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Interaction of vector Bose gases with fermionic superfluids
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We study the effects of vector Bose gases, which are described by massive vector Bose fields, on fermionic
superfluids in the low-energy region. It is demonstrated that the vector Bose gases can give rise to the Meissner
effect, the flux quantization, and the Josephson effect, which are similar to those of the electromagnetic field in
fermionic superfluids. However, unlike the electromagnetic field where the Meissner effect is unrelated to mass
and the quantized flux is a constant, the Meissner effect of the vector Bose gases can be related to mass via a
classical kinetic energy, and the value of the quantized flux is tunable. Our analyses also show that, although the
origin model violates gauge invariance, the vector Bose gases in fact are gauge-invariant Maxwell-Chern-Simons
systems under a Gauss constraint. It is also proposed that these effects can be observed by using the spin-1 cold
atomic Bose gases in experiments.
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I. INTRODUCTION

Vector Bose gases are bosonic systems which are described
by massive vector Bose fields. In high-energy physics, the
massive vector Bose fields describe mesons [1,2] and may be
related to dark matter and dark energy [3–5]. In condensed
matter systems, all spin-1 bosonic systems can be described
by massive vector Bose fields, such as the alkali atomic Bose
gases [6–18], the triplet pairing systems of p-wave supercon-
ductors [19–26] and superfluids [27–30], and spin-1 Haldane
phase systems [31–36], etc. Without considering the interac-
tions between bosons, these kinds of vector Bose fields are
referred to as vector Bose gases.

The vector Bose gases are described by the Proca equation
[37,38] in relativity, which is similar to the motion equation
of the electromagnetic field. However, due to the vector Bose
gases carry mass, there are two significant differences be-
tween the vector Bose gases and the electromagnetic field.
One is that the vector Bose gases violate gauge invariance,
which is an essential characteristic of the electromagnetic
field. The other is that the vector Bose gases can have a non-
relativistic approximation, while the nonrelativistic approxi-
mation is absent in the electromagnetic field due to it being
massless. This last characteristic enables us to investigate the
properties of the vector Bose gases in real experiments.

In this paper, the effects of vector Bose gases on fermionic
superfluids are investigated. Since the relativistic vector Bose
gases are still difficult to realize in real experiments, the vector
Bose gases are investigated in their nonrelativistic case, i.e.,
in their low-energy region. This investigation starts from the
relativistic Lagrangian of the vector Bose gases, then performs
a mass transformation to map the vector Bose gases to the
nonrelativistic state. Due to the vector fields used to describe
the vector Bose gases, the interactions between the vector
Bose gases and superfluids can be studied by analogy with
that of the electromagnetic field.

In the nonrelativistic state, one of the major kinds of the
vector Bose gases is the spin-1 Bose gases which are named
to highlight their spin dynamics [6–18,39–48]. The spin-1
Bose gases are usually researched in the spinor wave functions
[39–48]. However, they can also be described naturally in
terms of the vector fields, with correspondences between the
vector fields and the spinor wave functions (see Appendix A).
When viewing from the vector fields, a better understanding
of the spin-1 Bose gases from the relativistic perspective
can be developed, and the familiar methods of studying the
electromagnetic field can be used to study the phenomena
of spin-1 Bose gases. Moreover, not only the spin-1 Bose
gases but also the investigation of the vector Bose gases can
help further develop the understanding of the phenomena
of condensed matter systems interacting with the massive
vector Bose fields, which include triplet pairing supercon-
ducting and superfluid systems which initially are fermionic
systems [19–30].

The paper is organized as follows. In Sec. II, the non-
relativistic vector Bose gases model from the relativistic
Lagrangian are set up. In Sec. III A, we focus on the Meissner
effect of the vector Bose gases interacting with the fermionic
superfluids. The flux quantization and the Josephson effect
of the vector Bose gases are presented in Sec. III B. In
Sec. III C, we explore the conditions of forming a Maxwell-
Chern-Simons model in the vector Bose gases. In Sec. III D,
we briefly discuss the experimental proposals. Last, we draw
conclusions in Sec. IV.

