itself two levels at which
electrons are placed with the opposite signs of spin, and in the
absence of quantum exchange, the levels are degenerated. The
relativistic quantum exchange removes degeneration on spin
outside the Dirac valley, violating the particle-hole symmetry
so that the degeneration of the Dirac point is lifted outside the
Dirac valley, and six minibands emerge near the Dirac point.
Due to the removal of the degeneracy of the Kramer’s dou-
blets, each miniband represents a Weyl node-antinode pair.
Figure 2(c) demonstrates the band structure of the graphene
model characterized by the Dirac touching in the point K (K ′)
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and six Weyl node-antinode pairs. Let us note that, as op-
posed to our quasirelativistic high-energy graphene model, for
the low-energy �k · �p Hamiltonian of massless pseudo-Dirac
fermion, a Weyl node-antinode pair appears after removing
of Dirac point degeneration over the pseudospin in a three-
dimensional topological insulator so that a Fermi arc along
axis Z is observed (see, for example, Ref. [28]).

The folding zone approximations of quantum-dot wave
functions resemble (look similar) to harmonic (sinusoidal)
discrete solutions (standing waves) of a quantum mechan-
ical problem on a particle in a 1D rectangular well with
infinitely high walls. The wave functions are the bispinors
ψT = (ψ↑, ψ↓) = exp{−i �qm1,m2 · (�r + �Rk )}(u↑, u↓) of charge
carriers with the energies ε(qm1,m2 ). Here, ↑ and ↓ designate
spinor components with spin up and down, respectively. Here,
T is the transposition operation, u↑(↓) are periodic functions:
u↑(↓)(�r + �Rk ) = u↑(↓)(�r + �Rk + �aS ), and �aS is a supercell vec-
tor.

We sort the energy levels ε(qm1,m2 ), in the energy increase
order, by introducing an index i for the energies and wave
vectors and introduce a formal index Rk according to the
above-presented form of wave function. Therefore, in what
follows, we will denote the energies by εRk (qi ). We emphasize
that the energy does not depend upon Rk .

Thus, the following set of eigenenergies ±εRk (qi ) and
eigenstates ψ

(0)
i (∓qi, �r + �Rk ) = exp[∓ı �qi · (�r + �Rk )]u(�r +

�Rk ), u = (u↑, u↓)T for the GQD in the folding zone
approximation is{±εRk (qi ), ψ

(0)
i (∓�qi, �r + �Rk )

}
i,k=1,...,Ndot

, (2.5)

where the upper sign + is related to electrons, and the lower
sign − corresponds to holes.

In the following section, we construct a pseudopotential in
which charge carriers of GQDs move.

B. Continuous GQD model with pseudopotential

In a graphene monolayer, all pz electrons form pairwise
molecular π orbitals. Here, π electrons located inside and
outside of the edges of a monolayer patch turn out to be
unpaired among π electrons, composing an artificial atom of
the type of a GQD. These electrons occupy orbitals of the
GQD singly and are valence electrons of the artificial atom.

If not all electrons of the many-electron system (in our
case, this is the artificial atom) are coupled, a Hamiltonian
of the system includes nonpaired-electron potentials that po-
larize an atomic core (an exchange hole exists). The simplest
one-body method of approximate account of the atom polar-
ization in the electric field of the valence electron is based on
the Phillips-Kleinman cancellation theorem, which states that
all electrons, except an external orbital, are coupled, and the
valence electron moves in a pseudopotential which is added to
the atomic core potential [29].

