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Quantum criticality in Ce1−xSmxCoIn5
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Motivated by the possibility of observing the coexistence between magnetism and unconventional supercon-
ductivity in heavy-fermion Ce1−xSmxCoIn5 alloys, we studied how the samarium substitution on the cerium
site affects the magnetic field-tuned-quantum criticality of stoichiometric CeCoIn5 by performing specific heat
and resistivity measurements. By applying an external magnetic field, we have observed Fermi-liquid to non-
Fermi-liquid crossovers in the temperature dependence of the electronic specific heat normalized by temperature
and of the resistivity. We obtained the magnetic-field-induced quantum critical point (QCP) by extrapolating to
zero temperature the temperature-magnetic field dependence at which the crossovers take place. Furthermore, a
scaling analysis of the electronic specific heat is used to confirm the existence of the QCP. We have found that the
magnitude of the magnetic-field-induced QCP decreases with increasing samarium concentration. Our analysis
of heat capacity and resistivity data reveals a zero-field QCP for xcr ≈ 0.15, which falls inside the region where
Sm ions antiferromagnetism and superconductivity coexist.
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I. INTRODUCTION

CeCoIn5 is an unconventional superconductor in the family
of the ‘115’ heavy fermion materials with a fairly high transi-
tion critical temperature (Tc) at 2.3 K. A consensus exists by
now that the unconventional superconductivity in the ‘115’
system is likely governed by its proximity to an antiferro-
magnetic critical point at zero temperature [1,2]. Generally,
these materials can be tuned to a quantum phase transition
at a quantum critical point (QCP) by either chemical sub-
stitutions [3,4], pressure [5,6], or by applying an external
magnetic field [7,8]. Consequently, interactions between con-
duction electrons and critical fluctuations associated with the
underlying QCP lead to a manifestation of quite unusual phys-
ical properties in both normal and superconducting phases of
the ‘115’ materials [9,10]. The fact that a QCP does exist in
these materials is usually elucidated by performing a scaling
analysis of the thermodynamic response functions, such as
specific heat and magnetic susceptibility.

A significant amount of experimental data, as well as
theoretical results, strongly suggest that the Cooper pair-
ing in CeCoIn5, albeit unconventional, is mediated by the
interaction between conduction electrons and localized mag-
netic moments of partially filled f shells of cerium ions.
A tendency towards an antiferromagnetic ordering itself is
driven by the exchange interaction between cerium magnetic
moments. The exchange interaction, a driver for an antiferro-
magnetic transition, is also thought to produce soft long-range
bosonic modes, a pairing glue for the conduction electrons,
to ultimately induce superconductivity with d-wave order pa-
rameter [11].

Naturally, the chemical substitution of magnetic (and non-
magnetic) rare earth ions for magnetic Ce3+ not only allows

one to study the effect of intersite interactions on the QCP
but also separate the single-ion Kondo effect from effects
associated with the magnetic exchange interaction. Indeed,
the underlying quantum phase transition may shift under the
effect of an external magnetic field or pressure. As a result,
one may expect that it would affect the superconducting tran-
sition temperature, as well as the thermodynamic response
functions in the normal state. Thus, if we were to believe
the hypothesis that QCP is governing the unusual transport
and thermodynamic properties observed in superconducting
and normal states [2,12,13], systematic studies of the ‘115’-
based alloyed compounds could offer an opportunity to get a
deeper insight as well as to unveil differences and/or simi-
larities pertaining to both normal and superconducting states.
An additional important aspect of the problem consists of
the fact that chemical substitutions inevitably bring disorder
into a system so that the putative QCP may or may not be
smeared by the effects associated with the induced spacial
inhomogeneities.

Recently, there have been several reports on alloys of
Ce1−xMxCoIn5, where M is a member of lanthanide fam-
ily with unfilled f -orbital shells. The general motivation for
studying such alloys lies in an attempt to stabilize the phase
of coexistence between superconductivity of the host ‘115’
system and magnetism governed by the impurity magnetic
moments. Indeed, one can envision a scenario in which the
suppression of superconductivity would be slow enough so
that both Néel (TN ) and superconducting (Tc) critical temper-
atures are finite in some region of the phase diagram. In fact,
similar effects have been observed in iron-based superconduc-
tors [14], although magnetism in those materials is itinerant
and the coexistence between s±-wave superconductivity and
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spin-density-wave order is possible due to the Anderson theo-
rem [15,16].

