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Microscopic derivation of superconductor-insulator boundary conditions for Ginzburg-Landau
theory revisited: Enhanced superconductivity at boundaries with and without magnetic field
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Using the standard Bardeen-Cooper-Schrieffer (BCS) theory, we revise microscopic derivation of the
superconductor-insulator boundary conditions for the Ginzburg-Landau (GL) model. We obtain a negative con-
tribution to free energy in the form of surface integral. Boundary conditions for the conventional superconductor
have the formn - Vi = consty. These are shown to follow from considering the order parameter reflected in the
boundary. The boundary conditions are also derived for more general GL models with higher-order derivatives
and pair-density-wave states. It shows that the boundary states with higher critical temperature and the boundary
gap enhancement, found recently in BCS theory, are also present in microscopically derived GL theory. In the
case of an applied external field, we show that the third critical magnetic-field value H,; is higher than what
follows from the de Gennes boundary conditions and is also significant in type-I regime.
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I. INTRODUCTION

Superconductivity in the Ginzburg-Landau (GL) model [1]
is described by a complex-valued field v (r), which is called
an order parameter or gap. In the bulk of the sample, v is
found as a minimum of the free-energy functional Fyy[¥].
The form of this functional was microscopically derived first
by Gor’kov [2]. To solve for ¥ near a boundary of super-
conductor one has to take into account the influence of the
material outside the sample. This is done by a microscopi-
cally derived boundary condition for ¢ or, equivalently, by
an additional surface term Fy,¢[¢/] in the free-energy func-
tional. Namely, dropping the vector potential (it is restored in
Sec. VII), the free energy F of a superconductor placed in €2
is given by

F = Fy + Fut,

Foui =/dl'[KlVl/f|2+Ot|1/f|2+/3|¢I4], 6]
Q

Fout = yf dry|y|*.
I

The order parameter is found as a minimum of F. Hence
the boundary condition at 92 is

14
n-Vyy = ——v, 2
v ad @
where n is unit vector pointing outside of the sample.
We begin by reviewing how the value of y changes the gap
behavior near the boundary in different systems. A calculation

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

2469-9950/2021/103(22)/224516(11)

224516-1

by de Gennes [3,4] gave y > 0 at a boundary between a
superconductor and a normal metal. Hence superconductivity
is suppressed near such a boundary. One also defines the
extension length A = K/y > 0, which controls the range of
induced superconducting correlation in the metal. On the other
hand when y < 0 superconductivity is enhanced. Such a sit-
uation is realized in several cases. Namely, for a contact with
a superconductor with a higher critical temperature [5], for
a local increase of electron-phonon coupling constants near
the surface [6] and for superconductivity on twinning planes
[7,8]. A phenomenological model with y < 0 was analyzed in
a number of works, see, e.g., Refs. [5,7,9—-14]. Boundary con-
ditions for the interface between superconductor and insulator
were studied microscopically in Refs. [3,4,15,16], yielding the
conclusion that it is a good approximation to set y = 0. We
will call the corresponding boundary conditions the de Gennes
boundary conditions.

However, the situation for the superconductor-insulator
interface is not trivial. Namely, it was recently shown mi-
croscopically that boundaries of superconductors can have (i)
higher critical temperature and (ii) the gap can be enhanced
at the scale of the bulk coherence length. We call this en-
hancement of superconductivity' the boundary state. Tt was
found in one-, two-, and three-dimensional superconductors
in the tight-binding BCS model and for the one-dimensional
continuous BCS model [19]. An earlier study of the stan-
dard three-dimensional continuous BCS model concluded

'Note that, near a superconductor-insulator boundary, the gap os-
cillates with period ~1/ky, where ky is the Fermi momentum. Some
works term the first peak of these Friedel oscillations “enhancement”
[17,18], even in the case where the averaged gap is not enhanced,
which corresponds to the situation where de Gennes boundary con-
ditions apply in a GL theory. Here we mean by enhancement an
increase in the gap averaged over a length scale that is much larger
than 1/kg.
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that the boundary state is absent: the averaged gap near the
boundaries is neither suppressed nor enhanced [17] or weakly
suppressed [18]. Coulomb repulsion-induced boundary states
were reported to form in certain cases in a three-dimensional
continuous model where the interaction was attractive for
small energies and repulsive for higher energies [17]. Super-
conductivity enhancement in the form of pair-density-wave
(PDW) boundary states was found in spin-imbalanced super-
conductors [20,21] as well.

The situation is also controversial experimentally. Evi-
dence for a substantially enhanced superconductivity near
the boundary was reported in some elemental and high-
temperature superconductors, see, e.g., Refs. [5,22-30]. The
enhanced surface superconductivity was also mentioned in
the context of enhancement of critical temperature observed
in granular elemental superconductors [31-33]. The effect
was interpreted as the surface being described by a differ-
ent Hamiltonian based on a conjecture of different chemical
compositions, which may indeed be the case, especially in
complex compounds or with enhanced phonon interaction
[6,34]. However, higher critical temperature of the surface was
reported also for clean elemental superconductors [28,29].
Recently the claim of direct evidence for surface supercon-
ductivity was reported using the newly developed direct probe
[30]. Also, results in Ref. [35] hint for possible interpretation
in terms of surface critical temperature, which indeed should,
in general, depend on the orientation of the boundary relative
to the crystal axes.

