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The superconducting transition metal dichalcogenide (TMD) 4Hb-TaS2 consists of alternating layers of H and
T structures, which in their bulk form are metallic and Mott insulating, respectively. Recently, this compound
has been proposed as a candidate chiral superconductor, due to an observed enhancement of the muon-spin
relaxation at Tc. 4Hb-TaS2 also exhibits a puzzling T -linear specific heat at low temperatures, which is unlikely
to be caused by disorder. Elucidating the origin of this behavior is an essential step in discerning the true nature
of the superconducting ground state. Here, we propose a simple model that attributes the T -linear specific heat
to the emergence of a robust multiband gapless superconducting state. We show that an extended regime of
gapless superconductivity naturally appears when the pair-breaking scattering rate on distinct Fermi-surface
pockets differs significantly, and the pairing interaction is predominantly intrapocket. Using a tight-binding
model derived from first-principle calculations, we show that the pair-breaking scattering rate promoted by slow
magnetic fluctuations on the T layers, which arise from proximity to a Mott transition, can be significantly
different in the various H -layer dominated Fermi pockets depending on their hybridization with T -layer states.
Thus, our results suggest that the ground state of 4Hb-TaS2 consists of Fermi pockets displaying gapless
superconductivity, which are shunted by superconducting Fermi pockets that are nearly decoupled from the
T layers.
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I. INTRODUCTION

The observation of superconductivity in transition metal
dichalcogenides (TMD), including in monolayer form, has re-
cently spurred significant interest from the community [1–10].
Among them, bulk 4Hb-TaS2 has emerged as a possible
unconventional superconductor. Recent muon-spin rotation
(μSR) measurements performed on 4Hb-TaS2 reveal a slight
enhancement of the relaxation rate, which onsets at the su-
perconducting transition temperature Tc [11]. The authors
(including one of us) have interpreted this signal as evidence
of chiral superconductivity. However, recent nuclear magnetic
resonance measurements performed on Sr2RuO4, a candidate
chiral superconductor that exhibits such a muon-relaxation
enhancement, are inconsistent with the p + ip chiral or-
der parameter [12,13]. Indeed, one may consider alternative
mechanisms that tie such a weak enhancement of the muon
relaxation to the onset of superconductivity, e.g., if local
magnetic moments are present, which are screened in the
metallic state but not below Tc. For this reason, it is essential to
understand the correct microscopic model and corresponding
ground state of superconducting 4Hb-TaS2.

4Hb-TaS2 is a TMD comprised of alternating single layers
with 1T and 1H structures (see Fig. 1). At low tempera-
ture, bulk 1T -TaS2 is a strongly correlated insulator due to
the small bandwidth associated with a nearly flat conduction
band. This flatband results from the reconstruction of the band

structure by a prior transition into a “star-of-David” charge-
density wave (CDW) state [1]. Interestingly, the insulating 1T
compound fails to order magnetically to the lowest measured
temperatures [14], which has motivated the proposal that it
may be a spin liquid [15–17] or a dimerized band insulator
[18]. The 2H polymorph also undergoes a CDW transition,
but with a different structure. As opposed to the 1T poly-
morph, it remains a metal, which is characterized by multiple
Fermi pockets. At T 2H

c = 0.7 K it undergoes a superconduct-
ing transition.

ARPES measurements performed on the 4Hb polymorph
show that the star-of-David CDW still forms in the 1T layer
[11]. However, there is no signature of the insulating state
to the lowest measurable temperatures [19]. Instead, the en-
tire compound becomes superconducting at T 4Hb

c = 2.7 K
[11], which is elevated when compared to bulk 2H-TaS2, but
still smaller than exfoliated single layer [3,7] or intercalated
samples [20]. Thus, the 4Hb compound intrinsically couples
highly- itinerant and nearly localized electrons, a situation that
is interesting on its own [21].

A puzzling experimental observation, which may shed
light on the ground state properties of 4Hb-TaS2, is the linear
in T behavior of the specific heat at low temperatures inside
the superconducting state. While the specific heat near the
transition temperature T 4Hb

c resembles that of a fully gapped
s-wave superconductor, the low-temperature behavior resem-
bles that of a metal, with a Sommerfeld coefficient value that

2469-9950/2021/103(22)/224522(13) 224522-1 ©2021 American Physical Society

https://orcid.org/0000-0003-1845-4783
https://orcid.org/0000-0003-3580-4028
https://orcid.org/0000-0001-5174-3320
https://orcid.org/0000-0003-2563-0706
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.224522&domain=pdf&date_stamp=2021-06-21
https://doi.org/10.1103/PhysRevB.103.224522


DAVID DENTELSKI et al. PHYSICAL REVIEW B 103, 224522 (2021)

FIG. 1. Crystal structure of 4Hb-TaS2. The unit cell consists of
four layers of Ta atoms with alternating trigonal (H ) and octahedral
(T ) coordination. Each layer is a triangular lattice of Ta atoms.

is 15% of the normal state value [11]. We also note that similar
anomalies in the specific heat have been observed in other
candidate chiral superconductors, such as the heavy-fermion
compound UTe2 [22] and La7Ni3 [23].

The simplest possible explanation for the T -linear behav-
ior of the specific heat would be the existence of a sizable
nonsuperconducting volume fraction due to inhomogeneities
or impurities even below Tc. However, this is unlikely to be
the sole explanation, given the sharp superconducting transi-
tion and homogeneous diamagnetic response seen in scanning
superconducting quantum interference device (SQUID) mea-
surements [24]. A more exotic explanation would be the
emergence of Bogoliubov Fermi surfaces, which are known
to arise from time-reversal symmetry breaking in nodal su-
perconductors [25] or from pure pair-density wave states.
However, before reaching the linear-in-T behavior, the spe-
cific heat decays exponentially rather than in a power-law
fashion, which is inconsistent with Bogoliubov Fermi sur-
faces, which are “inflated” line or point nodes [25] (see
Appendix B). Another option is that strong pair-breaking dis-
order is present, filling the gap with electronic states. Such
a gapless state was predicted by Abrikosov and Gor’kov in
their seminal work [26]. However, in the standard Abrikosov-
Gor’kov theory for single-band superconductors, this gapless
superconducting state appears only in a very narrow range of
the pair-breaking scattering rate, just before superconductivity
is completely destroyed by disorder. Moreover, this state is
also characterized by a smeared transition and by the absence
of coherence peaks in the density of states [27,28].