Ce1−xYbxCoIn5 is one example of such an alloy: Although
Yb is supposed to be in the magnetic Yb3+ valence con-
figuration, with an increase in ytterbium concentration, its
valence configuration changes from a magnetic to nonmag-
netic Yb2+. Nevertheless, one of the intriguing results is that
the magnetic-field-induced QCP (BQCP) of the stoichiometric
compound is fully suppressed in the alloy Ce1−xYbxCoIn5

for x > 0.1 without substantially affecting the unconventional
superconductivity and non-Fermi-liquid (NFL) behavior [17].
Specifically, a zero-field QCP separating paramagnetic and
antiferromagnetic phases is observed in Ce0.91Yb0.09CoIn5,
and its presence has been confirmed by the scaling analysis
of the specific heat data [18]. This is a surprising result given
the fact that the dependence of the superconducting critical
temperature on ytterbium concentration does not display any
correlation with the suppression of the BQCP.

Another example is provided by Ce1−xSmxCoIn5. Samar-
ium Sm3+ replaces Ce3+ in CeCoIn5 and, unlike Yb, it
remains in the same integer valence configuration [19]. One
needs to keep in mind that existing ‘electron-hole symmetry’
between 4 f 1 (Ce3+) and 4 f 5(Sm3+) valence configurations
implies that larger magnetic moments are introduced into the
system through this substitution without changing the carrier
density. The phase diagram in the temperature-doping (T -x)
plane can be generated based on the TN and Tc measured
from resistivity ρ(x) and specific heat C/T of Ce1−xSmxCoIn5

for 0 � x � 0.3 in zero magnetic field, Fig. 1. Therefore,
in contrast to Ce1−xYbxCoIn5, superconductivity in this al-
loy is completely suppressed at x∗ ≈ 0.18, and long-range
antiferromagnetic (AFM) order emerges in the sublattice of
Sm moments in Ce1−xSmxCoIn5 for x ≈ 0.10. While fairly
fast (in comparison with Ce1−xYbxCoIn5 alloys), the suppres-
sion of superconductivity is not surprising given the sizable
magnetic moment of samarium. The fact that the AFM order
emerges before superconductivity has been fully suppressed
does provide long thought playground to investigate pos-
sible coexistence between unconventional superconductivity
and magnetism. Furthermore, at the critical concentration
xSm

cr ≈ 0.10 where the Néel temperature for the samarium
sublattice vanishes, an antiferromagnetic QCP may also be
present.

Samarium substitutions must also affect the magnitude
of BQCP separating the antiferromagnetic and paramagnetic
phases of cerium sublattice at zero temperature. Specifically,
as in the case of Yb substitutions [18], one may expect that
the value of BQCP will be suppressed to zero for some critical
concentration xcr of samarium ions, BQCP(xcr) = 0. In the inset
of Fig. 1 we see that the magnetic field induced quantum
phase transition of the cerium lattice is clearly affected by
the samarium substitutions. In light of our discussion above,
one may then wonder whether xcr, satisfying xSm

cr � xcr �
x∗ [with Tc(x∗) = 0], falls into the region where antiferro-
magnetism induced by the ordering of Sm moments and
superconductivity may coexist or not. These considerations
have lead us to select the samples x = 0.10 and x = 0.15
to investigate the changes in the magnitude of BQCP through
specific heat and resistivity measurements done in the pres-
ence of an applied magnetic field. In what follows, we present
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FIG. 1. Temperature-Sm concentration T -x phase diagram of
Ce1−xSmxCoIn5. The Tc(x) and TN (x) data shown here are in part take
from Ref. [19] and from present work. The solid lines are theoretical
fits to the experimental data points. We fitted the superconducting
critical temperature using Abrikosov-Gor’kov expression for Tc(x)
for superconductors with d-wave symmetry of the order parameter.
The Néel temperature TN depends linearly on x at small enough
values of x as can be shown by quantum Monte Carlo simulations
and can also be seen by employing a perturbation theory [20,21].
Inset: Dependence of the magnetic-field-induced quantum critical
point BQCP, which separates magnetic and nonmagnetic states at
zero temperature, is shown as a function of samarium concentration.
When x > 0.16 BQCP of stoichiometric CeCoIn5 becomes fully sup-
pressed implying the absence of the antiferromagnetic transition in
the sublattice of Ce moments even at absolute zero temperatures.

the results of specific heat and resistivity measurements on
Ce0.9Sm0.10CoIn5 and Ce0.85Sm0.15CoIn5 to elucidate the role
played by quantum critical fluctuations and their effect on
unconventional superconductivity. Our investigation reveals
that quantum critical fluctuations strongly correlate with un-
conventional superconductivity. The magnetic field driven
QCP is suppressed with increasing Sm concentration. The
observed pronounced crossovers from FL to NFL behavior,
as well as the scaling analysis of the Ce/T on both alloys,
show that the normal state of Ce0.85Sm0.15CoIn5 is quantum
critical.

