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Quantum beats of a magnetic fluxon in a two-cell SQUID
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We report a detailed theoretical study of a coherent macroscopic quantum-mechanical phenomenon—quantum
beats of a single magnetic fluxon trapped in a two-cell SQUID of high kinetic inductance. We calculate
numerically and analytically the low-lying energy levels of the fluxon and explore their dependence on externally
applied magnetic fields. The quantum dynamics of the fluxon shows quantum beats originating from its coherent
quantum tunneling between the SQUID cells. We analyze the experimental setup based on a three-cell SQUID,
allowing for time-resolved measurements of quantum beats of the fluxon.
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I. INTRODUCTION

Long Josephson junctions and Josephson junction paral-
lel arrays (JJPAs) are ideal experimental platforms to study
the dynamics of topological excitations, so-called magnetic
fluxons. These peculiar macroscopic objects are vortices of
persistent current, each of them carrying one quantum of
magnetic flux, �0. The classical dynamics of fluxons in the
presence of dc and ac applied magnetic and electric fields has
been studied in the past [1,2]. A variety of fascinating phe-
nomena, e.g., the relativistic effects [1], bunching of fluxons
[3], multisoliton excitations [4], the Cherenkov radiation of
plasma oscillations [5,6], nonequilibrium metastable states of
fluxons [7], escape from a potential well induced by thermal
fluctuations [8], just to name a few, have been observed. In
spite of JJPAs being composed of many strongly interacting
degrees of freedom, the classical dynamics of a large fluxon
occupying multiple cells in the array can be precisely mapped
to a relativistic mechanics of its center of mass [1,8].

In superconducting quantum circuits and superconduct-
ing qubits such as single small Josephson junctions,
many-junctions SQUIDs etc., various coherent macroscopic
quantum phenomena, e.g., macroscopic quantum tunneling,
quantum beats, microwave induced Rabi oscillations, and
Ramsey fringes, have been observed [9–12]. However, in this
field, the quantum coherent dynamics of mobile excitations
(“flying” qubits, not just microwave photons) remains unex-
plored. Here a natural question occurs: Is it possible to observe
the coherent quantum-mechanical effects in the dynamics of
macroscopic topological excitations occurring in strongly in-
teracting many-body quantum systems?

The first attempts to observe the quantum-mechanical dy-
namics with fluxons trapped in long Josephson junctions were
made almost twenty years ago. In Ref. [13] the macroscopic
quantum tunneling and energy levels quantization have been
observed for a single fluxon trapped in a potential formed

in a continuous long Josephson junction. Moreover, more
complicated incoherent quantum phenomena such as quantum
oscillations and quantum dissociation of vortex-(anti)vortex
pairs have been predicted and observed [14]. However, the
coherent time-domain macroscopic quantum dynamics of
fluxons has not yet been observed. It was realized that a
main obstacle of this way is a relatively large size and thus
low effective charging energy of fluxons in long junctions
which, in turn, prevents maintaining its particlelike entity in
the quantum regime.

The size of fluxons can be drastically reduced in JJPAs
with high inductances of superconducting cells. JJPAs are
composed of a chain of interconnected superconducting loops
(cells) where the coupling between adjacent cells is provided
by small Josephson junctions. The schematic of such a JJPA
with a trapped fluxon is shown in Fig. 1(a). The fluxon in
JJPAs corresponds to a 2π kink in the distribution of phase
drops across Josephson junctions, and the center of the sta-
tionary fluxon is positioned in one of the cells.

Operation in the quantum regime requires very small
Josephson junctions in JJPAs, small enough for their
Josephson energy to be comparable to their charging energy.
In this limit, an attempt to reduce the fluxon size to only a few
cells requires large geometrical inductances, which makes the
whole structure nonphysically large and strongly sensitive to
parasitic fluctuations of the ambient magnetic fields. To avoid
this problem, one can replace geometrical inductances by high
kinetic inductances by using chains of classical Josephson
junctions [15,16] or disordered superconducting materials like
granular aluminum (grAl) [17,18], NbTiN [19], or indium
oxide [20], similarly to the approach used for making
fluxonium qubits.

According to the theoretical analysis [21], the JJPAs with
high kinetic inductances map to a wide class of 1D tight-
binding lattice models and provide a quantum simulation
platform for symmetry-protected topological excitations. The
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FIG. 1. (a) Schematic of a one-dimensional JJPA composed
of many small Josephson junctions connected with inductors.
(b) Periodic (Peierls-Nabarro) potential for a single fluxon trapped
in the JJPA. Here, every site corresponds to a cell in (a), ei is onsite
energy, ti is the tunneling rate. (c) The simplest primitive system—a
two-cell SQUID for studying fluxon quantum dynamics. A trapped
fluxon is shown.

classical potential for a single topological kink in a sine-
Gordon lattice is the so-called Peierls-Nabarro potential [22].
For a fluxon in an unbiased JJPA it is equivalent to N de-
generate minima separated by energy barriers centered at
Josephson junctions. The larger is the size of magnetic fluxon
compared to the array cell size, the lower is the height of these
barriers [see Fig. 1(b)]. The Hamiltonian for the one-fluxon
manifold is:

Ĥtb =
N−1∑
i=0

ei|i〉〈i| +
N−2∑
i=0

ti|i〉〈i + 1|, (1)

where |i〉 denotes the one-fluxon state at the i loop. In the
Hamiltonian Ĥtb the interaction only between nearest neigh-
bors is taken into account. Onsite energies ei are determined
by the inductive energy of the cells and the Josephson en-
ergies of the junctions and are also influenced by applied
currents and magnetic fields penetrating the cells of JJPA.
The amplitude ti of macroscopic quantum tunneling for the
fluxon between adjacent loops is determined by the ratio of
Josephson coupling energy EJi and the charging energy ECi

as ti ∝ exp (−√
8EJi/ECi ), see Appendix B for details. In

such JJPAs, a spatial dependence of tunneling rates can be
realized by modulating the Josephson coupling energies along
the array.