In this paper, we apply Abrikosov-Gor’kov theory to the
case of two-band superconductors with dominant intraband
pairing interaction. We show that gapless superconductivity
naturally emerges over a much wider range of pair-breaking
scattering rates when the disorder potential is significantly

larger on one of the Fermi pockets. Using a two-band toy
model with these characteristics, we are able to reproduce
the temperature dependence of the specific heat data of
4Hb-TaS2, including the T -linear behavior, over a wide range
of pair-breaking scattering rates.

To demonstrate the relevance of this simple model to
4Hb-TaS2, we performed ab initio band structure calculations
and derived a simplified tight-binding model using the maxi-
mally localized Wannier functions. The Fermi surface consists
of several pockets centered at the high-symmetry points of
the Brillouin zone. While the spectral weights of the pockets
centered at � and K are dominated by the H-layer states,
the M-centered pockets have large contributions from the
T -layer states. Around each of these high-symmetry points,
the Fermi pockets come in pairs—except at the boundaries
of the Brillouin zone at kz = ±π/c, where a screw symmetry
makes all bands fourfold degenerate. Since the 2H polymorph
superconducts on its own, we associate a pair of pockets with
dominant H-layer character in 4Hb-TaS2 to the two bands in
our toy model.

The key point is that one of the pockets in each of these
pairs hybridizes much more strongly with the T -layer states,
particularly at the zone center plane (kz = 0). Now, the 1T
polymorph on its own is a Mott insulator with presumably
strong (but possibly frustrated) magnetic fluctuations arising
from local moments. Low-energy, slow magnetic fluctuations
are expected to have a pair-breaking effect [29,30], which
shares some similarities with the pair-breaking effect of mag-
netic impurities. Therefore, the pocket in the pair that is most
strongly hybridized with the T -layer states is expected to be
subjected to a stronger pair-breaking potential. We demon-
strate that this is indeed the case by computing the scattering
rate for each Fermi pocket after modeling the slow magnetic
fluctuations as local magnetic “impurity” scatterers in the T
layer. The scattering rates in each pocket of the same pair
is notably different near the kz = 0 plane, which qualita-
tively justifies the assumptions of our toy model. Additionally,
we observe a significant difference in the scattering strength
between the � and K pockets, where the former is larger.
Overall, our results suggest that the ground state of 4Hb-TaS2

is a combination of gapless Fermi pockets and fully gapped
superconducting pockets, which does not necessarily break
time-reversal symmetry.

The rest of this paper is organized as follows. In Sec. II
we present our two-band toy model, where we assume that
only one of the bands is coupled strongly to magnetic mo-
ments originated in the T layer. We show that within this
model, gapless superconductivity naturally emerges over a
wide range of pair-breaking scattering rates. To relate our
model to the microscopic properties of 4Hb-TaS2, in Sec. III
we construct a tight-binding model for this compound. We
find that our assumptions of the different coupling to T -layer
magnetic moments holds at kz = 0, where we can expect local
moments on the T layer to couple much weaker to the inner
Fermi surfaces in comparison to the outer ones. In Sec. IV
we use these results to numerically estimate the scattering
rate on the inner and outer Fermi surfaces. Section V summa-
rizes our results and discusses the limitations and implication
of our model to understand the superconducting state of
4Hb-TaS2.
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II. ROBUST GAPLESS SUPERCONDUCTIVITY
IN A TWO-BAND TOY MODEL

In this section we present a simple toy model to explain the
emergence of robust gapless superconductivity in 4Hb-TaS2.
We show that such a state is stabilized over a wide range
of parameters when one of the two Fermi pockets couples
strongly to pair-breaking disorder, while the other one is only
weakly coupled.

A. Self-consistent gap equation

We consider the simplest possible scenario of two pockets
(labeled 1 and 2) with zero center-of-mass momentum pairing,
which are described by the Gor’kov Green’s function

G0(k, iωn) =
(

G1(k, iωn) 0
0 G2(k, iωn)

)
, (1)

written in the Nambu space �k = (c†
k↑1, c−k↓1, c†

k↑2, c−k↓2),
where

Gj (k, iωn) = − iωnτ
0 + ξk, jτ

3 + � jτ
1

ω2
n + ξ 2

k, j + �2
j

. (2)

Here, τα are Pauli matrices in the particle-hole basis, ξk, j

is the dispersion relation of band j = 1, 2 which we assumed
to be spherically symmetric, ωn = 2πkBT (n + 1/2) are the
fermionic Matsubara frequencies, and T is the temperature.
For simplicity, we assume s-wave pairing, although our main
result should hold for any nodeless gap function (including a
chiral state in two dimensions).

To determine the magnitude of the superconducting order
parameter � j within Abrikosov-Gor’kov (AG) theory, we
first incorporate the effect of disorder by computing the self-
energy correction to the Gor’kov Green’s function


(k, iωn) = nimp

∫
d3 p

(2π )3
V̂p−k G(p, iωn) V̂k−p, (3)

where G−1 = G−1
0 − 
 is the dressed Green’s function. This

correction is obtained following the standard AG theory,
where we average over uncorrelated configurations of point-
like defects with concentration nimp. We assume that the
source of pair-breaking is magnetic disorder in the T layers.
This leads to the Nambu-space disorder-potential matrix

V̂ =

⎛
⎜⎝

V1 0 V12 0
0 V1 0 V12

V12 0 V2 0
0 V12 0 V2

⎞
⎟⎠. (4)

Here V1, V2, and V12 are the intra- and interband disorder-
potential strengths, respectively. In what follows we assume
V1,V12 � V2, which implies that band 2 is coupled much
stronger to the magnetic impurities than band 1. We will show
that in this limit, gapless superconductivity is stabilized over
a wide range of parameters. For simplicity, however, let us
consider the extreme limit where V1 = V12 = 0 and V2 �= 0.