The results from microscopic calculations and experi-
ments show that the superconductor-insulator interface is
nontrivial. This is important for various applications. For ex-
ample, boundaries play a big role in quantum devices such
as superconductor-based qubits and single-photon detectors,
see, e.g., Refs. [36,37]. Moreover, the GL model remains
the only nonlinear model amenable to the numerical solution
at a substantially large length scale, required for modeling
such devices. The latter provides additional motivation for this
work to revise the derivation of boundary conditions in the
GL model. Additionally, we resolve the ambiguity in bound-
ary conditions when terms of higher-order in derivatives are
added, see the discussion in Ref. [21].

This paper is organized in the following way: In Sec. II
we set up a microscopic BCS model, which is used to derive
the GL model. In Sec. III we derive that boundary conditions
can be found from the mirror reflecting the order parameter
in the boundary. The surface term is neglected. In Sec. IV we
microscopically obtain surface term Fy,s for several models.
The result is used in subsequent sections. In Sec. V we solve
for a phase diagram that includes boundary states in the GL
model for the spin imbalanced system. In Sec. VI we obtain
the difference of bulk and boundary critical temperatures in
the GL model Eq. (1). In Sec. VII we introduce the mag-
netic field and give a microscopic assessment of how y < 0
enhances the third critical magnetic field H, 3.

II. THE MICROSCOPIC MODEL

Consider continuous-space fermionic theory with the BCS
type local attractive interaction given by strength V > 0. We
regularize the interaction by the Debye frequency wp such that

only electrons with Matsubara frequency <wp interact. The
path integral formulation of this model is given by the action
S and the partition function Z (see Chapter 6.4 in Ref. [38]):

% +00 L
S:/ d‘l,'/ dr Z ai(ar + &5 )ay —Va%alalm ,
0 —00

o=t

Z = /D[aT,a]e’S, 3)

where a, (7, 1), ai(r, r) are Grassmann fields that corre-
spond to fermionic creation and annihilation operators and
depend on imaginary time t, d-dimensional space coordinates
r, and spin o. Next, &, = E — u,, where u, is the chemical
potential, and 7 is the temperature. The single-electron energy
is E = E(@iV) with E(0) = 0, which is E(k) = % for free
electrons. It is assumed that £ depends only on the modulus
of k so that E£(k) = E(|]k|). We consider a superconductor
positioned in the €2 domain and an ideal insulator positioned
everywhere else. To model the insulator we assume that p,, is
finite in 2 and u, — —o0 elsewhere.

We perform a Hubbard-Stratonovich transformation in the
Cooper channel by introducing an auxiliary bosonic field
A(t,r):

. t -
erdrdra'TaiaiaT _ /D[AT A]e—fdrdr[%-‘rA*waT-FAa’Tal]'

“
By introducing Nambu spinors A = (a'IT',a 1) and

a . .. .
A= (a'; ), we rewrite the partition function as
|

7 /D[AT,A]D[AT, A]effdrfdr[#JrAT(amLH)A]

(5 2)

Then, by performing the Berezin integral, we integrate out
the fermionic degrees of freedom:

Z= /D[A*, Ale FIT,

ATA

v (6)

F:—Tlndet(ar—}-H)—i-T/dr/dr

where F is the free energy. Next, we make mean-field assump-
tions: that A is a classical field (does not depend on ) and that
it does not fluctuate thermally and is found as a minimum of
F. In this approximation the problem simplifies:

|wn]| <wp

Indet (3, + H) = Tr Z In (iw, + H)

n

=Tr) In(1+ (o, +Hp)'A)  (7)

n

00 1Nk
=_ZZ( kl) Ti[ (G, AG; A%)'],

n k=1
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where Matsubara frequencies are w, = 27T (n + 1/2) and we

used
(&1 0 . 0 A
HO_(O —8¢)’ _<AT 0)’
. _ Gi(r, 1)) 0

1 N o )
(lwn + HO) (l', r ) - < 0 —Gj(l’, I'/).> (8)
Green’s functions for spin-o electrons are determined from
(iw, + £,)Go (r,¥') = 8(r — 1). 9)
Since u, — —oo in the insulator, the single-electron
wave functions will be zero there. This results in boundary

conditions for Green’s functions in the following way: for
coordinate r, lying on the boundary 92 we get

Gy(r,1p) = G, (rp, 1) = 0. (10)
Now let us consider 2 : x > 0. In that case the Green’s func-
tion can be obtained in the form
Ga (I‘, l'/) = ga(r - I'/) - ga(r - I/)»

oo LWy + &5(k)

where g, (r) is bulk Green’s function, r =r — 2xX and k =
k.
Below we assume the following:
Mo >> wp >> 7‘6‘ >> QvFa (]2)

where T is the critical temperature, vr is the Fermi velocity,
and we are interested in a slow-varying order parameter with
momentum |q| < Q (this justifies the expansion in ¢ that we
do later). Close to the transition to the normal state, A — 0.
Hence we can truncate the expansion in A in Eq. (7). For
usual superconductors, 4 = (4. We also consider a super-
conductor with a spin imbalance. There, GL expansion is
done near the tricritical point associated with the bulk Fulde-
Ferrel-Larkin-Ovchinnikov (FFLO) state [39,40] (in which
case |pty — py | is of the order of T¢).