In this work, we theoretically study the coherent quantum
dynamics of a fluxon trapped in a two-cell SQUID with high
kinetic inductances [Fig. 1(c)]. Such a system presents the
simplest setup for observing coherent quantum-mechanical
dynamics of a single fluxon. Indeed, by manipulating external
magnetic fields the fluxon can be trapped in one of the two
cells (left or right). In the presence of substantial charging
energy EC , one can expect the macroscopic quantum tunneling
and coherent quantum beats of the fluxon between cells. In
order to measure these (and other) quantum-mechanical ef-
fects in the dynamics of fluxons, we propose the following
setup. The two cells of the SQUID are coupled via an-
other superconducting cell containing two small Josephson

FIG. 2. Equivalent lumped-element circuit for the proposed
three-cell SQUID setup: Highlighted in different colors are left
Josephson junction f (red) and right Josephson junction m (green).
The inductances L and externally applied magnetic fields �x

f , �x,
and �x

m are shown.

junctions, thus forming a three-cell SQUID system (see
Fig. 2). In particular, the coherent quantum dynamics of a
single fluxon trapped in the leftmost (rightmost) two cells can
be measured by detecting the plasma modes of the right (left)
Josephson junction, which amounts to an onsite excitation into
a higher-energy eigenstate of the local potential well [21].
In a way, this approach is similar to the conventional circuit
QED readout with a difference of using one of the Josephson
junctions as the cavity.

The paper is organized as follows: In Sec. II we present
a model for the three-cell SQUID of high kinetic inductance
with two small Josephson junctions and derive the Lagrangian
and the Hamiltonian of such a system. In Sec. III by mak-
ing use of numerical and analytical analysis we obtain the
low-lying energy levels and energy level splitting of a fluxon
trapped in the two-cell SQUID. The dependence of the quan-
tum beats frequency on various parameters such as external
magnetic fields, the kinetic inductances, and the Josephson
coupling energy is studied. In Sec. IV we extend our anal-
ysis to the three-cell SQUID and analyze its energy level
structure. Furthermore, we suggest and explore the experi-
mental protocol allowing one to measure energy levels and
coherent quantum beats of the fluxon. Section V contains our
conclusions.

II. ELECTROMAGNETIC CIRCUIT, LAGRANGIAN, AND
HAMILTONIAN OF A THREE-CELL SQUID

We consider a three-cell SQUID composed of two small
Josephson junctions. The schematic of this circuit is shown
in Fig. 2. The left (node “f” marked with red lines) and
right (node “m” marked with green lines) Josephson junc-
tions are characterized by the Josephson coupling energies,
EJf and EJm, accordingly, and large shunt capacitances Cf =
Cm = C. Notice here that a substitution of a single Josephson
junction between the leftmost and rightmost cells by two-
junction SQUID allows one to tune the Josephson coupling
energies in a wide range. The Josephson junctions are con-
nected by superconducting loops of high kinetic inductances
L (we consider them to be equal). The externally applied
magnetic fluxes �x

f , �x, and �x
m penetrate the left, central,

and right cells of the SQUID, accordingly. In particular, this
setup allows one to trap a single fluxon in two leftmost
(rightmost) SQUID cells—a similar protocol was proposed in
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FIG. 3. Circuit model for the two-cell SQUID described by
Hamiltonian ĤF. The left (right) cell is threaded by an external mag-
netic flux �x

f (�x). The persistent currents IL (IR) flowing in the left
(right) cells are shown. The Josephson coupling energy EJf, shunted
capacitance C, and the kinetic inductance of superconducting cells L
are indicated.

Ref. [21]—and to use plasma mode excitations in the right
(left) Josephson junction for the detection of fluxon location.

