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Anomaly of longitudinal spin susceptibility at a superconducting instability inside a magnetic phase
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We study the longitudinal spin susceptibility inside a magnetically ordered phase, which exhibits a super-
conducting instability leading to a coexistence of the two ordered phases. Inside the magnetic phase, the
superconducting gap acquires a linear term in a magnetic field applied along the direction of the magnetic
moment. We find that such a linear term generates a jump of the longitudinal spin susceptibility when the
superconducting instability occurs via a continuous phase transition. This anomaly at the superconducting
instability is a thermodynamic signature of the microscopic coexistence of superconductivity and magnetism
and can be a general feature associated with the breaking of spin rotational symmetry inside the magnetic phase.
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I. INTRODUCTION

Magnetic systems are often envisaged as insulators char-
acterized by a local moment at magnetic ion sites. However,
metallic systems can also be magnetized and a spin-density
wave is known as a central concept to describe the itinerant
magnetism. In contrast to the insulating systems, both spin
and charge degrees of freedom become active and they even
couple to each other. A famous example is chromium [1]
where the incommensurate spin-density wave is accompanied
by the charge-density wave whose modulation vector is twice
as large as that of the spin-density wave. The same coupled
state is also known in La-based high-Tc cuprates and fre-
quently referred to as spin-charge stripe order [2].

Itinerant magnetic systems can also exhibit superconduct-
ing instabilities, leading to a state where the two phases
coexist. This possibility is discussed in various materials
such as cuprates [3–5], iron pnictides [6], and heavy elec-
tron compounds [7]. It is frequently controversial whether
the magnetism indeed coexists with superconductivity micro-
scopically or they are simply phase separated with a possible
overlap around the boundary. Here by “microscopically” we
mean that the same electrons play a dual role leading to both
superconductivity and magnetism.

In multilayer cuprate superconductors, early NMR mea-
surements reported a microscopic coexistence of supercon-
ductivity and magnetism inside a CuO2 plane [8]. Very
recently angle-resolved photoemission spectroscopy reported
clear evidence of the microscopic coexistence by observing
the superconducting gap along the Fermi-surface pocket re-
constructed by antiferromagnetic order [9].

What can be a physical quantity which characterizes the
coexistence of superconductivity and magnetism from a ther-
modynamic point of view? In experiments, the onset of
superconductivity is monitored by the zero resistivity, the
Meissner effect, and the specific heat jump even inside a
magnetic phase. However, this does not necessarily indicate a
microscopic coexistence of superconductivity and magnetism
because possible phase separation cannot be excluded. This is

the major reason why the possible coexistence of supercon-
ductivity and magnetism frequently becomes a controversial
issue.

Aiming for a fundamental insight into the coexistence, we
study the longitudinal spin susceptibility, which is a thermo-
dynamic quantity to characterize the magnetic property of a
material. A way to compute the spin susceptibility is already
well established in the normal phase where no magnetic order
is present [10]. However, it is not necessarily well recognized
how one should compute the spin susceptibility in a mag-
netically ordered phase. A standard procedure is to compute
a bubble diagram, including Umklapp processes when the
translational symmetry is broken by a magnetic order, in terms
of Green’s functions of quasiparticles defined inside the mag-
netic phase. The effect of interactions between quasiparticles
is then considered frequently in the random phase approxi-
mation (RPA). This procedure may yield correct results for
the transverse spin susceptibility, but not necessarily for the
longitudinal spin susceptibility. The point lies in the fact that
because of breaking of spin rotational symmetry inside the
magnetic phase the electron density or the chemical potential
is no longer a quadratic function of a magnetic field and
acquires a linear term in the field when computing the longitu-
dinal spin susceptibility [11]. Since the spin susceptibility is a
linear response quantity to a magnetic field, such an emergent
linear term should be taken into account and it actually plays
a crucial role [11]. However, many studies [12–16] missed the
contribution of additional linear terms in a field other than the
magnetism. It is only a few studies [11,17–19] that properly
take it into account.

The electron density and the chemical potential are dif-
ferent thermodynamic variables. As a result, the longitudinal
spin susceptibility for a fixed density (χn) can become dif-
ferent from that for a fixed chemical potential (χμ). It was
pointed out in Ref. [11] that χn and χμ are connected with
each other via a thermodynamic relation,

χn = χμ + ∂n

∂h

∣∣∣∣
μ

∂μ

∂h

∣∣∣∣
n

, (1)
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where n and μ are the electron density and the chemical poten-
tial, respectively. Here h is an infinitesimally small magnetic
field. Note that it does not necessarily imply a uniform field.
More generally, h is defined as hi = heiQ·ri and ri runs over
a lattice. The momentum Q (including the case of Q = 0)
describes the modulation vector of the magnetic order, i.e.,
mi = meiQ·ri . The direction of h is chosen along the axis of
easy magnetization. In this sense, the longitudinal susceptibil-
ity is defined as χn(μ) = limh→0

∂m
∂h |n(μ). Equation (1) is easily

obtained in thermodynamics, but is not recognized well. It
immediately leads to the following.

