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We study the effect of the triplet proximity effect on Josephson transport in superconductor/half-
metal/superconductor structures of atomic thickness beyond the quasiclassical approximation. Using the
combination of microscopic Gor′kov formalism and tight-binding model we show that the full spin polarization
inside the half-metal give rise to nonmonotonic temperature dependence of the critical current in S/HM/S
Josephson junction with two spin active S/HM interfaces. We also calculate the magnetic moment inside
the S2 layer in S1/HM/S2 structure with spin-active S1/HM interface, which is induced by the spin-triplet
superconducting correlations. Finally, we analyze the second-harmonic generation in S1/HM/S2 structure with
one spin-active interface.

DOI: 10.1103/PhysRevB.103.224510

I. INTRODUCTION

Spin-polarized superconducting states are the subject of
intense research since they are promising for application in
the devices of superconducting spintronics combining the spin
and current degrees of freedom [1]. The basic system that
supports such states consists of s-wave superconductor (S)
and several ferromagnets (F) [2–4]. The magnetization in-
side ferromagnets transforms spin-singlet Cooper pairs with
total spin s = 0 to the spin-triplet ones with s = 1. Note
that collinear magnetic configuration produces only super-
conducting correlations with spin projection sz = 0, while
the spin polarized equal spin triplet correlations (sz = ±1)
are produced by noncollinear magnetization distribution [2].
An important feature of these spin-triplet correlations is their
insensitivity to the exchange field parallel to spin-quantization
axes [2,5]. As a result, they become long-ranged and decay at
distances of the order of the superconducting coherence length
in a normal metal ξn = √

Dn/2πT , while the correlations with
sz = 0 decay faster, namely, at the scale of the superconduct-
ing coherence length in a ferromagnet ξ f = √

D f /h, where
Dn and D f are diffusion coefficients in a normal metal and a
ferromagnet, respectively, and h is the exchange field.

During the past decade the focus of research of long-
ranged triplet superconducting correlations is moving towards
heterostructures containing half-metals (HM)—strong ferro-
magnets, in which the exchange field is of the order of the
Fermi energy [6,7]. As a result, the electron density of states
is large for spin-up band, while for spin-down one it is almost
zero. Thus, only the spin-triplet correlations can penetrate
into half-metals, while the amplitude of another correlations
should tend to zero at the interface with HM [8]. This makes

the superconducting hybrid structures containing HMs very
convenient platforms for studying long-ranged triplet super-
conducting correlations separately from other effects. The
recent advances in fabrication of the structures containing a
half-metal resulted in the breakthrough experiments, where
the long-ranged Josephson transport [9,10] and the triplet
spin-valve effect [11] were observed. Moreover, the exper-
imental evidence of triplet-proximity effect were reported
in vertical heterostructures with the high-Tc superconductor
YBCO and half-metallic LSMO [12,13], which strongly sug-
gest the triplet generation due to the spin-active interfaces
[14,15].

The theoretical description of proximity effect with half-
metals meets the fundamental problem due to inapplicability
of the quasiclassical approximation, which is widely used
for the “weak” ferromagnets both in dirty and clean limits
[3,4]. This approximation is justified when the density of
states in all layers is basically the same. Such assumption is
fulfilled in the heterostructures containing “weak” ferromag-
nets (e.g., CuNi and PdFe), but fails when one deals with
strong ferromagnets, where the density of states for spin-up
electrons is much larger than for the spin-down ones. To
overcome this difficulty one may introduced the quasiclassical
Green functions separately inside and outside of half-metal
and then match them with some sort of boundary conditions.
The generic form of such boundary conditions for the Us-
adel Green functions in the dirty limit strongly depends on
the number of phenomenological parameters controlling the
spin-dependent electron tunneling at the HM boundaries and
the results appear to be rather cumbersome [16]. The applica-
tion of the so-called adiabatic approximation allows to make
the boundary conditions more transparent [17]. However, the
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applicability of the resulting theory is restricted to the case
of the slowly varying exchange field, which is not the case of
the wide range of superconducting heterostructures containing
half-metals where the exchange field reveals the jumps at
the atomic length scales. Similar variants of the boundary
conditions were derived in the frames of the Keldysh theory
[18,19]. Another approach is based on Bogolubov-De Gennes
[20–27] or Blonder-Tinkham-Klapwick [1,28–30] equations.
However, the analysis of these models typically requires nu-
merical simulations, and allows one to obtain the exact results
only for the specific system parameters. Thus, up to now
there is no commonly accepted theory for the proximity effect
with half-metals providing an analytical description of this
phenomenon.