The classical dynamics of Josephson junctions is de-
termined by time-dependent Josephson phases, ϕf(t ) and
ϕm(t ), respectively. By making use of Kirchhoff’s current
law and magnetic flux quantization in each cell, we write the
Lagrangian of the three-cell SQUID as follows:

L = 1

2

C�2
0

(2π )2
ϕ̇2

f + 1

2

C�2
0

(2π )2
ϕ̇2

m

− EJf[1 − cos ϕf]−EJm[1 − cos ϕm]

− �2
0

2L(2π )2

(
ϕf + 2π

�0
�x

f

)2

− �2
0

2L(2π )2

(
ϕm−2π

�0
�x

m

)2

− �2
0

2L(2π )2

(
ϕf − ϕm − 2π

�0
�x

)2

, (2)

where �0 = h/(2e) is the magnetic flux quantum. Defining
the node charges Qα = 2π

�0
∂L/∂ϕ̇α , (α = f,m), we obtain the

circuit Hamiltonian in the following form:

Ĥ = ĤF + ĤM + ĤI, (3)

ĤF = Q̂2
f

2C
+ EJf[1 − cos ϕ̂f]+

+ �2
0

L(2π )2
(ϕ̂f − π��f/�0)2 + (��f )2

2L
, (4)

ĤM = Q̂2
m

2C
+ EJm[1 − cos ϕ̂m]+

+ �2
0

L(2π )2
(ϕ̂m − π��m/�0)2 + (��m)2

2L
, (5)

ĤI = − �2
0

L(2π )2
ϕ̂fϕ̂m. (6)

The full Hamiltonian is composed of three parts: ĤF (ĤM)
is the Hamiltonian of autonomous two-cell SQUID with ex-
ternally applied magnetic fluxes (see the leftmost (rightmost)
cells in Fig. 2 and Fig. 3); the Hamiltonian ĤI describes the
inductive coupling between the systems F and M. The Hamil-
tonian ĤM can be used to measure the quantum dynamics of
system F . Here we introduce the various combinations of ex-
ternal magnetic fluxes, namely ��f = �x − �x

f , ��f = �x
f +

�x, ��m = �x
m − �x

2 and ��m = �x + �x
m. These combina-

tions of magnetic fluxes are not independent but satisfy the
condition: ��m − ��f − ��f − ��m = 0.

III. QUANTUM DYNAMICS OF A SINGLE FLUXON IN A
TWO-CELL SQUID

In this section, we study the quantum dynamics of a fluxon
by analyzing the Hamiltonian (4). Such a Hamiltonian de-
termines the quantum dynamics of a two-cell SQUID with
a single small Josephson junction. The schematic of such a
system is presented in Fig. 3. As already mentioned above,
high kinetic inductances L can be established by implement-
ing in the superconducting loops long chains composed of N
classical Josephson junctions, forming the so-called “superin-
ductance.” With such superinductance the cell inductance L is
expressed as L = N�2

0/[(2π )2EJa], where EJa is a Josephson
coupling energy of a single classical Josephson junction in
the chain. In order to suppress the phase fluctuations in the
chain we require EJa/ECa > 1, where ECa is the charging
energy of a single Josephson junction in the chain. In this limit
the macroscopic quantum tunneling occurs through a small
Josephson junction f only. The chains of classical Josephson
junctions have been widely used as superinductances for flux-
onium devices [16]. The external flux �x

f (�x) is also applied
within the left (right) loop of the SQUID.

Next, we carried out numerical diagonalization of the
Hamiltonian (4) for various sets of parameters, i.e., varying
the values of the Josephson coupling energy EJf, the charg-
ing energy EC = e2/(2C), and the inductive energy EL =
�2

0/[L(2π )2] to determine the low-lying energy levels and
corresponding wave functions (see Appendix A for details).
Moreover, by varying externally applied magnetic fluxes �x

f
and �x the dependencies of energy levels Ei on ��f = �x −
�x

f were obtained.
The macroscopic quantum dynamics of a fluxon can be

observed in a particular range of parameters only. Firstly, the
fluxon “size” has to be reduced. This can be achieved by
decreasing of the inductive energy and corresponding increase
of the dimensionless parameter β = EJf/EL � 1. Secondly,
the ratio of Josephson coupling energy EJf and the charging
energy EC does not have to be too large, i.e., EJf/EC � 1. Tak-
ing in mind these conditions we choose the circuit parameters:
EC/h = 0.5 GHz and EL/h = 0.15 GHz. Note here that these
values can be rather easily implemented in experiments with
superconducting circuits.

Here, we first present the computed energy spectrum
for EJf/h = 2 GHz (β � 13.3) as a function of magnetic
flux difference ��f. Such dependencies Ei(��f ) are plot-
ted in Fig. 4(a) for the lowest four energy levels of the
system. As one can see, the energy states |0〉 and |1〉 be-
come nearly degenerate as ��f = 1.0�0, and the splitting
�E01(��f ) = E1 − E0 increases as the magnetic flux differ-
ence ��f deviates from the degeneracy point, ��f = 1.0�0.
In Figs. 4(b)–4(d) we show low-lying energy levels accu-
rately positioned in the potential profile U (ϕf ), along with
their calculated wave functions at 0.95�0, 1.0�0, and 1.05�0

magnetic flux difference values.
An increase of the Josephson coupling energy EJf leads

to a strong decrease of the energy level separation � at the
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FIG. 4. (a) Low-lying energy levels of the two-cell SQUID
vs magnetic flux difference ��f. The parameters EJf/h = 2 GHz,
EC/h = 0.5 GHz, and EL/h = 0.15 GHz were used. System works
in the limit β ≈ 13.3, EJf/EC = 4. (b) Simulated potential energy
landscape/wave functions at ��f = 0.95�0; (c) simulated potential
energy landscape/wave functions at ��f = 1.0�0. (d) Simulated
potential energy landscape/wave functions at ��f = 1.05�0. Here,
the states |0〉 and |1〉 are nearly degenerate. We put the total magnetic
flux in the system ��f = 1.0�0.

degeneracy point, ��f = 1.0�0, i.e., � = �E01(��f =
1.0�0). The dependence of low-lying energy levels on the
magnetic flux, Ei(��f ), for EJf/h = 15 GHz (β = 100) is
presented in Fig. 5(a), and in Figs. 5(b)–5(d) we show low-
lying energy levels, the potential profile U (φf ), along with
their calculated wave functions. The numerically calculated
dependence of energy level splitting � on the parameter β is
shown in Fig. 6 by solid line.