Therefore, one has to add a pseudopotential operator to
the high-energy �k · �p Hamiltonian ĤD [30,31]. Let |〉 be a
vector of bispinor state in a Hilbert space H with coordinates
〈 �X1, σ1; . . . ; �XNdot , σNdot |〉, written in ordinary space repre-
sentation through the radius vectors of charge carriers in the
monolayer

|〉 =
Ndot∑

n1,...,nm=1

∑
σn1 ,...,σnm

∫
d �Xn1 . . . d �Xnm | �Xn1 , σn1 ; . . . ; �Xnm , σnm〉〈 �Xn1 , σn1 ; . . . ; �Xnm , σnm |〉. (2.6)

Here, σi is a spin of the ith electron. In this Dirac
bracket representation of wave functions for the Fock
space [32], the coordinates (wave functions) 〈 �Xim , σim |〉 ≡
[ψm,↑( �Xi ), ψm,↓( �Xi )]T = ψm( �Xi ) of mth particle states |ψm〉
in Eq. (2.6) are obtained by an action of the projec-
tors | �Xi, σi〉〈 �Xi, σi|, satisfying the resolution of identity Î =∑

σi

∫
d �Xi| �Xi, σi〉〈 �Xi, σi|. Here, | �Xi, σi〉 and 〈 �Xi, σi| are a vector

of the Hilbert space H and a vector conjugated to it.
The one-body Hamiltonian operator for an electron moving

in the quantum dot pseudopotential reads

ĤD|ψm〉 =
(

εm −
Ndot∑
j=1

ε̂†Pj

)
|ψm〉, (2.7)

where the second term on the right-hand side of Eq. (2.7) is
the pseudopotential operator

∑Ndot
j=1 ε̂†Pj determined through a

hole energy operator ε̂† and a projection operator

Pj =
∫

d �Xkd �Xi|xk〉〈xk|ψ j〉〈ψ j |xi〉〈xi|, (2.8)

coefficient matrices 〈x′
k|Pj |x′

i〉 of which have the follow-

ing form 〈x′
k|Pj |x′

i〉 = [
ψ j↑( �X ′

k )ψ∗
j↑( �X ′

i ) ψ j↓( �X ′
k )ψ∗

j↑( �X ′
i )

ψ j↑( �X ′
k )ψ∗

j↑( �X ′
i ) ψ j↓( �X ′

k )ψ∗
j↓( �X ′

i )
]; εm is a mth

eigenvalue of ĤD.
We use a representation where the operator ε̂† is a ma-

trix, which elements {εkci} ≡ {εRk−Ri (qci )} belong to the set in
Eq. (2.5). Here, on the definition of valence electron, εkci = 0
at k = ci. In this representation, Eq. (2.7) is an equation of
motion for the valence kth electron with a radius vector �Xk =
�r + �Rk:

ĤDψk (�r + �Rk ) +
Ndot−1∑
i,ci �=k

εkci Pciψci (�r + �Rk )

= Ekψk (�r + �Rk ), k = 1, . . . , Ndot. (2.9)

Here, Pci = ∫
d �Xnψk ( �Xn)ψ∗

ci
( �Xn), εkciψci ( �Xk ) ≡ ε̂†ψci ( �Xk ):

εkciψci ( �Xk ) = ∫
d �Xci〈xk|ε†|xci〉〈xci |.ψci〉.

Since a quantum dot consists of sufficiently many atoms,
one can construct its continuous model in a hydrodynamic
limit | �Rk+1 − �Rk| = a → 0, r → 0. A radius vector �R of a
point in the continuous GQD model takes the values of radius
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vectors of lattice sites

�R = �R1, �R2, . . . , �RNdot . (2.10)

A derivative ∂

∂ �R for the continuous GQD model is determined
in the following way:

∂

∂ �R( �R)
def==

{
ψk ( �Rk+1) − ψk ( �Rk )

�Rk+1 − �Rk

}∣∣∣∣
Ndot

k=1

=
{

ψk ( �Rk + �a) − ψk ( �Rk )

�a
}∣∣∣∣

Ndot

k=1, a→0

, (2.11)

where ( �R) is a GQD wave function defined by the following
expression:

( �R) ∈ {ψk (�r + �Rk )}|Ndot
k=1,r=a. (2.12)

Using the definition in Eq. (2.11), one can determine a
convolution �σ · ∂

∂ �Rv↑(↓) between the derivative of up (down)-
spinor component v↑(↓) and the 2D vector of the Pauli
matrices �σ = (σx, σy) for a vth electron as