II. EXPERIMENTAL DETAILS

Single crystals of Ce1−xSmxCoIn5 (x = 0.10 and 0.15)
were grown using the molten In flux method in alumina
crucibles, as described in Ref. [22]. The composition and crys-
tal structure were determined from x-ray powder diffraction
(XRD) and energy dispersive x-ray (EDX) techniques. The
crystals’ actual chemical composition is the same as that of the
nominal doping, as confirmed by the EDX using FFI Quanta
600 scanning electron microscope equipped with an INCA
EDX detector from Oxford Instruments [19].

The crystals were cut into a typical size of 2.0 × 0.5 ×
0.17 mm3, with the c axis along the shortest dimension of the
crystals. These single crystals were first polished with sand-
paper and then etched in a 5% HCl solution for three hours
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FIG. 2. Semilog plot of the electronic specific heat normalized
by temperature T , Ce/T vs T of Ce0.90Sm0.10CoIn5 measured in
applied magnetic fields, as listed in the figure, over the temperature
range 0.42 K � T � 10 K. T C

FL represents the temperature at which
the behavior changes from Fermi-liquid to non-Fermi liquid.

to remove the indium left on the surface during the growth
process. Then they were washed thoroughly with ethanol to
remove any acid and impurities.

Heat capacity measurements were performed in an external
magnetic field strength 0 � B � 14 T applied parallel to the c
axis and in the temperature range 0.42 K � T � 8 K for all of
the measurements performed. The data were obtained using
a relaxation technique in the He-3 option of the Quantum
Design physical properties measurement system.

Four gold leads were attached to each crystal using silver-
based epoxy, with the current I ‖ a axis of the single crystal.
We performed temperature (T ) dependent electrical resis-
tivity [ρ(T )] measurements between 0.5 K and 300 K in
zero magnetic field to extract the superconducting transi-
tion temperature and the Kondo lattice coherence peaks. The
resistivity in magnetic field was measured by scanning tem-
perature from 0.6 K to 10 K for selected magnetic field
values from 6 T to 14 T. Then transverse magnetoresistiv-
ity (�ρ⊥

a /ρa) was measured by scanning the magnetic field
from −14 T to 14 T for selected temperatures between 2
and 50 K.

III. RESULTS

A. Ce0.90Sm0.10CoIn5

1. Specific heat

Figure 2 shows the temperature dependence of the elec-
tronic specific heat normalized by temperature Ce(T )/T of
Ce0.90Sm0.10CoIn5 measured over the magnetic field range
6 T � B � 14 T and temperature range 0.42 K � T � 8 K.
We have subtracted the specific heat [19] of the nonmagnetic
reference compound LaCoIn5 from the measured specific heat
to get the electronic and magnetic contributions to the specific
heat. Then, to obtain the electronic contribution to the specific
heat, we subtracted the high temperature tail of the Schottky
anomaly due to quadrupolar and magnetic spin splitting of
Co and In nuclei [12]. All the data shown in Fig. 2 are nor-

0 2 4 6 8 10
30

40

50

60

70

80

90

6 T

8 T

10 T

12 T

14 T

(
cm

)

T2
(K

2
)

Ce
0.90

Sm
0.10

CoIn
5

FIG. 3. Low temperature T resistivity ρ plotted as a function of
T 2 in the magnetic field as listed in the figure for Ce0.90Sm0.10CoIn5.
The solid lines represent linear fits of the data with ρ = ρ0 + AT 2.

mal state results since superconductivity is suppressed in this
temperature range measured at magnetic fields above 4 T (see
purple data taken at 4 T in the inset to Fig. 6).