In the most interesting region of magnetic fluxes ��f �
1.0�0 and for large parameter β � 1 the Hamiltonian (4) can
be linearized, and it is well approximated as

ĤF = ĤF(�0) + δ��f
∂ĤF(��f )

∂��f

∣∣∣∣
�0

= ĤF(�0) + δ��f Î,

(7)

where δ��f = (��f − �0) and the operator of current I flow-
ing through the Josephson junction is determined as Î =
�0

2πL (π − ϕ̂f ). The current I can be expressed as I = IL − IR,
where the currents IL (IR) flow through the left (right) super-
conducting cells. The dependence of matrix elements Î00 =
〈0|Î|0〉 and Î11 = 〈1|Î|1〉 for the eigenstates |0〉 and |1〉 on
the magnetic flux difference ��f was numerically calculated,
and it is presented in Fig. 7 for two different parameters of
EJf. Near the degeneracy point (��f = �0) the matrix ele-
ments have opposite signs, i.e., Î00 = −Î11, and for extremely
large values of β the matrix elements |Îii| ≈ ±�0

L , i = 0, 1
[see Fig. 7(b)].

FIG. 5. (a) Low-lying energy levels of the two-cell SQUID vs
magnetic flux difference ��f. The parameters EJf/h = 15 GHz,
EC/h = 0.5 GHz, and EL/h = 0.15 GHz were used. System works
in the limit β = 100, EJf/EC = 30. (b) Simulated potential energy
landscape/wave functions at ��f = 0.95�0; (c) simulated potential
energy landscape/wave functions at ��f = 1.0�0. (d) Simulated
potential energy landscape/wave functions at ��f = 1.05�0. Here,
the states |0〉 and |1〉 are nearly degenerate. We put the total magnetic
flux in the system ��f = 1.0�0.

Thus, from the presented analysis one can conclude that
large positive (negative) values of the current I correspond to
persistent superconducting currents flowing in the left (right)
cells. These persistent currents determine the location of a
trapped fluxon in the left (right) cell. Therefore, the quantum
dynamics of two low-lying eigenstates can be described in
two-state fluxon location basis, |L > and |R >. In this basis
the Hamiltonian of a single fluxon has a well-known single

FIG. 6. The dependence of energy level splitting
� = �E01(��f = 1.0�0)/h between qubit states |0〉 and |1〉
on the parameter β: solid line—numerical calculations; dashed
line—analytical approach (see Appendix B). The parameters
were chosen as EC/h = 1 GHz, EL/h = 0.15 GHz, and
EJf/h = 1 : 100 GHz.
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FIG. 7. The dependence of the matrix elements of the current
operator, i.e., Î00 (orange lines) and Î11 (blue line) on the mag-
netic flux difference ��f for different Josephson coupling energies:
(a) EJf/h = 2 GHz; (b) EJf/h = 15 GHz. Other parameters were
chosen as EC/h = 0.5 GHz and EL/h = 0.15 GHz.

qubit form:

Ĥ2cells-MF = �

2
σ̂ x + ε

2
σ̂ z, (8)

where ε0 = δ��f
�0
2L . This Hamiltonian determines the energy

levels splitting as �E01 = √
�2 + ε2.

As the magnetic flux difference ��f is tuned to the de-
generacy point, the matrix elements of the current operator
Îii|, i = 0, 1 go to zero value, and it indicates that the dynamics
of a single quantum fluxon is determined by the quantum tun-
neling between neighboring cells, and the coherent quantum
beats (coherent oscillations of the probability amplitude) with
the frequency fqb = �E01/h occur.

The dynamics of a single fluxon in a two-cell SQUID can
also be understood by analyzing the classical potential profile
U (ϕf ). In the regime of β � 1 the potential U (ϕf ) consists
of Josephson wells, whose depth and elevation depend on EJf

(EL is fixed) and ��f, respectively [see Figs. 4(b)–4(d) and
5(b)–5(d). In the classical regime, the Josephson phase ϕf is
located at minimums of U (ϕf ). Thus, the values of ϕf � 0
(ϕf � 2π ) correspond to the localization of fluxon in left
(right) cells. In the quantum regime the nonzero value of
charging energy results in the coherent tunneling and quantum
beats of trapped fluxon between neighboring cells. In the limit
of β � 1, by making use of the quasiclassical approxima-
tion the dependence of quantum beats frequency fqb(��f =
1.0�0) on the inductance parameter β was calculated an-
alytically (see details in Appendix B). Such dependence is
presented in Fig. 6 by a dashed line.