While the spin-singlet superconducting correlations are
well studied, the spin-triplet ones can demonstrate unexpected
behavior. For example, in the recent experimental studies of
spin-triplet S/FL/S′/FR/S device it was observed that the
emergence of singlet superconductivity in the central S′ layer
leads to the decrease of the Josephson current [31]. This
situation is very different from one in spin-singlet S/S′/S
structures, where the emergence of superconductivity in the S′
layer increases the spin-singlet Josephson current. To explain
this puzzling experiment we have calculated the Joseph-
son current in atomically thin S/HML/S′/HMR/S structure
with spin-active S/HML,R interfaces in the framework of mi-
croscopic Gor′kov formalism and tight-binding model. We
managed to show that the singlet superconducting gap in the
S′ layer indeed suppresses the triplet Josephson current [31]
contrary to the case of singlet current in S/S′/S structure. One
can expect that the spin-triplet superconducting correlations
would manifest themselves in other observable properties
even in simpler structures. Note that some aspects of the
interplay between triplet and singlet correlations were studied
theoretically in Refs. [4,32–34].

In the present paper, we study the peculiarities of supercon-
ducting spin-triplet correlations in atomically thin S1/HM/S2

structures with spin-active S/HM interfaces. We use the
combination of the microscopic Gor′kov formalism and tight-
binding model allowing to obtain exact analytical results,
which are valid beyond the quasiclassical approximation
[35–39]. In particular, we show that the spin-triplet Josephson
critical current in S1/HM/S2 junction with two spin-active
S/HM interfaces nonmonotonically depends on temperature.
Note that this peculiar temperature dependence of the critical
current has nothing to do with the temperature anomalies of
the critical current in the vicinity of 0 − π transition in S/F/S
systems. We also calculate the induced magnetic moment in-
side S2 superconductor in the S1/HM/S2 structure with strong
ferromagnet as an insulating layer and spin-active S1/HM
interface, which supports spin-triplet superconducting corre-
lations. We show that the induced magnetic moment contain
the components perpendicular to the spin-quantization axis
(z axis) in HM. Moreover, the magnetic moment depends on
the phase difference across the junction ϕ as Mx = m cos ϕ,
My = m sin ϕ. Previously, the magnetic moment induced in
the superconductor was calculated for various S/F hybrids
with “weak” ferromagnets (the exchange field is much smaller
than the Fermi energy) and collinear magnetic configura-
tion producing only the superconducting correlations with

spin-singlet and triplet spin states with zero-spin projection
[40–46]. In these cases, obviously, the induced magnetic mo-
ment appeared to be collinear to the exchange field in the F
layer. Contrary to our results (Mx = m cos ϕ, My = m sin ϕ),
in Refs. [44,45] nonsinusoidal dependence Mz(ϕ) in S/F hy-
brids with “weak” ferromagnets was obtained. The induced
magnetic moment in hybrids with spin-triplet superconduct-
ing correlations was studied in Refs. [32,47] in the framework
of Usadel and BdG equations, respectively. Contrary to our
study, in Ref. [47] it was obtained that the component of the
induced magnetic moment perpendicular to S/F interfaces
is absent. We believe that it could be related with the fact
that we consider the situation that is outside of the range
of the applicability of the quasiclassical Usadel approach
used in this paper for the calculation of the induced mag-
netic moment. At the same time, in Ref. [32], S/F/S/F/S
structure was considered and the nonsinusoidal dependence
of the magnetic moment induced on the central S layer
on the phase difference across the structure was obtained.
Since the magnetic moment appeared in S1 layer is not
collinear to the spin-quantization axis in HM and depends
on the phase difference across the junction, one can expect
the emergence of the second harmonic of the spin-triplet
superconducting current in the structure. However, we show
that it is not the case and the second harmonic does not
appear. We may speculate that some Fermi-liquid effects
[48,49] (for example, the electron-electron interaction) and/or
multiband character of superconductivity should restore the
second-harmonics triplet current. The electron band not in-
volved in superconductivity could acquire a magnetic moment
due to the interband interaction, which can serve as a source
of “external” magnetism for superconductivity.