Applying an external magnetic field, we observed definite
crossovers from constant Ce/T vs T at low temperatures, i.e.,
Fermi-liquid behavior, to logarithmic temperature-dependent
Ce/T with Ce/T ∝ ln T −0.4 at high temperatures, i.e., non-
Fermi liquid behavior. For the measured temperature range,
the clearly visible FL regime (Ce/T = constant) at low tem-
peratures is observed for B � 6 T. The data taken in all these
applied magnetic fields exhibit the FL to NFL crossovers at a
temperature T C

FL that shifts towards higher temperatures with
increasing B, as shown by the vertical dashed lines of Fig. 2.
The T C

FL from each specific heat data measured at different
magnetic fields are extracted and plotted as shown in the B-T
phase diagram of Fig. 5.

2. Resistivity

Figure 3 shows the T 2 dependence of resistivity of
Ce0.90Sm0.10CoIn5 measured in different B. The resistivity is
linear in T 2 at low temperatures: ρ = ρ0 + AT 2, where ρ0

is the residual resistivity, and A is a constant that measures
the strength of electron-electron interactions. The linear in
T 2 behavior of resistivity at low T and high B reveals the
recovery of the FL behavior. Its deviation from linearity with
increasing temperature is the signature of the NFL behav-
ior [23]. The crossovers from linear (FL) to nonlinear (NFL)
T 2 dependence of ρ at low temperatures represented by T R

FL,
shift towards higher temperatures with increasing magnetic
field. The T R

FL from each resistivity data measured at different
magnetic fields are extracted and plotted as shown in the B-T
phase diagram of Fig. 5.

3. Magnetoresistivity

Figures 4(a) and 4(b) show the transverse magnetoresis-
tivity (MR) �ρ⊥

a /ρa vs B of Ce0.90Sm0.10CoIn5 measured
over the temperature range 2 K � T � 50 K. These figures
reveal pronounced crossovers from positive to negative MR
that become flatter with increasing temperature. The peaks
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FIG. 4. (a) Transverse magnetoresistivity �ρ⊥
a /ρa vs magnetic

field strength B of Ce0.90Sm0.10CoIn5 measured over a temperature
T range 2 K � T � 19 K. Inset: T dependence of the characteristic
magnetic field strength Bmax corresponding to the maximum of the
transverse MR. The solid line in the inset is the linear fit of the low T
data. (b) �ρ⊥

a /ρa vs B measured over a T range 21 K � T � 50 K.

in MR take place at temperatures smaller than the coherence
temperature Tcoh = 41 K.

We extracted the magnetic field strength Bmax at which the
magnetoresistivity is maximum [see main panel of Figs. 4(a)
and 4(b)] and plotted Bmax vs T in the inset to Fig. 4(a).
This plot shows a nonmonotonic dependence of Bmax vs
T , with a maximum at around 19 K. For T > 19 K, the
value of Bmax decreases with increasing temperature, reveal-
ing the coherent Kondo lattice behavior in this T range.
However, the positive MR that decreases with decreasing T
in the low temperature range (T < 19 K) indicates uncon-
ventional Kondo lattice behavior and is attributed to field
quenching of the AFM spin fluctuations [24] responsible for
the NFL behavior, previously observed in CeCoIn5 [24] and
Ce1−xYbxCoIn5 [17]. Therefore, the positive MR measured
for the x = 0.10 single crystals at T < 19 K is due to the AFM
spin fluctuations. The extrapolation of the low T linear fit of
Bmax vs T to zero temperature give BQCP = 2.5 T for this Sm
doping.

FIG. 5. Magnetic field strength-temperature (B-T ) phase dia-
gram of Ce0.90Sm0.10CoIn5 with B ‖ c axis. The solid and dashed
black lines are linear fits of the data extrapolated to zero temperature.
The dashed magenta is a guide to the eye for the magnetic field
dependence of the superconducting transition temperature.

4. Magnetic-field-induced quantum critical point

Based on features extracted from Ce/T , ρ, and �ρ⊥
a /ρa

data, we generated the B-T phase diagram shown in Fig. 5.
Specifically, the FL to NFL crossover temperatures for differ-
ent B values are extracted from the Ce/T vs T data of Fig. 2
as T C

FL (blue triangles) and ρ vs T 2 data of Fig. 3 as T R
FL (red

circles). The linear fit of T C
FL and T R

FL from both measurements
extrapolates to zero temperature at BQCP = 2.5 T. In addition,
the linear extrapolation of the peak BMR

max (black squares) vs T
(extracted from �ρ⊥

a /ρa of Fig. 4) to zero temperature gives
the same BQCP = 2.5 T.