(i) χμ � χn since ∂n
∂h |μ ∂μ

∂h |n = −( ∂n
∂h |μ)2 ∂μ

∂n |h and the sta-
bility condition indicates that ∂μ

∂n |h should be positive
semidefinite.

(ii) χμ = χn in an insulating system because ∂n
∂h vanishes

due to the presence of a charge gap.
(iii) χμ and χn can be different when n and μ acquire a

linear term in h. It is this case when special care is required.
The linear term emerges under the following two conditions
[11]: (a) the system is in a magnetically ordered phase and
breaks spin rotational symmetry, and (b) h is applied along
the direction of the magnetic moment, which is the case in the
longitudinal spin susceptibility.

In this paper, we perform explicit calculations of χn and
χμ by focusing on a magnetic phase characterized by Q =
(π, π ), namely, the antiferromagnetic phase. Because of the
additional linear terms in h in Eq. (1), calculations of χμ

become involved even in the RPA in a standard diagrammatic
technique [11,17–19] and those of χn are more elusive. Since
the RPA is equivalent to a mean-field approximation, we
employ a mean-field theory, which allows transparent calcula-
tions for both χμ and χn not only in a magnetic phase but also
in a coexistence phase of superconductivity and magnetism.
We find that the longitudinal spin susceptibility exhibits a
jump at the superconducting instability via a continuous phase
transition inside the magnetic phase. It can be argued that this
jump is a general feature independent of approximations and
models, and a manifestation of microscopic coexistence of
superconductivity and magnetism.

II. MODEL AND FORMALISM

The coexistence of superconductivity and magnetism is ob-
tained in various two-dimensional models such as t-J [20–25]
and Hubbard [20,26–35] models, mainly motivated by the
cuprate physics. Our finding of a jump in the longitudinal spin
susceptibility may not depend on details of approximations
and models. We therefore study a minimal model to describe
the coexistence of superconductivity and magnetism, where
itinerant electrons with a dispersion ξk interact with each other
via a singlet pairing interaction with strength Vs (< 0) and an
antiferromagnetic interaction with Vm (> 0):

H =
∑
kσ

ξkc†
kσ ckσ + Vs

∑
iτ

�̂
†
iτ �̂iτ

+Vm

∑
iτ

m̂im̂i+τ −
∑

i

him̂i. (2)

Here c†
kσ and ckσ are the creation and annihilation opera-

tors for electrons with momentum k and spin orientation

σ , respectively; i runs over a square lattice and τ refers to
the nearest-neighbor direction, i.e., τ = x and y; the singlet
pairing and magnetization operators are defined as �̂iτ =
ci↑ci+τ↓ − ci↓ci+τ↑ and m̂i = 1

2 (c†
i↑ci↑ − c†

i↓ci↓), respectively.
Having in mind a low-energy effective interaction, we intro-
duce the magnetic interaction between the nearest-neighbor
sites. While one might favor a Hubbard-like on-site interaction
to describe the magnetism, our conclusions do not depend on
such a detail. For a later convenience, we also introduce an
infinitesimally small magnetic field, hi, which is applied along
the z direction and couples to the magnetic moment m̂i.

We decouple the interaction terms by introducing mean
fields: �τ = 〈�̂iτ 〉 and m = 〈m̂i〉eiQ·ri , with Q = (π, π ) de-
scribing the Néel state. Those mean fields are assumed to be
uniform, not to depend on sites i. We then take the field as
hi = heiQ·ri . The resulting mean-field Hamiltonian is given by

HMF =
∑

k

′
	

†
kMk	k, (3)

where the summation over momentum k is restricted to the
magnetic Brillouin zone |kx| + |ky| � π as indicated by a
prime, 	

†
k = (c†

k ↑ c−k ↓ c†
k+Q ↑ c−k+Q ↓), and

Mk =

⎛
⎜⎜⎜⎝

ξk −�k −m 0
−�∗

k −ξk 0 −m
−m 0 ξk+Q −�k+Q

0 −m −�∗
k+Q −ξk+Q

⎞
⎟⎟⎟⎠. (4)

Here ξk = −2[t (cos kx + cos ky) + 2t ′ cos kx cos ky +
t ′′(cos 2kx + cos 2ky)] − μ, with μ being the chemical
potential, m = 2mVm + h

2 , and �k = 2Vs�0(cos kx − cos ky).
Since the d-wave superconductivity is stable in a parameter
region we are interested in, we already put �0 = �x = −�y

for simplicity. Assuming the order parameters are real, we
obtain the following self-consistency equations:

n = 1 − 1

N

∑
k

′
(

η+
k

λ+
k

tanh
λ+

k

2T
+ η−

k

λ−
k

tanh
λ−

k

2T

)
, (5)

�0 = − 1

2N

∑
k

′
dk

(
�k

λ+
k

tanh
λ+

k

2T
+ �k

λ−
k

tanh
λ−

k

2T

)
, (6)

m = 1

2N

∑
k

′ m

Dk

(
η+

k

λ+
k

tanh
λ+

k

2T
− η−

k

λ−
k

tanh
λ−

k

2T

)
, (7)

where n is the electron density per lattice site, λ±
k =√

η± 2
k + �2

k, η±
k = ξ+

k ± Dk, Dk =
√

(ξ−
k )2 + m2, ξ±

k =
(ξk ± ξk+Q)/2, dk = cos kx − cos ky, and N is the total num-
ber of lattice sites.