IV. QUANTUM DYNAMICS OF A SINGLE FLUXON IN A
THREE-CELL SQUID

Next, we analyze the quantum dynamics of a single trapped
fluxon in a three-cell SQUID of high kinetic inductance (see
Fig. 2). The coherent quantum dynamics of such a system
is determined by the Hamiltonian (3)–(6), and the trapped
fluxon displays two quantum-mechanical effects, namely the
coherent quantum tunneling of the fluxon between adjacent
cells and the excitations of plasma oscillations in Josephson
junctions f and m. As we discussed in Sec. III the coherent
quantum tunneling of fluxons can be enhanced by manipu-

FIG. 8. The dependence of the energy spectrum Eλk,� of a sin-
gle fluxon trapped in a three-cell SQUID on the magnetic flux
difference ��f. The signatures |λ, k, �〉 indicate the corresponding
eigenstates. The parameters of a system were chosen as EJf/h =
20 GHz, EJm/h = 22 GHz, EC/h = 0.5 GHz, and EL/h = 0.15 GHz.
Dashed lines show energy levels for the case when two fluxons and
one antifluxon are present in the system.

lation of the Josephson coupling energies as EJf, EJm � EC

(see Fig. 4). In this section we consider an opposite case,
i.e., EJf � EC , and EJm � EC , as if the coherent tunneling
of fluxons is strongly suppressed, and the fluxon is localized
in one cell of the SQUID.

A. Low-lying energy spectrum and reduced Hamiltonian:
Plasma modes excitations

To analyze quantitatively the low-lying spectrum of a
strongly localized fluxon, we carry out the numerical calcula-
tion (see details in Appendix A) of the low-lying eigenvalues
and eigenfunctions of the Hamiltonian (3) for a particular set
of parameters: �x

m = 0, ��f = �x
f + �x = 0. The magnetic

flux difference ��f = �x − �x
f was varied in the calculations.

In order to suppress the quantum tunneling and strongly lo-
calize a single fluxon in one of three cells, the Josephson
coupling energies, EJf/h = 20 GHz, EJm/h = 22 GHz were
chosen to be much larger than the charging energy, EC/h =
0.5 GHz. Here, we assume that the Josephson coupling ener-
gies of Josephson junctions f and m are slightly different to
remove the degeneracy of excited levels.

The low-lying eigenvalues and corresponding eigenstates
of the Hamiltonian Ĥ (3) on a one-fluxon manifold can be
conveniently described in the eigenstates basis labeled as
|λ, k, �〉 = |λ〉 ⊗ |k〉f ⊗ |�〉m, where λ represents the fluxon
location in the left (L), central (C), or right (R) cell; k and
� are the plasma mode occupancy associated with variables
ϕf and ϕm, accordingly. Here, we only consider the low-lying
excitations of plasma modes as the values of k, � = 0, 1.
The numerically calculated dependence of low-lying energy
spectrum on the magnetic flux difference ��f is presented in
Fig. 8, and one can see that near the degeneracy point (��f =
�0) the energy levels form three distinguished groups: the first
group of eigenstates (the energy close to 12.0 GHz), |L, 0, 0〉,
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FIG. 9. Two-dimensional landscape of the potential energy
U (ϕf, ϕm) for a three-cell SQUID on the degeneracy point ��f = �0.
The red circles indicate three lowest potential wells. Signs L,C, R
indicate the localization of the fluxon in the corresponding cell of the
circuit. The parameters were chosen as EJf/h = 20 GHz, EJm/h =
22 GHz, EL/h = 0.15 GHz.

|C, 0, 0〉, |R, 0, 0〉, corresponds to the absence of plasma exci-
tations in both Josephson junctions; the second group (energy
close to 20.4 GHz), |L, 1, 0〉, |C, 1, 0〉, |R, 1, 0〉 corresponds to
a single plasma mode excitation in the Josephson junction f;
the third group (energy close to 20.9 GHz), |L, 0, 1〉, |C, 0, 1〉,
|R, 0, 1〉 corresponds to a single plasma mode excitation in the
Josephson junction m.

The quantum dynamics of a single fluxon trapped in the
three-cell SQUID can be qualitatively understood by consid-
eration of a two-dimensional landscape of the potential energy
U (ϕf, ϕm) demonstrating a multiwell shape. For the magnetic
flux difference ��f = 1.0�0 the potential energy landscape
U (ϕf, ϕm) is presented in Fig. 9. The three lowest potential
wells are indicated by red circles and denoted as L,C, R be-
cause the states located close to the minima of the potential
energy correspond to the localization of a single fluxon in a
particular cell. The arrows indicate fluxon tunneling between
adjacent cells through Josephson junctions f and m.

In Fig. 10 we plot the two-dimensional landscape of prob-
ability of density for the eigenstates corresponding to three
energy levels groups. The red circles on plots also indicate the
locations of the fluxon as in Fig. 9. The first row in Fig. 10
displays the eigenstates in the absence of plasma excitations,
while the second (third) row displays the eigenstates with
a single plasma excitation on the Josephson junction f (m).
Thus, one can describe the general eigenstate |λ, k, �〉 of a
single trapped fluxon in a three-cell SQUID as a qutrit with
the basis states |L〉, |C〉, and |R〉, interacting with two transmon
qubits f and m.

