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Positive cross-correlated shot noise and quasibound states in an NSNSN geometry
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Solid-state superconducting heterostructures can provide a possible source of entangled electrons for the
purpose of quantum-information processing, and shot noise can indicate when this occurs. Shot noise cross-
correlations in a ballistic NSNSN (normal-superconductor-normal-superconductor-normal) is normally negative
for electron currents, but becomes positive for entangled electrons that result from the breakup of Cooper pairs.
A one-to-one correspondence is found between the energies of the quasibound states and regions of positivity
in the cross-correlated shot noise. The quasibound states of the NSNSN system are associated with poles of
the NSNSN scattering matrix. We find that regions of positive cross-correlated shot noise distributions, and
the associated emission of entangled electrons, exist over a wide range of system sizes and in the presence of
multiple quasibound states. We also find that, at the quasibound-state energies, the Andreev approximation is not
adequate to describe the key physical processes in the NSNSN device.
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I. INTRODUCTION

The potential for superconductors to serve as a source of
entangled electron pairs in solid-state devices has led to a
resurgence in interest in the study of superconducting het-
erostructures in recent years [1–5]. The key observation is
that the Cooper pairs underlying superconductivity naturally
form maximally entangled pairs of electrons, which if spa-
tially separated (say in separate leads of a superconducting
heterostructure) would enable these electrons to be used for
quantum-information processing tasks. Superconducting het-
erostructures designed with this purpose in mind are referred
to as Cooper pair splitters (CPS).

Cooper pair splitters and superconducting heterostructures
more generally have also been studied in the context of
superconducting spintronics devices [6–8], where they are
considered as potential sources of spin-polarized electronic
currents within some larger superconducting hybrid system.
This application is particularly relevant for the development of
spintronic-based quantum dot qubits, and was proposed early
on as a source of nonlocal electronic entanglement in these
devices [9]. Recent theoretical work has extended this line
of research to the spin-polarization of thermoelectric currents
within hybrid superconductor-ferromagnetic systems [10].

One of the key limitations to realizing superconduc-
tors as an entanglement source is the efficiency with
which Cooper pairs can be separated into spatially nonlo-
cal leads in a given superconducting heterostructure [11,12].
A substantial amount of theoretical work has been done
to characterize the nonlocal transport properties of NSN
(normal-superconductor-normal) geometries as they relate to
the design of CPS [2,3,13–15]. Also, a number of experimen-
tal groups have demonstrated CPS in a number of different
architectures, some with rather high efficiencies [4,16,17].
Most CPS research has been focused on standard BCS-type
superconductors, but some theory has also been worked out
for systems with anisotropic order parameters [1,18], and

for structures which incorporate quantum Hall edge chan-
nels [19].

The main scattering process responsible for the generation
of entanglement in CPS devices is crossed Andreev reflection
(CAR) [11,20–22]. Crossed Andreev reflection is a scattering
process in which an incident particle (hole) is transmitted
as a hole (particle) on the other side of the system. Much
of the existing research on CPS has focused on designing
architectures that enhance the prevalence of CAR. Proposals
include using double quantum dots (QD) [3,16,23], spin fil-
tering using ferromagnetic leads [22], anomolous scattering in
graphene [24–26] and energy filtering in semiconductors [2].
Experimentally, extensive progress has been made with QD
based devices [17,27]. Additionally, these proposals are not
necessarily mutually exclusive, and theoretical and experi-
mental progress has been made with CPS devices that use a
combination of double QD and either ferromagnetic leads or
external magnetic fields [28–32].

The generation of entanglement in CPS devices is known
to be related to the positivity of the cross-correlated shot
noise, as obtained from measurements of the nonlocal
current-current correlations between different leads [11].
In the sections below we adopt this perspective and in-
vestigate the cross-correlated shot noise for the NSNSN
(normal-superconductor-normal-superconductor-normal) ge-
ometry, shown in Fig. 1. We make use of a scattering theory
approach using the Bogoliubov-de Gennes equations [33].
Our methods are adapted from the techniques introduced by
Demers and Griffin, and Blonder, Tinkham and Klapwijk
(BTK) [33–35]. We obtain results for the scattering matrix of
the system without the Andreev approximation, and use the
scattering matrix to probe the relationship between long-lived
quasibound states in the system and positive regions of the
cross-correlated shot noise energy distribution.

Using the BTK approach we find that there is a one-to-one
correspondence between the energies of the quasibound states
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FIG. 1. NSNSN geometry studied in this paper. The left and right leads are much longer than the central SNS region and are connected to
thermal reservoirs with Fermi energy EF with an additional bias of vl applied to the left lead. More details on the system parameters used can
be found in Sec. IV and Table I.

and the regions of positivity in the cross-correlated shot noise
energy distribution. We also find that this connection is robust
and persists in the presence of multiple quasibound states and
for a wide range of system sizes. Moreover we analyze the
noise cross-correlations for the NSN geometry and find that,
in contrast to the NSNSN geometry, the total cross-correlated
shot noise distribution remains negative over the entire sub-
gap energy range of the system. The results for the NSNSN
geometry using the full scattering theory are compared to
those obtained using the Andreev approximation and we find
that there is a large deviation between the behavior of the
cross-correlations at the quasibound state energies. The basis
of the Andreev approximation is dropping higher order terms
in the ratio of the superconducting gap energy �0 and the
Fermi energy EF from the Bogoliubov-de Gennes equations.
Our use of the superconductor LSCO as our model material in
the numerics presented in this paper amplifies the differences
observed between the full scattering theory and the Andreev
approximation in the cross-correlated shot noise distributions
because it has a relatively large value of �0/EF .

