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Harnessing the properties of vortices in superconductors is crucial for fundamental science and technological
applications; thus, it has been an ongoing goal to locally probe and control vortices. Here, we use a scanning
probe technique that enables studies of vortex dynamics in superconducting systems by leveraging the resonant
behavior of a raster-scanned, magnetic-tipped cantilever. This experimental setup allows us to image and
control vortices, as well as extract key energy scales of the vortex interactions. Applying this technique to
lattices of superconductor island arrays on a metal, we obtain a variety of striking spatial patterns that encode
information about the energy landscape for vortices in the system. We interpret these patterns in terms of local
vortex dynamics and extract the relative strengths of the characteristic energy scales in the system, such as the
vortex-magnetic field and vortex-vortex interaction strengths, as well as the vortex chemical potential. We also
demonstrate that the relative strengths of the interactions can be tuned and show how these interactions shift
with an applied bias. The high degree of tunability and local nature of such vortex imaging and control not only
enable new understanding of vortex interactions, but also have potential applications in more complex systems

such as those relevant to quantum computing.
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I. INTRODUCTION

Many electronic and magnetic properties of superconduc-
tors can be understood through study of the vortices present
in the superconductor. Each vortex allows one flux quantum
to penetrate the superconducting surface, allowing the bulk
of the superconductor to remain in the superconducting state.
When an electrical current is applied, vortices move trans-
versely to the current, a dissipative process that removes the
perfect electrical conductivity of the system. Forces that pre-
vent motion of vortices, known as pinning forces, are desirable
to prevent this dissipation, and to control the positions that
vortices occupy. Beyond enhancing superconductivity, it is
desirable to control vortex positions to predict vortex paths, as
well as the fields surrounding the superconductor. The demon-
stration of locally probed and manipulated vortices [1-14] is
relevant to a variety of technological applications, including
quantum computation [15,16].

In previous work, imaging techniques such as scanning
superconducting quantum interference device microscopy
[1-3,17], Hall probe microscopy [18,19], scanning tunneling
microscopy [6,20], NV center magnetometry [21,22], and
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cantilever-based techniques [23-26] have played a central role
in studies of vortex lattices and the internal structure of in-
dividual vortices. However, these studies focused on probing
and manipulating individual vortices rather than capturing and
controlling the dynamics of an entire vortex ensemble. This
allowed determination of the pinning strength but not the
other important energy scales such as vortex-vortex interac-
tion strength. Yet determining vortex interactions is crucial
for enabling predictive vortex manipulation and control for
applications. In this article we use a technique that over-
comes this obstacle: a method we term ®(-magnetic force
microscopy (Po-MFM) [27,28], which probes the dynamic
motion of a small group of vortices (from 1 to ~12) trapped in
the magnetic field generated by the tip of a vertically oriented
cantilever. Here, we use this technique to determine the vortex
number in a pinned vortex configuration, extract the relative
vortex-vortex and vortex-field interactions strengths as well
as the vortex chemical potential, and probe the response to an
applied current bias.

II. ®,-MAGNETIC FORCE MICROSCOPY OF VORTEX
DYNAMICS IN SUPERCONDUCTOR-NORMAL
-SUPERCONDUCTOR ARRAYS

®(-MFM is demonstrated on triangular arrays of Nb
islands deposited on Au films [Fig. 1(a)], which form a

©2021 American Physical Society
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FIG. 1. SNS array and magnetic tip characterization. (a)
Schematic of cantilever over a triangular array of Nb islands on top
of an Au film. A SmCos magnetic tip (black shape) is attached to
the end of the cantilever and used to trap vortices. The white arrow
on the magnetic tip indicates the direction of the tip’s magnetization.
Inset: Scanning electron microscope (SEM) image of an array with
500-nm center-to-center spacing. (b) False-color SEM image of one
of the SmCos magnetic tips used in this work. White scale bar
is 500 nm. (c) Temperature dependence of the resistance near the
superconducting transition.

superconductor—normal-metal-superconductor (SNS) array.
A resistance vs temperature measurement showing a super-
conducting transition for a representative array is shown in
Fig. 1(c). In this figure, 77 represents the superconducting
transition temperature of the Nb islands and 7, the tempera-
ture at which the Au film regions between the Nb islands—
the interstitial regions —become superconducting [31] and
strongly type-II in behavior. Vortices will preferentially stay
close to the magnetic tip but avoid the Nb islands and thus
reside in the interstitial regions, since these regions host a
weaker superconducting condensate. As a result, the SNS
array system of superconducting islands on top of normal
metal films proves to be a controllable and tunable model for
superconducting films having a periodic pinning potential for
vortices [29-31].