�σ · ∂

∂ �Rv↑(↓)( �R)

=
2∑

i=1

σi
∂

∂xi
v↑(↓)

=
2∑

i=1

σi

{
ψv↑(↓)[ �Rk + (�ei, �a)�ei] − ψv↑(↓)( �Rk )

(�ei, �a)

}∣∣∣∣
Ndot

k=1, a→0

≡ �σ · �∇ �Rv↑(↓)( �R), (2.13)

where �ei, i = 1, 2 are orthonormal vectors along the coor-
dinate axes X, Y ; (·, ·) is a scalar product, �Ri = xi�ei. Then
considering Ek is obtained by the action of the operator ih̄ ∂

∂t

on ψk (�r + �Rk ): Ekψk (�r + �Rk ) = ih̄ ∂
∂t ψk (�r + �Rk ), the system

of equations in Eq. (2.9) in the hydrodynamic limit can be
rewritten as{

ĤDψk (�r+ �Rk )+
∑
c �=k

εkcPcψc(�r+ �Rk ) = Eψk (�r+ �Rk )

}Ndot

k=1,r→a

.

(2.14)

Using the definitions in Eqs. (2.10)–(2.12) and the definition
of the projection operator, one gets an equation of motion for
the valence vth electron in a pseudopotential VGQD:

ĤD|v〉 +
Ndot−1∑

i=1,ci �=v

|ci〉εci ( �R)〈ci |v〉 = E |v〉. (2.15)

Here, VGQD ≡ ∑Ndot−1
i=1,ci �=v |ci〉εci ( �R)〈ci |, a matrix εci ( �R) is

determined by the expression εci ( �R) ∈ {±εRk−Ri (qci )}k=1,...,Ndot

entering the expression in Eq. (2.5). A scalar product
〈ci |v〉 = ∑

σ

∫ 〈ci | �R′, σ 〉〈 �R′, σ |v〉 d �R′ of the wave func-
tions |ci〉 and |v〉 of the core and valence electrons of the
GQD and, consequently, the operator VGQD are constructed on
a basic set of the functions entering the expression in Eq. (2.5):

〈ci |v〉 =
Ndot∑
k=1

ψ (0)†
Rk

(∓�qci , �Rk )ψ (0)
Rk

(∓�qv, �Rk ), (2.16)

and

〈cn |VGQD( �R)|cm〉

=
Ndot−1∑

i=1,ci �=v

〈cn |ci〉εci ( �R)〈ci |cm〉

=
Ndot−1∑

i=1,ci �=v

Ndot∑
k,l=1

ψ (0)†
Rk

(∓�qcn , �Rk )ψ (0)
Rk

(∓�qci , �Rk )

× εRk−Rl (qci )ψ
(0)†

Rl
(∓�qci , �Rl )

× ψ
(0)
Rl

(∓�qcm , �Rl ). (2.17)

To reveal distinctive features from known potentials, let us
find an approximation of the pseudopotential in Eq. (2.17)
schematically in the δ vicinity of the Dirac point, δ �
1: qcn , qcm , qci → 0. To do it, we substitute Eq. (2.5) into
Eq. (2.17), assuming qcn → qcm at r = a:

Vn, �Rs
(�r) = lim

qcn →qcm

±
∑
σ,σ ′

Ndot−1∑
i=1,ci �=v

Ndot∑
k,l=1

|u|2σ (�r + �Rk )

× |u|2σ ′ (�r + �Rl ) exp[±i(�qcn − �qci ) · ( �Rk − �Rl )]

× εRs (qi )�(r − a), i �= k. (2.18)

Here, �Rs = �Rk − �Rl , �(r − a) is a Heaviside � function.
Changing summation on i, k, l , by integration in the ex-
pression in Eq. (2.18) and using the periodicity property of
states u↑(↓), we find the pseudopotential in the long-wave
approximation:

Vn, �Rs
(�r) = ±

∑
σ,σ ′

|u|2σ (r)|u|2σ ′ (r)εRs (qn)

×
∫

exp[±i(�qcn − �qci ) · �Rk]