The paper is organized as follows. In Sec. II, we derive
the scattering matrix for the NSNSN system. In Sec. III, we
write the expressions for the cross-correlated shot noise in
terms of the scattering matrix elements. In Sec. IV we list the
properties of LSCO, the high-Tc superconductor that is used in
our analysis, and discuss the rationale for using that material.
In Sec. V we present results for the cross-correlated shot noise
energy distributions, and in Sec. VI we describe the behavior
of the scattering amplitudes. In Sec. VII we focus on the
resonances in the scattering coefficients and the connection
between the quasibound states and the positive peaks in the
cross-correlated shot noise energy distribution. In Sec. VIII,
we break down the dominant contributions to the positive
cross-correlated shot noise at the resonances in our system.

TABLE I. System parameters for LSCO, taken from [38],
Table 7.4.

Tc (K) 38
ξ (aB ) 65
� (EH ) 0.000212
EF (EH ) 0.000935
εmax (EH ) 0.000356
T0 (K) 16.3
Ly 1.85ξ

Lx 1.2Ly

In Sec. IX, we compare the results for the NSNSN system to
those of the NSN geometry and we also look at the system size
dependence of the NSNSN geometry. In Sec. XI, we compare
the results of the full scattering theory used throughout this
paper to those obtained using the Andreev approximation.
Finally, in Sec. XII we will summarize our results.

II. SCATTERING THEORY

In this section we provide a brief overview of the scattering
theory techniques used to analyze the NSNSN system.

The wave functions in the left lead (NL) and right lead (NR)
consist of superpositions of incoming and outgoing particles
and holes, confined to the first propagating channel of the
waveguide, as shown diagrammatically in Fig. 2. In the su-
perconducting regions we use energy eigenfunctions from the
Bogoliubov-de Gennes equations (BdG) for those regions (see
Appendix A). We then can apply basic scattering theory in
order to derive the scattering matrix for NSNSN system.

We begin by writing down the wave functions in each of
the five regions:
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FIG. 2. Incoming and outgoing particles and holes in the left
and right leads along with the labels corresponding to Eq. (3). Solid
circles represent electrons and open circles represent holes.
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We have introduced the placeholder α, with α ∈ {L,C, R}
for the normal regions and α ∈ {L, R} for the superconductors.
The normalization factors for each of the terms in Eq. (1)
ensure that our system carries unit current [36]. The coher-
ence factors u0 and v0, and the wave vectors kα

p , kα
h , qα

p , and
qα

h are given in Appendix A. We are working in the high-
transparency limit, so we require that the wave functions in
Eq. (1) and their derivatives are continuous at the interfaces
between the normal regions and superconductors. The explicit
boundary conditions are

ψNL (0) = ψSL (0), ψSL (h1) = ψNC (h1),

ψNC (h2) = ψSR (h2), ψSR (h3) = ψNR (h3),

ψ̇NL (0) = ψ̇SL (0), ψ̇SL (h1) = ψ̇NC (h1),

ψ̇NC (h2) = ψ̇SR (h2), ψ̇SR (h3) = ψ̇NR (h3). (2)

These boundary conditions give us a system of 16 equa-
tions, which we can use to eliminate the coefficients for the
SL, NC , and SR regions. Once we have eliminated the three
central regions we can write the coefficients corresponding to
outgoing particles and holes in terms of the coefficients of in-
coming particles and holes. Doing so we obtain the scattering
matrix of the system,⎛

⎜⎜⎜⎜⎜⎝

Cp
NL

Dh
NL
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Bh
NR

⎞
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⎛
⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎠. (3)

The scattering matrix elements are all functions of the energy
of the particles and holes, and the phase difference between
the superconducting regions φ. The subscripts on the scat-
tering elements denote the outgoing and incoming excitation
types, respectively, and the superscripts denote the outgoing
and incoming leads, respectively.

A common approximation made when studying scattering
through superconducting heterostructures is the Andreev ap-
proximation [37]. By including the boundary conditions on
the derivatives of the wave functions, we are working outside

of the Andreev approximation. A more detailed discussion
of this point can be found in Sec. XI. The analytical expres-
sions for the full scattering coefficients, without the Andreev
approximation, are far too long to include in print, so we
will be focusing mainly on numerical results in the following
sections.

III. CROSS-CORRELATED SHOT NOISE

Given the field operator, ψ̂NL (z, t ) for the left lead (see
Appendix A), we can write the corresponding current operator
for the left lead using the relation

ĴL(z, t )= h̄ec

2im

(
ψ̂

†
NL

(z, t )
dψ̂NL (z, t )

dz
− dψ̂

†
NL

(z, t )

dz
ψ̂NL (z, t )

)
,

(4)

where ec is the electron charge and m is the effective mass
of electrons in the left lead. The cross-correlated shot noise
is the symmetrized correlation function for fluctuations about
the average current at different times and between the left and
right leads,

SLR(z, y; t, s) = 1
2

〈
(ĴL(z, t ) − 〈ĴL〉)(ĴR(y, s) − 〈ĴR〉)

+ (ĴR(y, s) − 〈ĴR〉)(ĴL(z, t ) − 〈ĴL〉)
〉
, (5)

where 〈·〉 is the thermal average. Due to its connection to
entanglement generation, the main quantity of interest here
is the zero-frequency limit of the Fourier transformed cross-
correlated shot noise [11], which we write as

SLR
tot ≡

∫
de dSLR(e) = SLR

pp + SLR
hh + SLR

ph . (6)

SLR
tot naturally decomposes into three components, SLR

pp , SLR
hh ,

and SLR
ph , which are respectively the contributions due to cor-

relations between particles in the left and right leads, holes in
the left and right leads, and between particles in the left lead
and holes in the right lead (and vice versa), respectively. The
expressions for SLR

pp , SLR
hh , and SLR

ph in terms of the scattering
matrix elements can be written as
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FIG. 3. Plot of the Fermi distribution, NL , with zero bias and
T0 = 16.3 K.