Scanning measurements are performed below 7, using an
ultrasoft micromachined Si cantilever, mounted in a pendu-
lum configuration, with an SmCos magnetic tip shaped via
focused ion beam [Fig. 1(b)]. All MFM scans are taken below
T, to allow us to neglect vortex nucleation due to thermal
fluctuations and assume that all phase windings and density
suppressions in the superconducting order parameter are due
to external or tip magnetic fields. An estimate of the tip field

is obtained by imaging flux entry into superconducting Al
rings (see Appendix A). A uniform magnetic field applied
perpendicular to the SNS array, and antiparallel to the field
of the tip, tunes the number of vortices trapped underneath
the cantilever tip. The magnetic tip creates a potential well
underneath it for vortices with a particular circulation, and
at the same time, it repels oppositely circulating vortices that
are generated by the uniform field applied to the SNS array.
Hence, underneath the tip several tip-induced vortices will be
trapped. The tip field controls both the depth and width of the
well while the external applied field affects only the depth of
the potential. Overall, the external field serves as an additional
tuning parameter which globally defines the vortex array that
is then modulated by the tip field. As parameters related to the
vortex energies and interactions are changed (e.g., tip height,
magnetic field magnitude, array spacing) the configuration of
the trapped vortices changes to minimize the local energy. As
the vortices move, frequency shifts of the cantilever are gen-
erated due to the interaction between the vortex and cantilever
fields.

To generate spatial frequency shift maps, the cantilever is
raster scanned over the surface of the SNS array at a fixed
tip scanning height, with a small fixed oscillation amplitude
(typically ~15 nm), which perturbs the position of the poten-
tial well that traps vortices [Fig. 2(a)-2(e)]. The cantilever is
kept oscillating at its resonant frequency [32] and is monitored
by a phase-locked loop. When the cantilever moves across
the array at a fixed applied field the energies of two distinct
configurations of vortices can become degenerate at certain
tip locations [Figs. 2(d) and 2(e)]. While the cantilever is over
these degeneracy locations, the oscillations of the cantilever,
along with thermal excitations of the vortices, will drive the
vortices between the two configurations in resonance with
the cantilever, leading to a force on the cantilever and an
associated frequency shift. This frequency shift, which we
found to be A f &~ 5-15 Hz for our cantilevers with resonant
frequency of fy ~ 4 kHz, vanishes quickly as the cantilever
moves away, sharply marking the positions where the vortex
configurations become degenerate. Raster scanning over the
entire imaging window leads to a spatial map of frequency
shifts.

In Fig. 2(f) we present an experimental frequency shift map
for an island spacing of 500 nm, where dark lines indicate
the boundaries between two stable vortex configurations and
the lighter areas show tip positions where the vortex config-
uration is stable and thus there is no associated frequency
shift of the tip. The figure shows an intricate pattern of ap-
proximately periodic frequency shifts. This pattern consist of
a series of nearly circular features, which are centered on
the superconducting islands, and a series of lines, some of
which are horizontal, and others appear in zig-zag configu-
ration. Once these spatial frequency shift maps are obtained
experimentally, we can infer the corresponding vortex con-
figuration from Monte Carlo simulations that minimize the
energy of the system (see Sec. Il A). For example, our mod-
eling indicates that the frequency map shown in Fig. 2(f)
corresponds to a five-vortex configuration. Figure 2(g) shows
the comparison of the experimentally observed pattern with
the calculated locations of transitions between configurations
of five vortices.
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FIG. 2. Schematic showing formation of spatial frequency shift
maps. (a)—(c) Several different vortex configurations are stabilized
for different positions of the tip with respect to the island array.
Here the vertices of triangles correspond to the positions of Nb
islands and the shaded blue region marks the field on the surface
of the sample with the center indicated by the dot. Vortices in the
interstitial regions are shown by red circular arrows. Small colored
regions mark the positions of the tip center for which the vortex
configurations are stable. (d), (¢) When the tip encounters a position
where the vortex configuration changes (black line), it will drive
the vortices between these configurations as it oscillates, leading
to a force on the cantilever and the emergent resonant frequency
shift. (f) Representative example of an experimental frequency shift.
(g) Simulated locations of the transitions between vortex configura-
tions overlaid with the experimental data. Shaded regions correspond
to vortex configurations shown in (a)—(c).

A. Numerical simulations of vortex configurations

To understand the underlying mechanism that causes the
formation of these patterns, we will now discuss how these
images encode information about vortex dynamics in the SNS
array. We performed numerical simulations of a simple phe-
nomenological model of vortices. We model the system as an
array of Josephson junctions, approximating the Josephson
current as I ~ I.y;;, where y;; is the gauge-invariant phase
between islands i and j. This approximation allows for several
convenient simplifications to the effective vortex energy (see
Appendix B). We assume that each vortex is pointlike and sits
in the center of a plaquette, and the subsequent model for the

vortex energy is

Nplaq Nplaq
Elnl = pin Y Vpgtptg + Y LU, + ptvordnp, (1)
P.q=1 p=1

where Npi,q is the number of plaquettes, piy is a relative scale
factor between the vortex-field [(Uy),] energy and vortex-
vortex (Vpq) interaction term, (o represents the chemical
potential of the vortices, and n,, is the number of vortices in
plaquette p. We use a classical Metropolis algorithm Monte
Carlo simulation to determine the lowest energy vortex con-
figuration for a fixed vortex number (Appendix B). We then
compared the lowest energy vortex configurations for differ-
ing vortex numbers to determine the configuration with the
lowest overall energy, hence identifying the vortex number
and its configuration for a given tip location. By tuning the
relative strengths of (Ut)p, Vpg, and pyor, to fit the data at
the correct external field and tip heights, we can extract the
relative energy scales of the system.