The paper is organized as follows. In Sec. II, we in-
troduce the model and calculate the critical current in
S1/HM/S2 Josephson junction with both spin-active inter-
faces. In Sec. III, we calculate the induced magnetic moment
of S2 layer the structure with spin-active S1/HM interface and
analyze the possibility of the second-harmonic generation. In
Sec. IV, we summarize our results.

II. NONMONOTONIC TEMPERATURE DEPENDENCE
OF JOSEPHSON CURRENT IN S/HM/S STRUCTURE

We consider S1/HM/S2 Josephson junction consisting of
atomically thin superconducting layers separated by the half-
metal, see Fig. 1. We assume both S/HM interfaces to be
spin-active and model it by introducing the superconduct-
ing ferromagnets (SFi), in which both the superconducting
gap and the exchange field hi (i = 1, 2) are nonzero. We
assume noncollinear magnetization configuration in the sys-
tem, which gives rise to the emergence of the spin-triplet
superconducting correlations. Due to the strong spin polariza-
tion in half-metals, spin-singlet Cooper pairs cannot penetrate
through them and only the spin-triplet correlations are respon-
sible for Josephson transport.

We denote the superconducting gaps in SF1 and SF2 layers
as �1 = �0eiϕ/2, �2 = �0e−iϕ/2. Thus, the phase difference
across the junction equals to ϕ. We choose y axis to be
perpendicular to the layers. The spin-quatization axes in the
half-metal coincides with the z axis, while the exchange field

224510-2



EFFECT OF SPIN-TRIPLET CORRELATIONS ON … PHYSICAL REVIEW B 103, 224510 (2021)

FIG. 1. The sketch of S1/HM/S2 stricture of atomic thickness
with the spin-active Si/HM interfaces, which are modeled by intro-
ducing the superconducting ferromagnets SF1 and SF2. The layers
are coupled by the transfer integrals t1 and t2 of the tight-binding
model.

in SFi layer forms the angle θi with z axis: hi = hi(cos θiz +
sin θix). The quasiparticle motion inside the layers is charac-
terized by the momentum p, while the layers are coupled by
the transfer integrals ti, i = 1, 2 of tight-binding model. We as-
sume that ti � Tc1. In addition, we assume that the interlayer
tunneling conserves the momentum. The energy spectrum in
the superconductors is ξ (p), while in the half-metals it is
spin-dependant: ξ↑ = ξ (p) and ξ↓ = +∞.

Let us denote the electron annihilation operators in SF1,
HM, and SF2 layers as φ̂, ψ̂ , and η̂, respectively. The Hamilto-
nian of the system under consideration consists of three parts:

Ĥ = Ĥ0 + ĤBSC + Ĥt . (1)

The first term Ĥ0 describes the electron motion in each
isolated layer:

Ĥ0 =
∑

p;β,γ=↑,↓
Â(1)

βγ φ̂
†
p,β φ̂p,γ + P̂βγ ψ̂

†
p,βψ̂p,γ + Â(2)

βγ η̂
†
p,β η̂p,γ .