In the above expressions Nα
γ = 〈âα†

e,γ âα
e,γ 〉 = (1 +

eβ(e+sgn(γ )vα ) )−1, is the Fermi distribution for the thermal
reservoir of excitations of type γ connected to lead α, where
γ ∈ {p, h}. β is the standard inverse temperature parameter
β = 1

kBT , with kB being the Boltzmann constant and T the
temperature of the system. We define sgn(γ ) = +1 for
γ = p, sgn(γ ) = −1 for γ = h and Fα

γ = 1 − Nα
γ . Due to

the convention we have adopted of assigning holes positive
energy, at zero bias both electrons and holes have the same
thermal distributions, but are shifted in opposite directions in
the presence of an applied bias [18]. The quantities dSLR

α give
the energy distributions of these terms.

IV. SYSTEM PARAMETERS

For our model system we use parameters based on the
high-Tc superconductor LSCO. The system parameters for
LSCO are given in Table I. All parameters are given in atomic
units. With these choices energy is measured in Hartrees, EH ,
with 1EH ≈ 27.2 eV, length is measured in Bohr radii, aB ≈
0.53 Å, h̄ = 1 and electron mass m = 1. The temperature of
the system, T0, is 16.3 K and the maximum energy εmax from
Eq. (B1) is 0.000356EH . The Fermi distribution of the thermal
reservoirs at this temperature is shown in Fig. 3. The choice
of temperature is such that one propagating mode exists in the
device. We will generally bias the leftmost normal lead and
we will be setting vl = 0.1�0 for all of our numerical results.
Unless explicitly stated otherwise, the numerical results will
be for LS = 6ξ and LC

N = 2.75ξ , where ξ is the superconduct-
ing coherence length.

In this paper we restrict ourselves to the quasi-1D limit
and as such only consider the first propagating channel of the
waveguide [1,14]. The transverse dimensions of the system,
Lx and Ly, are set such that, for the given εmax and T0 we have
selected, all of the transport through the system is restricted
to just the first propagating channel. The system size is small
enough and temperature low enough that electron transport
in the quasi-one-dimensional wire is assumed to be ballistic.
We also assume that a phase difference of φ can be induced
between the superconducting segments, although this is not
essential for our main results.

FIG. 4. Energy distribution for the (a) cross-correlated shot noise
and (b) current with LS = 6ξ , LC

N = 2.75ξ and φ = 0. Lines have
been drawn on the current plot to highlight the overlap between the
current distribution and the positive region of the cross-correlated
shot noise.

V. CROSS-CORRELATED SHOT NOISE FOR NSNSN

Figure 4 shows plots of the shot noise distribution dSLR(e)
and average current dJ (e) as a function of energy for LS = 6ξ

and LC
N = 2.75ξ . We can see that there is a subgap energy

interval where the cross-correlated shot noise is positive. In
Fig. 4(b) we plot the energy distribution of the current. Verti-
cal lines have been drawn in to highlight the overlap between
these distributions in the region of positive cross-correlated
shot noise. We can see that a nontrivial fraction of the current
is indeed carried by electrons in this energy interval.

The size of the superconducting regions affects the behav-
ior of the cross-correlated shot noise. In Figs. 5(a) and 5(b)
we plot the cross-correlated noise energy distributions for
superconducting regions ranging in length from LS = 1ξ to
LS = 9ξ with LC

N fixed at 2.75ξ . For small values of LS

(1ξ�LS�4ξ ) [shown in Fig. 5(a)] we see no energy intervals
of positive cross-correlated shot noise. For larger values of LS ,
(4ξ�LS�9ξ ) shown in Fig. 5(b), we do see energy intervals
with positive cross-correlated shot noise. The maximum val-
ues of the positive peak decreases as we increase LS beyond
LS = 6ξ . At intermediate values of LS (4ξ�LS�6ξ ), we find
large positive peaks in the positive cross-correlated shot noise
with finite energy width. In Sec. IX we will evaluate the
relationship between the positive cross-correlated noise and
the size of LS and LC

N in more detail.
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FIG. 5. Differential cross-correlated shot noise for a number of different superconducting region sizes. In (a) LS = 1 − 4 and in (b) LS =
5 − 9, in units of the coherence length. For both (a) and (b) the size of the central normal region is 2.75ξ .

VI. SCATTERING AMPLITUDES FOR NSNSN

In Fig. 6 we give plots of |tLR
pp |, |tLR

hh | and |tLR
ph | for a few

different values of LS and φ. For Figs. 6(a)–6(c) LS = 6ξ

and LC
N = 2.75ξ . The phase differences between the two su-

perconducting regions, in Figs. 6(a)–6(c), φ, are 0, π
6 , and

−π
6 , respectively. In Fig. 6(d), LS = 8ξ , LC

N = 2.75ξ , and
φ = π

6 .
In Fig. 6(a), there is a pair of resonances in the transmission

amplitudes with peaks in tRL
pp , tRL

hh , and tRL
hp below the gap

energy. There is a small shift in the peaks of the particle-
particle and hole-hole resonances due to the small momentum
difference between particles and holes with the same energy.
There is also a resonance in tRL

hp . As we change the phase
difference φ, the offset in the positions of the tRL

pp and tRL
hh

resonances increases, with the positions of the peaks for tRL
pp

and tRL
hh dependent on the sign of the phase difference. At

the same time, as we increase φ the magnitude of the second
resonance in tRL

pp and tRL
hh markedly decreases.