II. FORMULATION

The relativistic Lagrangian of the vector Bose gases is
given by [38]

LB = 1
2G

∗
μνGμν − 1

2G
∗
μν (∂μφν − ∂νφμ)

− 1
2 (∂μφ∗

ν − ∂νφ
∗
μ)Gμν − m2

Bφ∗
μφμ. (1)
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The first term of Eq. (1) is a kinetic energy term constructed
using the antisymmetric tensor fields Gμν (x, t ), where μ and
ν are four-dimensional direction indices, x = (x, y, z) is the
space parameter, and t is the time parameter. For general
considerations, the vector Bose fields in Eq. (1) are regarded
as carrying charges, thus Eq. (1) includes the conjugate fields
G∗

μν (x, t ). It should be noted that our results also hold in
the neutral vector Bose gases. The fourth term of Eq. (1) is
a mass term representing the rest energy described by the
four-dimensional vector fields φμ(x, t ), where mB is the mass
of the vector Bose gases, and φ∗

μ(x, t ) are the conjugate fields.
The second and third terms are the coupling between the
tensor fields Gμν (x, t ) and the vector fields φμ(x, t ), from
which the constraint Gμν = ∂μφν − ∂νφμ is obtained through
the Lagrange equation. Equation (1) is similar to the La-
grangian of the electromagnetic field where the difference
between the two is that the former has an additional mass
term, which induces the vector Bose gases to lose the gauge
invariance.

In practice, the relativistic vector Bose gases are hard to
obtain, so the focus is shifted to the vector Bose gases in
their low-energy region; in other words, we focus on the
nonrelativistic state of the gases. To this end, we perform
a mass transformation to Eq. (1) to cancel the mass part
of the vector Bose gases so as to stand out the low-energy
region.

The mass transformation can be described by φμ(x, t ) =
ϕμ(x, t )e−imBt , where ϕμ(x, t ) = (ϕ, iϕ0) denote the low-
energy vector fields of the vector Bose gases, ϕ(x, t ) is the
space component, and ϕ0(x, t ) is the time component. Per-
forming the mass transformation, Eq. (1) becomes

LB = − 1
2 G∗

μνGμν − mBG∗
μ4ϕμ + mBϕ∗

μGμ4 + m2
Bϕ∗

0ϕ0, (2)

where Gμν represent the low-energy antisymmetric tensor
fields that have removed the influence of mass. After the mass
transformation, the space component mass term m2

Bφ∗
i φi (i =

x, y, z) in Eq. (1) has been eliminated, leaving only the time
component mass term m2

Bϕ∗
0ϕ0. Equation (2) is described by

the low-energy fields and can be viewed as a series expansion
expanding by the mass mB. In Eq. (2), the relativistic invari-
ance has lost and the relativistic vector Bose gases have been
mapped into a nonrelativistic expansion.

By analogy with the electromagnetic field, the correspond-
ing electric and magnetic fields of the vector Bose gases can
be defined. The electric field is defined as E = −∇ϕ0 − ∂tϕ,
and the magnetic field as B = ∇ × ϕ; then Eq. (2) reads

LB = E∗ · E − B∗ · B + imBE∗ · ϕ − imBϕ∗ · E + m2
Bϕ∗

0ϕ0.

(3)

Equation (3) is expressed by fields similar to the electro-
magnetic field, which enables us to extract the characteristics
similar to that of the electromagnetic field to study the vector
Bose gases. Note that here the terms of the electric field and
magnetic field are borrowed to dub the wave functions of the
vector Bose gases. These terms have no relation with the real
electromagnetic field.