As an example of these simulations, in Fig. 3(a) we show
the patterns and associated vortex configurations produced by
three vortices. As can be seen, there is very good agreement
between the simulations obtained from the model we use
(bottom) and the experimental measurement (top). By increas-
ing the number of vortices by one and running the simulation
again, the resulting pattern obtained changes and reproduces
another of the experimental scans, as shown in Fig. 3(b).
Using this technique, we can thus show that Figs. 3(a), 3(b),
3(c), and 3(d) demonstrate the energy landscapes and cor-
responding vortex configurations for 3, 4, 5, and 6 vortices,
respectively.

B. Effects of tip scanning height and applied magnetic field

Figures 4 and 5 show additional real space maps of the
frequency shifts associated with changes in vortex configura-
tions, where striking geometric patterns are produced as the
applied field, tip height and array spacing are tuned. Changes
in the number of vortices and their energy landscapes are
manifested as a remarkable evolution between frequency shift
patterns. We can controllably alter the number of vortices and
thus vortex configurations by tuning three main parameters:
the applied magnetic field, tip scanning height, and array
spacing.

Figures 4(a)—4(e) show frequency shift maps for a 500-nm-
spaced island array obtained by fixing the applied magnetic
field to 50 Oe and tuning the tip height from 540 to 340 nm.
Through Monte Carlo simulations, it was determined that
Figs. 4(a)—4(e) correspond to a 3, 4, 5, 6, 7-vortex configu-
ration, respectively. As the tip scanning height is decreased at
a fixed applied field, the depth of the potential well increases,
leading to an increase in the number of vortices trapped under-
neath the tip. Correspondingly, the energy landscape evolves
as the vortex number increases.

The tip heights at which a vortex configuration transition
happens (for example a transition from a 3-vortex to a 4-
vortex configuration) also depends on the applied magnetic
field. Figures 4(f)—4(j) show frequency shift maps obtained
by fixing the applied field to a higher value of 80 Oe and
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FIG. 3. Images of some patterns seen in this experiment (top) and associated vortex configurations (bottom) as determined by simulated
annealing. A slowly varying background was removed from all images to highlight the pertinent features. Configurations are shaded where
they are the lowest energy state. The simulation data is darker in areas where the cantilever would experience a larger frequency shift due to
the oscillating current. Some dashed vertical lines are added to the simulation to highlight stable regions for a given vortex configuration. One
plaquette (red triangle) and associated islands (dashed circles) are drawn for clarity. Experimental and simulations taken for (a) 3 (124 Oe,
350 nm), (b) 4 (85 Oe, 425 nm), (c) 5 (80 Oe, 425 nm), and (d) 6 vortices (68 Oe, 425 nm). All images taken at 3.70 K, except (b), taken at
375 K.

o

tuning the tip height from 380 to 240 nm. Similar features are field the depth of the potential well trapping the tip-generated
evident in Figs. 4(a)-4(e) and Figs. 4(f)—4(j); from simulation, vortices is smaller and thus there are fewer trapped vortices.
it was determined that Figs. 4(f)—4(j) also correspond to a 3, For example, by fixing the tip height to 380 nm and tuning the
4,5, 6, 7-vortex configuration. However, for the larger applied =~ magnetic field from 50 to 80 Oe, as shown in Figs. 4(d) and
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FIG. 4. Vortex configuration changes with tip height and applied magnetic field. Tip height decreases from left to right and applied field
increases from top to bottom. The applied field (in Oe) and the tip height (in nm) are indicated on the lower left corner of each panel. (a)—(e)
Applied field is fixed at 50 Oe as the tip height is tuned from 540 to 340 nm. As the tip height decreases, frequency shift maps were taken for
(a) 3, (b) 4, (c) 5, (d) 6, and (e) 7 vortices. (f)—(j) Applied field is increased and fixed at 80 Oe as the tip height is tuned from 380 to 240 nm.
As the tip height decreases, frequency shift maps were again taken for (f) 3, (g) 4, (h) 5, (i) 6, and (j) 7 vortices.
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FIG. 5. Vortex pattern changes as a function of array spacing. 6-
vortex configuration patterns at a tip height of approximately 480 nm
for an array spacing of (a) 440 nm, (b) 500 nm, and (c) 560 nm.

4(f), the number of trapped vortices decreases from 6 to 3. It
is clear that as the applied field increases, lower tip heights are
required to achieve the same vortex configuration.

Although the frequency shift maps corresponding to the
same vortex configurations are similar, they are not identical.
For example, both Figs. 4(d) and 4(i) describe a 6-vortex
configuration, however, they differ in that Fig. 4(i) has more
well-defined features and also shows additional features not
evident in Fig. 4(d). The differences in the patterns arise from
a competition between vortex-tip and vortex-vortex interac-
tions. With the tip closer to the surface of the array, vortex-tip
interactions dominate, and the vortices are positioned in
neighboring plaquettes. At higher tip heights, vortex-vortex
interactions begin to dominate, and the vortices will begin
to spread out underneath the tip and thus no longer reside in
neighboring plaquettes (see Discussion for further details).

Altogether, the tip height and applied field will determine
the number and energy landscape of trapped vortices, while
the tip position affects the location of the vortices within that
configuration. This shows that by constructing an appropriate
field profile from the tip, control over the vortex states and
extraction of key energy scales can be achieved. Using the
model described in Sec. II A, we can indeed infer the inter-
action energy scales by mapping the experimentally obtained
images with our simulations.