× �(r − a)d �Rkd �qci

= ±(2π )2
∑
σ,σ ′

|u|2σ (�r)|u|2σ ′ (�r)εRs (qi )

× �(r − a)�(qcn − qci ), i �= k. (2.19)

The expression in Eq. (2.19) at qcn ≡ 2π/R → 0, �R = �Rs + �r
trends to a pseudopotential at the Dirac point:

Vi,Rs (�r) = ±(2π )2εRs (qi )�(λi − R)�(a − r)

×
∑
σ,σ ′

|u|2σ (r)|u|2σ ′ (r), (2.20)

where λi = 2π
qi

. This staircaselike (cos-shaped) potential in
Eq. (2.20) resembles the experimental one shown in Fig. 1(b).
The Hamiltonian with the approximate pseudopotential of
staircase type in Eq. (2.20) has a set of quasi-zero-energy
levels. This feature of the artificial atom is like a very high
principal quantum number for ultraheavy atoms. The values
of the radial step V0 for all these resonances are close; that
explains the experimental data in Ref. [7] without invoking
speculative assumptions, for example, about the shift of the
Dirac touchings in the process of STM probing.
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FIG. 3. Energy spectra for graphene quantum dots (GQDs) with topology (a) and (b) S1 × S1 and (c) and (d) S2 on (a) and (c) low-
energy and (b) and (d) high-energy scales. In each figure, the left and right spectra correspond to the calculations in the folding zone and
pseudopotential approximations, respectively. All spectra are normalized to the largest value of the right spectrum.

Now we solve the following eigenproblem∑
j

〈cn |ĤD( �R)|c j 〉〈c j
�R, σ 〉

+
∑

m

〈cn |VGQD( �R)|cm〉〈cm | �R, σ 〉

= E〈cn | �R, σ 〉. (2.21)

III. RESULTS AND DISCUSSION

A. Emergence of quasi-zero-energy band

To fit a derivative dI/dV of the STM current I with respect
to the bias V , it is necessary to calculate LDOS. LDOS reads

ρ( �R, E ) =
∑

i

∣∣i( �R)
∣∣2

δ(E − εi ), (3.1)

where the summation is performed over all eigenstates of
the system. The presence of δ functions reflects the infinitely
small spectral line width of an eigenstate. For a finite spectral
line width, we have to assign some decay rate γi to a given
eigenstate and to use the δ function approximation, resulting
in a Lorentzian spectral line form

ρ( �R, E ) =
∑

i

∣∣i( �R)
∣∣2

|E − εi + ıγi|2 =
∑

i

∣∣i( �R)
∣∣2

(E − εi )2 + γ 2
i

.

(3.2)
In practice, γi are considered as given parameters in a way
not to overlap spectrum lines of interest. In our numeric simu-
lation, we have chosen γ = 10−3 for upper eigenstates and
γ = 10−5 for the lower part of eigenstates. The simulation
is time consuming for LDOS. It has been performed at a 32
core cluster with message passing interface parallelization; the
simulation time for a single LDOS point is about 10 min.

LDOS determined by the formula in Eq. (3.2) depends
on three variables: two space variables and the energy. At
least, in modern STM experiments, all directions of charge-
current vector for the dot contribute to the tunneling current.
Therefore, it is necessary to perform a contour-averaging pro-
cedure. We perform averaging over some contour in �r space
accounting for points equivalent from the viewpoint of lattice
symmetry. For the toroidal GQD, we choose averaging con-
tours CT around a center of the 2D toriclike region from three

rhombuses closed sequentially on each other, accounting for
graphene lattice symmetry. For the spherical GQD, we choose
averaging circles CS with increasing radii around a point in the
center of the rhombus side, accounting for graphene lattice
symmetry. The contours CT and CS are topologically equiva-
lent to closed contours on the torus and sphere.