Combining Egs. (6) and (7) we obtain the quadratic-in-A
part of the free energy:

/ |Al?
dr——
14

|wn|<wp
-T Z /drdr Gy (r, t)A)G} (r, 1) A*(r).
(13)

To simplify F> we need to perform Fourier transform. How-
ever, integrals over x in F; are over half space. To extend them
to full space we note that

GO(E’ I',) = Ga(rv E/) - _Ga(rv l'/). (14)

Together with defining A(r) =
ity, we obtain

1 AP
Fzz—/ Sl
2] o %

+00
— 22/ drdr'G,(r, r/)A(r’)G’i(r’, r)A*(r).
n (15)

1 +oo eikr
8o (r) = (2n)d/ ; dKk, (11)

A(r), without loss of general-

A(q) Ata)| | A A*(q)
boundary reflection /
A(a - 2%,%) A*(q)| [a-2kx) A*(q)

FIG. 1. Illustrations of free-energy terms which are second-order
in the order parameter (16). Orange (green) lines denote bulk Green’s
functions of spin-up (spin-down) free electrons (reflection from the
boundary is marked by a vertical line). Squares denote the order
parameter A. In all cases, the particle-particle bubble, consisting
of two Green’s functions, is explicitly given by f(k,k — q), see
Eq. (17). The top two diagrams with zero and two boundary re-
flections lead to usual bulk-like terms, where order parameters with
the same momentum are coupled. They give terms proportional to
D(q) in Eq. (16). The bottom two diagrams have one reflected from
the boundary electron. The latter results in coupling between order
parameters of different momenta [the last term in free energy (16)].
As shown below, this gives rise to boundary states.

Performing the Fourier transform using Eq. (11) and
A(r) = 5 [2° A(q)e'™dq we obtain (see Fig. 1)

F—1/+°° dq [(1 ())lA( )|
2—2 . @ )d q q

400 dk
+f A~ DR @ ok~ q>] (16)

where

|wn\<wD 1

fek—q)=T Y

n

D( )—/M Kk —aq) (17)
V=) o/

iw, + 8¢(k) —iw, +e,(k—q)

To simplify Eq. (16) note that f(k,k —q) is not
negligible? only at |ey(k)| Swp and |ep(k — q)| S wp.
Since |y — py| € wp K e we define pu = % and h =
F15E and hence &(k) = E (k) — . Then the Fermi momen-
tum kg : e(kp) = 0 and the Debye momentum kp, : |e(kp +
kp)| < wp, which can be estimated as kp >~ wp/vg, where the
Fermi velocity vr = E’(kr). Hence, f(k,k — q) is nonzero
when k and k — q are on a Fermi sphere of radius kr and
thickness 2kp.

Usually it is assumed that A varies slowly with momen-
tum ¢ < O K kp [Eq. (12)]. However, this is true only for
directions parallel to the boundary. By contrast, in the x di-
rection, fast oscillations with g < 2kp are present, the gap

2Explicitly for wp > T we obtain

(tanh + tanh ) — Z(arctan + arctan %)
Sk, k') ~ .

27 (&4 +£l)

Note that, equivalently, we could have defined wp cutoff for energies
le] < wp and let the sum over Matsubara frequencies be unrestricted.
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A Ky
(a (b)

FIG. 2. Fermi sphere and three types of configurations of mo-
menta (a)—(c) that give rise to boundary states. In all these cases,
particle-particle bubble f(k,k — q) [defined by Eq. (17)] is large.
This is due to the fact that q (blue) and k (red) lie in the Fermi
sphere (black circles). In all cases, |k| — kr € [—kp, kp]. By k., we
denote momentum orthogonal to the boundary and by k;; momentum
parallel to it. Configurations can be described by the following values
of k, and q: (a) |k.| > kp and q is large. Namely, |q — 2k, %| < O.
(b) |ky| > kp and |q| < Q. (¢) |k| < kp and |q| < Q. Note that, for
two- and three-dimensional systems, all three cases appear, whereas
for one-dimensional systems, only cases (a) and (b) appear with
k; =0.

exhibits Friedel oscillations [17,19]. The existence of oscil-
lations means that f(k, k — q) has contributions from three
different types of points on Fermi sphere illustrated in Fig. 2.

In this work, we are interested in the description of
the boundary of a superconductor at the level of the GL
model. In the GL approximation, the order-parameter field
is coarse-grained and thus varies slowly in real space, which
corresponds to small momentum |q| < Q; below it is denoted
by ¥ (q) = A(q). Whereas the order parameter that changes
fast in the x direction (large momenta Q < |gx| < 2kr) we
denote Y r(q) = A(q).

III. SMALL-g CONTRIBUTION TO BOUNDARY
CONDITIONS: THE DE GENNES APPROXIMATION

We begin by reproducing the de Gennes microscopic
boundary conditions under an approximation similar to that
used in Refs. [3,4,15,16] considering the small-g contribution
to Eq. (16). That is, in this section, we consider only the
contribution from a slowly varying order parameter . In this
approximation we restrict || < Q in A(q). Then we obtain

Ll
=3 o Cry\V D@ |)[y@][. (18

Since q is small in Eq. (12), we expand D(q) as

+0 g4

F20 ~ / —q
-0

Qmﬂmmﬂm+qf+u¢+~i,a%

where ¢; are the usual bulk coefficients [41]. Here we carry out
the calculation in a more general form that is also applicable
for the case where one has to keep higher-order derivative
terms, such as the case of spin-imbalanced superconductors,
including those in the FFLO state [42,43]. Transforming
Eq. (19) into real space gives

+00
FY, ~ / dr[coly | + o VY P + cal VY + -] (20)
—o0

where terms with derivatives can be written in any integrated-
by-parts form like —c ¥ V2¢* + oy V** + .- .. This is
possible since integral over x in Eq. (20) is over (—oo, +00)
with ¢ reflected in the boundary as v (r) = ¥ (r). Hence
when going back to the actual system €2 : x > 0 one obtains
boundary conditions at x = 0, which depend on the chosen
form of ¢; terms.