(2)

The second term is the Bardeen-Cooper-Shriffer Hamilto-
nian of two superconductors:

ĤBCS =
∑

p

�1φ̂
†
p,↑φ̂

†
−p,↓ + �∗

1φ̂−p,↓φ̂p,↑

+�2η̂
†
p,↑η̂

†
−p,↓ + �∗

2η̂−p,↓η̂p,↑. (3)

The last term in Eq. (2) describes the tunneling between the
neighboring layers:

Ĥt =
∑
p;β

t1(ψ̂†
p,β φ̂p,β + φ̂

†
p,βψ̂p,β ) + t2(η̂†

p,βψ̂p,β + ψ̂
†
p,β η̂p,β ).

(4)

We introduce the matrices

Â(i) =
(

ξ − hi cos θi −hi sin θi

−hi sin θi ξ + hi cos θi

)
,

P̂ =
(

ξ 0
0 ∞

)
. (5)

In the model under consideration with the transfer integrals
between the layers, the current density jy is proportional to
the time derivative of the averaged particle number operator
in SF1, HM, or SF2 layer. Thus, jy can be expressed via
the Fourier component of the off-diagonal Matsubara Green
function [50]. Note that since the current through the structure
is conserved we can use any of off-diagonal Green func-
tions. Without loss of generality, let us consider the function
Eφ

αβ (p; τ1, τ2) = −〈Tτ φ̂p,α (τ1)ψ̂†
p,β (τ2)〉. Then the currents

reads:

jy = −2eν0t1T Im
∞∑

ω=−∞

∫ ∞

−∞
dξEφ

αα (p; ω). (6)

Here e > 0 is the electron charge and ν0 is the electron density
of states at the Fermi level.

To find Eφ , we introduce the following set of the Green
functions in the imaginary-time representation:

Gαβ (p; τ1, τ2) = −〈Tτ ψ̂p,α (τ1)ψ̂†
p,β (τ2)〉,

F †
αβ (p; τ1, τ2) = 〈Tτ ψ̂

†
−p,α (τ1)ψ̂†

p,β (τ2)〉,

Eφ

αβ = −〈Tτ φ̂p,αψ̂
†
p,β〉, Fψ†

αβ = 〈Tτ φ̂
†
−p,αψ̂

†
p,β〉,

Eη

αβ = −〈Tτ η̂p,αψ̂
†
p,β〉, F η†

αβ = 〈Tτ η̂
†
−p,αψ̂

†
p,β〉.

Following the usual procedure (see Ref. [51]), we write
down the system of the matrix Gor′kov equations in the fre-
quency representation:

(iω − P̂)G − t1Eφ − t2Eη = 1̂,

(iω + P̂)F + t1Fφ† + t2F η† = 0,

[iω − Â(1)]Eφ + �1 ÎFφ† − t1G = 0,

[iω + Â(1)]Fφ† − �∗
1 ÎEφ + t1F † = 0,

[iω − Â(2)]Eη + �2 ÎF η† − t2G = 0,

[iω + Â(2)]F η† − �∗
2 ÎEη + t2F † = 0,

where Î = iσy.
Solving the above system of equations one can find the

exact expression for Eφ (see Appendix A). Making the ex-
pansion up to third order over t � T , we find (for details see
Appendix A) Eψ

22(p; ω) = 0 and

Im[Eφ

11(p; ω)] = Im

{
− �1�

∗
2t1t2

2

(iω + ξ )(iω − ξ )

[(
(iω + A(2) ) + �2

0 Î (iω − A(2) )−1 Î
)−1

Î (iω − A(2) )−1
]

11

× [(
(iω − A(1) ) + �2

0 Î (iω + A(1) )−1 Î
)−1

Î (iω + A(1) )−1
]

11

}
. (7)
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FIG. 2. The dependence of the spin-triplet critical current jcr on
the temperature. Here j0 = −8eν0t2

1 t2
2 h2sinθ1 sin θ2.