In this case, the block of the Green’s function cor-
responding to band 1 retains its form in Eq. (2),
while the block of band 2 needs to be calculated
self-consistently using Eq. (3). The solution is obtained
by substituting, in the Green’s function expression in

Eq. (2), �2 → �̃2 = �2 − ��̃2/(2
√

ω̃2
n + �̃2

2 ) and ωn →
ω̃n = ωn + �ω̃n/(2

√
ω̃2

n + �̃2
2 ). Here, � = 2πV 2nimpν

0
2 is the

pair-breaking scattering rate and ν0
2 is the density of states of

band 2 at the absence of superconductivity. These equations
can be written in a concise manner by defining xn = �̃2/ω̃n

and dividing them by one another, such that

xn = �2 − �|xn|/
(
2
√

1 + x2
n

)
ωn + �sgn(ωn)/

(
2
√

1 + x2
n

) . (5)

We are now in position to determine the magnitude of � j

from the gap equation using the dressed Green’s function

(
�1

�2

)
= πkBT

∑
|ωn|<ωD

(
λ1 u
u λ2

)⎛
⎝ �1√

ω2
n+�2

1

�̃2√
ω̃2

n+�̃2
2

⎞
⎠, (6)

where λ j and u are dimensionless intraband and interband
pairing couplings, respectively, and the summation is cut off
at Debye frequency ωD.

Equations (5) and (6) can be readily solved numerically
by iteration. However, it is also helpful to obtain asymptotic
solutions in the limits xn � 1, corresponding to weak disorder
and small frequency, and xn � 1, corresponding to strong
disorder and large frequency.

In the regime xn � 1 we find the asymptotic solution:

xn ∼ �2 − �

ωn
, ωn → 0. (7)

This equation reflects the well-known result in AG theory
that the critical scattering rate above which gapless super-
conductivity emerges is given by �∗ = �2, which is slightly
smaller than the critical value �c for which superconductivity
is destroyed (i.e., when �2 goes to zero). In what follows, we
will show explicitly via a computation of the density of states
(DOS) that �∗ = �2 indeed implies a finite DOS at the Fermi
level and, therefore, gapless superconductivity.

On the other hand, for xn � 1, the asymptotic solution is
given by

xn ∼ �2sgn(ωn)

|ωn| + �
, �2/� � 1. (8)

Note that this solution becomes asymptotically exact in the
limit �2 � �, which defines the strong disorder limit, and in
the high frequency limit ω → ∞.

In both regimes, the value of �2 is obtained from the self-
consistent solution of the gap Eq. (6). In Fig. 2(a) we plot the
value of the two gaps normalized by their bare value (i.e., ob-
tained with � = 0) as a function of � for two cases, one with
a finite but small interpocket pairing interaction u = −0.035
and λ1 = λ2 = −0.17 (solid lines), and one where u = 0 and
λ1 = λ2 = −0.2 (dashed lines).

Let us first consider the latter case where there is no inter-
pocket pairing. In this situation, �1 is not affected by disorder,
while �2 is suppressed to zero very quickly. In agreement
with AG theory, the gap vanishes slightly after reaching the
gapless regime �2 = � as predicted by Eq. (7) (which is
marked by a yellow diamond in the figure).

On the other hand, when u is small but finite there is always
a nonzero solution for �2, which decreases monotonically
with �. In particular, the region of gapless superconductivity
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(a)

(b)

FIG. 2. (a) The superconducting order parameters �1 and �2,
as a function of the pair-breaking rate � obtained from numerical
solutions of Eqs. (5) and (6). The order parameters are normalized by
their bare value �0

1,2, i.e., with no disorder (� = 0). The dashed lines
represent the case of zero interpocket pairing u = 0 and λ1 = λ2 =
−0.2. In this case, �1 is unaffected by disorder while �2 goes rapidly
to zero. As a result, the region of gapless superconductivity, starting
at the yellow diamond, is extremely narrow (the gray line is �2 = �

on a logarithmic scale). In contrast, the case of finite interpocket cou-
pling u = −0.035 and λ1 = λ2 = −0.17 is represented by the solid
lines. In this case, �2 decreases slowly with �, resulting in a much
wider region of gapless superconductivity. (b) The � − u “phase
diagram” that determines the conditions for gapless and gapped
superconductivity in band 2. Note that the pair-breaking rate � is
given in units of the Debye frequency ωD, which serves as a upper
cutoff in the gap equation, Eq. (6). The inset shows the corresponding
density of states (DOS) of band 2 for two representative values of
disorder, illustrating the gapped (bottom right) and gapless (top left)
superconducting phases.

is extended to a much wider range of � values, starting from
the value corresponding to the yellow diamond in Fig. 2(a)
and extending all the way up. In Fig. 2(b), we present the
corresponding “phase diagram” for gapped and gapless su-
perconductivity in band 2 in the parameter space of � and

interpocket pairing u. The insets show the typical tunneling
DOS ν2/ν

0
2 of these two regions.

It should be noted that in any realistic system, band 1 will
also be coupled to pair-breaking disorder, characterized by
some rate �1. It is also possible that interpocket pair-breaking
�12 emerges in the case of non-pointlike impurities. The
working hypothesis of this paper is that both pair-breaking
scattering rates are much smaller than �. Based on our
analysis above, and denoting the maximum of the two by
max(�1, �12) = δ �, such that δ � 1, we can conclude that
robust gapless superconductivity appears in the wide regime
�2 < � < �1/δ.

Therefore, we have demonstrated that multipocket super-
conductors with disorder that couples much stronger to one
pocket than the other exhibit gapless superconductivity over a
wide range of disorder strengths. We now turn to discuss the
experimental consequences of such a state, focusing on the
specific heat.

B. Specific heat

The thermodynamic properties of the superconducting
state is governed by the fermionic DOS. In the case of zero
center-of-mass momentum pairing, the bands are decoupled
at the single-particle level and contribute independently to the
total density of states. The density of states of band 2 is given
by

ν2(ω)

ν0
2

= − 1

π

∑
k

ImGR
2 (k, ω) = Re

[
ω√

ω2 − D2(ω)

]
, (9)

where GR
2 is the retarded Green’s function of band 2 obtained

from analytical continuation and D(ω) is the analytic contin-
uation of

D(iωn) ≡ xnωn. (10)

Similarly, the density of states of band 1 is given by
ν1(ω)/ν0

1 = Re[ω/
√

ω2 − �2
1 ]. Thus, the total density of

states is ν(ω) = ν1(ω) + ν2(ω).
It is clear from Eqs. (9) and (10) that when xnωn = 0,

a finite density of states emerges at the Fermi level. Using
Eq. (7), we see that this happens when � = �2. In the limit
of strong disorder, � � �2, we can use Eq. (8) for band
2. Assuming that band 1 is fully gapped, we obtain a finite
density of states at ω → 0 given by

ν(ω) ∼ ν0
2√

1 + (�2/�)2
, ω → 0 (11)

which leads to a finite Sommerfeld coefficient γN =
π2kBν(0)/3. To compute the precise value of this contribution
for arbitrary disorder strength, as well as its evolution with
temperature, we resort to the numerical computation.