C. Effects of array spacing

As the array spacing is tuned, control over the distribution
of vortices can also be achieved. In addition to the 500-nm-
spaced array discussed in Figs. 2, 3, and 4, we measured arrays
with a spacing of 440 and 560 nm. Figures 5(a)-5(c) show
frequency shift maps of a 6-vortex configuration for each
array spacing at approximately the same tip scanning height.
The frequency shift map for the closest-packed array with a
440 nm spacing [Fig. 5(a)] was taken at a tip height of 480
nm, an applied field of 35 Oe, and at a temperature of 7.7 K.
The frequency shift map for the 500 nm array [Fig. 5(b)]
was taken at a tip height of 440 nm, an applied field of 40
Oe, and a temperature of 5.7 K. Lastly, the frequency shift
for the 560 nm array [Fig. 5(c)] was taken at a tip height of
440 nm, an applied field of 65 Oe, and at a temperature of
3.85 K. Measurements were made at different temperatures
to ensure that all scans were taken at temperatures which are
slightly below 7, [Fig. 1(c)]. The T, value depends on the
array spacing [31] where the smaller the array spacing, the
larger the value of 7, up to the saturation value of bulk Nb T¢;

thus the frequency shift maps were taken at the appropriate
temperatures right below 75, with the 440-nm array having
the largest temperature value and the 560-nm array having the
smallest temperature value.

The magnitude of the applied field needed to create a vor-
tex also depends on the array spacing through the magnetic
frustration f = B where B is the applied field, A is the
plaquette area and CI>0 is the flux quantum. As the plaquette
area (proportional to the array spacing) decreases, the field
needed to create a vortex in every plaquette (f = 1) increases.
Since the applied field is antiparallel to the tip field, the
relation between applied field and number of trapped vortices
underneath the tip is reversed; the smallest array spacing re-
quires a smaller applied field to produce the same 6-vortex
configuration as the largest array spacing in Fig. 5.

It can be seen in Figs. 5(a)-5(c) that there are similarities
in the patterns, but they are not identical even though they all
represent the energy landscape of 6 vortices. These differences
again arise due to vortex-vortex interactions in the system. As
the array spacing decreases, the tip field encompasses more
plaquettes, enabling the vortex-vortex interaction to spread
out the vortices. Overall, the array spacing serves as an ad-
ditional tuning parameter; as we show in the Discussion, this
allows for the extraction of the relative strength of vortex-
vortex and vortex-field interactions, which depend on whether
the islands are either loosely or closely packed.

D. Effects of applied DC driving current

We applied a DC current to the SNS arrays and again
performed ®,-MFM scans. The application of a DC current
results in a spatial shift of the frequency maps perpendicular to
the current direction. Figures 6(a)-6(c) show frequency maps
for a 6-vortex configuration at a tip height of 270 nm for an
applied DC driving current of —35, 5, and 35 @A, respec-
tively. We find that the pattern shown in Figs. 6(a)-6(c) shifts
to the left by about 55 nm as the applied current increases
from —35 to + 35 pA; the red circles are fixed guides added
to emphasize the relative shift of the patterns. We attribute this
spatial shift to the Lorentz force acting on the vortices as the
current is applied. Figure 6(d) shows the relation between the
applied current and measured spatial shift of the frequency
maps for the 500-nm array when the vortex number and tip
height is tuned. The shift is determined from the calculated
cross correlation between two images taken with DC currents
of opposite directions [see Fig. 6(d) inset].

We find that for low applied currents (<20 @A) the pattern
shift is approximately proportional to the current [Fig. 6(d)].
Remarkably, the corresponding coefficient does not show no-
ticeable dependence on the number of vortices or the height
of the tip controlling the shape of the confining potential. This
behavior suggests that the pinning force, which is a linear
restoring force arising when each vortex is shifted from the
center of its interstitial region [33], counteracts the Lorentz
force due to the transport current. Since the Lorentz force act-
ing on each vortex is F = J x z - ®( [29], where J is current
density, z is a unit vector aligned with the vortex, and @ is
the superconducting flux quantum, we find that the effective
spring constant in the linear regime is k ~ 1.6 x 1078 N/m.
It is worth pointing out that the spring constant depends on
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FIG. 6. Frequency maps as a function of an applied DC current.
6-vortex configuration at a tip height of 270 nm with an applied
DC current bias of (a) —35 pA, (b) 5 nA, and (c) 35 nA. The
red circles are fixed guides added to emphasize the relative shift
of the patterns. (d) Spatial shift (in nm) of the frequency maps
vs the applied DC current for a 500-nm array spacing with a 4
and 6-vortex configuration at tip scanning heights of approximately
250 and 470 nm. Inset shows the cross-correlation curves used to
determine the relative shifts between the images taken for 6-vortex
configurations at 270 nm height.

the relative strength of J and intrinsic supercurrents flowing
between the islands which are of the order of I.. Therefore
the measurement of k opens a pathway towards extracting
the absolute values of vortex energy scales. Such analysis,
however, goes beyond the scope of this work and will require
calculation of vortex energy with a more realistic model which
takes into account the distribution of currents within plaquette
and other factors.

In a 4-vortex configuration with a tip height of 470 nm, the
shift increases linearly up to the maximum applied current,
however at tip height of 240 nm the linear behavior persists
only up to about 25 n A [Fig. 6(d)]. At higher currents the shift
is independent of the applied current signaling a crossover
to a regime in which vortex-vortex and vortex-field interac-
tions likely dominate over the pinning force. The effect of
decreasing the tip height while keeping number of vortices
constant means that the tip field lines are now confined to
fewer plaquettes on the array. This confinement coupled with

large driving currents leads to the increased vortex-vortex and
vortex-field interactions.