The longitudinal spin susceptibility χn(μ) is defined as
χn(μ) = limh→0

∂m
∂h |n(μ) for a fixed electron density (chemical

potential). As clarified in Ref. [11], it is crucially important to
specify which one is fixed inside a magnetic phase, the density
or the chemical potential, because χμ (χn) does not describe
the spin susceptibility of a system with a fixed density (chem-
ical potential) even if the chemical potential (density) is tuned
to reproduce the correct density (chemical potential); see also
Eq. (1). Below we focus on χn and results for χμ are left to
Appendix C.
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FIG. 1. (a) Temperature dependence of the longitudinal spin susceptibility χn for a fixed density n = 0.88. Antiferromagnetic and
superconducting instabilities occur at TN = 0.138 and Tc = 0.0473, respectively, and the microscopic coexistence of both orders is realized
below Tc. The dotted line is χn when the contribution of ∂�0

∂h is neglected; “w/o” stands for “without.” (b) Temperature dependence of
the antiferromagnetic (m) and superconducting (�0) orders. (c) Enlarged view of the dotted line in panel (a) around Tc. (d) Temperature
dependencies of ∂μ

∂h and ∂�0
∂h , which diverge at TN and Tc, respectively, only on the low-temperature side. ∂μ

∂h exhibits a jump at Tc.

As discussed in Ref. [11], calculations of χn are nontrivial
already in the RPA because the chemical potential acquires a
linear term in h in a magnetic phase for a fixed density. More-
over, the superconducting gap is also expected to acquire a
linear term in h in a coexistence phase. Recalling that the RPA
is equivalent to a mean-field approximation, we compute χn

from the self-consistency equations [Eqs. (5)–(7)] by taking a
derivative with respect to h. We obtain the following matrix
equation after taking the limit of h → 0:

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

⎛
⎜⎝

∂μ

∂h
∂�0
∂h
∂m
∂h

⎞
⎟⎠ =

⎛
⎝ 0

0
χn

⎞
⎠. (8)

The expressions for ai j are given in Appendix A. Introducing
the cofactors of the above matrix A as ãi j and noting ∂m/∂h =
2Vmχn + 1/2, we get the analytical expressions

⎛
⎜⎝

∂μ

∂h
∂�0
∂h
χn

⎞
⎟⎠ = χ0

n

1 − 4Vmχ0
n

⎛
⎝ã31/detA

ã32/detA
1

⎞
⎠, (9)

with χ0
n = detA/(2ã33). Note that both μ and �0 can acquire a

linear term in h, which is crucially important inside a magnetic
phase as we show below.

III. RESULTS

We choose the band parameters t ′/t = −0.14 and t ′′/t =
0.07, which reproduce a holelike Fermi surface typical of
cuprate superconductors [36]. For the interaction strength, we
take Vs/Vm = −3/8 (Vs < 0) so that the coexistence occurs
at a reasonable temperature inside a magnetic phase. If the
ratio of |Vs|/Vm is too large (small), the superconductivity
(magnetism) will become dominant. We tune a value of t/Vm

to make sure that the magnetic phase is realized around the
electron density 1 with a domelike shape and we choose
t/Vm = 0.8; see the inset in Fig. 2 for the phase diagram,
although details of the phase diagram are not important to our
conclusions. We use Vm as our unit of energy.

Figure 1(a) shows the temperature dependence of the lon-
gitudinal spin susceptibility χn for a fixed density. The system
is in a metallic phase in a high-temperature region. With de-
creasing temperature T , χn is enhanced and diverges at TN =
0.138, signaling the instability toward an antiferromagnetic
phase. Inside the magnetic phase, χn is suppressed quickly
by the development of the magnetic order; see also Fig. 1(b).
With decreasing T further, the magnetic phase exhibits the
superconducting instability at Tc = 0.0473 via a continuous
phase transition as shown in Fig. 1(b). The magnetism com-
petes with superconductivity and the magnetic moment is
suppressed by the superconductivity, but their microscopic
coexistence is realized in T < Tc as seen in various stud-
ies [20–23,25–35,37]. It might seem counterintuitive that the
spin susceptibility is enhanced in the coexistence in Fig. 1(a)

224527-3



HIROYUKI YAMASE AND MUHAMMAD ZAFUR PHYSICAL REVIEW B 103, 224527 (2021)

FIG. 2. Density dependence of the jump of χn (�χn) along the Tc

curve inside the magnetic phase. The magnitude of the jump is scaled
by χn just above Tc. Superconducting instability does not occur down
to T = 0.0003 in 0.96 < n < 1, where �χn cannot be defined. The
inset shows the doping dependence of Tc and TN by assuming a
continuous phase transition and also depicts typical Fermi-surface
pockets inside the magnetic phase on the hole- and electron-doped
sides.

because the spin degree of freedom tends to disappear by
forming singlet pairings of electrons in the coexistence phase.
However, given that the suppression of the spin susceptibility
in T < TN is due to the development of the magnetic order,
it is reasonable that the suppression of the magnetic order by
superconductivity yields the enhancement of the spin suscep-
tibility in the coexistence.