As a result, we obtain

Im
∞∑

ω=−∞

∫ ∞

−∞
dξEφ

11(p; ω)

=
∑
ω>0

4πt1t2
2 h2ω2 sin ϕ sin θ1 sin θ2

�2
0

[
2

ω
− 2ω2 + 3�2

0(
ω2 + �2

0

)3/2

]
.

(8)

Substituting Eq. (8) into Eq. (6) we finally find jy =
jcr sin ϕ, where

jcr =
∑
ω>0

−8πeν0t2
1 t2

2 h2T ω2

�2
0

[
2

ω
− 2ω2 + 3�2

0(
ω2 + �2

0

)3/2

]

× sin θ1 sin θ2. (9)

The spin-polarized triplet critical current nonmonotoni-
cally depends on the temperature, as shown in Fig. 2. This
situation is different from the one in Josephson junctions with
normal metal or weak ferromagnets as an insulating layer,
where the current is not spin polarized and monotonically
increases with decrease of temperature. Similar nonmono-
tonic dependence was obtained in Refs. [52–55] for the triplet
supercurrent although the half-metallic Josephson junction
with spin-active interfaces in the framework of Usadel equa-
tions. Thus, it seems that the nonmonotonic dependence of
the critical current is inherent for Josephson junctions with
spin-polarized triplet supercurrents and does not depend on
the model.

For T ∼ Tc and t1 = t2 = t we obtain the following critical
current:

jcr = − j

(
t

Tc

)4( h

Tc

)2(
�0

Tc

)2(Tc

T

)2

× sin θ1 sin θ2, (10)

where j = [−21ζ (3)eν0T 6
c ]/π2.

At the same time, for T � Tc, where �0 � T we find

jcr = −4eν0t4h2 sin θ1 sin θ2. (11)

FIG. 3. The sketch of atomically thin SF/HM/S structure.

III. MAGNETIC MOMENT OF
SUPERCONDUCTING LAYER

In S1/HM/S2 structure of atomic thickness with the
spin-active HM/S2 interface (see Fig. 3) the induced magnetic
moment appears in S1 layer. This magnetic moment depends
on the phase difference ϕ across the junction and has the
out-of-plane component My; below we calculate it. The
magnetic moment M is expressed via the Fourier component
of diagonal Green function G̃αβ = −〈Tτ φ̂p,αφ̂

†
p,β〉 in S layer as

Mx = μBν0T
∞∑

ω=−∞

∫ ∞

−∞
dξ (G̃21 + G̃12), (12)

My = −iμBν0T
∞∑

ω=−∞

∫ ∞

−∞
dξ (G̃21 − G̃12), (13)

Mz = μBν0T
∞∑

ω=−∞

∫ ∞

−∞
dξ (G̃11 + G̃22), (14)

where μB is the Bohr magneton.
To find G̃αβ we introduce the set of imaginary time Green

functions:

G̃αβ = −〈Tτ φ̂p,αφ̂
†
p,β〉, F̃ †

αβ = 〈Tτ φ̂
†
−p,αφ̂

†
p,β〉

Ẽψ

αβ = −〈Tτ ψ̂p,αφ̂
†
p,β〉, F̃ψ†

αβ = 〈Tτ ψ̂
†
−p,αφ̂

†
p,β〉,

Ẽη

αβ = −〈Tτ η̂p,αφ̂
†
p,β〉, F̃ η†

αβ = 〈Tτ η̂
†
−p,αφ̂

†
p,β〉.

Following the usual procedure we write down the
system of matrix Gor′kov equations in the frequency
representation:

(iω − ξ )G̃ + �1 Î F̃ † − t1Ẽψ = 1̂,

(iω + ξ )F̃ † − �∗
1 Î G̃ + t1F̃ψ† = 0,

(iω − P̂)Ẽψ − t1G̃ − t2Ẽη = 0,

(iω + P̂)F̃ψ† + t1F̃ † + t2F̃ η† = 0,

(iω − Â)Ẽη + �2 Î F̃ η† − t2Ẽψ = 0,

(iω + Â)F̃ η† − �∗
2 Î Ẽη + t2F̃ψ† = 0,

where

Â =
(

ξ − h cos θ −h sin θ

−h sin θ ξ + h cos θ

)
. (15)
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As a result, we find the sought-for Green function G̃α,β (for
details see Appendix B):