In a 6-vortex configuration at similar scanning heights
of 270 and 480 nm [yellow and green traces in Fig. 6(d),
respectively], the crossover to dominant vortex-vortex and
vortex-field interactions happens at lower driving currents
when compared to the 4-vortex configuration. More vor-
tices confined over the same number of plaquettes on the
array will be more susceptible to crossover to a vortex-
vortex and/or vortex-field interaction regime at lower driving
currents.

At even higher applied currents, when the Lorentz force
dominates over the pinning force, vortex-vortex and vortex-
field interactions lead to bulk depinning of the vortices.
Once the vortices depin from their potential wells, the tip no
longer detects frequency shifts and the image is smeared (see
Appendix C).

III. DISCUSSION

We fit patterns at different external fields and tip heights
to extract valuable, and previously inaccessible, information
about the energy scales that determine vortex dynamics in
these systems. Using Eq. (1), we find that, for a 500-nm
center-to-center (interisland) array, the chemical potential
term is approximately ptyorr = (1.8 £ 0.1) V,,, where V,,, is
the energy of a lone vortex trapped in the array with no fields
applied, as presented in the model described in Appendix B,
and pyy is approximately 1.0—1.2. We do not find any depen-
dence of (o On the number of vortices underneath the tip for
the configurations examined. Separate arrays with spacings of
440 and 560 nm were also imaged, and pyo and pi, were
extracted. For the 560-nm array, we found pyory = (0.9 £0.1)
Vpp, With pin ~ 0.7—0.9, i.e., showing vortex-vortex inter-
actions are weaker relative to vortex-field interactions. We
also find that p;,, depends on the external field and decreases
for higher external magnetic field values. The 440-nm array
has piyor = (2.4 £0.1)V,,, with pj, ~ 1.2—1.4, indicating
stronger vortex-vortex interactions relative to the vortex-field
interaction. For this lattice spacing we find that p;, increases
for higher field values.

In addition to the extraction of these characteristic energy
scales, some in situ control over the vortex configurations
is achieved by varying the height of the tip as previously
discussed. By simulating the effects of the tip height on a
certain vortex configuration, we were able to further extract
the location of each vortex within the array. Figure 7 shows the
evolution of configurations of 6 vortices and accompanying
simulations as the tip height is increased and the applied field
is tuned so to keep the number of vortices constant. At a tip
height of 430 nm, it was demonstrated by the simulation that
the vortices reside in neighboring plaquettes (Fig. 7). As the
tip height is increased, the vortices begin to spread out and
begin to reside in next-nearest neighboring plaquettes. Some
vortex configurations that are present with a deeper well will
cover less area in the image or can even disappear as the
well is made shallower. This again is due to the vortex-vortex
interactions becoming relatively stronger, and hence more
significant in determining the vortex configurations for these
conditions.
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FIG. 7. Simulated vortex pattern changes with height for 6 vor-
tices underneath the tip. Tip height increases from left to right,
as shown below each image. Images are overlaid with data from
simulations (red) and the stable vortex configuration in each region.
As the tip height is increased, the potential well flattens out, while the
associated external field is changed to keep the number of vortices
constant. Some stable vortex configurations cover a smaller area as
the tip height is increased, with those regions disappearing in the
furthest image. In the rightmost image, f,ox Was decreased to 1.4V,
to achieve a better fit. The lower images show the field distribution
on the surface for 430 nm (left) and 610 nm (right) tip separations
with the tip over the central feature of the top images.

IV. CONCLUSIONS

In conclusion, we have demonstrated a robust experimental
platform for locally probing and controlling vortex dynam-
ics. By trapping vortices underneath a magnetic tip, we can
characterize transitions between stable vortex configurations
and are able to extract the relative energy scales of various
interactions. We tune the number and distribution of vortices
trapped underneath the tip by modifying the scan height,
external field, and array spacing. Using simulations of a sim-
ple model of vortices, we can reproduce the observed image
patterns. The versatility of this experimental platform could
prove a powerful tool to obtain a local understanding of,
for example, the dominant effects that lead to various forms
of vortex matter in superconductors such as vortex glasses
and vortex liquids. We note that this technique is useful for
mapping and manipulating vortex configurations even in sys-
tems without periodic pinning potentials. Furthermore, this
technique has the potential of probing nonstandard vortex
interactions in novel superconducting systems. In particular,
these results open interesting opportunities for applications in
quantum computing platforms that require the manipulation
and braiding of vortices.
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APPENDIX A: MATERIALS AND METHODS
1. Device fabrication

Electron beam lithography and electron beam evaporation
were used to define and deposit several layers of material. The
first, an 18-nm Au layer, with an underlying 1-nm Ti adhesion
layer was placed onto a Si substrate with 300-nm SiO, as an
insulator. The second layer consists of Al registration marks
to aid in determining the location of the tip on the surface.
A final round of processing was used to define and deposit
the Nb islands. Prior to the Nb deposition, the surface of the
Au was Ar, ion milled to establish a clean interface, and
the Nb was evaporated at a pressure of ~10~° Torr. For one
sample, one 500-nm center-to-center spaced array was made
on an Au pad of 80 um x 80 pum. For the second sample,
two 500-nm spaced arrays were 50 um x 50 um, with one
connected in a four-point configuration. The connected array
was used to determine the transition temperatures [Fig. 1(c)]
and the magnetoresistance of the 500-nm spaced arrays, while
the other was used for imaging experiments. Further arrays
on the same sample, with lattice spacings of 440, 500, and
560 nm were also imaged. These arrays had areas of 50 um
X 15 pm.