The major finding of the present work is that the spin sus-
ceptibility exhibits a jump at Tc. If we neglect a contribution
from ∂�0

∂h , the susceptibility shows a cusp at Tc as illustrated
in Figs. 1(a) and 1(c). The origin of the jump therefore lies in
the emergence of ∂�0

∂h inside the magnetic phase.
To understand the emergence of linear terms in h inside

the magnetic phase, we show in Fig. 1(d) the temperature
dependencies of ∂μ

∂h and ∂�0
∂h . ∂μ

∂h is zero in T > TN , diverges at
TN with (TN − T )−1/2 (Ref. [38]) only on the low-temperature
side, and becomes finite at T < TN . As clarified in Ref. [11],
the emergence of ∂μ

∂h comes from two factors: the breaking
of spin rotational symmetry in the magnetic phase and an
infinitesimally small magnetic field, h, applied along the same
direction as the magnetic moment. It is the term of ∂μ

∂h that
ensures the reasonable suppression of χn with decreasing T
inside the magnetic phase [11]. Similarly, a contribution from
∂�0
∂h should also be taken into account, but this quantity is zero

until the superconducting order parameter starts to develop. At
Tc, ∂�0

∂h diverges with (Tc − T )−1/2 only on the side of T < Tc

and becomes finite at lower T . This singular behavior ∂�0
∂h at

Tc leads to the jump of the spin susceptibility in Fig. 1(a).
Analytical understanding is obtained by studying the

asymptotic behavior of each matrix element in Eq. (8) in the
vicinity of Tc, which yields a12 ∝ �0, a21 ∝ �0, a22 ∝ �2

0,
a23 ∝ �0, a32 ∝ �0, and a finite value for the other elements;
see Appendix B for a22 ∝ �2

0. Simple algebra then shows
that detA ≈ detA′′�2

0, ã31 ≈ ã′′
31�

2
0, ã32 ≈ ã′

32�0, and ã33 ≈
ã′′

33�
2
0, where detA′′, ã′′

31, ã′
32, and ã′′

33 are finite at Tc. Therefore

Eq. (9) can be written close to Tc as⎛
⎜⎝

∂μ

∂h
∂�0
∂h
χn

⎞
⎟⎠ = χ0−

n

1 − 4Vmχ0−
n

⎛
⎝ ã′′

31/detA′′

ã′
32/detA′′ × �−1

0
1

⎞
⎠, (10)

and

χ0−
n = 1

2

detA′′

ã′′
33

. (11)

The factor of �2
0 is canceled out except for ∂�0

∂h . This is the
reason why ∂�0

∂h shows a divergence of (Tc − T )−β with β =
1/2 (Ref. [38]).

The solution, Eq. (10), is valid at T = T −
c . In T > Tc

we have ai2 = a2 j = 0 for i, j = 1, 2, 3. Hence the matrix
equation (8) is reduced to a 2 × 2 matrix equation. It is then

straightforward to obtain χn = χ0+
n

1−4Vmχ0+
n

at T = T +
c with

χ0+
n = 1

2

(
a33 − a13a31

a11

)
. (12)

A comparison between Eqs. (11) and (12) immediately indi-
cates that χ0−

n and χ0+
n become different in general, because

χ0−
n encodes the effect of superconductivity through the co-

efficients of the quadratic term of the superconducting order
parameter, whereas χ0+

n is characterized by the quantities in
the purely magnetic phase. This explains the reason why χn

exhibits a jump at Tc. Similarly, we can understand the reason
why ∂μ

∂h exhibits a jump at Tc in Fig. 1(b).
The magnitude of the susceptibility jump may be denoted

as �χn. The jump is then quantified by considering the ratio
of �χn to χn at T = T +

c , which becomes dimensionless. In
Fig. 1(a) the ratio is around 1.5. This ratio is not univer-
sal and depends on the density. We compute the ratio of
�χn/χn(T +

c ) along the Tc curve inside the magnetic phase
in Fig. 2. The ratio becomes as large as 1.8 on the hole-
doped side (n < 1) and rather small around 10% at most on
the electron-doped side (n > 1). This strong asymmetry with
respect to n = 1 originates from a presence of t ′ and t ′′, which
breaks particle-hole symmetry. At n = 1, the model exhibits
an insulating state and a metallic state is realized upon carrier
doping. The Fermi-surface pockets in the antiferromagnetic
phase are then realized around k = (π/2, π/2) and (π, 0) in
the hole- and electron-doped cases, respectively, as shown in
the inset in Fig. 2. Hence the d-wave superconductivity can
develop rather quickly on the electron-doped side, whereas
it is strongly suppressed by the magnetism close to n = 1
and increases rather gradually upon further hole doping be-
cause of the expansion of the Fermi-surface pocket toward
the directions of (π, 0) and (0, π ) where the d-wave super-
conductivity acquires larger energy gain. This availability of
states around (π, 0) and (0, π ) also explains the reason why
the Tc curve is smooth on the electron-doped side when en-
tering the magnetic phase whereas it is suppressed strongly
on the hole-doped side. Therefore, because of the difference
of the underlying Fermi-surface pockets, the magnetism tends
to be suppressed more substantially by the superconductiv-
ity on the hole-doped side as seen in Fig. 1(b), which then
yields the enhancement of the ratio �χn/χn(T +

c ) as shown
in Fig. 2. While we have focused on χn here, we find that a
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jump of χμ is much more pronounced as presented in Fig. 3
in Appendix C.