G̃11 = − iω + ξ

ω2 + ξ 2 + �2
0 + t2

1 (iω + ξ )γ
, (16)

G̃22 = − iω + ξ − t2
1 δ

ω2 + ξ 2 + �2
0 + t2

1 (iω − ξ )δ
, (17)

G̃12 = −�∗
1�2α2t2

1 t2
2 (iω + ξ )(

ω2 + ξ 2 + �2
0

)2 , (18)

G̃21 = �1�
∗
2α1t2

1 t2
2 (iω + ξ )(

ω2 + ξ 2 + �2
0

)2 . (19)

Here we introduce the notations: α1,2 = d1,2/[(iω − ξ )
(iω + ξ )], d1 = [D̂Î (iω − Â)−1]11, d2 = [(iω − Â)−1 Î D̂]11,
γ = (iω − ξ − t2

2 b1)−1, δ = (iω + ξ − t2
2 a1)−1, a1 = D̂11,

b1 = [(iω − Â)−1B̂]11,

D̂ = [
(iω + Â) + �2

0 Î (iω − Â)−1 Î
]−1

,

B̂ = 1̂ + �2
0 Î D̂Î (iω − Â)−1.

Calculating the magnetic moment, we obtain that Mz ∝
O(�2

0), while Mx and My depend on the phase difference
across the junction,

Mx = m cos ϕ, My = −m sin ϕ, (20)

m =
∑
ω>0

−πμBν0T t2
1 t2

2 �2
0h(3h4 + 35h2ω2 + 140ω4) sin θ

8ω3(h2 + ω2)(h2 + 4ω2)3
.

(21)

The magnetic moment induced by the long-ranged triplet
correlations in S/F′/F/S junctions was studied in Ref. [47] in
the framework of quasiclassical Usadel equations. Similarly
to our results, Eq. (20), the induced moment Mx ∼ cos ϕ

was predicted, but not the component My. We believe that
this circumstance may be related with the inaccuracy of the
Usadel approach for the calculation of the induced electron
magnetization.

The appearance of the phase-sensitive magnetization in the
absence of the Josephson current may be considered as a
presence of the long-range spin current [56] due to spin-triplet
superconducting correlations.

To control the applied phase difference we could use the
usual Josephson junction, connected at parallel. Changing the
applied Josephson phase (or the Josephson current through
this junction), one may vary the magnetization of S layer.
In such a way, it would be possible to couple the phase
oscillations of the Josephson current with the oscillations of
the electron’s magnetization. For h ∼ Tc and t ∼ Tc we may
estimate the phase-dependent electron polarization as m ∼
μBν0h. If some part of the S electrode contains the magnetic
atoms, the induced electron’s magnetization should polarize
them. Assuming the typical value of the exchange interaction
between electron spin and the localized moment I ∼ 103 K
and taking h ∼ Tc ∼ 10 K, we may estimate that the electron’s
magnetization is equivalent to the magnetic field of 0.1 T.

Note that since triplet superconducting correlation pro-
duces the magnetic moment M with nonzero Mx and My

projections in the S layer, one can expect the emergence
of triplet superharmonic Josephson current in the SF/HM/S
structure through the mechanism similar that discussed in
Ref. [57]. Indeed, the calculations performed in the previous
section show that in SF1/HM/SF2 structure the Josephson
current has the form jy ∝ h1xh2x sin ϕ. At the same time, in
SF/HM/S structure one can assume hx ∝ Mx ∝ cos ϕ. As
a result, one obtains jy ∝ sin 2ϕ, i.e., one can expect the
generation of the Josephson current on the second harmonic.
However, careful analysis shows that it is not the case and
Josephson current is absent (for details see Appendix B).
We expect that Fermi-liquid effects [48,49] (for example,
the electron-electron interaction) and/or multiband character
of superconductivity should restore the second harmonic of
triplet current.