In the top row of Figs. 3(a)–3(d), we plot the total density
of states for the same numerical parameters u = −0.035 and
λ1 = λ2 = −0.17. The DOS is determined self-consistently
for varying �/�2 and fixed ν2/ν1 = 0.15, based on the ex-
perimental results on 4Hb-TaS2 in Ref. [11]. As � increases,
states begin to fill the gap. When � � �2 and Eq. (8) holds,
the density of states of band 2 near ω = 0 is almost constant,
as in a metal. We note that this limit is robust, as it yields
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FIG. 3. The first two rows present the normalized tunneling density of states ν(ω)/ν0 for u = −0.035, λ1 = λ2 = −0.17, where ν0 is the
density of states at the absence of superconductivity, and the Matsubara-frequency dependent gap function D(iωn)/�2. The gap function in
the middle row compared with the results from the Padé approximation used for the analytical continuation [31] and the asymptotic form at
large Matsubara frequency given by Eq. (8). Clearly, the asymptotic form captures the entire frequency dependence of the gap in the limit of
large �. The last row shows the corresponding heat capacity normalized by the normal state value CV /γN T as a function of T/Tc (note that Tc

depends on �). The columns correspond to different values of the pair-breaking rate normalized by the value of the second gap �/�2, which
is determined self-consistently. Note that the largest value of �/�2 is compared with the experimental data for the specific heat of 4Hb-TaS2

from Ref. [11].

nearly identical results for any larger � value. Thus, the tun-
neling density of states is expected to resemble that of a fully
gapped and relatively clean superconductor, but simply shifted
by a constant. In particular, the coherence peak remains sharp,
in contrast to the case of gapless superconductivity in single-
band systems, where the coherence peak is suppressed in the
gapless regime [28]. In the middle row of Figs. 3(a)–3(d), we
plot the corresponding gap function Eq. (10) versus Matsubara
frequency. The gap is compared with the Padé approxima-
tion [31] (still in Matsubara space) and the asymptotic form,
Eq. (8). These plots demonstrate that the asymptotic form of
the gap is a good approximation in the limit of strong disorder.

Finally, we turn to the computation of the heat
capacity CV /T = − ∂2F

∂T 2 , where F = kBT
∫ ∞

0 ln[1 −
exp(−βω)]ν(ω)dω is the free energy with Boltzmann’s
constant kB and β = (kBT )−1. Note that if � is only weakly
dependent on the temperature, one can estimate the heat
capacity by the following expression [32]:

CV ∼ 1

T

∫ ∞

0
ω2

(
−∂ f (ω)

∂ω

)
ν(ω)dω , T → 0, (12)

where f (ω) = (1 + eω/kBT )−1 is the Fermi-Dirac distribution
function. At low temperatures (T � Tc/2), the results from

this expression coincide with the numerical calculations. In
the bottom row of Figs. 3(a)–3(d), we plot the corresponding
heat capacity normalized by the normal state contribution.
Note that the numerical calculation of the gap and the analytic
continuation become unstable close to the transition point.
Therefore we plot the computed heat capacity only up to
T = Tc/2. In column (d), we compare the results in the strong
disorder regime with the experimental data from Ref. [11].
Excellent agreement is found for the low-temperature behav-
ior. This demonstrates that the experimental observation is
consistent with our toy model’s predictions.

III. BAND STRUCTURE OF 4Hb-TaS2

After having established a simple toy model that demon-
strates robust gapless superconductivity over a wide parameter
range, we now discuss its relevance to 4Hb-TaS2. Our first
step is to construct a realistic tight-binding model from
density-functional theory (DFT). We obtain a 12-band tight-
binding model using DFT and maximally localized Wannier
functions using the VASP code and the projector-augmented-
wave approach [33,34]. The exchange-correlation functional
was approximated using the Perdew-Burke-Ernzerhof poten-
tials, which employ the generalized gradient approximation
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FIG. 4. (a),(b) Comparison of DFT (black, solid) and tight-binding (TB; gray, dashed) band structures for (a) kz = 0 and (b) kz = ±π/c.
The twofold degeneracy is clear for kz = ±π/c and it is correctly captured by the tight-binding model. (c),(d) Fermi surfaces for kz = 0 and
kz = ±π/c. They consist of pairs of pockets centered at the high-symmetry points of the Brillouin zone, �, M, and K . These pairs become
degenerate at kz = ±π/c due to the screw symmetry of the crystal. The Fermi pockets are colored red (blue) according to their H -layer
(T -layer) spectral weight. Therefore, purple means more strongly hybridized pockets. (e),(f) Layer weights along outer (up) and inner (down)
Gamma pockets. Outer pocket becomes strongly hybridized away from kz = 0.

[35]. As the unit cell is highly extended in the stacking di-
rection, a �-centered k-points grid of 11 × 11 × 2 was used
along with a plane-wave cutoff of 470 eV. Structural parame-
ters were taken from experiments [19].

The tight-binding model parameters were obtained by con-
structing maximally localized Wannier functions using the
WANNIER90 package [36,37]. It consists of 12 Ta orbitals, 3
per Ta atom per layer. The shape of these orbitals is different
for atoms in the T layer and in the H layer (see Appendix A)
with the T layer having standard t2g orbitals and the H layer
having unconventional orbitals. The tight-binding parameters
used here to reproduce the features of the Fermi surface and
the low-energy band structure contain only on-site terms,
nearest-neighbor hopping, and a single interlayer hopping
term. They can be found in Table I in Appendix A.