FIG. 6. Plots of the magnitudes of the particle-particle, hole-hole, and particle-hole transmission coefficients for a variety of system
parameters. (a) LS = 6ξ and φ = 0, (b) LS = 6ξ and φ = π

6 , (c) LS = 6ξ and φ = − π

6 , (d) LS = 8ξ and φ = π

6 .
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FIG. 7. (a) Plot of the |t LR
pp | in the complex energy plane for LS = 6ξ and LN

C = 2.75ξ . The poles correspond to the quasibound state
resonances in Fig. 6(a). (b) Corresponding plot of dSLR(e).

In Fig. 6(d) we see that increasing the size of the super-
conducting regions results in sharper resonances. Whereas
it appears in Figs. 6(a)–6(c) that tRL

ph has a centrally located
resonance in-between the tRL

pp and tRL
hh resonances, tRL

ph actually
has a pair of resonances at the same energies as the tRL

pp and
tRL
hh resonances. A key feature we see in the scattering plots is

that for LS = 6ξ at small values of φ there is a small energy
interval in-between the resonances in tRL

pp and tRL
hh , where tRL

ph
becomes the dominant transmission term. This energy interval
corresponds nearly exactly to the energy interval in which we
observed a positive peak for dSLR(e) in Fig. 4(a).

VII. QUASIBOUND STATES AND POLE STRUCTURE

We saw in Fig. 6 clear evidence for the existence of res-
onances in the plots of tRL

pp , tRL
hh , and tRL

hp . Below the gap,
excitations in the central normal region are confined by

repeated Andreev reflections at each of the interfaces. In the
NSNSN geometry, this produces quasibound states, as the
finite size of the superconducting regions allow particles and
holes to tunnel out at a nonzero rate.

In Fig. 7(a) we plot |tRL
pp | for complex energy values and

for the same parameters used in Fig. 6(a). The contour plot in
Fig. 7 shows that the resonances in tRL

pp in Fig. 6(a) is actually
due to a pair of closely spaced poles in the complex energy
plane.

In Fig. 7(b) we have the corresponding plot of dSLR(e).
Away from the quasibound states dSLR(e) is entirely neg-
ative. At the quasibound state energy, however, there is a
large positive peak in the value of dSLR(e). This connection
between the positivity of dSLR(e) and the positions of the
quasibound states is fairly general as well. In Fig. 8 we plot
the complex poles and the cross-correlated noise for a longer
central normal region, LS = 6ξ and LC

N = 5ξ . Increasing LC
N

FIG. 8. (a) Magnitude of |t LR
pp | in the complex energy plane for LS = 6ξ and LN

C = 5ξ . (b) Corresponding plot of dSLR(e).
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FIG. 9. (a) Plot of dSLR(e) for LS = 6ξ and LN
C = 13ξ . Note the existence of multiple positive peaks in the energy distribution. (b) Corre-

sponding plots of |t LR
pp |, |tRL

hh |, and |tRL
hp |. There is a one-to-one correspondence between the resonances and the positive noise correlations.

has the effect of decreasing the real and imaginary parts of
the quasibound state energies. In Fig. 8(b) the energy interval
with positive cross-correlated shot noise has shifted to the left
in accordance with the movement of the quasibound states.

For sufficiently large values of LC
N we can start to have ad-

ditional quasibound states emerge, which results in additional
scattering resonances and additional positive peaks in the plots
of dSLR(e). This can be seen in Fig. 9, where we plot dSLR(e)
and the transmission coefficients for LS = 6ξ and LC

N = 13ξ .
In addition to modifying the quasibound state energies by

changing LC
N , we can also change φ. In Fig. 10 we plot the

poles of tLR
pp with (a) φ = π

12 and (b) φ = − π
12 . Increasing the

phase difference in the positive direction shifts the real energy
of the pole on the left and shrinks the size of the pole on the
right. With a negative phase difference it is now the pole on
the left that shifts its real energy and shrinks. However, while
it is possible to shift the positions of the quasibound states by
adjusting the value of φ, this can have the effect of reducing
the positivity of the noise correlations. This is seen in Fig. 11,
where dSLR(e) is plotted as a function of both the energy, e,
and the phase difference φ. Positive values of dSLR(e) are
localized about a small range of φ values near zero. This

suggests that for the goal of maximizing the positivity of
dSLR(e) it is best to set φ = 0.

VIII. ORIGIN OF POSITIVE NOISE
CROSS-CORRELATION

In the previous section, we observed a connection between
the location of the quasibound state poles and the energy
intervals of positive cross-correlated shot noise. In this sec-
tion, we show the origin of the positive contributions to the
cross-correlated shot noise at the resonance energies.