IV. CONCLUSIONS

To sum up, we have studied the properties of spin-triplet
superconducting correlations in atomically thin S1/HM/S2

structures with one or two spin-active interfaces. We used
the combination of microscopic Gor′kov formalism and tight-
binding model, which allows to obtain analytical results
beyond the quasiclassical approximation. We have shown that
in S1/HM/S2 structure with two spin-active interfaces (see
Fig. 1), the triplet Josephson current nonmonotonically de-
pends on the temperature (see Fig. 2). We expect that this
property is inherent to triplet current and does not depend
on the specific model. In S1/HM/S2 structure with one spin-
active S1/HM interface (see Fig. 1) we have calculated the
magnetic moment induced by the triplet superconducting cor-
relations in S layer and show that it is noncollinear to the
spin-quatization axis in HM and depends on the phase dif-
ference across the junction. The emergence of this magnetic
moment does not cause the appearance of the Josephson cur-
rent on the second harmonic in the framework of standard
BCS theory.
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APPENDIX A: GREEN FUNCTIONS
IN SF1/HM/SF2 STRUCTURE

In this Appendix we present the details of the derivation
of Eq. (7). Solving the system of matrix Gor′kov equations
presented in the main text we obtain the following exact
expressions for the Green functions:

Eφ = t1Q−1
1 [G + �1I (iω + A1)−1F †], (A1)

G = [
1 + S−1

1 S2S−1
4 S3

]−1
S−1

1 , (A2)

F † = −S−1
4 S3G. (A3)
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Here we introduce the following notations:

Q1,2 = (iω − A1,2) + �0I (iω + A1,2)−1I,

M1,2 = (iω + A1,2) + �0I (iω − A1,2)−1I,

S1 = (iω − P) − t2
1 Q−1

1 − t2
2 Q−1

2 ,

S4 = (iω + P) − t2
1 M−1

1 − t2
2 M−1

2 ,

S2 = t2
1 �1Q−1

1 I (iω + A1)−1 + t2
2 �2Q−1

2 I (iω + A2)−1,

S3 = t2
1 �∗

1M−1
1 I (iω − A1)−1 + t2

2 �2M−1
2 I (iω − A2)−1.

Making the expansion up to the forth order over t1, t2
we obtain the following expressions for the Green functions
Ĝ, F̂ †:

G = 1

iω − ξ − t2
1

[
Q−1

1

]
11 − t2

2

[
Q−1

2

]
11

×
(

1 − [S2]11[S3]11

(iω − ξ )(iω + ξ )

)(
1 0
0 0

)
,

(A4)

F † = − [S3]11(
iω + ξ − t2

1

[
M−1

1

]
11

) − t2
2

[
M−1

2

]
11

)×

1(
iω − ξ − t2

1

[
Q−1

1

]
11

) − t2
2

[
Q−1

2

]
11

)(
1 0
0 0

)
.

(A5)

Next we substitute Eqs. (A4) and (A5) into Eq. (A1) and
obtain Eφ up to the third order over t1, t2. The part of Eφ

depending on the phase difference across the junction has the
form of Eq. (7).

APPENDIX B: ABSENCE OF SECOND HARMONIC OF
JOSEPHSON CURRENT IN S/HM/SF STRUCTURE

In this Appendix we show that in SF/HM/S structure the
Josephson current is absent, in spite of the induced magnetic
moment in S layer is nonzero. Solving the system of matrix

Gor′kov equations presented in Sec. III we obtain the anoma-
lous and normal Green functions in S layer:

F̃ † = {[
(iω − ξ ) − t2

1V
][

�∗
1I + t2

1 t2
2 �∗

2QDI (iω − A)−1V
]−1

× [
(iω + ξ ) − t2

1 QW
] + �1I

+ t2
1 t2

2 �2V I (iω − A)−1IDQ
}−1

, (B1)