5. Quantum critical scaling of heat capacity

When the system is tuned to a quantum critical point by a
magnetic field B = BQCP, the timescale of the quantum critical
fluctuations is governed by temperature only, i.e., τ = h̄/kBT .
As a consequence, the relevant dynamical response func-
tions exhibit the ω/T scaling, where ω is the characteristic
frequency on which the system is probed [25,26]. When B
serves as a tuning parameter, the effect of quantum critical
fluctuations in the thermodynamic or transport quantities is
manifested in their dependence on the ratio of B − BQCP and
T , as well as a typical energy scale describing the source of
quantum fluctuations.

In order to further confirm that the anomalous tem-
perature dependence of Ce/T is governed by quantum
critical fluctuations and that BQCP = 2.5 T for the x = 0.10
samples, we show that γ (B, T ) ≡ Ce/T is governed by
the critical free energy density fcr = a0rν(d+z) f0(T/rνz ) =
a0T (d+z)/z f̃0(r/T 1/νz ), where a0 is a constant, f0 and f̃0

are scaling functions, r ∝ (B − BQCP), d is the dimension-
ality of the system, z is the dynamical critical exponent,
and ν is the critical exponent describing the dynamical
correlations between Ce moments. Therefore, based on
the arguments of Ref. [27] and the scaling analysis per-
formed for CeCoIn5 [8], we performed the scaling analysis
using the function (γ (B) − γ (BQCP)) ∝ (B − BQCP)α f [(B −

224519-4



QUANTUM CRITICALITY IN … PHYSICAL REVIEW B 103, 224519 (2021)

FIG. 6. Scaling of the Sommerfeld coefficient γ according to
γ (B) − γ (2.5 T) ∝ (B − 2.5 T)0.71 f [(B − B(2.5 T)/T 2.5], where B
is the magnetic field strength. We obtained the best scaling shown
on the main panel with a logarithmic dependence of γ (2.5T) vs
T at temperatures T � 6 K. Inset: Semilog plot of γ ≡ Ce/T vs
temperature T measured at 2.5 T and 4 T and their normal state fit
with Ce/T = 0.65–0.4lnT .

BQCP)/T β], where α ≡ ν(d + z) and β represents the scal-
ing dimension of B. The best scaling we obtained (Fig. 6)
confirms that BQCP = 2.5 T for Ce0.90Sm0.10CoIn5 and gives
α = 0.71, and β = 2.5. The scaling of γ (B, T ) spans both
the FL regime at low temperatures and the NFL regime at
high temperatures, with all five data sets for different B values
overlapping over the T range 0.42 K � T � 8 K. A very simi-
lar scaling has been observed in the stoichiometric compound
CeCoIn5 [8] and YbRh2Si2 [28].

It is instructive to compare these results for the values
of α and β of Ce0.90Sm0.10CoIn5 with those obtained for
Ce1−xYbxCoIn5 [18]. For the latter, we found αYb = 0.71
and βYb = 1.2, while for the former αSm = 0.71 and βSm =
2.5 ≈ 2βYb. On the other hand, both αSm and βSm match the
corresponding values found for the stoichiometric compound.
Given the fact that magnetic field, on one hand, serves as a tun-
ing parameter to the QCP, while, on the other hand, suppresses
the magnetic fluctuations by direct coupling to the magnetic
moments of Ce ions, the relatively high value of β signals
that the region of quantum critical fluctuations is broader for
Ce0.90Sm0.10CoIn5 compared to Ce1−xYbxCoIn5. This is also
consistent with the stronger suppression of superconductivity
in the samarium alloys.

A major obstacle in performing the scaling analysis was to
determine the normal state γ (2.5 T, T ) at low temperatures
because the x = 0.10 sample exhibits superconductivity be-
low 1.1 K in the presence of a magnetic field of 2.5 T. We
were able to overcome this problem by determining the T
dependence of the γ (4 T, T ) down to 0.42 K and taking ad-
vantage of the fact that γ (T, 4 T) and γ (2.5 T, T ) completely
overlap in the normal state, i.e., for T > 1.2 K (see inset to
Fig 6). We found that the Ce(B, T )/T follows a logarithmic
T dependence with Ce(B, T )/T = 0.64 + lnT −0.4. This result

FIG. 7. Semilog plot of the electronic specific heat normalized
by temperature Ce/T vs temperature T of Ce0.85Sm0.15CoIn5 mea-
sured with applied magnetic field B ‖ c axis over the temperature
range 0.42 K � T � 10 K. T C

FL represents the temperature at which
the behavior changes from Fermi liquid to non-Fermi liquid.

implies that proximity to the underlying quantum critical point
affects the thermodynamic properties significantly.