We study the LDOS spectra at two relevant competing en-
ergy scales. For the torus and sphere topologies, we choose the
low- and high-energy ranges 0.24–0.92 eV and 0.68–2.94 eV
and, respectively, 0.24–1.22 eV and 2.98–3.26 eV. The scales
were obtained in the following way. For the low-energy range,
we get the solutions of the conditions of quantization in
Eqs. (2.3) and (2.4) for m1, m2 ∈ [−25, 25], which corre-
sponds to the choice of the 40 lowest energy levels from
2601. For the high-energy interval, we determine the solu-
tions of the conditions of quantization in Eqs. (2.3) and (2.4)
for m1, m2 ∈ [−12, 12], which corresponds to the choice of
the 40 lowest energy levels from 625. Comparing the struc-
tures of the levels ED(�ki ) and E (0)(�ki ), i = 1, . . . , 40 for the
pseudo-Dirac GQD model and our GQD model with Weyl
nodes-antinodes, respectively, in the folding zone approxima-
tion, we conclude that the Weyl nodes-antinodes decrease the
degree pd of level degeneration. The effects of topology and
symmetry manifest themselves in different maximum values
of pd for the sphere and torus topologies in the folding zone
approximation. The maximum values max(pd ) are equal to 4
and 12 for the pseudo-Dirac spherical and toroidal quantum
dot models, respectively. In the case of Weyl node-antinode
pairs, max(pd ) takes values of four and six for the spherical
and toroidal quantum dot models, respectively. The pseudopo-
tential completely lifts the degeneration of the levels E (0)(�ki ),
i = 1, . . . , 40, and the resulting spectrum E (1)

i , i = 1, . . . , 40
consists of two bands. The lower energy band formed by
levels located near the zero-energy E = 0 is a quasi-zero-
energy band, as one can see in Fig. 3. The spectra for both
toroidal and spherical quantum dots in the pseudopotential
approximation possess a very narrow quasi-zero-energy band.

B. Toroidal quantum dot

Figure 4 shows the squares |i|2 = ∑2
j=1 ∗

i ji j of the
absolute values of ith spinor wave functions. “Hills” in Fig. 4
represent electron states. A bottom view of the 3D plot is
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FIG. 4. The pseudopotential confinement of the S1 × S1-dot states. Squares ||2 of the absolute values of wave functions are presented.
The states are localized on resonant (upper row) and nonresonant (middle row) trajectories of the torus or delocalized due to Klein transitions
(bottom row) for the different energies E . For the levels E = 0.0014769, 0.00102502 eV, we represent both sightseeing from up and from
down.

shown in the inset, upper row, Fig. 4. “Wells” in the inset
represent hole states. At definite energies corresponding to
resonant trajectories on the torus, the orbitals are like those for
Bohr atoms when the length of the closed orbit is an integer
number of wavelengths. Due to the zero curvature of the
torus, the motion of the charge carrier on such orbits is stable.
There also exist other energy levels (Fig. 4, bottom row). On
them, the phases of wave functions are multiples of π ± 2πn,
n = 0, 1, . . .. The latter feature makes them like transmission
resonances of the Klein tunneling process. Charge carriers
delocalized due to the Klein tunneling can be considered, in
analogy with atomic states, as valence ones. The localized
states are like the core electrons of an atom.

According to Fig. 5, the main feature of the structure of
energy levels for the toroidal quantum dot is the presence
of self-similar energy bands located subsequently one after
another on the energy scale. The atomlike structure (LDOS)
for some bands marked by dashed lines in Fig. 5 is realized
only for toroidal GQDs, from the geometric viewpoint, due

to the absence of the curvature of a torus. These levels are
occupied by electrons (holes) with wave functions of the type
of Bohr atom orbital [Fig. 4 (upper row)]. The electron (hole)
density can be localized also in the case of nonresonant torus
trajectories due to constructive interference [see Fig. 4 (mid-
dle row)].

For the toroidal GQD, the charge-carrier density is absent
on the quasi-zero-energy band due to destructive interference
of the states. The latter fact leads to the formation of a pseu-
dogap between the hole and electron bands, providing the
absence of the electron density at the center of the quantum
dot, like in the case of an ordinary atom.