G̃ = [
�∗

1I + t2
1 t2

2 �∗
2QDI (iω − A)−1V

]−1

× [
(iω + ξ ) − t2

1 QW
]
F̂ †. (B2)

Here we introduced the following matrices:

Q = [
(iω + P) − t2

2 D
]−1

, (B3)

V = [
(iω − P) − t2

2 B̃
]−1

, (B4)

B̃ = (iω − A)−1
[
B − |�2|2t2

2 IDQDI (iω − A)−1
]
, (B5)

W = 1 − t4
2 |�2|2DI (iω − A)−1V (iω − A)−1IDQ. (B6)

The matrices I , A, P, D, and B are presented in the main text.
Next we find the exact expressions for the following matri-

ces:

Q = 1

iω + ξ − t2
2 a1

(
1 0
0 0

)
, (B7)

V = 1

iω − ξ − t2
2 b̃1

(
1 0
0 0

)
, (B8)

iω + ξ − t2
1 QW =

(
iω + ξ − t2

1 δ 0
0 iω + ξ

)
, (B9)

where a1 = D11, b̃1 = B̃11,

δ = 1 − pt4
2 |�2|2d1d2

iω + ξ − t2
2 a1

, (B10)

p = 1(
iω + ξ − t2

2 a1
)(

iω − ξ − t2
2 b̃1

) . (B11)

The parameters d1 and d2 are presented in the main text.

Substituting Eqs. (B7), (B8), and (B9) into F̃ † after some transformation we obtain

F̃ † =
[

1

�∗2
1

(
t2
1 t2

2 α̃2�
∗2
1 �2 −�∗

1(iω − ξ − t2
1 γ̃ )(iω + ξ ) + �∗

1|�1|2
�∗

1(iω + ξ − t2
1 δ)(iω − ξ ) − �∗

1|�1|2 t2
1 t2

2 α̃1�
∗
2(iω − ξ )(iω + ξ )

)]−1

, (B12)

where γ̃ = (iω − ξ − t2
2 b̃1)−1, α̃1 = d1 p, α̃2 = d2 p. Substituting Eq. (B12) into Eq. (B2), we obtain all components of the

normal Green function Eqs. (16)–(19), presented in the main text.
Next we can calculate F̃ †

11, G̃11 and obtain the following expressions:

F̃ †
11 = t2

1 t2
2 α̃1(iω + ξ )(iω − ξ )�∗

2[
ω2 + ξ 2 + |�1|2 + t2

1 (iω + ξ )γ̃
][

ω2 + ξ 2 + |�1|2 + t2
1 (iω − ξ )δ

] − t4
1 t4

2 α̃1α̃2|�2|2(ω2 + ξ 2)
, (B13)

G̃11 = − (iω + ξ )
[
ω2 + ξ 2 + t2

1 (iω − ξ )δ
]

[
ω2 + ξ 2 + |�1|2 + t2

1 (iω + ξ )γ̃
][

ω2 + ξ 2 + |�1|2 + t2
1 (iω − ξ )δ

] − t4
1 t4

2 α̃1α̃2|�2|2(ω2 + ξ 2)
. (B14)

At the same time, from the system of matrix Gor′kov equations, presented in the main text, we find the off-diagonal Green
function Ẽψ :

Ẽψ = t1V
[
G − t2

2 �2(iω − A)IDQF †
]
. (B15)
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As the result, we obtain

Ẽψ

11 = t1G̃11(
iω − ξ − t2

2 b̃1
) − t1t2

2 d2�2F̃ †
11(

iω + ξ − t2
2 a1

) , (B16)

Ẽψ

22 = 0. Note that Ẽψ

11 does not depend on the phase difference across the junction ϕ, see Eqs. (B13), (B14), and (B16).
Substituting Eqs. (B13), (B14), and (B16) for Ẽψ

11 and Ẽψ

22 = 0 into Eq. (6), we obtain that the Josephson current is absent,
i.e., jy = 0.
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