The crystal structure of 4Hb-TaS2 is invariant under a 63

screw operation, which is equivalent to a 60◦ rotation around
the z axis, followed by a half-unit cell translation along the
same axis. The structure is also invariant under a 120◦ rotation
around ẑ, and the consecutive application of this rotation with
the 63 screw gives the 21 screw operation, which we denote as
s. s is a 180◦ rotation followed by a half-unit cell translation.

The Bloch wave-function representation of the nonsym-
morphic screw symmetry s of the 4Hb compound squares to
minus one, s2 = −1, at kz = ±π/c. Due to this nonsymmor-
phic symmetry, the band structure becomes doubly degenerate
(fourfold including Kramers degeneracy) at all k points on
the kz = ±π/c. This can be seen by noting the relationships

between the screw symmetry s, the mirror plane parallel to the
H planes (m001), and the inversion (i) with inversion centers at
the T -layer Ta atoms. Because s = mi and m2 = i2 = 1, one
would expect that s2 = 1. But, as discussed above, s2 = −1
at kz = ±π/c. This apparent contradiction is resolved by
enforcing a twofold degeneracy throughout the kz = ±π/c
plane, with these degenerate wave functions being related by
s [38,39].

The resulting DFT band structures at kz = 0 and kz =
±π/c are shown in Figs. 4(a) and 4(b), along with the tight-
binding dispersions. The latter reproduces the correct number
of distinct Fermi surfaces, shown in Figs. 4(c) and 4(d), which
consist of pairs of split inner and outer pockets at �, M, and
K—except at the kz = ±π/c planes, where the inner and outer
pockets become degenerate.

The Fermi pockets in Figs. 4(c) and 4(d) are colored ac-
cording to their spectral weights, with red (blue) denoting
spectral weight due to states from an H (T ) layer. Figures 4(e)
and 4(f) show the spectral weight along the outer and in-
ner � pockets. For kz = 0, while all inner pockets have a
strong mixed-layer character (as indicated by their purple
color), the outer pockets are made out of states from nearly
a single layer only. In particular, the outer pockets at � and
K have a predominant H-layer character, whereas the outer
pocket at M has a dominant T -layer character. Thus, the
H-T interlayer hybridization is different for each of the Fermi
pockets that form a pair of pockets centered at the same high-
symmetry point of the Brillouin zone. As kz increases towards

224522-6



ROBUST GAPLESS SUPERCONDUCTIVITY IN … PHYSICAL REVIEW B 103, 224522 (2021)

kz = ±π/c, the interlayer hybridization becomes comparable
for the pockets that form a pair.

This behavior can be understood from the fact that the H-T
hybridization between crossing bands depends on their mirror
eigenvalues. There is a mirror plane on each H layer, and
Bloch states on the kz = 0 plane have a mirror eigenvalue of
either +1 or −1. Symmetry dictates that the orbitals on the H
layers induce bands with +1 mirror eigenvalues only, whereas
the orbitals on T layers induce equal numbers of +1 and −1
eigenvalue bands.

Hybridization between the + and − eigenvalue bands is
forbidden on the kz = 0 plane, since these k vectors do not
break the mirror symmetry. As a result, the T layers that
have −1 mirror eigenvalue can cross the H layers without
hybridization on this plane.

IV. PAIR BREAKING DUE TO MAGNETIC
FLUCTUATIONS ON THE T LAYERS

We now connect the band structure calculations with our
two-band toy model. Motivated by the fact that the 2H poly-
morph is a superconductor, whereas the 1T polymorph is a
Mott insulator, we focus on the Fermi pockets of the 4Hb
polymorph with dominant H-layer character, i.e., the pairs of
pockets centered at � and K in Fig. 4(c). We further neglect
large-momentum pairing interactions, and therefore consider
each pair of pockets as an independent two-band model. In
other words, the two bands in our toy model correspond to
the inner and outer Fermi pockets centered at the same high-
symmetry point of the Brillouin zone (� or K).

Our working hypothesis is that superconductivity would
emerge in these two pockets intrinsically, driven by the same
intrapocket pairing interaction that makes the 2H polymorph
a superconductor. The key difference in the 4Hb compound
is that these bands hybridize with the T -layer states, as we
discussed above. Now, the 1T polymorph is a Mott insu-
lator, presumably with strongly fluctuating local moments
that do not order magnetically. We assume that these local-
moment fluctuations persist in the 4Hb compound, since it
also undergoes a star-of-David CDW transition. These mag-
netic fluctuations on the T layer will then cause pair breaking
in the superconducting H-layer pockets via the H-T inter-
layer hybridization. Because the hybridization is significantly
different for the two pockets, particularly near kz = 0, the pair-
breaking effect is expected to be of very distinct magnitudes
in each pocket.

A full description of the local moments in the T layer and
of their coupling to the H-layer itinerant states is well beyond
the scope of this work. To capture the pair-breaking effect
caused by these magnetic fluctuating moments, we model
them as dilute magnetic impurities. We then compute the
single-particle lifetime in the pairs of Fermi pockets centered
at � and K due to such impurities residing on the T layers, in
order to verify that the pair-breaking potential is significantly
different in the inner and outer pockets centered at each mo-
mentum.

We start from the bare Green’s function in the band basis

Gj
0(iω, k) = 1

−iω + (εk, j − εF )
, (13)

where εk, j are the eigenvalues of the 12 × 12 tight-binding
Hamiltonian (see Appendix A).

The single-particle scattering amplitude between the states
|kα〉 and |pβ〉 in the orbital basis is given by

V̂α,β (k, p) =
Nimp∑
l=1

Vle
i(k−p)·rl Mα,β, (14)

where k, p denote momenta states and α, β denote the orbitals
(corresponding to the three d orbitals on the four layers). Nimp

is the number of impurities, rl are their positions, and Vl is
the random pointlike disorder potential strength, which has
zero mean and variance V 2. The matrix M encodes the orbital
structure of the scattering process. Following our convention
of T -H-T -H stacking, we model the impurities in the T layers
by the matrix

M =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠, (15)

where 1 is a 3 × 3 identity matrix. For the purposes of com-
puting the lifetime, which is only a proxy for the pair-breaking
scattering rate, it is fine to consider such a nonmagnetic poten-
tial, since the tight-binding model is SU(2) symmetric.