The cantilevers used in this work were custom-fabricated
Si cantilevers of length 110 um, width 4 pwm, and thickness
100 nm. A SmCos magnetic particle was positioned on the
end of each cantilever using a micromanipulator, aligned with
the cantilever axis using an external magnet, then epoxied into
position. The magnet was then shaped using a Ga focused ion
beam with low (<10 pA) current to preserve the magnetiza-
tion of the SmCos. Torque cantilever magnetometry was used
to measure the magnetic moment of the tip and ensure that it
is well aligned with the cantilever axis.

2. Measurement

Measurements were taken in a He-3 refrigerator with a
base temperature of 300 mK. Cantilever oscillations were
measured using a laser interferometer, and the cantilever was
self-oscillated using a feedback loop at a small amplitude, typ-
ically 15 nm. Frequency was determined using a phase-locked
loop running on a field-programmable gate array (FPGA).
Images were taken at least 5 um from the edge of the arrays
to minimize edge effects. Images were raster-scanned using
an ANSxyz100 (Attocube) piezoelectric scanner, with the fast
axis in the y direction (vertical), at a rate of less than 300 nm/s.

3. Tip field estimate

To estimate the tip field, the magnetic tip was scanned over
superconducting Al rings deposited via e-beam or thermal
evaporation. The rings used had radii of 2-5 um, with wall
thicknesses of ~200 nm. Sufficiently close to the supercon-
ducting transition, the fluxoid transitions in the ring become
reversible and occur when the tip applies a half-integer num-
ber of magnetic flux quanta through the ring. The resulting
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strong interaction between the magnetic tip and the switching
supercurrent shifts the resonant frequency of the cantilever
[27,28]. We mapped the locations of these frequency shifts
as positions where the flux through the ring has changed by
one flux quantum.

A model of the tip was then created consisting of 50 x
50 x 50nm® voxels with a magnetic dipole at the center.
The tip magnetization was set to be the measured value, as
determined by cantilever magnetometry. A scanning electron
micrograph is used to determine where to position the dipoles,
and their strength is adjusted to match the observed flux
changes as the simulated tip is scanned across a ring. The
dipoles are adjusted until the simulated flux changes and ob-
served flux changes line up at multiple scan heights. Estimates
of the tip field were then generated from the final dipole
configuration. For a detailed description of this procedure for
the tip field estimate refer to previous work in Ref. [27].

APPENDIX B: VORTEX MODEL IN MONTE
CARLO SIMULATIONS

The simulated environment consisted of a roughly circular
array of plaquettes, 50 lattice constants in diameter. Vortices
were placed and could move in the central 85 plaquettes of
this larger area. Vortices were initialized dependent on the flux
in each plaquette from the magnetic tip and external field.
Vortex-antivortex pairs were randomly generated in the 85
plaquette area, and the new vortex configuration energy was
compared to the previous state. The lowest energy state was
selected using a simulated annealing procedure. The mini-
mum energy states generated from this procedure for differing
vortex numbers were then compared using the energy formula
given in Eq. (1), and the lowest energy state was selected for
each tip position.

1. Josephson junction array model

We start with a phenomenological model based on
Josephson junction arrays. This amounts to neglecting the
superconducting (SC) condensate in the interstitial regions
altogether and focuses only on the Nb islands and their in-
terisland Josephson couplings. The interstitial regions, which
host a weaker SC condensate, then act as Josephson weak
links. Vortices that occupy the interstitial regions are essen-
tially Josephson vortices in this picture. Thus we consider
the following Josephson junction array quantum Hamiltonian
[29,31,34]:

A= % > U000 = Y Jijcosd; — 0; — ¢ij[AD).  (B1)
iJ i#]

where the i, j indices label the individual Nb islands. The oper-

ators Q; and ; refer to the charge 2e Cooper pair number, and

SC phase operators, respectively. They are mutually conjugate

and satisfy the commutation relation

[0;, 0,1 = —id;;.

The first term in H is the charging energy with U; ; being
proportional to the inverse of the capacitance matrix. The sec-
ond term is the Josephson coupling term with coupling matrix
Jij between sites i, j. The quantity ¢;;[A] is an additional phase

(B2)

term that originates from the presence of a magnetic vector
potential A(x) associated to a nonzero out of plane magnetic
field B.. It ensures that the phase difference

vij =0 — b; — gijlAl = —y;i (B3)
on the link between i and j is gauge invariant.

Next, we make three simplifying approximations:

(1) The charging term, which is typically small for meso-
scopically large SC islands, is discounted. Effectively the Nb
islands function as charge reservoirs (Cooper pair boxes) with
large capacitances. This turns H into a classical energy func-
tional on the set of island phases {6;}.