III. RESULT AND DISCUSSION

A. The Meissner effect

Subsequently, the effects of the nonrelativistic vector Bose
gases on fermionic superfluids are investigated. The La-
grangian of charged vector Bose gases interacting with s-wave
fermionic superfluids is given by

L = ψ†ih̄
∂

∂t
ψ − ψ†

{
1

2ms

[
p − g

2
(ϕ + ϕ∗)

]2

+ g

2
(ϕ0 + ϕ∗

0 ) − μ

}
ψ + �(ψ†ψ† + H.c.) + LB, (4)

where ψ (ψ†) is the wave function of superfluids; ms and p are
the mass and momentum of superfluid particles, respectively;
μ is the chemical potential; and � is the energy gap. The
interacting terms in Eq. (4) take the form ψ†g(ϕμ + ϕ∗

μ)ψ/2,
in which g is the coupling strength between the vector Bose
gases and superfluids, and the conjugate fields ϕ∗

μ are included
to maintain the Hermitian.

According to the Lagrange equations, the motion equations
of the vector Bose gases can be expressed as

∇ · E = 1

2
gρ − m2

Bϕ0 − imB∇ · ϕ, ∇ × E = − ∂

∂t
B,

∇ · B = 0, ∇ × B = 1

2
J + ∂

∂t
E − imBE + imB

∂

∂t
ϕ. (5)

Here ρ = ψ†ψ is the particle density of superfluids and J =
gψ† 1

ms
[p − g

2 (ϕ + ϕ∗)]ψ is the current density. Comparing to
the Maxwell equations, for the vector Bose gases carrying
mass, Eq. (5) have the terms reflecting the mass effect.

At first sight, the expressions of Eq. (5) are similar to
the motion equations of the electromagnetic field and seem
no relation with the Schrödinger equation of nonrelativistic
spin-1 Bose gases. However, when we change the low-energy
vector fields to the spinor wave functions, Eq. (5) turn into
the Schrödinger equation, which manifests that indeed Eq.
(5) are the nonrelativistic motion equations of the vector Bose
gases, see Appendix A. Notice that the motion equations of
the electromagnetic field described by vector fields cannot has
a nonrelativistic approximation, because the electromagnetic
field is massless, this is a crucial difference in motion
equations between the vector Bose gases and the
electromagnetic field.

We now calculate the Meissner effect associated with the
vector Bose gases. The London equation is written as J =
− 1

λ2 (ϕ + ϕ∗), where λ = λ(�) is the penetration length of
the superfluids containing the energy gap [49]. Considering
the curl of ∇ × B in Eq. (5), we obtain

∂2

∂t2
Re(B) + 2mB

∂

∂t
Im(B) − ∇2Re(B) + λ−2Re(B) = 0,

(6)
where Re(B) and Im(B) are the real and imaginary parts of
B. Equation (6) is the Meissner effect equation for the vector
Bose gases in superfluids. The significant feature of Eq. (6) is
the appearance of the time derivative containing the mass of
the vector Bose gases. Without this term, Eq. (6) is reduced
to the Meissner effect equation of an electromagnetic field in
superconductors.
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Selecting the ansatz of the magnetic field as B =
B0 exp[−k · x − iωt], where B0 is the amplitude, k is the wave
vector, and ω is the real frequency, and then substituting the
ansatz into Eq. (6):

k = (λ−2 − ω2 − 2mBω)
1
2 . (7)

In Eq. (7), k = 0 is the critical point at which the vector
Bose gases destroy superfluids. If the frequency ω increases
any further, then the wave vector k will change from real to
imaginary, and the superfluidity is destroyed.