We now rotate the scattering matrix M in Eq. (14) to
the band basis, which results in a form factor Q(k, p) =
U †(k)MU (p), where U (k) is the unitary transformation ma-
trix that takes the tight-binding Hamiltonian from the orbital
basis to the band basis. Then the self-energy is given by


(iω, k) = nimpV 2

�BZ

∫
BZ

d3 p Q(k, p)G0(iω, p)Q(p, k), (16)

where �BZ is the volume of the Brillouin zone, nimp is the im-
purity density, and the integration is over the entire Brillouin
zone [40]. The inverse lifetime can then be calculated via

�(k) = Im [
(iω → 0+, k) − 
(iω → 0−, k)]. (17)

The inverse lifetime � is plotted in Fig. 5 for three different
kz planes: kz = 0, kz = ±π/2c, and kz = ±π/c. In particular,
for each column, we show the inverse lifetime on the inner
(green) and outer (violet) Fermi pockets centered at the �

and K points (i.e., the Fermi pockets with predominant H
character). We find that, at kz = 0, the inverse lifetimes on
the inner Fermi pockets are orders of magnitude larger than
those on the outer pockets. However, as we move away from
the kz = 0 plane, the inverse lifetimes on the outer pockets
grow rapidly and become nearly equal to those on the inner
pockets. We also note that the scattering rate on the K pockets
is consistently smaller than that of � pockets.

Based on these results, and using the inverse lifetime as a
proxy for the pair-breaking scattering rate, we conclude that
the scattering rate in 4Hb-TaS2 depends strongly on the Fermi
surface. This qualitatively justifies the toy model studied in
Sec. II. The difference is greatest when scattering involv-
ing the kz = 0 states provides the dominant pair-breaking
channel.
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FIG. 5. The inverse lifetime � due to scattering by impurities, Eq. (17), normalized by �0 = nimpV 2/�BZW , where �BZ is the volume
of the Brillouin zone and W ∼ 1 [eV] is comparable to the typical bandwidth. This quantity is a proxy for the pair-breaking scattering rate.
The inverse lifetime is presented for different kz values for the inner (green) and outer (violet) pockets centered at the � (upper panel) and K
(middle panel) points. The angle is measured with respect to ky = 0, where θ starts at (0, 0) counterclockwise, and � at (4π/3, 0) clockwise.
At kz = 0, the inverse lifetime on the outer pocket is orders of magnitude smaller than that in the inner one (note that in this case the plot is
logarithmic in the y axis). However, it grows rapidly and becomes equal to the latter as the zone boundary is approached. The lower panel
shows the same inverse lifetime, overlaid on the corresponding Fermi pockets at the right corner of the Brillouin zone (marked by thick black
lines). Here we can also observe a considerable difference between the K pockets and the � pockets.

V. DISCUSSION

In this paper we proposed a simple scenario for the
superconducting ground state of 4Hb-TaS2. In particular,
we showed that the puzzling T -linear specific heat that is
observed experimentally at low temperatures is naturally
explained when the pair-breaking scattering rate varies sig-
nificantly between the different Fermi pockets of a two-band
superconductor. In this situation, the well-known gapless su-
perconducting state predicted by Abrikosov and Gor’kov [26]
is stabilized over a wide range of parameters. The presence of
both a fully gapped superconducting pocket and a gapless su-
perconducting pocket ensures the existence of sharp coherent
peaks at the density of states and of a sharp specific heat jump
at Tc.

To show the relevance of this toy model to 4Hb-TaS2, we
derived a tight-binding model for this compound from DFT.
We find that the DFT band structure is well captured within a
nearest-neighbor tight-binding approximation including only
one (diagonal) interlayer hopping term. In addition, the

special screw symmetry of this compound forces a degenerate
doublet of Fermi pockets at the zone top and bottom, which
are otherwise nondegenerate and form “inner” and “outer”
Fermi pockets surrounding the �, K , and M points.

We then employed this tight-binding model to estimate
the expected pair-breaking scattering rates on the different
Fermi sheets with predominant H-layer character, caused by
magnetic fluctuations residing on the strongly correlated T
layers. We found the rates can be notably different when
comparing the inner vs outer Fermi surfaces. In particu-
lar, near the kz = 0 plane, the inner pockets experience a
scattering rate that is more than two orders of magnitude
larger than that experienced by the outer pockets. Addi-
tionally, we also observe a considerable difference between
the scattering rate on Fermi pockets surrounding K and
those surrounding � throughout the entire Brillouin zone.
We note that pocket-dependent pair-breaking and multi-
gap superconductivity were recently observed in the related
compound 2H-NbSe2 [10]. Moreover, recent magnetotrans-
port measurements performed on 4Hb-TaS2 reveal a large
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variability of the mobility of carriers on the different Fermi
pockets [41].

It is important to note that our tight-binding model neglects
the effects of spin-orbit coupling and the CDW phases in both
T and H layers. While we checked that the influence of the
spin-orbit coupling on the band structure is weak compared to
the impact of the interlayer coupling, the CDW phases may
have a more important effect. For example, it is possible that
the H-T hybridization is significantly modified. Nevertheless,
the conclusion that a Fermi-surface dependent scattering rate
leads to robust gapless superconductivity is more general, and
may even apply to other superconductors exhibiting anoma-
lous specific heat behavior [22].

In this paper, we assumed that the magnetic disorder is
static. However, it is interesting to consider the implications of
dynamic fluctuations, in which the inner Fermi pockets may
Kondo screen them. We note that Kondo screening between
the T and H layers of TaSe2 was recently reported [42]. Such
a screening may also occur inside the superconducting state,
as the inner Fermi surfaces are gapless [43]. In fact, it is pos-
sible that the Josephson coupling to the outer Fermi pockets
competes (weakly) with the Kondo screening and causes a
partial unscreening of the magnetic moments. We thus raise
the question whether this may be a possible source for the
enhanced muon relaxation observed below Tc, which would
then be unrelated to chiral superconductivity.