Analyzing the energy spectrum presented in Fig. 8 we
obtain a peculiar effect. At the degeneracy point the var-
ious transitions associated with the excitation of plasma
modes on f-Josephson junction demonstrate the following
frequencies: E|L,0,0〉 → |L,1,0〉 = E|C,0,0〉 → |C,1,0〉 ≈ 8.4771 GHz,
but E|R,0,0〉 → |R,1,0〉 ≈ 8.4844 GHz. It indicates that the plasma
modes excited on f-Josephson junction have the same fre-
quencies for the fluxon localized in left and central cells,

FIG. 10. Two-dimensional landscape of the probability density
of eigenstates for the three groups of states. The magnetic flux differ-
ence ��f = 1.0�0. Red circles also show three lowest potential wells
(same as in Fig. 9). Signatures |λ, k, l〉 indicate the corresponding
state as in Fig. 8.

but the frequency of plasma mode for fluxon localized in
the right cell is slightly (7.3 MHz) higher. Similarly the
transitions associated with the excitation of plasma modes
on m-Josephson junction demonstrate the following fre-
quencies: E|C,0,0〉 → |C,0,1〉 = E|R,0,0〉 → |R,0,1〉 ≈ 8.9181 GHz but
E|L,0,0〉 → |L,0,1〉 ≈ 8.9242 GHz. Here the plasma modes ex-
cited on m-Josephson junction have the same frequencies for
fluxon localized in central and right cells but the frequency
of plasma mode for fluxon localized in the left cell is slightly
(6.1 MHz) higher.

Now, we can describe the one-fluxon manifold with re-
duced Hamiltonian of two transmon qubits coupled with a
qutrit system:

ĤQb−Qtr = 1
2 h̄ωpfσ̂

z
f + 1

2 h̄ωpmσ̂ z
m + εL|L〉〈L| + εC |C〉〈C|

+ εR|R〉〈R| + +Jz
f σ̂ z

f |R〉〈R| + Jz
mσ̂ z

m|L〉〈L|, (9)

where h̄ωpf(m) � √
8EJf(m)EC are the Josephson plasma fre-

quencies of the f(m)-Josephson junctions, σ̂
x,y,z
α are corre-

sponding Pauli matrices for f (α = f) and m (α = m) qubits.
The states of the qutrit are denoted by λ (λ = L,C, R), and
the parameters εL, εC , and εR are magnetic flux dependent
energies of states |L〉, |C〉, and |R〉, accordingly.

The parameters of dispersive interactions Jz
f(m) are ob-

tained as follows. The interaction between the transmon
qubits and the qutrit is determined by the interaction
Hamiltonian ĤI [see Eq. (6)], and such interaction contains
off-diagonal terms in the eigenbasis of transmon qubits, i.e.,
gασ̂ x

α . The interaction strengths gf(m) are obtained as gf(m) �
2πEL

√
h̄ωpf(m)/[2EJf(m)] � h̄ωpf(m). Using the perturbation
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approach we derive the Hamiltonian (9) where the dispersive
interaction has a diagonal form in the eigenbasis of trans-
mon qubits, and the interaction strengths are determined as
Jz

f(m) = 2g2
f(m)/[h̄ωpf(m)] and they differ on small values (as

shown above Jz
f /h = 7.3 MHz and Jz

m/h = 6.1 MHz).
From this Hamiltonian one can conclude that the positions

of fluxon in the cells adjacent to the measured node could
not be distinguished via monitoring plasma mode transitions.
However, the location of fluxon in a distant cell leads to a
small frequency shift for this particular measured transition.
That allows us to apply the traditional nondemolition mea-
surement technique [23,24] of transmon qubits for distinguish
fluxon states in different cells. In other words, the fluxon
located in the leftmost cell will shift the mode of junction
m, while the fluxon sitting in the rightmost cell will shift the
mode of junction f.

B. Readout of fluxon states

To perform time resolved measurements of the quantum
beats of a single fluxon trapped in the three-cell SQUID
one can use the following procedure consisting of the three
steps: (a) initialization of a system, i.e., the trapping of a
single fluxon in the particular cell; (b) inducing the quantum
beats of a single trapped fluxon between two cells. It can be
achieved by suppression of the effective Josephson energy
of a single Josephson junction, i.e., EJf � EC or EJm � EC ;
(c) stopping quantum beats by strong fluxon localization.
It can be achieved by increasing the Josephson energies of
both Josephson junctions (EJf(m) � EC). The rapid change of
Josephson energies in a wide region is realized by the standard
method, i.e., substitution of a single Josephson junction by
a two-junction SQUID and variation of the magnetic field
penetrating such SQUID. Control of the fluxon’s position is
possible by changing the magnetic flux difference in neigh-
boring SQUID cells, as can be seen from the comparison of
Fig. 5(b) (��f = 0.95�0 and fluxon localized in left cell) and
Fig. 5(d) (��f = 1.05�0 and fluxon localized in right cell).

Once the above manipulations are completed, the disper-
sive readout of the position of fluxon in a single cell can
be carried out. The dispersive interactions Jz

f(m) lead to an
additional phase accumulation (a single plasmon excitation)
of the corresponding transmon qubit as the fluxon is located
in the right or left cell, respectively.