The thermodynamic relation Eq. (1) was derived in
Ref. [11] where a pure magnetic phase was considered. While
the additional term ∂�0

∂h emerges in the superconducting state,
we obtain the same expression as Eq. (1) even in the coexis-
tence on the basis of thermodynamics [39] alone. The effect
of superconductivity enters as a total derivative in the sense
that the h dependence of �0 is considered when evaluating
χn(μ), ∂n

∂h |μ, and ∂μ

∂h |n. While the thermodynamic principle
yields Eq. (1), it is highly nontrivial to infer Eq. (1) even in a
simple mean-field theory. We can, however, check it explicitly
in a whole temperature region including the region near Tc in
Fig. 1 by evaluating also χμ and ∂n

∂h [see Eq. (C2)] numerically.

IV. DISCUSSIONS AND CONCLUSIONS

The jump of the longitudinal spin susceptibility in Fig. 1(a)
might look similar to the jump of the specific heat at Tc in the
BCS theory [40], but the underlying mechanism is different.
First, the jump of χn(μ) is obtained when the superconducting
instability occurs inside a magnetic phase, not in the normal
phase. Second, the jump of the specific heat comes from a
typical feature of mean-field theory, where �2

0 is proportional
to Tc − T at T < Tc (Ref. [40]). However, a term of �2

0 is
canceled out in the spin susceptibility as we have clarified
in Eq. (10).

The jump of χn(μ) originates from the emergence of ∂�0
∂h

below Tc and its singular behavior at Tc as we have already
explained. The emergence of ∂�0

∂h itself traces back to the
breaking of spin rotational symmetry inside a magnetic phase
[11] and thus is a general feature independent of details of
models and approximations. Recalling that the superconduc-
tivity occurs via a continuous phase transition, it is likely
a general feature that ∂�0

∂h exhibits a power-law divergence
at Tc even beyond the present mean-field theory as long as
a continuous phase transition into the coexistence survives.
The longitudinal spin susceptibility couples to such singular
behavior of ∂�0

∂h and thus should also be characterized by a
certain singularity at Tc. Physically χn(μ) cannot show a diver-
gence at Tc, otherwise the magnetic instability would occur
at Tc. Hence the only possible singularity of the longitudinal
spin susceptibility is a jump at Tc. One might wonder about a
possible cusp at Tc. In this case, the spin susceptibility would
become continuous across Tc, which is unlikely in general
because of the fact that ∂�0

∂h shows the singularity only on the
low-temperature side of Tc. Therefore we believe that the jump
of the longitudinal spin susceptibility can be a general feature
when the superconducting instability occurs via a continuous
phase transition inside a magnetic phase and the coexistence
is realized at lower temperatures.

It is important to recognize that the above argument relies
on only two general features inside the magnetic phase: the
emergence of ∂�0

∂h and its singular behavior associated with
a continuous phase transition of superconductivity. The un-
derlying magnetic structure, namely, a value of Q, does not
matter. Furthermore, the argument does not rely on the sym-
metry of superconductivity as long as the superconductivity
coexists with the magnetism.

Recently direct evidence of the coexistence of supercon-
ductivity and magnetism was reported for multilayer cuprates
[8,9]. Hence it is interesting to test a jump of the longitu-
dinal spin susceptibility with a wave vector Q = (π, π ) by
spin-spin relaxation time in NMR or polarized neutron scatter-
ing measurements more directly. While electron correlations
specific to cuprates are not included in the present theory,
the present minimal model may be regarded as an effective
one containing correlation effects via model parameters, for
example, a model obtained after the slave-boson mean-field
approximation to the t-J model [21,25] or a low-energy effec-
tive model obtained after integrating high-energy degrees of
freedom [31,33,35].

Higher-order corrections not included in the present theory
may modify quantitative aspects. The ordering tendency of
both magnetism and superconductivity would be suppressed.
However, the present theory is still applicable as long as the
coexistence survives. The exponent of the singularity of ∂�0

∂h at
Tc would be changed from the mean-field value. This effect is
not expected to generate a singularity different from a jump in
the longitudinal spin susceptibility as we have already argued
above. The magnitude of the jump may be suppressed or
enhanced by the effect beyond the RPA. Since longitudinal
spin fluctuations are already suppressed inside a magnetic
phase owing to the development of the magnetic order, the
jump of the spin susceptibility may not change drastically
from the present mean-field theory as long as the coexistence
remains and the magnetism is suppressed by the onset of
superconductivity.