Considering k = 0, the frequency in Eq. (7) has the expres-

sion ω = ω± = −mB ±
√

m2
B + λ−2, where ω+ and ω− are

the critical points corresponding to oppositely charged vector
Bose gases. These critical points are related to the mass of
the vector Bose gases, and this fact is different from that of
the electromagnetic field for its critical frequency point being
independent of mass. The term −mB in the critical frequency
indicates that the mass has been removed, and the critical fre-
quency only represents the kinetic energy of the vector Bose
gases. If mB � λ−1, which means that the kinetic energy is
much smaller than the mass energy, then ω+ is approximately
equal to

ω+ = λ−2

2mB
. (8)

This is a well-known classical kinetic energy expression,
which demonstrates that the vector Bose gases destroy
superfluids in a classical kinetic energy once the momentum
matches the characteristic length λ of superfluids.

The expression of Eq. (8) also can be obtained from the
Schrödinger formalism of Eq. (6), see Appendix B, which
demonstrates that the neutral vector Bose gases also can gen-
erate the Meissner effect when interacting with superfluids.
Meanwhile, the Schrödinger formalism also shows that the
spin-1 Bose gases can display the Meissner effect in the spinor
wave function representation.

B. The flux quantization and Josephson effect

Next, let us discuss the flux quantization and the Josephson
effect of the vector Bose gases. The superfluid wave function
is written as ψ (x, t ) = √

ρeiφ , where ρ is the superfluid den-
sity and φ = φ(x, t ) is the superfluid phase. Then, assuming
that ρ is constant, and integrating the current density J in Eq.
(5) over a closed path, we obtain∮

J · dl + g2 ρ

ms

∮
Re(ϕ) · dl = g

h̄ρ

ms

∮
∇φ · dl . (9)

Here Re(ϕ) is the real part of ϕ and dl is the path integral
factor. For Eq. (9), laying the closed path in a region with-
out superfluids, the current density integration on the left is
eliminated. Using the relation B = ∇ × ϕ, the second term
in Eq. (9) becomes a flux term

∮
Re(ϕ) · dl = ∫

Re(B) · dS,
where S is the surface surrounded by the closed path. Because
φ is a phase, the right-hand side of Eq. (9) turns out to be∮ ∇φ · dl = 2πn, where n is an integer. Therefore, Eq. (9)
can be written as ∫

Re(B) · dS = 2π h̄n/g. (10)

Equation (10) describes the flux quantization of the vector
Bose gases in superfluids. The flux in Eq. (10) is a result of
the antisymmetric tensor fields Gμν , and the quantization is
attributed to the coherent phase of superfluids. The expression
of the flux quantization of the vector Bose gases is similar to
that of the electromagnetic field. However, unlike the value of
the flux quantization of the electromagnetic field is a constant,
the value of the vector Bose gases can be tuned, for the
coupling constant g in the Eq. (10) can be adjusted. Therefore,
what is obtained is a tunable flux quantization when consider-
ing the vector Bose gases interacting with the superfluids.

Next, we discuss the influence of the flux in Josephson
junctions. The current density J can be written as

J = gρ
h̄

ms
∇�, (11)

where p = h̄∇� is the superfluid momentum and � = φ −
φB represents the effective superfluid phase where φB =
g
h̄

∫
Re(B) · dS is the flux phase provided by the vector Bose

gases. The expression −h̄∇φB in the superfluid momentum
indicates that the flux of the vector Bose gases jointly drives
the supercurrent.

Assuming the boundary condition at the surface of two
superfluid systems is expressed as ∇ψ1 = κψ2, where κ is
the tunneling strength between the two systems near the
surface, and ψ1(ψ2) represents the boundary (bulk) wave
function of the first (second) system [49]. Here κ contains not
only the tunneling of Cooper pairing but also the tunneling
of the supercurrent driving by the flux of the vector Bose
gases. Combining the boundary condition ∇ψ1 = κψ2 and
the momentum eigenequation −ih̄∇ψ1 = pψ1, a relation can
be expressed as h̄(∇�1)ψ1 = −ih̄κψ2, where ψ1 = √

ρ1ei�1 ,
and ψ2 = √

ρ2eiφ2 , in which ρ1(ρ2), �1(φ2) are the super-
fluid density and the effective phase (the bulk phase) of the
first (second) system, respectively. Here the effective phase
�1 = φ1 − φB includes the influence of the flux, where φ1 is
the bulk phase of the first system. Substituting ψ1 and ψ2 into
Eq. (11), the tunneling current density has the expression

J = J0 sin

[
φ2 − φ1 + g

h̄

∫
Re(B) · dS

]
, (12)

where J0 = gρ1
h̄κ
ms

( ρ2

ρ1
)1/2 is the tunneling amplitude.