For example, if the ¢4 term is not included, the ¢, term
gives the usual [3,4,15,16]

n- vy =0. 1)

This is the de Gennes boundary condition. Applying it dic-
tates that the critical temperature of bulk and boundaries are
identical. To derive it, note that v is continuous across x = (
but not necessarily smooth. Hence, writing ¢,|V/|? has no
additional terms at the surface and boundary conditions (21)
are obtained by variation, as usual. Alternatively we could
have picked —c,¥* V2. In that case

VY = 28(x) Y o + VY| (22)

x>0"

Integrating by parts we obtain again c,|V|?, since the §
function in Eq. (22) compensates for integration by parts.

Consider now the case where the ¢4 term is included, such
as, for example, in the GL model of a spin-imbalanced uni-
form and FFLO systems [42,43]. Then C4|V21//‘ |2 with Eq. (22)
shows that, in order for energy to be finite, we need first of the
two boundary conditions:

n-Vy =0, n-Vy =0, (23)

where the second boundary condition is obtained from varia-
tion of the energy.

This provides microscopically derived boundary con-
ditions in the de Gennes approximation for moderately
spin-imbalanced systems and FFLO systems. Boundary con-
ditions (23) were used before for these systems, see, e.g.,
Refs. [44,45]. Note that these boundary conditions eliminate
the PDW boundary states discussed in Refs. [20,21] and con-
tradict the phenomenological GL boundary conditions used
there. At the same time, the PDW boundary states are unam-
biguously demonstrated in the full microscopic model [21].
We resolve that question below.

Note that this boundary condition of the order parameter
being reflected, A(r) = A(r), follows from the general prop-
erty of the Green’s function [Eq. (14)]. Hence it is easy to
generalize it to different systems. For example, in noncen-
trosymmetric superconductors [46] with local interaction (3),
the analog of Eq. (13) just has a matrix G and A [47], while
the property (14) follows from the boundary condition for
the Green’s function [Eq. (10)]. Hence the counterpart of de
Gennes boundary conditions, in that case, is obtained from
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reflecting the fields at the boundary as well. For the simplest
model, they are equivalent to boundary conditions obtained
from variation of the free-energy function, see Ref. [47].

To summarize this section: we reported generalized to
GL models with higher-derivatives derivation of de Gennes
boundary conditions. However, these conditions do not re-
produce the superconducting boundary states. On the other
hand, it was shown microscopically that these states exist
on the macroscopic length scale [21] and hence they should
be reproducible in microscopically derived GL models. This
problem is resolved in the next section.

IV. THE BOUNDARY CONDITIONS BEYOND
THE DE GENNES APPROXIMATION

In this section, we consider whether there is a nonvanish-
ing contribution from the terms in Eq. (16) coming from an
averaging of the fast-oscillating order parameter. We denote
them le such that F, = on + F21. These terms have a large-q
counterpart of F2O [Eq. (19)] and (a), (b), (c) parts of F,, see
Fig. 2:

+0
AL
1 @ dq +0' 4 dk, ~
" 5[ @) [/ :
Q Qo
X fi(ke, ky = qx) (24)
n /’ dk, ~
2
"dk, ~
w5
where Q' 2 O and q;; are q components parallel to the bound-

ary if there are any. By [’ dp we denote the integral | j;o dp
excluding |p| < kp. We define

fl(va)z'/::o (Zd)d 1f<\/q2+kﬁ,\/p2+kﬁ). (25)

Equation (24) is simplified to

+00
R =~ / dl‘n/ [(——D(21!9)>I1ﬁf(21thr|)|2

45 (F2p iy m

(ks ky)

N*.(q — 2k, X) fi (ky, kx):|,

(26)
+ 0, 1Y 2p. 1)) fi(p, p)}

0,0 00
+ f1(4 ) dry [y (0, 1)),

where we used f+QQ dq”i/f(qx, r)) = v, rH) Note that the
full field A(x) is zero at the boundary since electrons are
perfectly reflected from it and hence Green’s functions are
zero there. However, the GL order parameter i represents
only a slowly varying part of the pairing field, which can be
nonzero at the boundary.

By varying Eq. (26) with respect to Jf we obtain the
solution for fast-oscillating part of the order parameter:

Y0, r)  filp, p)

Jr2p,r)) = — .
Yr(2p.xy > 1-Dep)

27
Inserting it back into Eq. (26), we get the surface term

+00
F) = yf_ dry | (0, )P,
1[/’@ fE(p. p)

y=—= znm—ﬁ(o’o)}- (28)

4

Now let us analyze that contribution in various dimensions.

A. Superconducting wire

For one-dimensional systems, we have no contribution as-
sociated with configuration (c), see Fig. 2, in energy [Eq. (24)]
and hence there should be no f;(0, 0) term in the expression
for the boundary term [Eq. (28)]. However, we can use the
same formula [Eq. (28)] since for d = 1 we have fi(p, q) =
f(p, g) and hence f(0, 0) = 0. We simplify Eq. (28) as

! f"F*kbd_p £ p)
k

y R (29)
27 L —Dp)

2
and estimate D(2p) ~ ¥ for |p — kp| < kD, where the density

of states at the Fermi level is N = o BY performing the
integral over p we obtain

NV 27 coth (£)Im¥"(Z) — Re¥®(Z)

Y i 27T ’

(30)

where Z =1 —iz2- and W™ are polygamma functions of

order n. For h = 0, Eq. (30) reduces to

NV Te3)
~ 31
Ay ey G

where ¢ is the Riemann zeta function.