B. Ce0.85Sm0.15CoIn5

1. Specific heat

In order to determine the effect of doping on the value of
BQCP and to search for a critical Sm concentration for which
BQCP = 0, we performed similar specific heat and resistivity
measurements as a function of temperature and magnetic field
on single crystals with a slightly higher Sm concentration,
i.e., Ce0.85Sm0.15CoIn5. Figure 7 shows the temperature de-
pendence of Ce/T measured in several magnetic fields and at
low temperatures, i.e., 0.42 K � T � 8 K. The normal-state
results shown in Fig. 7 reveal sharp crossovers from con-
stant Ce(B, T )/T (FL at low T ) to logarithmic T -dependent
Ce(B, T )/T , with Ce(B, T )/T = 1 + lnT −0.64(NFL at high
T ). The crossovers temperature T C

FL also shifts towards higher
temperatures with increasing B for B � 6 T.

2. Resistivity

Figure 8 shows the T 2 dependence of ρ of
Ce0.85Sm0.15CoIn5 measured from 0.6 K to 5 K and for
6 T � B � 14 T. As in the case of the single crystals with
x = 0.10, the resistivity for the x = 0.15 samples is linear
in T 2 at low temperature, signaling the presence of the
Fermi-liquid behavior.

To check that the samples with x = 0.15 are, indeed, quan-
tum critical, we plotted in Fig. 9 the B-T phase diagram
for the Sm-doped single crystals. The FL to NFL crossovers
extracted from Ce(B, T )/T are represented by T C

FL (solid blue
triangles), and these crossovers extracted from ρ are repre-
sented by T R

FL (solid red circles). The FL to NFL crossovers
obtained from both measurements are in excellent agreement.
The linear extrapolation of the fit of these crossovers to zero
temperature reveals that BQCP = 0, indicating that the sample
Ce0.85Sm0.15CoIn5 is, indeed, at the critical doping.
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FIG. 8. Low temperature resistivity ρ vs temperature T 2 of
Ce0.85Sm0.15CoIn5 measured in several applied magnetic fields. The
solid lines are linear fits to the data with ρ = ρ0 + AT 2.

3. Quantum critical scaling of heat capacity

We further checked whether Ce0.85Sm0.15CoIn5 is quantum
critical by performing the scaling analysis as discussed above.
We obtained the best scaling, shown in Fig. 10, with BQCP =
0, α = 0.8, and β = 2.5. The scaling of γ ≡ Ce/T spans
both the FL at low temperatures and the NFL regime at high
temperatures, with all four data sets measured at different B
values overlapping over the temperature range 0.42 K � T �
5 K. This scaling further indicates that Ce0.85Sm0.15CoIn5 is
quantum critical and exhibits NFL behavior.

In order to determine γ (0 T) required for the scaling of
Fig. 10, we fitted the Ce(0, T )/T data for T > 1.91 K of
the x = 0.15 sample with a logarithmic T dependence, i.e.,
Ce(0, T )/T = 1 + lnT −0.64. The data for T < 1.5 K display
a stronger than logarithmic increase with decreasing T , most
likely due to the presence of long range AFM fluctuations and
superconductivity. This is consistent with the phase diagram
of Fig. 1, where TN = 0.8 K. Nevertheless, we used the loga-

FIG. 9. Magnetic field strength-temperature (B-T ) phase dia-
gram of Ce0.85Sm0.15CoIn5 with B ‖ c axis. The solid line is a linear
fit of the data. The blue dashed curve is a guide to the eye for the
magnetic field dependence of the Neel temperature.

FIG. 10. Scaling of the Sommerfeld coefficient γ according to
γ (B) − γ (0 T) ∝ B0.8 f (B)/T 2.5 with γ = Ce/T . We obtained the
best scaling shown on the main panel with a logarithmic dependence
of γ (0 T) vs T for temperatures T � 6 K. Inset: Semilog plot of
γ ≡ Ce/T vs temperature T measured at 0 T and its normal state fit
with Ce(0, T )/T = 1–0.65 lnT .

rithmic T dependence of γ (0 T) obtained by fitting the data at
T > 1.91 K over the whole T range down to 0.42 K.