In Fig. 12, we plot the three terms, dSLR
pp , dSLR

hh , and dSLR
ph

separately. Away from the resonances the only term which
goes positive is dSLR

ph . However, at the resonance we see that
dSLR

pp , dSLR
hh , and dSLR

ph switch behaviors and now there is
an overall negative contribution due to dSLR

ph and an overall
positive contribution due to dSLR

pp and dSLR
hh . Since dSLR

pp and
dSLR

hh have similar qualitative behavior we will focus on just
the positive contributions arising from dSLR

pp .
The contribution to the shot noise from dSLR

pp is given in
Eq. (7). It can be split into three terms, each with a different
dependence on the thermal reservoirs. They are

dSLR
pp (1) = mLmR

π2h̄4 F L
p NL

p

((− |rLL
hp |2 + |rLL

pp |2 − 1
) (− |tRL

hp |2 + |tRL
pp |2)), (10)

dSLR
pp (2) =mLmR

π2h̄4 F R
p NR

p

((− |rRR
hp |2 + |rRR

pp |2 − 1
)(− |tLR

hp |2 + |tLR
pp |2)), (11)

dSLR
pp (3) =mLmR

π2h̄4

(
F L

p NR
p + F R

p NL
p

)(
Re
[
rLL

hp rRR
hp tLR∗

hp tRL∗
hp

]− Re
[
rLL∗

hp rRR∗
pp tRL

pp tLR
hp

]+ Re
[
rLL

pp rRR
pp tLR∗

pp tRL∗
pp

]− Re
[
rLL∗

pp rRR∗
hp tRL

hp tLR
pp

])
.

(12)

In Figs. 13(a)–13(c) we plot each of these three terms
separately.

We now focus on dSLR
pp (1). Expanded out fully dSLR

pp (1) has
six separate components, three of which give rise to positive
correlations at the resonance. These three terms, are (neglect-
ing the Fermi distribution prefactors) �1 = |tRL

pp |2|rLL
pp |2, �2 =

|tRL
hp |2 and �3 = |tRL

hp |2|rLL
hp |2. In Fig. 13(d)–13(f) we give their

respective plots. The largest of the three contributions is due to

the �2 term, which corresponds to the CAR process [11]. The
remaining two terms are characterized using a scheme based
on [14] and [39]. Each of the higher-order products of scatter-
ing coefficients consists of two reflection coefficients, either
normal reflection (NR) (rpp or rhh) or Andreev reflection (AR)
(rph and rhp), and two transmission coefficients, either elastic
cotunneling (EC) (tpp or thh) or crossed Andreev reflection
(CAR) (tph or thp). Using this scheme �1 is called an EC-NR

224518-7



COREY OSTROVE AND LINDA REICHL PHYSICAL REVIEW B 103, 224518 (2021)

FIG. 10. Poles of |t LR
pp | for (a) φ = π

12 and (b) φ = − π

12 , with the corresponding plots of dSLR(e) given in (c) and (d) respectively. As we
change the phase difference the second resonance we saw in Fig. 7 becomes smaller and eventually disappears entirely.

term, as it consists of two normal transmission and two normal
reflection coefficients, and �3 is called a CAR-AR term, as it

FIG. 11. Phase dependence of the cross-correlated shot noise.
We can see that there region of positive shot noise is localized around
the value φ = 0, and is maximized at that point in general.

consists of two Andreev reflection and two crossed Andreev
reflection coefficents.

In contrast to [14,39], which found that at T = 0 EC-NR
and CAR-AR terms always results in negative correlations,

FIG. 12. Contributions to the differential cross-correlated shot
noise dSLR

pp , dSLR
hh , and dSLR

ph (plotted separately), for LS = 6ξ and
LC

N = 2.75ξ . Away from resonance dSLR
pp and dSLR

hh are negative and
dSLR

ph is positive. At resonance dSLR
pp and dSLR

hh are positive and dSLR
ph

is negative.
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FIG. 13. Plots of components of dSLR
pp for LS = 6ξ and LC

N = 2.75ξ . (a) dSLR
pp (1). (b) dSLR

pp (2). (c) dSLR
pp (3). All three components are

negative away from the resonance but contribute positively at the resonance energies. Additionally, plots of the three components of SLR
pp ,

(d) �1 = |tRL
pp |2|rLL

pp |2, (e) �2 = |tRL
hp |2, (f) �3 = |tRL

hp |2|rLL
hp |2.

at finite temperatures in the NSNSN system these terms can
indeed give positive contributions, as seen in Figs. 13(d)
and 13(f). The EC-NR term arises microscopically due to
correlations induced by the elastic cotunneling scattering pro-
cesses [14]. The CAR-AR term arises microscopically from a
process referred to as synchronized Andreev reflection (AR-
AR), a higher-order process in which a pair of Andreev
reflections (from particle to hole or vice versa) at the leftmost
and rightmost interfaces occur in a coherent fashion [40].

IX. SYSTEM SIZE DEPENDENCE AND COMPARISON TO
NSN GEOMETRY

It is important to compare results for the NSNSN system
with those of the simpler NSN geometry. In particular, we

are interested in comparing results in the case where the
size of the central superconducting region S in the NSN ge-
ometry is the same size as the central SNS structure in the
NSNSN geometry. In Fig. 14(a) we plot the cross-correlated
noise distributions for an NSNSN system with LS = 6ξ and
LC

N = 2.75ξ and an NSN system with LS = 14.75ξ . Unlike
the NSNSN system, for the NSN system we no longer see any
energy intervals in which dSLR goes positive. This is not just
the case for this choice of system size either. In Fig. 14(b) we
plot dSLR for a range of superconducting region sizes for the
NSN system ranging from LNSN

S = 1.75ξ to ŁNSN
S = 14.75ξ ,

and for all of these system sizes we see that the total cross-
correlated noise distribution remains negative over the full
energy range of the system.