Therefore, in one-dimensional GL theory, there is a bound-
ary term for the interface between a superconductor and a
vacuum [Eq. (28)]. The term has a negative microscopically
derived prefactor y. This implies that the gap is increased
near the boundary and there are superconducting boundary

states [19]. The conclusion applies both to quasifree and
band fermions.

B. Planar superconductor

Consider the one-dimensional boundary of a two-
dimensional sample. We estimate fi(p, p) for kp — kp = |p|
as

INL 1
filp.p) = = —, (32)
ro1_B
kg
with
1
L=In-2 _ReW(Z)= — — <, (33)
2T NV N
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where « is defined in Eq. (42), T, = 2‘;’:5 a)De*ﬁ is the bulk
critical temperature, yg is Euler gamma, W is digamma func-
tion and N is density of states at Fermi level. In this work, we
consider the case of a d-dimensional system in the BCS limit

where NV is small. For the two-dimensional case, N = ke

2mvyp”

The function D(2p) for krp — kp 2 |p| 2 kp is then given by
2In2 k 1

D2p)~ TN _ (34)

Pl 1_5_2“
F

Equations (32) and (34) allow us to compute y in Eq. (28) up
to logarithmic accuracy:
ke
_ In E
2 kFV ’

Therefore, similarly to the one-dimensional case of almost-
free fermions, we recover the boundary states at the level of
the GL theory.

y~ (35)

C. Three-dimensional isotropic sample

Next we consider the two-dimensional boundary of a three-
dimensional sample. In this case f; can be estimated as
Ipl S ke, -NL

kr (36)

filp, p) = {|p| > ke 0.

The density of states of a three-dimensional superconductor is
2
N = hkT’ Whereas D(2p) for kp < |p| < kp is

vp "

kp

D(2p)~ —NIn2, (37)
Pl

and D(2p) >~ O for |p| Z kr. This allows us to calculate the
integral in Eq. (28), which gives:

JTNL kD kF
~ \% — —NVIn2ln— ) |. 38
TS [ “+kF<C " “ckD)] %)

Here ¢ is the cutoff parameter of order one defined by
[dp= Zf;i dp. Equation (38) shows that we cannot jus-
tifiably calculate y using this analytical approach since it
depends on c. Namely, as seen from Eq. (28), in our approx-
imation, we can obtain y only of order f;(0,0) or larger,
whereas the leading-order contribution to the integral gives
f, dp _fi(p.p)

27 —D(2p)
indicates that y is very small for this model: of order Eq. (38)
or smaller, or could be zero. This is the property of the special
case: a two-dimensional boundry of an isotropic continuous

J

=~ f1(0, 0). Hence, this level of approximation

BCS model in three dimensions. Note that the situation is
different in the three-dimensional tight-binding BCS model
[19].

D. The boundary states and anisotropy in three dimensions

Since many of the superconducting materials of current
interest are strongly anisotropic, let us explicitly consider the
effects of anisotropy. Consider the three-dimensional model
that has single-electron energy E ([(k,/ a)* + kﬁ] 1/2), which is
anisotropic for a # 1. Then y is given by the same formula
(28) with the replacement p — p/a inside the single-electron
energies E. Hence, using Eq. (36) we obtain the leading-order
estimate

N _n(a— 1)

) 39
4krV %9)

where kp is the Fermi momentum parallel to the boundary.
Hence, for a > 1, the superconductivity is enhanced near
the boundary and there are boundary states. In contrast, the
gap is suppressed for a < 1. In other words, boundary states
are present if the Fermi sphere is stretched in the direction
orthogonal to the boundary. Note that Ref. [35] reported a
difference in 7. for samples with different orientations of
the surfaces relative to crystal axes using the stiffnessometer
experiment. The stifnessometer setup was proposed to resolve
surface superconductivity [30].

V. BOUNDARY STATES IN SUPERCONDUCTOR WITH
IMBALANCED FERMIONS

Now we consider the case where superconducting pairing
takes place in a model with spin imbalance, i.e., unequal
densities of spin components. In an infinite system, when there
is a critical disparity of Fermi momenta of spin-up and spin-
down fermionic components, the system undergoes a phase
transition into an inhomogeneous FFLO state [39,40]. In such
a state, the system has a modulation in the phase or modulus of
the order-parameter field. At the level of the Ginzburg-Landau
theory, a phase transition into such a state manifests itself
through the coefficient in front of the quadratic gradient term
becoming negative. Therefore, for the energy to be bounded
from below, one needs to retain higher-order gradient terms
with positive prefactors.