(2) The Josephson couplings are limited to only nearest
neighbors (ij) of the triangular lattice island array. This is
rationalized by the fact that J;; decays with increasing interis-
land distance making Cooper pair tunneling between nearest
neighbors the dominant interaction. We expect that the rein-
corporation of the neglected Josephson couplings will not
qualitatively change the main esults of our analysis.

(3) We assume that the value of the phase differences
yij are small, hence legitimizing a Taylor expansion of the
cosine. This is equivalent to assuming that the Josephson su-
percurrents /;; between islands i, j are small enough such that
Ijj = Isin(y;;) ~ L.y;; , where I is the critical supercurrent
between nearest neighbors.

With these simplifications, the model is reinterpreted as a
static Josephson junction array on a triangular lattice with
the Josephson supercurrents /;; defined on nearest neighbor
links (ij), as the effective degrees of freedom. This has the
following effective static energy function:

E
Eeill] = 55 > (). (B4)
()

where E; is the Josephson energy between nearest neighbor
SC islands and we have dropped an irrelevant constant. It is
convenient at this point to choose an orientation convention
for the links (ij) in organizing the currents /;;, and to avoid
over-counting. A simple choice is to take a counter-clockwise
orientation in the up-pointing triangular plaquettes (A) which
leads to a clockwise orientation on the down-pointing triangu-
lar plaquettes (V).

Magnetic flux penetrates the system through the triangu-
lar plaquettes of the lattice by an amount ®.y[p] externally
applied through plaquette p. In the absence of SC vortices,
—®q[p] is proportional to the supercurrent density circula-
tion ¢ j - dl enclosing plaquette p [29] within the Au film.
This supercurrent density circulation is proportional to the
sum of phase differences which gives

O o O
~Peulpl =) 1N Y Vi
i,JEP i,JEP

where p is a label of the plaquette, ®y = h/2e is the flux
quanta, and « > 0 is a proportionality constant depending on
geometry of the system, the magnetic permeability and the
condensate density. The sums are taken in the anticlockwise
(O) sense; for both A and V plaquettes. Note that the pla-
quettes themselves reside in a honeycomb lattice dual to the
triangular lattice.
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Now, when a SC vortex is present in p, the sum of phase
differences y; is of order 27 and is no longer expected to be
small such that the linear approximation sin x ~ x (assump-
tion (3) above) holds. Nevertheless, we can perform a (large)
gauge transformation which changes sum of phase differences
by quantized multiples of 277 or fluxoids

O O O
Z Yij = Z yij(mod 2r) = Z Yij — 27n,
i,jep i,jep i,jep
such that the y; ’s and hence their sum is small once more.
Incorporating this into the relation with @ [p] yields

O
27 Pexi ()
> yy = 2mn, — ZoenlP)
= Dy
i,jep
where n, € Z is an integer that is nonzero whenever a vortex
(antivortex) is present in p. The external flux is more conve-

niently expressed as

Dexi(p) = <I)Ofp

with f, being the local magnetic flux fraction or frustration
at p. Thus we have the following constraint equation for each
plaquette

(B5)

O
1
Ez:hzwb—ﬁ, (B6)

i.jep

where I ' = a/®y is a proportionality constant with dimen-

sions of [Current]™'. A second constraint on I; j 1s current

conservation, or Kirchoff’s first law, at each site i. We express

this as

® (i)

> 1 =0.
)

Jelij

B7)

where the symbol ®(7) denotes the fact that orientation con-
vention of [;; is chosen to be pointing into the site i. These
constraints must hold for all sites i. Implicit in these expres-
sions is the neglect of the mutual and self-inductance terms
due to the supercurrents themselves which are generally ex-
pected to be a small effect [30].

2. Counting independent currents

Now a unit cell of a triangular lattice has 1 site, 2 plaquettes
and 3 links. Hence on average per site, current conserva-
tion [Eq. (B7)] removes 1 independent current/link degree
of freedom such that the flux conditions [Eq. (B6)] relate 2
independent currents /;; to 2 independent vortex numbers #n,
given fixed frustrations f},. In the case of a finite lattice with
open boundaries, after a proper accounting of the links at the
boundary, and noting that there are only (Nyoqe — 1) current
conservation constraints for N4 sites, we find a 1-1 relation
between independent currents and a specified configuration of
n,'s on each plaquette. This reduction of the current conser-
vation constraints by one comes from the fact that the entire
system must have a net zero current.

This can also been seen by noting the Euler characteristic x
= 1 for a finite planar graph relates Nyoge — Miink + Nplag = 1
where N4 is the number of island sites, M,k is the number of

nearest neighbor links, and N,y the number of triangular pla-
quettes. By rearranging we have Npiaq = Niink — (NVnode — 1)
which says that Ny is the same as the number of independent
current links. Hence, for fixed frustrations {f,}, specifying
a configuration of vortex numbers n, for all plaquettes is
equivalent to specifying a current configuration /;; on all links
that obey the required constraints.