We also note that such a Kondo-screened state is not ex-
pected to leave signatures in transport because the gapped
superconducting Fermi pockets shunt the gapless ones. To
observe these effects, we propose the use of local probes
with scanning capabilities such as scanning SQUID, scanning
tunneling microscopy, and compressibility sensors. When the
Kondo temperature is low, it may be possible to unscreen
the magnetic moments in a magnetic field and observe an
anomalous magnetic response even above the superconduct-
ing transition temperature.
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APPENDIX A: DETAILS OF THE TIGHT-BINDING MODEL

Our tight-binding Hamiltonian has three orbitals per Ta
atom, as presented in Fig. 6, where we show the maximally
localized Wannier orbitals used to construct it.

The Wannier function calculations are initialized by us-
ing random projections; in other words, the shapes and

FIG. 6. Maximally localized Wannier orbitals for H layer (upper
panel) and T layer (lower panel).

symmetries of these orbitals are not imposed manually and
are rather an outcome of the calculation. Even though the site
symmetry of the Ta sites on the T layer (3̄m) is not cubic, the
deviation from the cubic symmetry is not strong in the crystal
field, and the resulting Wannier orbitals are very similar to the
dxy, dxz, and dyz cubic harmonics with Cartesian axes chosen
parallel to the Ta-S bonds (Fig. 6, bottom panel).

For the H layer (upper panel), all three Wannier orbitals
have shapes similar to the d3z2−r2 orbital, but they are oriented
in-plane and towards a neighboring pair of Ta atoms. The
shape of these orbitals is a result of the local crystal field.
The site symmetry of the Ta site on the H layers is 6̄m2. The
trigonal prismatic crystal field splits the otherwise fivefold
degenerate d levels into a doublet and a singlet, where the
energy splitting of the lower doublet and the singlet is ∼100
meV in TaS2. For z axis chosen normal to the H layer, the
singlet, which transforms as the A′

1 irrep, has d3z2−r2 character.
Similarly, the lower doublet, which transforms at the E ′ irrep,
has (dxy, dx2−y2 ) character. The following superpositions of
these three cubic harmonic orbitals give three orbitals, similar
to those in the upper panel of Fig. 6, which transform to each
other under 120◦ rotations:

d1 = −
√

1

3
d3z2−r2 +

√
2

3
dx2−y2 ,

d2 = −
√

1

3
d3z2−r2 −

√
1

2
dxy −

√
1

6
dx2−y2 , (A1)

d3 = −
√

1

3
d3z2−r2 +

√
1

2
dxy −

√
1

6
dx2−y2 .

These orbitals are orthonormal [44]. The Wannier functions
do not have exactly the same form as in Eq. (A1), for they
also include the hybridization between different orbitals and
atoms. Also, note that the d3z2−r2 orbital oriented along the x
direction, which we call d3x2−r2 , can be written as

d3x2−r2 = −1

2
d3z2−r2 +

√
3

2
dx2−y2 . (A2)

Thus, the orbital character of d1 is very similar to d3x2−r3 ,
except for the loss of continuous rotational symmetry around
the x axis, which does not exist in the crystal.
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In summary, we find that on every layer of TaS2, there are
three different atom-centered Wannier orbitals that need to be
included in the tight-binding model. This leads to a 12 × 12
tight-binding Hamiltonian. We include on-site off-diagonal

terms on the H layers, and select in-plane nearest-neighbor
hopping terms, in addition to one out-of-plane term. The lay-
ers are specified in stacking order T -H-T -H . The structure of
the matrix is

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1,1 0 0 ξ1,4 0 0 0 0 0 ξ1,10 0 0
0 ξ2,2 0 0 ξ2,5 0 0 0 0 0 ξ2,11 0
0 0 ξ3,3 0 0 ξ3,6 0 0 0 0 0 ξ3,12

ξ ∗
1,4 0 0 ξ4,4 ξ4,5 ξ4,6 ξ4,7 0 0 0 0 0
0 ξ ∗

2,5 0 ξ ∗
4,5 ξ5,5 ξ5,6 0 ξ5,8 0 0 0 0

0 0 ξ ∗
3,6 ξ ∗

4,6 ξ ∗
5,6 ξ6,6 0 0 ξ6,9 0 0 0

0 0 0 ξ ∗
4,7 0 0 ξ7,7 0 0 ξ7,10 0 0

0 0 0 0 ξ ∗
5,8 0 0 ξ8,8 0 0 ξ8,11 0

0 0 0 0 0 ξ ∗
6,9 0 0 ξ9,9 0 0 ξ9,12

ξ ∗
1,10 0 0 0 0 0 ξ ∗

7,10 0 0 ξ10,10 ξ10,11 ξ10,12

0 ξ ∗
2,11 0 0 0 0 0 ξ ∗

8,11 0 ξ ∗
10,11 ξ11,11 ξ11,12

0 0 ξ ∗
3,12 0 0 0 0 0 ξ ∗

9,12 ξ ∗
10,12 ξ ∗

11,12 ξ12,12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

The matrix elements are given by

ξ1,1 = εH − 2t1 cos(k · x3) + 2t2[cos(k · x1) + cos(k · x2)],

ξ1,4 = −tz{i sin[k · (c1 + x1)] + i sin[k · (c1 − x2)] + cos[k · (c1 + x1)] + cos[k · (c1 − x2)]},
ξ1,10 = −tz{−i sin[k · (c1 + x1)] − i sin[k · (c1 − x2)] + cos[k · (c1 + x1)] + cos[k · (c1 − x2)]},
ξ2,2 = εH − 2t1 cos(k · x1) + 2t2[cos(k · x2) + cos(k · x3)],

ξ2,5 = tz{i sin[k · (c1 + x2)] + i sin[k · (c1 + x3)] + cos[k · (c1 + x2)] + cos[k · (c1 + x3)]},
ξ2,11 = tz{−i sin[k · (c1 + x2)] − i sin[k · (c1 + x3)] + cos[k · (c1 + x2)] + cos[k · (c1 + x3)]},
ξ3,3 = εH − 2t1 cos(k · x2) + 2t2[cos(k · x1) + cos(k · x3)],

ξ3,6 = −tz{i sin[k · (c1 − x1)] + i sin[k · (c1 − x3)] + cos[k · (c1 − x1)] + cos[k · (c1 − x3)]},
ξ3,12 = −tz{−i sin[k · (c1 − x1)] − i sin[k · (c1 − x3)] + cos[k · (c1 − x1)] + cos[k · (c1 − x3)]},
ξ4,4 = εT − 2t3 cos(k · x3) + 2t4[cos(k · x1) + cos(k · x2)],