224518-9



COREY OSTROVE AND LINDA REICHL PHYSICAL REVIEW B 103, 224518 (2021)

FIG. 14. (a) Comparison dSLR(e) for the NSNSN and NSN geometries. For the NSNSN system LS = 6ξ and LC
N = 2.75ξ and for the NSN

system LNSN
S = 14.75ξ . (b) Plot of dSLR for the NSN system with LNSN

S = 1.75ξ , 6ξ , 10ξ and 14.75ξ . The total cross-correlated noise energy
distribution remains negative over the entire energy interval.

We will now readdress the relationship between the system
size and the positivity of dSLR discussed in Sec. V (specifi-
cally in Fig. 5). To do so we will define the quantity

SLR
+ =

∫
de clip+(dSLR(e)), (13)

where

clip+(x) =
{

0 x < 0
x x � 0.

(14)

This expression corresponds to the total area of the positive
regions of dSLR and gives us a simple measure with which
to compare the positivity of the cross-correlated noise for
different values of LS and LC

N . In Fig. 15 we have a contour plot
of SLR

+ as a function LS and LC
N . One feature we immediately

recover, which we saw indications of in Fig. 5 is the existence
of a “sweet spot” for the value of LS which maximizes SLR

+ .
This behavior of the NSNSN system, namely, zero positivity

FIG. 15. Area of the region of positive noise correlations SLR
+ , as

a function of the system size, with values of LS along the y axis and
values of LC

N along the x axis.

in the noise cross-correlations for both very small and large
values of LS , appears to be a general feature of the NSNSN
geometry. Also, Fig. 15 shows a periodic-like relationship
between SLR

+ and LC
N , in which a series of peaks in SLR

+ is
separated by troughs where SLR

+ is nearly zero. As we increase
LC

N the maximum value of SLR
+ increases accordingly. An in-

teresting question for future analysis is whether the maximum
values of SLR

+ continue to grow monotonically as we increase
LC

N further.

X. TEMPERATURE DEPENDENCE

In Sec. IV we explained that the choice of temperature
T0 = 16.3 K was based on ensuring that the transport was
effectively restricted to the first transverse mode of the sys-
tem (so as to simplify our calculations) balanced with the
requirement that there was a nontrivial population of exci-
tations throughout the full energy range comprising the first
transverse mode of the system. The balancing of these two
requirements can be seen in the Fermi distribution of the
leftmost lead plotted in Fig. 3. It is interesting to consider the
cross-correlated noise of the system as we lower the tempera-
ture of the system.

In Fig. 16(a) we show a plot of the cross-correlated shot
noise as a function of both energy and system temperature,
T0, for temperatures ranging from 0 K to 16.3 K, and for
LC

N = 2.75ξ , LS = 6ξ , and vl = .1�0. From Fig. 16(a) we
can see that the behavior of the cross-correlated noise energy
distribution as a function of temperature breaks into roughly
three regimes. At close to T0 = 16.3 K the distribution is
heavily dependent on the quasibound state located roughly
halfway through the energy range of the system. At intermedi-
ate temperatures the population of excitations at energies near
the quasibound state is suppressed and, while we still see a
positive peak at the quasibound state as seen in Fig. 16(b)
for T0 = 8.15 K, the magnitude of that peak is nearly twenty
times smaller than what was seen in Fig. 7(b).

Finally, at very low temperatures we see a new behavior in
which we have a positive peak in the shot noise distribution at
energies just below the bias energy vl = 0.1�0. This behavior
is demonstrated in Fig. 16(c), where we have set T0 = 1 K.
This peak is not associated with any quasibound states of the
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FIG. 16. (a) Plot of the cross-correlated shot noise distribution as a function of the system temperature, T0, and energy e with LC
N = 2.75ξ

and LS = 6ξ . (b) Cross-correlated shot noise distribution for T0 = 8.15 K. (c) Cross-correlated shot noise distribution for T0 = 1 K plotted
alongside the subterm �4 = −(F L

h NR
p + F R

p NL
h )Re[rLL∗

ph rRR∗
ph tLR

pp tRL
hh ], which is the primary positive contribution.

system and can be traced back to a specific subcomponent
of dSLR

ph , �4 = −(F L
h NR

p + F R
p NL

h )Re[rLL∗
ph rRR∗

ph tLR
pp tRL

hh ], which
is plotted alongside the total cross-correlated noise distribu-
tion in Fig. 16(c). Using the classification scheme discussed
in Sec. VIII the term −(F L

h NR
p + F R

p NL
h )Re[rLL∗

ph rRR∗
ph tLR

pp tRL
hh ]

corresponds to an EC-AR term. It was shown in Ref. [14,39]
that EC-AR terms in the cross-correlated noise correspond
microscopically to a process called synchronized Andreev and
inverse Andreev reflection (AR-AR), a higher-order process
in which an Andreev reflection (from particle to hole) at one
interface and an inverse Andreev reflection (from hole to par-
ticle) at the other interface occur in a coherent fashion. Due to
the simultaneous exchange of two fermions, the correlations
resulting from this process can be boson-like, and as such
positive.

XI. THE ANDREEV APPROXIMATION

We have so far presented results of the full scattering
theory and thus far have not looked at the effect of applying
the Andreev approximation [37]. The Andreev approximation
can be used if the ratio between the gap energy �0 and the
Fermi energy EF , �0

EF
, is sufficiently small. Then to good

approximation we can drop higher order terms in the ratio
�0
EF

from the BdG equations. Doing so reduces the pair of
coupled second order differential equations in Eq. (A1) to a
pair of coupled first-order differential equations known as the
Andreev equations.