Combining the experimental results shown above, we have
generated an BQCP vs Sm concentration phase diagram of
Ce1−xSmxCoIn5, for the doping x = 0.00, 0.10, 0.15, as
shown in the inset to Fig. 1. This phase diagram shows that
BQCP is suppressed with increasing Sm3+ doping and be-
comes zero for x � 0.15. Therefore, at zero temperature in
the region for x < 0.1 (main panel of Fig. 1) superconductiv-
ity and long-range AFM order of Ce moments coexist. For
0.10 � x � 0.15, superconductivity, long-range AFM order
of Ce moments, and long-range AFM of Sm ions coexist
at zero temperature. In region 0.15 � x � 0.17 superconduc-
tivity coexists with long-range AFM order of Sm moments,
while there is only long-range AFM order due to Sm ions
when x � 0.17.

IV. DISCUSSION AND OUTLOOK

Anomalous thermodynamic and transport low-temperature
properties of complex materials have long been associated
with underlying QCPs. In this regard, CeCoIn5 as well as
the other members of the ‘115’ family of compounds are
not an exception. The existence of the BQCP in CeCoIn5 has
been already established independently by several groups.
Our present study further justifies the validity of using the
conceptual framework of quantum criticality to account for
the observed anomalies in Ce1−xSmxCoIn5.

We can also estimate the fluctuation correction to the heat
capacity in external B. The details of the calculation are
given in the Appendix, so here we only present the results
in Fig. 11. We found that due to presumably strong coupling
between itinerant carriers and localized moments of Ce ions,
the fluctuation correction to the heat capacity in the close
vicinity to QCP does have a power-law temperature depen-
dence δCsf ∝ T α with α ≈ 0.45. When the system is detuned
from the proximity to the QCP, the exponent α increases and
becomes α ≈ 1.5 at very low temperatures.
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FIG. 11. Fluctuation correction to the heat capacity due to the
system’s proximity to magnetic QCP as a function of temperature
for various values of the parameter η ∝ (B − BQCP). The temperature
is given in the units of the characteristic energy scale for the mag-
netic subsystem. Although δCsf(T ) ∝ T α has a power-law (and not
logarithmic) temperature dependence, the exponent α shows strong
dependence on the parameter η, a feature which is also observed
experimentally.

Samarium substitution on cerium sites brings about a novel
feature into the phase diagram: The possible coexistence be-
tween superconductivity and antiferromagnetic ordering of
Sm local moments in the narrow region of 0.10 � x � 0.17,
Fig. 1. The Néel temperature vanishes at x ≈ 0.10 giving
rise most likely to an antiferromagnetic QCP. In this regard
we would like to note that quantum critical fluctuations may
already manifest themselves in the superconducting state.
Indeed, recent theoretical works have shown the effect of
quantum critical fluctuations can also be probed in the su-
perconducting state by studying the temperature dependence
of thermodynamic functions such as heat capacity [29,30]
and London penetration depth [30]. In particular, it has been
shown that in a fully gapped superconductor, quantum fluc-
tuations produce power-law dependences in both of these
quantities on the background of the (mean-field) exponential
temperature dependence. In the context of Ce1−xSmxCoIn5,
it would be intriguing to probe the variation in the tem-
perature dependence of the heat capacity of the x = 0.10
samples in the superconducting state. From the point of
view of the theoretical analysis, this problem poses an ad-
ditional challenge since the fermionic spectrum is not fully
gapped.

V. SUMMARY

Through the measurements of specific heat, resistiv-
ity, and magnetoresistivity on both Ce0.90Sm0.10CoIn5 and

Ce0.85Sm0.15CoIn5 samples, we observe that the FL regime
recovery is established with increasing B in both ρ and Ce/T
along with the low T evolution of positive magnetoresistiv-
ity. We conclude that BQCP decreases with increasing Sm
concentration. The single crystal with x = 0.15 exhibits zero
temperature quantum criticality associated with the antiferro-
magnetic ground state of Ce ions. However, the lower doped
crystal Ce0.90Sm0.10CoIn5 reveals BQCP at 2.5 T. As compared
to the parent compound and low doped sample (x = 0.1),
the normal-state transport and thermodynamic properties of
Ce0.85Sm0.15CoIn5 are controlled by the presence of QCP
alone. Moreover, the scaling analysis of the Ce/T data pro-
vides strong evidence for the existence of BQCP. Similarly,
excellent fits of Ce/T and ρ data measured at several magnetic
fields also suggest that the QCP is antiferromagnetic in nature
as supported by the spin fluctuation theory.