ξ4,5 = to + t6[−i sin(k · x1) + i sin(k · x3) + cos(k · x1) + cos(k · x3)] + t7[i sin(k · x2) − cos(k · x2)]

+ t8[i sin(k · x2) + cos(k · x2)] − t5[i sin(k · x1) − i sin(k · x3) + cos(k · x1) + cos(k · x3)],

ξ4,6 = to + t6[i sin(k · x2) − i sin(k · x3) + cos(k · x2) + cos(k · x3)] − t7[i sin(k · x1) + cos(k · x1)]

+ t8[−i sin(k · x1) + cos(k · x1)] − t5[−i sin(k · x2) + i sin(k · x3) + cos(k · x2) + cos(k · x3)],

ξ4,7 = −tz{i sin[k · (c1 − x1)] + i sin[k · (c1 + x2)] + cos[k · (c1 − x1)] + cos[k · (c1 + x2)]},
ξ5,5 = εT − 2t3 cos(k · x1) + 2t4[cos(k · x2) + cos(k · x3)],

ξ5,6 = to + t6[−i sin(k · x1) − i sin(k · x2) + cos(k · x1) + cos(k · x2)] − t7[i sin(k · x3) + cos(k · x3)]

+ t8[−i sin(k · x3) + cos(k · x3)] − t5[i sin(k · x1) + sin(k · x2) + cos(k · x1) + cos(k · x2)],

ξ5,8 = tz{i sin[k · (c1 − x2)] + i sin[k · (c1 − x3)] + cos[k · (c1 − x2)] + cos[k · (c1 − x3)]},
ξ6,6 = εT − 2t3 cos(k · x2) + 2t4[cos(k · x1) + cos(k · x3)],

ξ6,9 = −tz{i sin[k · (c1 + x1)] + i sin[k · (c1 + x3)] + cos[k · (c1 + x1)] + cos[k · (c1 + x3)]},
ξ7,7 = εH − 2t1 cos(k · x3) + 2t2[cos(k · x1) + cos(k · x2)],

ξ7,10 = −tz{i sin[k · (c1 − x1)] + i sin[k · (c1 + x2)] + cos[k · (c1 − x1)] + cos[k · (c1 + x2)]},
ξ8,8 = εH − 2t1 cos(k · x1) + 2t2[cos(k · x2) + cos(k · x3)],

ξ8,11 = tz{i sin[k · (c1 − x2)] + i sin[k · (c1 − x3)]) + cos[k · (c1 − x2)] + cos[k · (c1 − x3)]},
ξ9,9 = εH − 2t1 cos(k · x2) + 2t2[cos(k · x1) + cos(k · x3)],

ξ9,12 = −tz{i sin[k · (c1 + x1)] + i sin[k · (c1 + x3)] + cos[k · (c1 + x1)] + cos[k · (c1 + x3)},
ξ10,10 = εT − 2t3 cos(k · x3) + 2t4[cos(k · x1) + cos(k · x2)],
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ξ10,11 = to + t6[i sin(k · x1) − i sin(k · x3) + cos(k · x1) + cos(k · x3)] − t7[i sin(k · x2) + cos(k · x2)]

+ t8[−i sin(k · x2) + cos(k · x2)] − t5[−i sin(k · x1) + i sin(k · x3) + cos(k · x1) + cos(k · x3)],

ξ10,12 = to + t6[−i sin(k · x2) + i sin(k · x3) + cos(k · x2) + cos(k · x3)] + t7[i sin(k · x1) − cos(k · x1)]

+ t8[i sin(k · x1) + cos(k · x1)] − t5[i sin(k · x2) − i sin(k · x3) + cos(k · x2) + cos(k · x3)],

ξ11,11 = εT − 2t3 cos(k · x1) + 2t4[cos(k · x2) + cos(k · x3)],

ξ11,12 = to + t6[i sin(k · x1) + i sin(k · x2) + cos(k · x1) + cos(k · x2)] + t7[i sin(k · x3) − cos(k · x3)]

+ t8[i sin(k · x3) + cos(k · x3)] − t5[−i sin(k · x1) − i sin(k · x2) + cos(k · x1) + cos(k · x2)],

ξ12,12 = εT − 2t3 cos(k · x2) + 2t4[cos(k · x1) + cos(k · x3)].

Here, x1,2,3 are the three nearest-neighbor vectors and c1 is
the out-of-plane interlayer vector given by

x1 = âx, x2 = a

(
−1

2
x̂ +

√
3

2
ŷ
)

,

x3 = a

(
1

2
x̂ +

√
3

2
ŷ
)

, c1 = c

4
ẑ. (A4)

The on-site terms and hopping parameters are given in
Table I.

APPENDIX B: HEAT CAPACITY DATA AND NODAL
SUPERCONDUCTIVITY

The working hypothesis of this paper is that the specific
heat data is inconsistent with a nodal order parameter, even
one that is lurking behind the T -linear contribution. In this
Appendix we show that the specific heat is indeed inconsistent
with such a nodal state, or at least that the nodal state is below
the noise level of the experiment. To show this, we consider
the temperature dependence of the derivative d

dT (CV /T ) near
T = 0. In the case of line nodes we expect

line nodes :
d

dT

(
CV

T

)
∼ const, T → 0,

TABLE I. Tight-binding parameters grouped by hopping matrix
elements.

Onsite terms:
εH 7.363
εT 6.577
to −0.20

Nearest-neighbor terms:
t1 0.742
t2 0.180
t3 0.655
t4 0.295
t5 0.453
t6 0.275
t7 0.146
t8 0.113

Interlayer term:
tz 0.081

while for point nodes

point nodes :
d

dT

(CV

T

)
∼ T, T → 0.

In Fig. 7 we plot the numerical derivative d
dT (CV

T ) as a
function of T on a log-log plot for the experimentally mea-
sured specific heat data. It is clear that in the temperature
range below T = 1 K, the derivative is suppressed much faster
than linear and is thus inconsistent with any kind of node. We
thus conclude that CV most likely decays exponentially to a
constant, or at least, in the temperature range down to 0.3 K.

FIG. 7. The derivative d
dT ( CV

T ) as a function of T on a log-log
plot. The inset shows the raw data.
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