The proposed dispersive readout consists of two parts.
Firstly, one has to calibrate microwave pulse sequences
(CPSs) for the detection of fluxon, see Fig. 11. This pro-
cedure is similar to the two-qubit CZ gate calibration [25].
There two qubits ZZ interaction leads to a frequency shift of
one qubit depending on the state of another. At variance with
the CZ gate case, here the transmon qubit (f,m) is coupled
with the qutrit. Secondly, obtained CPSs have to be applied
for the conditional state rotation of the transmon qubits (f,m),
see Fig. 12.

For the calibration procedure we use the Ramsey pulse
sequence for transmon-qubit f (transmon qubit m), i.e. the
precalibrated π/2 pulse modulated with frequency ωf + δf (or
ωm + δm), where δf,m is detuning from the qubit frequency,
then another π/2 pulse applied after a delay time �t, and
finally we measure the transmon-qubit f (transmon-qubit m)

FIG. 11. (a) The Ramsey pulse sequence used to calibrate the
CPS. (b),(c) Examples of the Ramsey fringes for the transmon-qubit
f (the transmon-qubit m) (not in the scale). The Ramsey fringes cor-
responding to the fluxon position in the left (right) cell are indicated
by blue (red) line. The vertical dashed lines indicate the delay times
Tf(m) (Tm) as the measured qubit f(m) conditionally changes its initial
state to the opposite one depending on the fluxon position.

FIG. 12. (a) The proposed measurement protocol for the detec-
tion of fluxon position. Firstly, we initialize transmon qubits (f and
m) to their ground states. Then we apply calibrated pulse sequences
(CPS) for the conditional state rotation. The resulting qubits state
are then measured by applying microwave tones to the readout
resonators. (b)–(d) Interpretation of measurement results for fluxon
located in central (b), right (c), and left (d) cells. (e) Shown for
completeness, there is no fluxon in three-cell SQUID.
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state via coupled resonators. Such a Ramsey sequence is
presented in Fig. 11(a). Depending on the fluxon location
different Ramsey fringes for transmon-qubit f [Fig. 11(b)]
and qubit m [Fig. 11(c)] could be observed. Blue lines cor-
respond to the fluxon location in the left cell, while red
lines correspond to the fluxon location in the right cell. From
Fig. 11(b) one can see that after the particular time delay Tf

the transmon-qubit f should be in the |0〉 state if the fluxon
was initially localized in the left or center cell and in the |1〉
state if the fluxon was initially localized in the right cell due
to the additional phase accumulation. The opposite picture is
observed in the transmon-qubit m state population after the
time delay Tm, see Fig. 11(c). The transmon-qubit m should be
in the |0〉 state if the fluxon was initially localized in the right
cell and in the |1〉 state if the fluxon was initially localized
in the left or center cell. Calibrated time delays are obtained
from the condition:

Tf(m) = 1

δf(m)
n = 1

δf(m) + Jz
f(m)

(n + 1/2). (10)

For a particular set of parameters δ f (m) = 2Jz
f(m) and Jz

f /h =
7.3 MHz, Jz

m/h = 6.1 MHz, we obtain Tf ≈ 71 ns and
Tm ≈ 83 ns.

With such calibrated CPSs, i.e., the Ramsey pulse sequence
with the precalibrated time delays, Tf(m) the plasma modes
excitations on f and m Josephson junctions should swap the
ground and excited states of corresponding transmon qubit.
Nondemolition fluxon state measurement protocol, as shown
in Fig. 12(a), thus consist of three steps: (1) transmon qubits
(f,m) initialization in their ground states |0〉; (2) application
of calibrated pulse sequences (CPS) to realize the conditional
swap gates for plasma mode excitations; (3) transmon-qubit
states joint readout and analysis.

Based on the results of state measurements we can
uniquely determine the position of the fluxon in the cells
according to the diagram presented in Figs. 12(b)–12(e). Thus,
the fluxon location in the central cell does not cause an addi-
tional phase accumulation in any of the qubits, Fig. 12(b). As
the fluxon is located in the left (right) cell, the CPS displays an
additional phase accumulation for the qubit m (f); as a result,
its state will change to |1〉, see Fig. 12(c) [Fig. 12(d)].

V. CONCLUSIONS

In conclusion, we have numerically and analytically stud-
ied the coherent quantum dynamics of a magnetic fluxon
trapped in two- and three-cell SQUIDs (see, Figs. 3 and 2). In
the range of parameters, as EJf � EC , the coherent tunneling
of fluxon between the adjacent cells results in the quantum
beats of fluxon. The frequency of such quantum beats is
determined by the energy difference between the low-lying
levels and rapidly decreases with increasing the Josephson
coupling energy EJf (see Fig. 7). In the limit EJf � EC , quan-
tum tunneling of fluxon is strongly suppressed, and the fluxon
is localized in one of the cells. In the three-cell SQUID,
the fluxon location can be experimentally detected by spec-
troscopy of plasma mode excitations in Josephson junctions.
The quantum dynamics of low-lying energy states is described
by the reduced Hamiltonian ĤQb-Qtr of two transmon-qubits
interacting with a qutrit. The experimental protocol allow-

ing one to carry out time resolved measurements of fluxon
quantum dynamics is proposed.
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APPENDIX A: NUMERICAL METHODS