Under the Andreev approximation the quasiparticle dy-
namics of the system are governed by a pair of coupled first
order differential equations, and the boundary conditions con-
necting the different regions reduces to just the continuity of
the wave functions at the boundary. In the high-transparency
limit we consider here, this gives rLL

pp = rLL
hh = rRR

pp = rRR
hh = 0

as well as tLR
hp = tLR

ph = tRL
hp = tRL

hp = 0 in the scattering matrix
(with the remaining scattering elements modified accord-
ingly). Note that this approach, starting from the Andreev
equations and then solving for the scattering matrix using just
the continuity of the wave functions at the interface, appears
to be different than the approach described in the original
BTK paper [35], which starts from the full scattering matrix
of the system and takes the limit qα

p = qα
h = kα

p = kα
h = kF ,

where α ∈ {L,C, R}. We have found, by direct calculation,
that using the BTK approach gives results exactly identical
to those found using the Andreev equations directly. Perhaps
the key advantage of applying the Andreev approximation is
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FIG. 17. Comparison between the full scattering theory and results using the Andreev approximation. In (a) the differential cross-correlated
shot noise and in (b) the magnitude of the current. While the results agree well away from the resonance, at the resonance we see that the
Andreev approximation breaks down badly for the noise.

that it vastly simplifies the resulting expressions for the scat-
tering coefficients and noise. With the Andreev approximation
applied it is possible to write down the explicit expressions
for the scattering elements, and they are given in Appendix C
along with the simplified cross-correlated shot noise.

In Fig. 17 we compare the cross-correlated shot noise
and current distributions from the full scattering theory and
using the Andreev approximation. Away from the resonance
the results using the Andreev approximation are nearly in-
distinguishable qualitatively from the full scattering theory.
At energies close to the resonance, however, we see from
Fig. 17(a) that the behavior of dSLR(e) strongly diverges.
Whereas there is a clear positive peak in the noise distribution
in the full scattering theory results, using the Andreev approx-
imation the noise distribution remains purely negative and
instead has a large negative dip at the resonance. The choice
to use LSCO’s parameters in our model system was motivated
partly by it having one of the largest values of �0

EF
among

commonly studied superconductors, so it is an ideal substance
for analyzing the Andreev approximation. The key issue here
is the fact that the Andreev approximation treats terms such
as |tLR

ph | and |rLL
pp | as negligible, while in reality these terms

are nontrivial for the NSNSN system and are components of
the main positive contributions to the cross-correlated noise,
as seen in Fig. 13.

There are also some qualitative differences to be found in
the results for the quasibound states of the system. In Fig. 18
we plot the poles of |tLR

pp | using the Andreev approximation.
While the energy of this pole is comparable to what was found
using the full scattering scattering theory in Fig. 7(a), we now
find only a single pole as opposed to the pair of poles.

XII. CONCLUSIONS

In previous sections, we studied the scattering properties
and the current and cross-correlated shot noise distributions of
an NSNSN system. We have obtained analytical expressions
for the scattering matrix of the system without the Andreev
approximation. We then used the scattering matrix elements
to calculate the current and cross-correlated shot noise energy
distributions and have used numerics to plot these quantities

for a variety of system parameters. We find a one-to-one
correspondence between the energies of quasibound states in
the system and regions of positive correlations in the cross-
correlated shot noise distributions. This connection between
the positions of the quasibound states and the positive noise
correlations is robust and is shown to be the case even as we
introduce multiple quasibound states by increasing our system
size. Moreover, we find that while the Andreev approximation
gives strong qualitative agreement for the current and cross-
correlated shot noise at energies away from the quasibound
states, it breaks down notably at the quasibound state energies.
We also find differences between the results of the full scat-
tering theory and the Andreev approximation when looking at
the poles of the scattering matrix in the complex energy plane.
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FIG. 18. Quasibound state pole using the Andreev approxima-
tion. While at approximately the same energy, we do not see the
double poles we did in Figs. 7 and 8.
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APPENDIX A: BOGOLIUBOV-DE GENNES EQUATIONS AND SCATTERING THEORY

We use the Bogoliubov-de Gennes formalism [33] for superconductivity to derive the scattering matrix for the NSNSN
system. Within the superconductor, the energy eigenstates in real-space are given by solutions to the Bogoliubov-de Gennes
equations, (

− h̄2∇2

2m − EF �(r)

�∗(r) h̄2∇2

2m + EF

)(
u(r)

v(r)

)
= e

(
u(r)

v(r)

)
, (A1)

where EF is the Fermi energy, �(r) is the spatially varying gap function, e is the quasiparticle eigenenergy, m is the effective
electron mass, and u(r) and v(r) are the coherence factors and satisfy the condition

∫
dr(|u(r)|2 + |v(r)|2) = 1. With reference

to the points labeled in Fig. 1, the gap function is given by

�(r) =

⎧⎪⎨
⎪⎩

0 z < 0, h1 < z < h2, h3 < z

�0 0 � z � h1

�0eiφ h2 � z � h3.

(A2)

The coherence factors u0 and v0, and the wave vectors kp and kh [see Eq. (1)] are given by

u0 =

√√√√√1

2

⎛
⎝1 +

√
e2 − �2

0

e

⎞
⎠ v0 = eiϕ

√√√√√1

2

⎛
⎝1 −

√
e2 − �2

0

e

⎞
⎠ kp = kS

F

√√√√√1 +
√√√√e2 − �2

0(
ES

F

)2 kh = kS
F

√√√√√1 −
√√√√e2 − �2

0(
ES

F

)2 .