Equation (12) shows that the Josephson effect is influenced by
the flux of the vector Bose gases in superfluids. The reason for
this result is also due to the kinetic energy of the vector Bose
gases being described by the antisymmetric tensor fields. It
should be noted that the value of the flux in Eq. (12) can be
tuned, since the coupling constant g is tunable.

IV. THE MAXWELL-CHERN-SIMONS MODEL OF THE
VECTOR BOSE GASES

In this section, we discuss the Maxwell-Chern-Simons
model of the vector Bose gases. In the canonical quantiza-
tion, the independent dynamic parameter of the vector Bose
gases is the three-dimensional space vector field ϕ, and the
corresponding conjugate parameter is the electric field E. The
scale field ϕ0 is not dynamic and depends on the dynamic
parameters from the first equation of Eq. (5): ϕ0 = 1

2 m−2
B gρ −
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im−1
B ∇ · ϕ − m−2

B ∇ · E. If |ϕ0|2 can be neglected, or m2
B can

be neglected in the case of the much lighter of the mass
comparing to the kinetic energy, then Eq. (3) changes to an
effective Lagrangian LB,eff = E∗ · E − B∗ · B + imBE∗ · ϕ −
imBϕ∗ · E. We further take the Gauss constraint ∇ · E = 0,
then the effective Lagrangian LB,eff is gauge invariance un-
der the gauge transformation ϕ0 → ϕ0 − ∂tα, ϕ → ϕ + ∇α

[α(x, t ) is an analytic function]. This shows that after per-
forming the mass transformation, we have isolated the mass
term that violates gauge invariance and highlighted the gauge
invariance terms in the vector Bose gases.

Let ϕμ → ϕμ/
√

2, the effective Lagrangian becomes
LB,eff = 1

2 (E∗ · E − B∗ · B) + mBIm(ϕ∗ · E ), where Im(ϕ∗ ·
E ) is the imaginary part of ϕ∗ · E. Defining Eμ = 1

2εμνλFνλ,
(μ, ν, λ = x, y, z), where Fνλ is the duality field of the electric
field, we obtain

LB,eff = 1
2 (E∗ · E − B∗ · B) + 1

2 mBεμνλIm(ϕ∗
μFνλ). (13)

Equation (13) is a Maxwell-Chern-Simons Lagrangian
[50–52]. Therefore, under the Gauss constraint ∇ · E = 0,
the effective model of the vector Bose gases is related to a
gauge-invariant Maxwell-Chern-Simons system.

V. EXPERIMENTAL PROPOSAL

In this work, the nonrelativistic vector Bose gases in-
teracting with fermionic superfluids was studied. In the
nonrelativistic case, one of the major kinds of the vector Bose
gases is the spin-1 Bose gases. The cold atomic spin-1 Bose
gases such as 23Na or 87Rb [6–18] have been realized in real
experiments, and, experimentally, these gases would be the
appropriate candidates in the case of the superfluids also in
a proper selection to obtain the striking experimental signa-
tures. With respect to studying the Maxwell-Chern-Simons
model of the vector Bose gases, one choice is that the lighter
mass atomic gases, such as 7Li, can be selected to cancel the
influence of the m2

B term in Eq. (3). However, since it is a re-
quirement that neglecting the scalar potential, or the constrain
that the kinetic energy is much larger than the mass is tough to
obtain, it may still be difficult to realize the Maxwell-Chern-
Simons model in real experiments.