3. Transforming currents to vortex occupations

By combining the constraints in Egs. (B6) and (B7), we can
relate a configuration of vortex numbers n = {n,} € ZMw) to
a configuration of currents I = {I;;} € RN This relation is
linear and can be succinctly expressed as

1 —
IMI= n—f ’
[0 ()Nnode_1

where f = {f,} € RYma are the externally applied flux frac-
tions/frustrations and O, ,—1 iS @ (Npoge — 1) dimensional
zero vector. The matrix M iS Mk X Mk, dimensionless
and invertible due to the counting arguments just mentioned.
Taking the inverse yields

—f
1=i,Mm (" .
(ONnodcl)

4. Effective energy function

(B8)

(B9)

Next, inserting the expression (B9) into the effective en-
ergy function (B4) gives
Eefe[n, f] =

E s —£)"B"B(n — 1), (B10)

2(1c/1o)
where B is a submatrix of M~! in its first Nplag columns. The
prefactor on the RHS sets the overall energy scale, and the
dimensionless constant ./l encodes geometric information
about the lattice. We consider the configuration of local frus-
trations f to be a fixed external knob, and the vortex numbers
n as variational parameters that are required to minimize Ee.
The frustrations f are determined by the total amount of flux
through each plaquette, and are set by the B, profile induced
by the magnetic tip, and the additional uniform field that
moderates the tip field. While calculating f we ignored the
redistribution of the magnetic flux due to field screening by
Nb islands and interisland supercurrents.

Then by scaling away the overall energy scale, expanding
the brackets, and dropping an irrelevant constant we find the
following model energy function dependent on n and f:

E[n,f]=n"Vn+Uln, (B11)

where
V = B"B, (B12)
Ur = —2BT Bf = —2V¥. (B13)

Note that E[n, f] is determined entirely by the geometry of
the lattice and the local flux and current constraints. The first
term in E[n, f] represents vortex-vortex interactions while
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the second is the vortex-field interaction. We note that the
matrix V is symmetric and is dense in its off-diagonals. This
results in long-range, pairwise interactions between vortices
and externally applied fields. For our simulations we calculate
the entries of V for a roughly circular array of triangular
plaquettes with a diameter of 50 lattice constants.

The entries in n are integers, and due to the large number
of possible combinations of vortex positions in n, the mini-
mization of E[n, f] is done variationally using the Metropolis
Monte Carlo. In practice n, takes 0, 1 values indicating the
absence or presence of a single vortex. We simulate an area
consisting of 85 plaquettes in a roughly circular region at
the center of the larger, 50 lattice constant array to determine
the vortex configurations. Also the total vortex number 7, is
varied during the search for the energy minimum, but remains
fixed during a single Monte Carlo run. Since the number
of vortices is small (n, < 10) we found that the Metropolis
Monte Carlo is converging well to the ground state configura-
tion of vortices.

5. Further phenomenological fitting

As it stands, there are no fitting parameters in the model,
which itself depends heavily on all the assumptions previously
discussed. However, to fit to the observed data, we have found
it necessary to modify the above form of E[n, f]. The modified
model energy function that we optimize is

E[n» f] = PimﬂTVﬂ + U{n + Uvort Z np
P

Nplaq Nplaq
= pint Y, Voaltpiig + Y [(UD), + ttvon |1y, (B14)
P.q=1 p=1

where pine and yox are the two phenomenologically intro-
duced parameters. The quantity pi,, modulates the relative
strength between vortex-vortex to vortex-field interactions.
While pyor is a chemical potential for the vortices that is
added to fine tune the favored number of vortices and adjusted
so that vortex transitions occur at the observed field/heights in
the experiment. These two fitting parameters can be thought
of as modifications needed to compensate for the limitations
of the assumptions and approximations made. For example,
the fixed vortex number during a Monte Carlo run excludes
the possibility of fluctuating vortex numbers during a raster
scan of the magnetic tip positions. In general, u and pjy
are not universal and depend on the parameters of the array
that control the strength and geometry of supercurrents in a
system.

From fitting the data, we find the chemical potential piyor
of the 500-nm array, to be approximately (1.8 £0.1) x V,,,,,
where V,, is the on-site vortex energy. For the 440 and
560 nm arrays, {tyvor is approximately (2.4 +0.1) x V,,, and
(0.9 £0.1) x V,,, respectively. In this case, pj, is approx-
imately (1.0-1.2) for the 500-nm array, with higher values
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FIG. 8. Frequency maps for a 4-vortex configuration in a 500-nm
spaced array at a scanning height of 560 nm with an applied DC
current of 0, 40, 60, and 120 uA.

(1.2-1.4) for the 440 nm array, and lower values (0.7-0.9)
for the 560-nm array. These values are dependent on field
for the 440- and 560-nm arrays. Some uncertainty exists in
these values, due to small changes not affecting the patterns
generated significantly, as well as possible errors in tip field
estimates.

APPENDIX C: HIGH APPLIED DC CURRENTS

As described in the main text, the application of a DC cur-
rent leads to a shift (in nm) of the frequency maps. The shift is
attributed to the Lorentz force on the vortices as the current
is applied. The forces at play while the current is applied
include the Lorentz force, the pinning force, vortex-vortex
interaction, and vortex-field interactions. At low currents, the
pinning force counteracts the Lorentz force and the shift is
linear. As the current increases, vortex-vortex, and vortex-field
interactions likely begin to dominate and the shift becomes
independent of the applied current. At high applied currents,
the Lorentz force is enough to start bulk depinning vortices
and the frequency map becomes smeared. Figure 8 shows a set
of frequency maps for an array with 500-nm spacing in a 4-
vortex configuration at a tip scanning height of 560 nm. As can
be seen from the figure, at a current of 120 uA the frequency
map is completely smeared signaling that the vortices are now
fully depinned from the array.
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