(A3)

In the normal regions where the gap function is zero the wave vectors qp and qh are now

qp = kF

√
1 + e

EN
F

and qh = kF

√
1 − e

EN
F

. (A4)

Note that high-Tc materials often have anisotropic order parameters, for example the cuprate LSCO we used as a model system
has a d-wave order parameter of the form �(θ ) = �0 cos (2(θ − α)), where θ is the direction of travel through the crystal with
respect to the orientation of the lattice α [38]. We make the standard approximation that the gap function can be modeled using a
step function. Generally speaking the gap function of a superconducting heterostructure needs to be evaluated self-consistently
and the validity of this step function approximation is addressed in detail in [41] and [42].

Previous theoretical work has been done on the effect treating the gap function self-consistently on the predicted behavior
of superconducting heterostructures. Some of the earliest work is by McMillan, who used Greens functions methods to
calculate the first-order corrections to the step-function approximation [43]. In [44], van Son, van Kempen, and Wyder used
a qualitative model for the self-consistent gap function and found a dampening of geometrical oscillations in the transmission
through an NINS tunnel junction. Martin and Lambert self-consistently calculated the gap function for the NSN structure and
calculated corrections to the differential conductance of the system [45], finding the most significant corrections at bias voltages
comparable to and larger than the maximum gap energy �0. Comparable findings to those of [45] were by Sánchez-Cañizares
and Sols [46–48].

APPENDIX B: ELECTRON FIELD OPERATOR

In this Appendix we give the field operator for excitations in a single transverse mode coming initially from the thermal
reservoir attached to the left lead [18],

ψ̂NL (z, t ) =
(

ψ̂
p
NL

ψ̂h
NL

)
, (B1)

where

ψ̂
p
NL

=
√

1

2π

mL

h̄2 e−iEF t/h̄
∫ εmax

0
de

[
1√
qL

p

e−iet/h̄
(

âL
e,peiqL

pz + rLL
pp âL

e,pe−iqL
pz + tLR

pp âR
e,pe−iqL

pz + rLL
ph âL

e,he−iqL
pz + tLR

ph âR
e,he−iqL

pz
)]

,

(B2)

ψ̂h
NL

=
√

1

2π

mL

h̄2 e−iEF t/h̄
∫ εmax

0
de

[
1√
qL

h

e+iet/h̄

(
âL

e,he−iqL
h z + rLL

hp âL
e,peiqL

h z + tLR
hp âR

e,peiqL
h z + rLL

hh âL
e,heiqL

h z + tLR
hh âR

e,heiqL
h z

)]
.

(B3)
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Here, εmax = Etr

2 is the maximum energy of the particular transverse mode we are restricted to. The annihilation operators,
âα

e,β , annihilate an excitation of type β ∈ {p, h} in the αth normal lead (α ∈ {L, R}) with energy e, with the same convention used
for the creation operators. For holes our convention for the energy label denotes how far below the Fermi energy the excitation
is, and thus is a positive value. In the field operators we have explicitly included all of the different scattering channels that give
rise to excitations moving in the −z direction.

APPENDIX C: EXPRESSIONS FOR SCATTERING COEFFICIENTS AND NOISE USING THE ANDREEV APPROXIMATION

In Eqs. (C1) and (C2) below we give the expressions for tRL
pp and tRL

hh , respectively, using the Andreev approximation:

tRL
pp = − (u − v)2(u + v)2ei((h2+h4 )(kh+kp)+h3(qh+qp)−h4qp)

Denpp
, (C1)

tRL
hh = − (u − v)2(u + v)2ei(h2(qh+qp)+h3(kh+kp)+h4qh+φ)

Denhh
, (C2)

Denpp = u2v2(ei(h2kh ) − ei(h2kp) )(ei(h3kp+h4kh ) − ei(h3kh+h4kp) )ei(h2qh+h3qp+φ)

− ei(h2qp+h3qh )(u2ei(h2kh ) − v2ei(h2kp) )(u2ei(h3kp+h4kh ) − v2ei(h3kh+h4kp) ), (C3)

Denhh = u2v2(ei(h2kh ) − ei(h2kp) )(ei(h3kp+h4kh ) − ei(h3kh+h4kp) )ei(h2qh+h3qp)

− ei(h2qp+h3qh+φ)(u2ei(h2kh ) − v2ei(h2kp) )(u2ei(h3kp+h4kh ) − v2ei(h3kh+h4kp) ). (C4)

The expressions for the different contributions to the cross-correlated shot noise also simplify under the Andreev approxima-
tion due to the setting of rLL

pp = rLL
hh = rRR

pp = rRR
hh = 0 and tLR

hp = tLR
ph = tRL

hp = tRL
hp = 0:

SLR
pp = mLmR

π2h̄4

∫
de
[
F L

p NL
P

(− ∣∣rLL
hp

∣∣2 − 1
) ∣∣tRL

pp

∣∣2 + F R
p NR + p

(− ∣∣rRR
hp

∣∣2 − 1
)∣∣tLR

pp

∣∣2], (C5)

SLR
hh =mLmR

π2h̄4

∫
de
[
F L

h NL
h

(− ∣∣rLL
ph

∣∣2 − 1
)∣∣tRL

hh

∣∣2 + F R
h NR

h

(− ∣∣rRR
ph

∣∣2 − 1
)(∣∣tLR

hh

∣∣2)], (C6)

SLR
ph = mLmR

π2h̄4

∫
de
[− (

F LNR + F RNL
)(

Re
[
rLL∗

ph rRR∗
hp tRL

hh tLR
pp

]+ Re
[
rLL∗

hp rRR∗
ph tRL

pp tLR
hh

])]
. (C7)
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