VI. CONCLUSION

In summary, we have investigated the effects of the vec-
tor Bose gases on fermionic superfluids. Our results show
that, unlike the electromagnetic field, the destruction of the
Meissner effect of vector Bose gases is related to mass. In
the low-energy region, the vector Bose gas can destroy the
superfluid states as long as it obtains a classical kinetic energy
in which the momentum matches the penetration length of the
superfluids. Similarly to those of the electromagnetic field, the
flux quantization and the Josephson effect of the vector Bose
gases also appear in superfluids. However, instead of being
just a constant as in the electromagnetic field, the value of
the quantized flux of the vector Bose gases can be tunable.
The study also shows that under a Gauss constraint, the vector
Bose gases are related to the gauge-invariant Maxwell-Chern-
Simons system in certain suitable situations. We also propose
that the spin-1 cold atomic Bose gases can be used to observe

these effects. The investigations of this work may also be ben-
eficial for the study of related systems in high-energy physics.
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APPENDIX A: CORRESPONDENCE BETWEEN THE
MOTION EQUATIONS OF THE VECTOR BOSE GASES

AND THE NONRELATIVISTIC SPIN-1 BOSE GASES

The motion equations of the vector Bose gases are de-
scribed by Eq. (5) in the main text,

∇ · E = −m2
Bϕ0 − imB∇ · ϕ, (A1a)

∇ × E = − ∂

∂t
B, (A1b)

∇ · B = 0, (A1c)

∇ × B = ∂

∂t
E − imBE + imB

∂

∂t
ϕ. (A1d)

Here (ϕ, ϕ0) denote the low-energy vector fields of the vector
Bose gases, mB is the mass of the vector Bose gases, E =
−∇ϕ0 − ∂tϕ and B = ∇ × ϕ are the corresponding electric
and magnetic fields, respectively; t is the time parameter. In
Eq. (S1), for explicit correspondence, the particle density ρ

and the current density J of Eq. (5) have been dropped.
Equation (A1d) can be rewritten in the low-energy vector

fields as(
∇2 − m2

Bc2

h̄2

)
ϕ0 + ∇ ·

(
∂

c∂t
ϕ − i

mBc

h̄
ϕ

)
= 0, (A2a)

∇ × ∇ϕ0 = 0, (A2b)

∇ · (∇ × ϕ) = 0, (A2c)

∂2

c2∂t2
ϕ − i

2mB

h̄

∂

∂t
ϕ − ∇2ϕ

+∇
(

∂

c∂t
ϕ0 − i

mBc

h̄
ϕ0 + ∇ · ϕ

)
= 0. (A2d)

In Eq. (A1d), the Planck constant h̄ and the light velocity c
have been restored. Since Eq. (A2b) and Eq. (A2d) are just
the Bianchi identities, only Eq. (A2a) and Eq. (A2c) need to
be analyzed.

First, Eq. (A2a) is discussed. Using the reverse mass
transformation (ϕ0,ϕ) = (φ0,φ)eimBt , where (φ0,φ) are four-
dimensional relativistic vector fields of Eq. (1) in the main
text, Eq. (A2a) changes to(

∇2 − m2
Bc2

h̄2

)
φ0 + ∇ · ∂

c∂t
φ = 0. (A3)
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It should be noted that the Proca equation reads as (∇2 −
∂2

c2∂t2 )φ0 − m2
Bc2

h̄2 φ0 = 0, which leads to Eq. (A2c) becoming

∂

c∂t

(
∂

c∂t
φ0 + ∇ · φ

)
= 0. (A4)

The expression in the bracket of the above equation is just
the expression of the Lorentz gauge of the Proca equation:
∂

c∂t φ0 + ∇ · φ = 0. Therefore, Eq. (A2a) has no dynamic
meaning, it is just the Lorentz gauge which automatically
appears in the spin-1 fields.