Combining the results of the microscopic derivation for
bulk [42] and boundary (Sec. II), we obtain the GL model
with spin imbalance:

~ K
F=fgdl‘{fxllﬂlz+K|V¢|2+ﬂ|1ﬂ|4+KlV2¢I2+K1|¢V¢I2+gl[(lﬁ*Vlﬁ)2+(le/f*)2]+VI1#I6} +7/fmdr|||¢|2-

(40)

Let us now study the problem of the boundary conditions in the presence of the higher-order derivative terms. These conditions
are obtained from considering the mirror-reflected model. The condition of finiteness of energy and variation of F with respect

to ¥* gives us the boundary conditions:

n-Vy =0,

n-Vy =

v, (41)

~i=
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1.4

PDW._Boundary state

1.2

1.0
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Tc1

0.6

0.4

0.2

0'8.0 0.2 0.4 0.6 0.8 1.
T/Teq

FIG. 3. Phase diagram of a two-dimensional spin-imbalanced
superconductor in the GL model as a function of temperature 7" and
spin imbalance & for y = —0.025 ’\;ZF (for example, a system in an
in-plane magnetic field). Lines denote superconducting phase transi-
tions. The bulk phase transition between normal and superconducting
states is denoted by solid lines according to Eq. (44). The boundary
remains superconducting for higher temperatures. The dashed lines
denote a phase transition from surface superconducting to normal
state according to Eq. (46) and the dot-dashed line according to
Eq. (48). When the spin imbalance / is large enough, bulk and bound-
ary states turn from sign definite (red) to periodically modulated in
space states (blue). Gray hatching denotes the region where the usual
GL model (1) is bounded from below (it works best for T — T,
and i1 — 0). Brown hashing shows the region where the GL model
with higher-order derivatives [Eq. (40)] is convergent (the best at the
tricritical point). Note that this phase diagram has a boundary PDW
state extending beyond the tricritical point and there is a smooth
transition to a non-PDW boundary state, which agrees with the phase
diagram obtained in a Bogoliubov-de Gennes formalism [21].

where n is a unit vector pointing outside of the sample. Note
that boundary conditions (41) differ from the phenomenolog-
ical boundary conditions used in Refs. [20,21]. Whereas the
de Gennes boundary conditions previously used for FFLO
systems [44,45] correspond to setting ¥ = 0 in our boundary
conditions [Eq. (41)]. We derive that y is not zero. In Egs. (40)
and (41), y is given by Eq. (28) while the other parameters are
[42]

o :N[IHTL +Re¥ (Z) — \11(1/2):|,

cl
_ NRe¥?(2)
T 2(4nT)?
3vpv .

ViB g Buv
d’ 2dd+2) !

_ NReW¥(2)
T 12@nT)t
4v%v
d

(42)

I

=~

K =

Let us consider now the boundary physics of a spin-
imbalanced superconductor. First, we determine when the
superconductor transitions to a normal state. We assume that
this transition is of second order and hence ¥ — 0 at the tran-
sition. Hence it is sufficient to solve linearized GL equations
that follow from the variation of Eq. (40):

ay —KV*y + KV = 0. 43)

1.0
= Boundary state in conventional GL
0.8 Boundary state in spin-imbalanced GL
PDW boundary state
0.6
Yy
Wo 0.4
0.2
0.0
-0.2
0 5 10 15 20 25 30

X/fo

FIG. 4. Solutions for the boundary state in the conventional GL
model (1) given by Eq. (47) (blue) and in a spin-imbalanced GL
model with higher-order derivatives [Eq. (40)] given by Eq. (45)
(orange). Both solutions are obtained for parameters 7 /7., = 0.8
and h/T.; ~ 0.9, such that they lie on the transition line in Fig. 3.
The pair-density-wave (PDW) boundary-state solutions obtained in
the GL model (40) given by Eq. (45) (green) at T/T,; = 0.5 and
h/T. ~ 1.1. The solutions are normalized to vy, which is the ¥
value at the boundary and &, = vp+/7¢(3)/(4n Tclﬁ).

This gives us that bulk transitions to the normal state at (see
Fig. 3)
FFLO: K <0

uniform: K >0 and

and 4Ka = K2,
a=0. (44)

The system however has a boundary superconducting state
with critical temperature which is higher than the bulk critical
temperature. Let us now consider the phase transition from
a superconducting boundary state to a normal state. For that
matter, consider a sample positioned at x > 0. Then Eq. (43)
should be solved together with the boundary conditions (41)
and the requirement that the order parameter go to zero at
infinity. We obtain the order-parameter configuration of the
boundary state (see Fig. 4)

—q4x —q-x
Y = const. X <e _¢ ),
q+ q-
3 \/K + VK2 — 4Ka 45)
q+ = 21? s

which satisfies the second condition in Eq. (41) at the transi-
tion from the superconducting boundary to the normal state
(see Fig. 3)

VKa(gy +q-)=—y. (46)

VI. BOUNDARY STATES IN A CONVENTIONAL
SUPERCONDUCTOR

Next, we consider solutions for the conventional GL model
[Eq. (1)] with that derived in the above boundary conditions
[Eq. (2)]. The model can be obtained from the more general
expression (40) by setting K = K; = v = 0. Hence, bulk tran-
sition from superconducting to normal state takes place at ¢ =
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0, see Eq. (44). When the derived in the above microscopic
boundary conditions are used the model exhibits supercon-
ducting boundary states. The transition from it to a normal
state is obtained from the boundary conditions (2) and (43) at
K = 0. The superconducting boundary-state solution that fol-
lows from that equation is

¥ = const. x e” ", gg = /%. (47)

Hence, transition to a normal state is given by the following
condition, which corresponds to the boundary condition (2):

VaK = —y. (48)

This is the GL approximation of the superconducting
boundary state obtained earlier as a solution of the full mi-
croscopic theory [19]. Note that the coarse-grained GL field
is smoothly varying and the enhanced pairing correlations
are modeled as a source in the form of a boundary integral,
yielding the boundary conditions (2). Note that this condition
can be obtained from Eq. (46) by setting K — 0. The latter
also leads to g_ — go and ¢, — (K/K)'/?, which means that
Eq. (45) becomes Eq. (47).