C. Spherical-type quantum dot

The probability density of states for the quantum dot with
sphere topology is shown in Fig. 6. According to a form of
the wave functions, the charge carriers are localized due to
constructive interference in the case of nonresonant sphere
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FIG. 5. Local density of states (LDOS) of a toroidal quantum dot in bending bands. (left) LDOS for the states possessing high energies in
the folding zone approximation. (right) LDOS for the states possessing low energies in the folding zone approximation. The self-similar bands
are marked by dashed lines.

configurations [Fig. 6(a)] or the transmission resonances de-
localized in a limited region at the state phase multiple to π

[Figs. 6(b)–6(e)]. The resonances of the S2 dot reside in the
quasicirclelike region located either inside one rhombic cell
or in two conjugate rhombuses. Therefore, the spherical-type
dot can be classified as a quasicircular quantum dot electro-
statically confined in one or two supercells bordering on each
other. The action of centrifugal forces stipulated by the sphere
curvature destroys Bohr atom orbitals formed on resonant
trajectories (with an integer number of wave periods on the
trajectory). However, such features of the atomic structure
as localized “core” charge carriers, and delocalized valence
states remain. The “transmission resonances” play a role of
the valence states.

Figure 7 demonstrates that the structure of energy levels
for the spherical-type GQD hosts self-similar energy bands
placed subsequently one after another on the energy scale, and
the levels can hold a multiresonance structure. This feature
resembles that of the toroidal quantum dot. The electron (hole)
density with such a structure is confined by a staircaselike
(cos-shaped) potential, as one can see in Figs. 7(b) and 7(c).
Opposite to the case of the toroidal quantum dot, the charge-
carrier density in the spherical quantum dot resides also on the
quasi-zero-energy band [see Fig. 7(a)]. The localized nonres-
onant electron (hole) configurations shown in the middle row,

Figs. 4 and 6(a), are observed for both spherical and toroidal
GQDs.

D. Comparison with experimental data

We now compare the measured experimentally and the-
oretically predicted distributions of the charge density in
electrically confined GQDs.

In Ref. [7], graphene p-n junctions with an atomlike struc-
ture have been epitaxially grown up to a size of 8 nm along
radius R on a copper support. Figures 8(a) and 8(c) show
different theoretical predictions for LDOS of the small-radius
p-n junction, whose spectroscopic map of the radially aver-
aged derivative dI/dV of a STM current I with respect to
the bias V is shown in Fig. 8(b). Their features are brought
together in Table I. The value of the first level has been chosen
as the origin for the energy. We take the graphene dielectric
constant ε = 2.0. Our estimation of the graphene dielectric
constant is consistent with the experimental one equal to 2.2
for graphene carrier concentration n ∼ 109 cm−2 [33]. We
observe the following differences between the spectroscopic
map, LDOS for our toroidal graphene junction model, and
LDOS estimated on the assumption that the confining p-n
junction potential is a radial step. Our level prediction is
extremely precise. Their structure and arrangement are also

FIG. 6. The pseudopotential confinement of S2-dot states with different energies E . Squares ||2 of the absolute values of wave functions
are presented. The states are localized on non-resonant trajectories of sphere (a) or are delocalized due to Klein transitions (b–e).
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FIG. 7. Local density of states (LDOS) of a spherical quantum dot in bending bands. (a) LDOS for the states possessing low energies in the
folding zone approximation. (b) LDOS for the states possessing high energies in the folding zone approximation. (c) A band in the overlapping
energy range. Self-similar bands are marked by dashed lines and bold angles.

in perfect agreement with the experimental ones. The second
level of our model is unscreened. Higher lying states are
screened. The fitting based on the low-energy pseudo-Dirac
model Hamiltonian with a radial step potential gives not only
values which are very different from the experimental ones
but also an incorrect resonance structure because the third
level of the junction is doubled. As one can see, a serious
drawback of the theoretical approach [7] is also the absolute
inability to describe correctly the form of resonances: the the-
oretically predicted resonances are localized in energy (very
narrow) and are spread in space. However, the energy levels
of experimental quantum dots are strongly widened in energy
and localized in space. The states of the toroidal graphene
junction under the action of the pseudopotential are strongly
spatially localized and are broadened in energy E (see Fig. 8)
as in the experiment. It is easy to see that the experimental
confining potential is a parabolic type only. Our numerical
results indicate also that a parabolic potential approximates
the confining potential.