Next, in Eq. (A2c), since the first term of Eq. (A2c) is
in c−2 order and it is the smallest term comparing to others,
this term can be neglected in nonrelativistic approximation. It
should also be noted that the Lorentz gauge of the Proca equa-
tion can be expressed as ∂

c∂t ϕ0 − i mBc
h̄ ϕ0 + ∇ · ϕ = 0, leading

to Eq. (A2c) becoming

ih̄
∂

∂t
ϕ = − h̄2

2mB
∇2ϕ, (A5)

where the above equation is a Schrödinger equation of the
vector fields ϕ.

To correspond Eq. (A2a) to the Schrödinger equation of
spin-1 Bose gases described by the spinor wave functions,
Eq. (A2a) should be rewritten in the Sz representation of spin-
1, where Sz = diag(1, 0,−1) is the third spin component. The
spin operators of the vector fields read as Sk = ∫

d3xεi jkG∗
i4φ j ,

where G∗
i4 are four-dimensional relativistic tensor fields of

Eq. (1) in the main text, i, j, k are space indices. Therefore, in
the nonrelativistic approximation, the third spin component is
written as

Sz = imBc
∫

d3x(ϕ∗
2ϕ1 − ϕ∗

1ϕ2)

=
∫

d3x(ψ∗
+, ψ∗

0 , ψ∗
−)

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

⎛
⎝ψ+

ψ0

ψ−

⎞
⎠,

(A6)

in which ψ± = √mBc
2 (ϕ1 ∓ iϕ2), ψ0 = √

mBcϕ3.
In Eq. (A6), the wave function � = (ψ+, ψ0, ψ−)T is just

the spinor wave function describing spin-1 Bose gases, using
this wave function, Eq. (A5) can be written to

ih̄
∂

∂t
� = − h̄2

2mB
∇2�. (A7)

This is just the Schrödinger equation of spin-1 Bose gases
described by spinor wave functions. Therefore, the motion

equations of the vector Bose gases correspond to the motion
equations of the nonrelativistic spin-1 Bose gases.

APPENDIX B: THE MEISSNER EFFECT IN THE
SCHRÖDINGER FORMALISM

The Meissner effect of the vector Bose gases is described
by Eq. (6) in the main text

∂2

∂t2
Re(B) + 2mB

∂

∂t
Im(B) − ∇2Re(B) + λ−2Re(B) = 0,

(B1)
where λ is the penetration length of the superfluids and
Re(B)[Im(B)] is the real (imaginary) part of B. If B = ∇ × ϕ

is substituted to the above equation, then the Planck constant
h̄ and the light velocity c are restored, we have

∂2

c2∂t2
ϕ − i

2mB

h̄

∂

∂t
ϕ − ∇2ϕ + λ−2ϕ = 0. (B2)

Neglecting the first term of the above equation for its c−2

order, Eq. (B2) changes to

ih̄
∂

∂t
ϕ = − h̄2

2mB
∇2ϕ + h̄2λ2

2mB
ϕ. (B3)

Equation (B3) is the Schrödinger formalism of the Meissner
effect, which also demonstrates that the neutral vector Bose
gases can generate the Meissner effect when interacting with
superfluids.

Taking the ansatz of the vector fields as ϕ = ϕ0 exp(−k ·
x − iωt ), where ϕ0 is the amplitude, k is the wave vector,
and ω is the real frequency, then substituting the ansatz into
Eq. (B3), at the critical point k = 0, we obtain

ω = λ−2

2mB
. (B4)

This is the destroying energy expressed by Eq. (8) in the main
text. The form of Eq. (B4) is a well-known classical kinetic
energy expression, which results from the nonrelativistic ap-
proximation that the kinetic energy is much smaller than the
mass energy. This approximation is the primary assumption
that allows the square term of the time derivative in Eq. (A2c)
and Eq. (B2) to be neglected.
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