From Eq. (48) we obtain that, for zero population imbal-
ance, the boundary state transitions to normal at T, that is
larger than bulk critical temperature 7;:

To—Ta . To y°

T = ~ln—=—. (49)
T I, NK
Hence, using Eq. (31) for a one-dimensional system, 7 is
7¢(3)( NV \*

2

For NV — 0 this is equal to 7 = 7§7(3)(NV)2, which we
previously obtained in a one-dimensional model without the
Debye frequency [19] (note that, in Ref. [19] there is a typo
and the rescaled interaction is actually V = NV).

For a two-dimensional system, from Eq. (35) we obtain

2
8 (T I
=~ o) (51)
7((3) kFUF NV
For a three-dimensional anisotropic system with a > 1, we
obtain from Eq. (39)
3 — 2’7’
r ~ (a= D7) (52)
7{ (3) kF UFNV

Analogy to wetting

As a side note, one can imagine that the plot of v in Fig. 4
for the usual GL model is a vertical cross-section of a tank
filled with water, with v being the height of the surface of
the water. This is not a coincidence. The energy of a thin
column of water of width dx and height ¢ is composed of
surface-tension energy od! and gravitational energy %ngdx,
where o is the energy per unit surface, d!/ is the length of the
surface, p is the density of water, and g is the gravitational
constant. Note that we implicitly redefined ¥ — Ay, where A
is some dimensional constant, so that for new [y/] = [x]. Then

the total energy is

N LoTo(dy\* | pg .,
E_const.+/(; dx|:§<a> ~|—71/f :| (53)

which is similar to the GL model (1), if we substitute 0 — 2K
and pg — 2.

Then the problem of the boundary states in a superconduc-
tor can be related to the problem of adhesion of water to a
wall. In the latter case, the boundary condition is set by fixed
contact angle, which is equivalent to fixing n - Vi = const.
This boundary condition is similar to Eq. (2) for a supercon-
ductor. Note that, in this analogy, the superconductor-insulator
interface behaves like a hydrophilic surface. For other in-
terfaces, like superconductor-normal metal, or an interface
with certain types of different boundary layers [19], the gap
can be suppressed near the boundary, which corresponds to a
hydrophobic surface.

VII. H;; FROM MICROSCOPICALLY DERIVED
GINZBURG-LANDAU THEORY REVISITED

For conventional boundary conditions y = 0, supercon-
ductivity in type-II materials survives near surfaces at the
magnetic fields up to H,3, which is higher than the critical field
associated with the disappearance of superconductivity in the
bulk H,,. The boundary conditions that we derived have direct
implications for the third critical magnetic field H,s.

In the conventional picture [48] it is described by solving
the linearized GL equation by using the standard de Gennes
boundary conditions n - Vi = 0. Note that it has been ob-
served earlier that numerical solution in the fully microscopic
Bogoliubov-de Gennes theory (i.e., obtained beyond the qua-
siclassical approach) is not consistent with this picture [49]
but should be more robust; however, that work did not deter-
mine H.;. We are in a position now to calculate H 3. Note
that the problem that we will study below, namely H.; in
a GL model with an included surface term have been stud-
ied on phenomenological grounds in the past in the context
of superconductors with modified surface layers, and su-
perconductors with enhanced superconductivity on twinning
planes [5,7,8,12]. Remarkably, enhanced H.; was observed
for ordinary surfaces of the elemental superconductors, and
experimental papers have been explicitly raising the ques-
tion of whether that originates in enhanced superconducting
properties of surfaces of unknown origin [28,29]. Our goal
here is to calculate H.3 in the microscopically derived GL
theory corresponding to a regular boundary of a standard BCS
superconductor.

To include magnetic field one simply replaces the deriva-
tive with a covariant derivative in Eq. (3) as V — V —ieA,
where A is the magnetic vector potential and e is the electron
charge. Next, Green’s function with magnetic field G2 is ob-
tained as

GA(r, 1) = ™G, (r, 1), (54)

where G, is the Green’s function for zero magnetic field de-
fined in Eq. (11) and ¢(r, r’) >~ €A - (r — r’). Note that, in this
approximation, it is assumed that A is very slowly changing
and hence it can be A >~ A(r) or A >~ A(r’) or anywhere close
to r, r’. For details see Refs. [15,41,50]. In our calculation,
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however, it is convenient to choose
o(r,r') =~ eA(r) -r —eA(’) - r (55)

and to extend A(r) = A(r).?

Then property Eq. (14) is satisfied for G2 as well. It means
that the derivation for the model with the magnetic field is
similar to the one outlined in Sec. II. The only difference is
that now A is replaced by

A(r) > AA(r) = A(r)e HeAlT, (56)

Hence, for the resulting GL model, the magnetic field amounts
to replacing

V — V — 2ieA. (57)

In an external magnetic field, the boundary condition with
y < 0 leads to an increased critical magnetic field H . It
has a different dependence on temperature compared with
the standard textbook derivation [48], see, for example, the
phenomenological discussion in Ref. [5]. Similar observations
were made in phenomenological studies of superconductors
with twinning planes.