We conclude that the strength of the electric field created
by electrons of the lowest first level is not sufficient for the
production of electron-hole pairs. However, the electrical field
strength of the electrons of the lowest two first and second
levels is strong enough to produce the electron-hole pairs.

Therefore, a screened confining pseudopotential acts on elec-
trons of the third and subsequent levels.

In Ref. [6], a large GQD with a radius of 150 nm was fab-
ricated by the local embedding of a gate in a graphene/h-BN
heterostructure on SiO2. Let us compare a theoretical LDOS
for the continuous model of a quantum dot with torus topology
[Fig. 9(a)] and a second derivative d2I

dV 2 of a STM current I
measured as a function of the bias V and the radial distance
from the center of the circular graphene p-n junction deposited
on BN/SiO2 [Fig. 9(b)]. Our numerical calculation of LDOS
predicts the levels with a multiresonance structure. These lev-
els are completely analogous to multiresonance structures of
the corresponding experimental levels. An attempt has been
made to explain these experimental data using a model of
massless pseudo-Dirac fermions in a parabolic potential in
Ref. [6]. It turns out that some theoretical levels predicted by
this low-energy pseudo-Dirac theory of a large graphene p-n
junction are experimentally unobservable. Additionally, some
levels experimentally observable are absent in the theory. For
example, the pseudo-Dirac model of a circular GQD does
not predict the highest experimental energy level of ∼80–
85 mV (this level is absent). Moreover, all levels with the
same numbers of resonances predicted by this pseudo-Dirac
fermion model Hamiltonian are arranged in pairs. However,

TABLE I. Assignment of theoretically predicted quantum-dot resonances to experimental data. The resonances are arranged in ascending
order of distance from the center of the quantum dot and are measured from the deepest level.

Level A number of Resonance energies, eV
number resonances Experiment Our theory Theory in Refs. [7,34]

First One 0 0 0
Second One 0.108 0.109a 0.064
Third Two 0.213 0.194 0.13, 0.175
Fourth One 0.46 0.51 0.29
Fifth One 0.42 0.48 0.415

aUnscreened level.
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(a)

(b)

(c)

FIG. 8. Spectrum of atomlike small graphene quantum dot
(GQD). The background correction (chemical potential) μ has been
subtracted from the raw data, leading to a shift in the energy so
that the energy of lowest resonance in the potential well is zero
one. (a) Calculated results presented in Ref. [7] using the radial step
potential. (b) The dependence of derivative dI/dV of a scanning
tunneling microscope (STM) current I with respect to the bias V as a
spectroscopic map of GQD deposited on a copper support [7]. (c) Our
results calculated with the graphene dielectric constant ε = 2, except
the two lowest levels with ε = 1; the unscreened band of the contin-
uous toroidal model GQD under the action of a pseudopotential is
placed in the range 13.35–14.35 eV.

the doubling is not confirmed experimentally [see Figs. 9(a)
and 9(b)]. The main drawback of the pseudo-Dirac model is as
follows: at a bias from zero and lower, the number of levels in
the experiment is twice less than that predicted theoretically.

Finally, let us consider the low-energy region from −50 to
−100 mV (corresponding theoretically calculated levels are
placed at −50 meV and lower). Contrary to LDOS in the
pseudo-Dirac model, the experimental LDOS and the theoret-
ical LDOS confined by the pseudopotential are redistributed
to the border of the GQD. Correspondingly, its hole density is
polarized.