In this Appendix we describe in detail our numerical
approach. The energy spectrum and the eigenstates of the
Hamiltonian (3) are obtained from the solution of the time-
independent Schrödinger equation:

Ĥ |ψ (ϕα|α = f,m)〉 = E |ψ (ϕα|α = f,m)〉, (A1)

To simplify the solution we introduce a dimensionless variable
for the flux ϕ̂α = 2π�̂α

�0
and canonically conjugate Cooper

pair number n̂α = Q̂α

2e as well as for external flux variables

ϕx
f = 2π�x

f
�0

, ϕx = 2π�x

�0
, ϕx

m = 2π�x
m

�0
. Writing a momentumlike

continuous variable n̂α = −i ∂
∂ϕα

the associated Schrödinger
equation takes the form of an ordinary differential equation:

Ĥ

(
−i

∂

∂ϕα

, ϕ̂α|α = f,m

)
|ψ〉 = E |ψ〉. (A2)

For a two-cell SQUID with a trapped magnetic fluxon as
Eq. (4) is applied, the associated Schrödinger equation takes a
simpler form and it depends only on the variable ϕ̂f:

ĤF

(
−i

∂

∂ϕf
, ϕ̂f

)
|ψ〉 = E |ψ〉, (A3)

This eigenvalue equations were solved by finite-difference
methods complemented by exact diagonalization. For energy
levels presented in Fig. 8 with a single fluxon trapped in a
single cell, we choose magnetic fields as ϕx

f + ϕx = 2π , ϕx
f −

ϕx ∈ [0, 4π ], ϕx
m = 0. Transmonlike transition energies for a

system without trapped fluxon were obtained with magnetic
fields: ϕx

f = 0, ϕx = 0, ϕx
m = 0.

APPENDIX B: ANALYTICAL CALCULATIONS OF THE
QUANTUM BEATS FREQUENCY

The numerical method described above allows us to study
energy spectrum in various regimes, including β � 1. In the
opposite limit, i.e., β � 1, for studying the quantum dynam-
ics of a single magnetic fluxon trapped in a two-cell SQUID
we used the quasiclassical description of tunneling through
potential barrier developed in [26]. With this approach we
obtain the analytical solution for the low-lying energy levels
difference, �(��f = 1.0�0). The quasiclassical approach is
valid in the regime as EC � EJf. First of all, we write the
potential energy for our two-cell SQUID:

U = EJf(1 − cos(ϕf ) + EL

(
ϕf − π

��f

�0

)2

. (B1)

Here, we eliminate constant term 2 (��f/2)2

2L for simplicity. As
��f � 1.0�0, extrema of the potential U (ϕf ) are obtained by
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solving the transcendental equation:

EJf sin(ϕf ) = 2EL(ϕf − π��f/�0). (B2)

As ��f = 1.0�0 one can obtain that ϕf,max = π corresponds
to the potential barrier maximum, localized between two min-
imums ϕmR and ϕmL. In the limit β � 1: ϕmR ≈ 2π − π 2EL

EJf

and ϕmL ≈ π 2EL
EJf

. Neglecting tunneling between the potential
wells, we can find energies of two localized states by solving
the stationary Schrödinger equation for harmonic oscillator:

[
−4EC

∂2

∂ϕf
2

+ V ′′(ϕmγ )

2
(ϕf − ϕmγ )2

]
�γ (ϕf )

= Eγ �γ (ϕf ), γ = L, R. (B3)

Here we used the second order series expansion of the
potential energy, V ′′(ϕmi ) = EJf cos(ϕmγ ) + 2EL and Eγ =
V (ϕmγ ) + h̄ωγ

2 . The oscillator frequency is:

h̄ωγ = 2π
√

8EC (2EL + EJf cos ϕmγ ). (B4)

Now we obtain the amplitude � for quantum tunneling be-
tween neighboring wells in the quasiclassical approximation
[26]. For symmetric wells the amplitude of tunneling � is

given by:

� = h̄ωγ

e
√

π
exp

(
−

∫ φγ 2

φγ 1

√
1

EC
(V (ϕ′) − Eγ )dϕ′

)
; (B5)

here boundaries of integration φγ 1,2 are the two points
at which the potential barrier intersects the energy level:
V (φγ 1,2) = Eγ . This analytical dependence is shown in
Fig. 7 (line 2). For the sake of completeness, we also
recall the known asymptotic formula for the splitting in
the periodic cosine potential with renormalized coefficients
according to [27]:

� = 2

√
2

π

√
8ĒJ ĒC

(
8ĒJ

ĒC

) 1
4

exp −
√

8ĒJ

ĒC
, (B6)

where ĒJ = EJf [1 − π2

4β
(1 − 1

β
)], ĒC = EC

(1−1/β )2 .
As a generalization, for studying fluxon dynamic we are

only interested in the two lowest eigenstates (fluxon location
in right or left potential well), and since the SQUID spectrum
is largely anharmonic around the ��f = ±�0, and due to
Eq. (7), the system Hamiltonian can be reduced to the first
two states:

Ĥ2cells-MF = �

2
σ̂x + ε

2
σ̂z, (B7)

here ε = δ��f
�0
2L and δ��f = (��f − �0). This Hamil-

tonian determines the energy levels splitting as �E01 =√
�2 + ε2.
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