ACKNOWLEDGMENTS

The work was supported by the National Science Foun-
dation under Grants No. DMR-1904315 and No. NSF-
DMR-BSF-2002795 at Kent State University. Research at
the University of California, San Diego was supported by
the U.S. Department of Energy (DOE), Office of Science,
Basic Energy Sciences (BES), under Grant No. DE-FG02-
04ER46105 (single crystal growth), and by the National
Science Foundation (NSF) under Grant No. DMR-1810310
(physical properties measurements).

APPENDIX: TEMPERATURE CORRECTION TO THE
HEAT CAPACITY FROM QUANTUM CRITICAL

SPIN FLUCTUATIONS

The contribution of the quantum critical spin fluctuations
to the free energy is [29,30]

δFsf = 3T
∞∑

m=−∞

∫
d2q

(2π )2
log[χ−1(q,�m)]. (A1)

Here χ−1(q,�m) = ν(E2
q − i|�m|/ωsf + �2

m/ω2
0 ), Eq =√

η + (q/Q0)2, ν is inverse proportional to the static spin
susceptibility at T = 0, parameter η controls the proximity
to the magnetic QCP, �m = 2πT m is the bosonic Matsubara
frequency, ωsf is an energy scale which describes the
interaction between the localized moments and conduction
electrons, ω0 is a typical energy scale of the magnetic
system [31,32], and the numerical prefactor takes into
account three fluctuating modes: Two transverse and one
longitudinal.

Since the spin-fluctuation propagator is a nonanalytic func-
tion of �m, in order to evaluate the free energy we will need to
keep the real part of the expression under the integrals only. In
the Matsubara summation (A1) we can single out the m = 0
term and reduce the remaining summation over m � 1:

δFsf = 3T
∫

d2q
(2π )2

log(νE2
q ) + 6T

∫
d2q

(2π )2
log

⎡
⎣ ∞∏

n=1

(
1 + ω2

0E2
q

�2
n

) ∞∏
m=1

(
ν�2

m

ω2
0

) ∞∏
l=1

⎛
⎝1 − i�l/ωsf

E2
q + �2

l

ω2
0

⎞
⎠

⎤
⎦. (A2)
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The first term in this expression represents a “zero-point-
motion” correction and, therefore, does not produce the
temperature dependent contribution to the heat capacity.

In the second term, there are three products under the
logarithm which we will discuss separately below. The first
product evaluates to

∞∏
m=1

(
1 + ω2

0E2
q

�2
m

)
= sinh(πz)

πz
, z = ω0Eq

2πT
. (A3)

To evaluate the second product we need to use a regularization
scheme to assign it a finite value. We use the zeta-function
regularization scheme [30] to find

∞∑
m=1

log

(
ν�2

m

ω2
0

)
= log

(
ω0√
νT

)
. (A4)

Finally, for the third product we clearly need to evaluate the
real part only. It obtains:

∞∏
l=1

√√√√1 + (�l/ωsf )2(
E2

q + �2
l

ω2
0

)2
= sinh(r+

q ) sinh(r−
q )

2 sinh2(πz)
, (A5)

where we introduced auxiliary variables

r±
q = ω2

0

2
√

2ωsfT

√√√√1 + 2ω2
sf

ω2
0

E2
q ±

√
1 + 4ω2

sf

ω2
0

E2
q . (A6)

Thus, the expression for the fluctuation correction to the free
energy is

δFsf = 6T
∫

d2q
(2π )2

log

[
sinh(r+

q ) sinh(r−
q )

sinh(ω0Eq/2T )

]
. (A7)

The fluctuation correction to the heat capacity is directly ob-
tained from (A7), δCsf/T = −∂2(δFsf )/∂T 2. We find

δCsf(T ) = 6
∫

d2q
(2π )2

[
(r+

q )2

sinh2(r+
q )

+ (r−
q )2

sinh2(r−
q )

− ω2
0E2

q

4T 2 sinh2(ω0Eq/2T )

]
. (A8)

Our numerical analysis of this expression shows that at low
temperatures, T 
 ω0 and ωsf ≈ ω0, δCsf(T ) ∝ T α with α ≈
0.45 at the QCP.
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