Here we compute H,3 with the microscopic boundary con-
ditions derived above. Consider a two- or three-dimensional
system and assume that the external magnetic field is directed
along the z direction and equals H. Hence we can set a gauge
for vector potential so that only nonzero component is A,.
Then the transition to the normal state is obtained by solving
the linearized GL equation in terms of v (x):

ay — K32y + K(2eA,)*y =0, (58)
together with the boundary conditions (2). We set A, = (x +

Xxo)H, where xj is to be optimized to get the highest H. Then
the solution to Eq. (58) is

V= D—%(l+ a

Z\eIHK)

((x +x0)v/4lelH), (59)
where D, (x) is parabolic cylinder function. To find xy, it is
convenient to calculate the first dy integral of Eq. (58). By
using boundary conditions (2), we obtain

v (xo)[ / ” [2eH Y (x)]*2xdx =0.

K 2}
— eHxy)
Y (60)

This equation sets the relation between xo and H, when the
solution for ¥ [Eq. (59)] is inserted. Since we search for the
largest H, a derivative of Eq. (60) with respect to xq should be

zero. It gives
VY2 —ak

2lelHK

Here we picked the minus sign so that Eq. (60) can be satis-
fied. Next, in order to find H we can either solve Eq. (60) or
the boundary condition (2). We solve the latter, which using

xo=— (61)

3Note that this extension is purely fictitious and is used just to
derive the boundary conditions for A easily. The actual A has
different value outside of the superconductor, which follows from

+o00 dl‘ (B— H)

the magnetic energy defined over all space, f , where

B =V x A and H is the external magnetic field.

08 Hc3 (Y<O)
— Hz (Y=0)
-=== Hq

0.6

2]

04

0.2

0'8. 1.0 1.1

FIG. 5. Rescaled critical magnetic fields H = 24X H as a func-
tion of temperature 7'. Bulk transitions to the normal state for fields
higher than H, = — M z-In the derivation [48] with zero boundary
term (y = 0), the surface transitions to the normal state at higher
field H.; >~ 1.69H,,. From Eq. (62) we obtain that, if in Eq. (1) the
boundary term is present with y < 0, then surface superconductivity
is enhanced and boundary transitions to normal at field H  higher
than that for y = 0. Here we have chosen y = 70.05%.

the expression for xy Eq. (61) and rescaling amounts to solving
numerically for n for a given a in

1 —
(—\/%/E)Hu;nv(—\/a/n) = H%(—\/a/n), (62)

where H, (x) is a Hermite polynomial, a = 1 —
2le|HK>
2

ok and n =

. The H obtained then is equal to H.3. See Fig. 5
for a plot of H.3. The H.; is, therefore, higher than in the
original Saint-James de Gennes derivation [48]. Also, note
that H.3 should exist for type-I superconductors in significant
temperature range.

VIII. CONCLUSIONS

We considered the generic BCS model for spin-balanced
and spin-imbalanced fermions. From that model, we derived
the boundary conditions for the GL theory for the interface be-
tween a superconductor and an insulator. We showed that the
free energy of a superconductor acquires an additional term
given by the surface integral of y|v|?. The physical origin
of this term is the fact that, near a well-reflecting boundary,
the total gap oscillates with ~kz momentum. This oscillatory
part is coupled to the averaged gap v in GL theory, leading
to an additional surface term. We obtained that y < O for
one- and two-dimensional continuous BCS models. For the
three-dimensional isotropic BCS model, the surface term is
beyond the resolution of our analytical approach. Whereas
for an anisotropic three-dimensional model we have shown
that y can be positive or negative. The negative y leads to
enhanced superconductivity near boundaries. Note that, for
the tight-binding BCS model the surface superconductivity
exists in all dimensions [19], which also implies boundary
conditions with y < 0.
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To obtain boundary conditions we showed that the follow-
ing procedure can be applied: Consider the GL model that in
general has the highest in derivative term of order k. Then
one should reflect the order parameter in the boundary and
write the free energy as an integral over the whole space. This
reflection automatically applies proper boundary conditions.
Namely, one can write kinetic terms in any integrated-by-parts
form and search for a minimum of the total free energy.
Boundary conditions are obtained from the condition on en-
ergy to be finite and from the variation of this functional with
respect to the order parameter. As a result, we obtained that
usually all normal to boundary odd derivatives of i of order
less than k — 1 should be zero, whereas k — 1 derivative will
be proportional to y .

For the standard GL model with second-order derivatives,
k =2 and hence we obtain boundary conditions n- Vy =
—%1//, see Eq. (2). The GL model for spin-imbalanced sys-
tems requires taking into account fourth-order gradient terms
and hence has boundary conditions n- V¢ =0, n- V3y =
%w, see Eq. (41). Using these new microscopically derived
boundary conditions, we obtained superconducting boundary
states in the conventional GL model and revised the calcu-
lation of PDW boundary states in the spin-imbalanced GL
model.

The obtained boundary conditions allow GL theory to ac-
count, in a microscopically accurate way for boundary states

that were found earlier in fully microscopic solutions of BCS
theory [19]. Namely, in the GL model for y < 0, in zero
external magnetic field, the superconducting gap is larger near
the surface than in the bulk, and superconductivity survives
for higher temperatures. Since microscopic calculations show
that superconductivity is more enhanced at the edges and
corners of a three-dimensional sample, to model these ef-
fects one should add analogous extra contributions for corners
and edges.

By adding an external magnetic field we revised the theory
of the third critical magnetic field H 3 for a BCS superconduc-
tor. The surface effects make this field larger and extending
in a type-I regime, compared with results obtained using de
Gennes boundary conditions.

We note that these surface effects can be described in a
quasiclassical approach if one augments the theory by taking
into account higher-momentum contributions to the boundary
conditions.
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