The analytical expressions are different between χn

[Eq. (9)] and χμ [see Eq. (C2)]. Which quantity should be
employed when discussing actual materials? The electron
density is usually fixed for actual materials and thus χn seems
more appropriate. However, the situation may not be so trivial
in several cases. For example, for multilayer cuprates [8,9],
each CuO2 plane can be regarded as being in contact with
a charge reservoir because there is a charge transfer among
different CuO2 planes inside the unit cell and the coexistence
in question is realized only in a certain CuO2 plane among
them. Another example is a system where several bands cross
the Fermi energy. If a certain band contributes to the spin sus-
ceptibility substantially more than the others, the other bands
are regarded as spectators. Those systems may be modeled by
employing an effective one-band model for a fixed chemical
potential. In this case, a jump of the spin susceptibility tends
to be much more enhanced; see Fig. 3 in Appendix C.

In experiments, it is not easy to distinguish between mi-
croscopic coexistence and phase separation, which can be
frequently controversial for many materials. The present work
casts a light on this issue, because a jump of the longitudinal
spin susceptibility can be utilized as a thermodynamic probe
of the microscopic coexistence of superconductivity and mag-
netism. The magnitude of the jump depends on details of the
system. In the present model, we find that the jump is typically
pronounced when the magnetization is fairly suppressed by
the superconducting order [Fig. 1(b)] as seen in the hole-
doped region in Fig. 2. This suggests that a material in which
superconductivity and magnetism compete with each other,
but either one does not become dominant, is suitable to test
the present theory, for example, iron-based superconductors
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[6] as well as multilayer cuprates [8,9]. See also the results
of χμ [Fig. 3(b)] in Appendix C. On the other hand, if su-
perconductivity and magnetism are phase separated inside a
material via a continuous phase transition, the longitudinal
spin susceptibility does not exhibit a jump at Tc.

The jump of the longitudinal spin susceptibility at su-
perconducting instability inside a magnetic phase is a
fundamental feature associated with superconductivity. It is
curious that we cannot find the corresponding anomaly in
the 110-year history of superconductivity. There seem several
reasons. First, it is rather recently that a possible coexistence
of superconductivity and magnetism was reported in vari-
ous materials [6–9]. Second, the longitudinal susceptibility in
question is not necessarily at Q = (0, 0). Hence an experi-
mental effort may not be made without a theoretical input.

One might wonder about a situation in which superconduc-
tivity first sets in and magnetic instability occurs later inside
the superconducting phase. In this case, nothing special is
expected in the longitudinal spin susceptibility: it would show
a cusp at Tc and a power-law divergence at TN (< Tc). The
present theory is applicable to the case that superconducting
instability occurs inside a magnetic phase.

In summary, we reveal that the longitudinal spin suscep-
tibility exhibits an anomaly associated with superconducting
instability inside a magnetic phase, namely, the jump of the
susceptibility. This anomaly originates from the emergence of
∂�0
∂h in T < Tc, whose origin traces back to the breaking of

spin rotational symmetry inside the magnetic phase. The jump
of the longitudinal spin susceptibility is a thermodynamic
signature of the microscopic coexistence of superconductivity
and magnetism and can be tested in various materials. While
our calculations are performed in mean-field theory, it can
be argued that the jump of the longitudinal spin susceptibil-
ity reflects a general feature associated with superconducting
instability inside a magnetically ordered phase.
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APPENDIX A: MATRIX ELEMENTS
FOR A FIXED DENSITY

The matrix elements in Eq. (8) are computed by taking a
derivative of the self-consistency equations [Eqs. (5)–(7)] with
respect to the field h:

a11 = 1

N

∑
k

′
(

(η+
k )2g+

k + tanh λ+
k

2T

λ+
k

+ (η−
k )2g−

k + tanh λ−
k

2T

λ−
k

)
,

(A1)

a12 = −2Vs

N

∑
k

′
�kdk

(
η+

k g+
k

λ+
k

+ η−
k g−

k

λ−
k

)
, (A2)

a13 = −2mVm

N

∑
k

′ 1

Dk

(
(η+

k )2g+
k + tanh λ+

k
2T

λ+
k

− (η−
k )2g−

k + tanh λ−
k

2T

λ−
k

)
, (A3)

a21 = − 1

4Vs
a12, (A4)

a22 = −1 − Vs

N

∑
k

′
d2

k

(
�2

kg+
k + tanh λ+

k
2T

λ+
k

+�2
kg−

k + tanh λ−
k

2T

λ−
k

)
, (A5)

a23 = −mVm

N

∑
k

′ �kdk

Dk

(
η+

k g+
k

λ+
k

− η−
k g−

k

λ−
k

)
, (A6)

a31 = 1

2
a13, (A7)

a32 = −2Vsa23, (A8)

a33 = 1

2N

∑
k

′ (ξ−
k )2

D3
k

(
η+

k

λ+
k

tanh
λ+

k

2T
− η−

k

λ−
k

tanh
λ−

k

2T

)
(A9)

+ (2mVm)2

2N

∑
k

′ 1

D2
k

(
(η+

k )2g+
k + tanh λ+

k
2T

λ+
k

+ (η−
k )2g−

k + tanh λ−
k

2T

λ−
k

)
. (A10)

Here g±
k is given by

g±
k = − 1

(λ±
k )2

tanh
λ±

k

2T
+ 1

2T

1

λ±
k

1

cosh2 λ±
k

2T

. (A11)

APPENDIX B: ASYMPTOTIC ANALYSIS NEAR Tc

The matrix element a22 is proportional to �2
0 in the vicinity

of Tc as we mention in the main text. Here we provide the
outline of the derivation.