Let us compare the experimental data on tip-induced elec-
trically confined GQDs in a graphene monolayer covering a
30-nm-thick BN flake on graphite with our numerical calcu-
lations of a quantum dot with sphere topology. The sphere
has a nonzero curvature leading to a staircaselike (cos-shaped)
pseudopotential in Fig. 7(c). This result is in complete agree-
ment with the experimental fitting shown in Fig. 1(b). The
pushing out of electrons by the “centrifugal force” onto the
quasi-zero-energy band is revealed as the nonzero electron
density on its levels.

By compensating the action of a pseudopotential, for ex-
ample, by the Lorentz force, one can achieve a weak bending
of the bands by a pseudopotential with the grouping of
nondegenerate levels as in the folding zone approximation.
According to our theory of graphene p-n (n-p) junctions with
sphere topology, the multiplicity of energy-level degeneration

(a) (b)

FIG. 9. Energy levels of spatially distributed states of a large
graphene quantum dot (GQD). (a) Theoretically simulated local
density of states (LDOS) in the bands of states confined by a pseu-
dopotential for the continuous model of quantum dot with torus
topology. (b) Second derivative d2I

dV 2 of a scanning tunneling micro-
scope (STM) current I measured as a function of the bias V and the
radial distance from the center of a circular graphene p-n junction
deposited on BN/SiO2. Lines with arrows indicate the theoretical
bands coinciding with experimental ones. Some resonances are en-
circled by a yellow oval to improve perception. A fitting parabolic
potential is indicated by a dashed line.

pd in the folding zone approximation is 2, 4, like in the experi-
ment [4]. Moreover, the multiresonance distribution of LDOS
over the energy levels for the GQD with sphere topology
in Fig. 7 leads to the experimentally observed independence
of the charging peak sequence on the distance between the
cantilever STM tip and the quantum-dot center. The above
discussion allows us to classify this electrostatically con-
fined quantum dot on the BN/graphite support as a spherical
one.

Thus, the theoretical predictions of the continuous model
of a quantum dot in monolayer graphene with one Dirac point
and six pairs of Weyl nodes-antinodes under the action of
a pseudopotential not only explain but show the excellent
quantitative agreement with various experiments.

IV. CONCLUSIONS

In this paper, we have utilized the rhombic and rect-
angular graphene supercells to describe the confinement of
electrons and holes. Discrete and continuous atomlike models
of graphene electrically confined GQDs with the topology of a
torus and sphere have been proposed. The charge carriers are
confined through polarization effects also. The electron-hole
states localized and delocalized in the pseudopotential are cal-
culated in the continuous approximation. The polarization of
the GQD due to the pseudopotential “pushes out” the energy
levels and lifts their degeneration.

The resonances of the toroidal GQD are partitioned into
three types of resonances: strongly and weakly localized
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“core electrons” and wave packages for delocalized “valence
electrons.” We assume that the strong localization may be a
consequence of commensurate frequencies of the Hamilto-
nian system on the torus. The strongly localized states of the
toroidal quantum dot are formed as in a Bohr atom. For the
toroidal quantum dot, the electron (hole) density is absent on
the quasi-zero-energy band due to the zero curvature of the
torus. This leads to the formation of a pseudogap between
the hole and electron bands, which ensures the absence of
the charge density at the center of the quantum dot, like at
the center of the Bohr atom. Accordingly, the toroidal-type
quantum dot is an artificial atom with Bohr orbits.

Unlike the toroidal quantum dot, the spherical GQD hosts
multiresonances, whose charge density is present at its quasi-
zero-energy band. Accordingly, three spherical dots of the
hexagonal quantum dot can play a role of the nucleus of the
artificial atom.

To summarize, the quasirelativistic model graphene n-p
(p-n) junctions with the supercell pseudopotential which elec-
trically confines electrons (holes) have been proposed. This
potential can bend energy levels in a parabolic way. For GQDs
with the sphere topology, the parabolic potential is addition-
ally modulated staircase (cos-shaped) wise. This approach
explains the main features of local distribution of charge-
carrier density for the quantum dots observed in various STM
experiments. The advantage of the approach we develop is
the ability not only to correctly predict the arrangement of
levels but also to describe the phenomenon of polarization in
GQDs.
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