The element a22 depends on T , μ, �0, and m when n is
fixed. Here μ, �0, and m also depend on T . Hence we expand
a22 with respect to T around Tc

a22(T ) = a22(Tc) + da22

dT

∣∣∣∣
Tc

(T − Tc) + · · · , (B1)

= da22

dT

∣∣∣∣
Tc

(T − Tc) + · · · . (B2)

Note that Eq. (6) certifies a22 = 0 at T = T −
c . It is cumber-

some to compute da22
dT , which is given by

da22

dT
=

(
∂

∂T
+ dμ

dT

∂

∂μ
+ d�2

0

dT

∂

∂�2
0

+ dm

dT

∂

∂m

)
a22. (B3)

Here we have considered that a22 is a function of �2
0 so that

d�2
0

dT becomes regular at Tc. It is straightforward to obtain
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∂a22

∂T

∣∣∣∣
Tc

= Vs

2T 2
c N

∑
k

′
d2

k

⎛
⎝ 1

cosh2 η+
k

2Tc

+ 1

cosh2 η−
k

2Tc

⎞
⎠, (B4)

∂a22

∂μ

∣∣∣∣
Tc

= −Vs

N

∑
k

′
d2

k

⎡
⎣ 1

(η+
k )2

tanh
η+

k

2Tc
− 1

2Tc

1

η+
k

1

cosh2 η+
k

2Tc

+ 1

(η−
k )2

tanh
η−

k

2Tc
− 1

2Tc

1

η−
k

1

cosh2 η−
k

2Tc

⎤
⎦, (B5)

∂a22

∂�2
0

∣∣∣∣
Tc

= 6V 3
s

N

∑
k

′
d4

k

⎡
⎣ 1

(η+
k )3

tanh
η+

k

2Tc
− 1

2Tc

1

(η+
k )2

1

cosh2 η+
k

2Tc

+ 1

(η−
k )3

tanh
η−

k

2Tc
− 1

2Tc

1

(η−
k )2

1

cosh2 η−
k

2Tc

⎤
⎦, (B6)

∂a22

∂m

∣∣∣∣
Tc

= 4mV 2
mVs

N

∑
k

′
d2

k
1

Dk

⎡
⎣ 1

(η+
k )2

tanh
η+

k

2Tc
− 1

2Tc

1

η+
k

1

cosh2 η+
k

2Tc

− 1

(η−
k )2

tanh
η−

k

2Tc
+ 1

2Tc

1

η−
k

1

cosh2 η−
k

2Tc

⎤
⎦. (B7)

To calculate dμ

dT , d�2
0

dT , and dm
dT , we take a derivative of each self-

consistency equation [Eqs. (5)–(7)] with respect to T , yielding
the following matrix equation:⎛

⎝ a11 a12/(2�0) 2Vma13

a21/(2�0) a22 2Vma23/(2�0)
a31 a32/(2�0) 2Vma33 − 1

⎞
⎠

⎛
⎜⎝

dμ

dT
d�2

0
dT
dm
dT

⎞
⎟⎠

=
⎛
⎝ c1

c2/(2�0)
c3

⎞
⎠, (B8)

where ai j are the same as those in Eq. (8) and

a22 = −V 3
s

N

∑
k

′
d4

k

(
g+

k

λ+
k

+ g−
k

λ−
k

)
, (B9)

c1 = − 1

2T 2
c N

∑
k

′

⎛
⎝ η+

k

cosh2 η+
k

2Tc

+ η−
k

cosh2 η−
k

2Tc

⎞
⎠, (B10)

c2 = − 1

4T 2
c N

∑
k

′
�kdk

⎛
⎝ 1

cosh2 η+
k

2Tc

+ 1

cosh2 η−
k

2Tc

⎞
⎠, (B11)

c3 = mVm

2T 2
c N

∑
k

′ 1

Dk

⎛
⎝ η+

k

cosh2 η+
k

2Tc

− η−
k

cosh2 η−
k

2Tc

⎞
⎠. (B12)

Note that a12/(2�0), a21/(2�0), a23/(2�0), a32/(2�0), and
c2/(2�0) become finite in the limit of �0 → 0. By solving
Eq. (B8) and evaluating Eqs. (B4)–(B7), we obtain the quan-
tity of da22

dT given in Eq. (B3).
To write a22 in terms of �0, we recall that �0 can be

parametrized as �0 = a(Tc − T )
1
2 near Tc in mean-field the-

ory. Hence Eq. (B2) can be written as

a22(T ) = − 1

a2

da22

dT

∣∣∣∣
Tc

�2
0 + · · · (B13)

=
(

d�2
0

dT

∣∣∣∣
Tc

)−1
da22

dT

∣∣∣∣
Tc

�2
0 + · · · . (B14)

This coefficient of �2
0 is computed from Eqs. (B3) and (B8)

numerically.

The coefficients of proportionality of a12 ∝ �0, a21 ∝ �0,
a23 ∝ �0, and a32 ∝ �0 are easily read off from Eqs. (A2),
(A4), (A6), and (A8), respectively. After simple algebra, we
can evaluate numerically χ0−

n [Eq. (11)] and other quantities
in Eq. (10).

APPENDIX C: SPIN SUSCEPTIBILITY FOR A FIXED
CHEMICAL POTENTIAL

We have presented results for a fixed density in the main
text. Here we present key expressions and results for a fixed
chemical potential.

Under the condition of a fixed chemical potential, we take
a derivative of each self-consistency equation [Eqs. (5)–(7)]
with respect to the field h and then take the limit of h → 0.
We then obtain⎛

⎝b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎠

⎛
⎜⎝

∂n
∂h

∂�0
∂h
∂m
∂h

⎞
⎟⎠ =

⎛
⎝ 0

0
χμ

⎞
⎠. (C1)

The corresponding expression for a fixed density is given in
Eq. (8), where ∂μ

∂h appears instead of ∂n
∂h . The matrix elements

bi j are the same as ai j except for b11 = −1 and b21 = b31 = 0.
We describe the (i j)th cofactor of the above matrix B as b̃i j .
The analytical solution is given by⎛

⎝
∂n
∂h

∂�0
∂h

χμ

⎞
⎠ = χ0

μ

1 − 4Vmχ0
μ

⎛
⎝b̃31/detB

b̃32/detB
1

⎞
⎠, (C2)

where χ0
μ = detB/(2b̃33). Note that the functional form of χμ

is exactly the same as χn in Eq. (9), but the matrix B is not
the same as A. Hence the resulting values of ∂�0

∂h , χμ, and
χ0

μ become different from those for a fixed density inside a
magnetic phase. No difference occurs in the normal phase
because of vanishing additional linear contributions in h, i.e.,
∂n
∂h = ∂�0

∂h = 0.
For completeness, we present in Fig. 3(a) temperature de-

pendence of χμ for μ = −0.52; the density is n = 0.876 at
T = 0 and thus may be reasonably compared with Fig. 1.
Similar to Fig. 1(a), χμ exhibits a jump at Tc = 0.0375. The
anomaly at Tc is much more pronounced than χn shown in
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FIG. 3. (a) Temperature dependence of the longitudinal spin susceptibility χμ for a fixed chemical potential μ = −0.52. Antiferromagnetic
and superconducting instabilities occur at TN = 0.127 and Tc = 0.0375, respectively, and the microscopic coexistence is realized below Tc. χn

(dotted line) is obtained by tuning the density to reproduce μ = −0.52 at each temperature and becomes different from χμ below TN . χμ and
χn are connected with each other via the thermodynamic relation Eq. (1). (b) Chemical potential dependence of the jump of χμ (�χμ) along
the curve of Tc inside the magnetic phase; the magnitude of the jump is scaled by χμ just above Tc. The inset shows the phase diagram in the
plane of the chemical potential and temperature. Superconducting instability does not occur down to T = 0.0003 in −0.37 < μ < −0.214.
The hole-doped region is at μ < −0.214 and the electron-doped region is at μ > −0.214.

Fig. 1(a). This pronounced anomaly is also highlighted by
comparing the doping, i.e., the chemical potential, depen-
dence of the jump [Fig. 3(b)] with that of χn (Fig. 2). While
the jump might seem small on the electron-doped side in
Fig. 3(b), its magnitude is comparable to that in the hole-
doped region in Fig. 2. Besides the amplitude of the jump,
another marked difference between Fig. 3(b) and Fig. 2, lies
in a small doping region on the electron-doped side: the
clear enhancement of �χμ/χμ(T +

c ) is close to μ = −0.214
in Fig. 3(b), but its suppression is close to n = 1 in Fig. 2.
The enhancement of �χμ/χμ(T +

c ) here should be understood
with special care. First, it does not imply the behavior of
a divergence. Since the magnetic susceptibility should not
diverge at Tc inside the magnetic phase, �χμ should be finite.

In addition, χμ(T +
c ) becomes small deeply inside the mag-

netic phase, but retains a finite value at T = 0; this is true
even at half-filling in the present model. Second, we checked
numerically that χμ at T = T +

c decreases upon approaching
μ = −0.214 from the above, but the jump of χμ, namely
�χμ, stays roughly around 0.75. Hence the enhancement of
�χμ/χμ(T +

c ) in Fig. 3(b) does not mean the enhancement of
�χμ, but comes from the suppression of χμ(T +

c ).
In Fig. 3(a) we also plot χn by tuning the density to re-

produce the correct chemical potential μ = −0.52 at each
temperature. χn and χμ are connected by the thermodynamic
relation Eq. (1) and χμ is always larger than χn. In other
words, χμ is more susceptible, which explains the reason why
the jump of χμ tends to be pronounced more than that of χn.
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