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Reentrant superconductivity in proximity to a topological insulator
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Superconducting hybrid structures with topological order and induced magnetization offer a promising way to
realize fault-tolerant quantum computation. However, the effect of the interplay between magnetization and the
property of the topological insulator surface, otherwise known as spin-momentum locking on the superconduct-
ing proximity effect, still remains to be investigated. We relied on the quasiclassical self-consistent approach
to consider the superconducting transition temperature in the two-dimensional superconductor/topological
insulator (S/TI) junction with an in-plane helical magnetization on the TI surface. It has emerged that the
presence of the helical magnetization leads to the nonmonotonic dependence of the critical temperature on the
TI thickness for both cases when the magnetization evolves along or perpendicular to the interface. The results
obtained can be helpful for designing novel superconducting nanodevices and better understanding the nature of
superconductivity in S/TI systems with nonuniform magnetization.
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I. INTRODUCTION

A leakage of the superconducting correlations into a mag-
netic material nearby [1–5] in superconductor/ferromagnet
(S/F) heterostructures can be the reason for various effects
emerging at the interface. For instance, the critical tempera-
ture Tc behaves nonmonotonically as a function of different
system parameters in S/F bilayers with uniform magnetiza-
tion [6] and multilayered S/F spin valves with a magnetization
misalignment in F layers [7]. As it has been revealed the-
oretically by Fominov et al. in the S/F structures, under
certain parameters Tc demonstrates reentrant behavior which
originates from nontrivial dependence of a Cooper-pair wave
function [6]. A similar effect can also result in oscillating
Josephson critical current [8–14], density of states [15,16],
and critical temperature [17–21] in S/F/S junctions.

Currently three-dimensional topological insulators (3D TI)
pertain to a dramatically evolving area of condensed matter
physics due to their potential application in superconduct-
ing nanoelectronics [22–27] and robust quantum computing
[28,29]. There are special topologically protected states on
the surface of the 3D TI that are protected from backscattering
processes by the presence of strong spin-orbit coupling (SOC)
and time-reversal symmetry (TRS) in such materials. These
surface electrons possess spin-momentum locking proper-
ties, i.e., their spin and momentum directions are aligned
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perpendicular to each other. Combination of a topological
insulator and superconductor in a hybrid structure creates re-
markable quantum properties [30]. For example, zero-energy
Majorana modes can arise in these structures in the presence
of an external magnetic field or a magnetic moment of an
adjacent ferromagnet [31–38].

The proximity effect and symmetry properties of the su-
perconducting correlations induced on the TI surface [38–42]
as well as the impact of the effective magnetization pres-
ence in S/TI hybrids have been thoroughly studied [32,43].
There is currently a continuous concern for treating SOC
effects in layered structures including S/TI systems in terms
of the quasiclassical Green’s functions [44–53]. Recently, the
generalized quasiclassical theory was elaborated for a two-
dimensional system with a strong SOC and exchange field
[54]. Within the quasiclassical methods it has been found by
Alidoust and Hamzehpour that a spontaneous supercurrent
can flow in a Josephson junction where magnetized supercon-
ductors are weakly linked through the conducting surface of
3D TI [55].

According to the theory advanced by Zyuzin et al. in Ref.
[56], there are no Josephson critical current oscillations in
hybrid S/TI/S structures with a uniform in-plane field in the
TI layer. At the same time, oscillations of the critical current
are predicted in the junction where the TI surface with helical
magnetization serves as a weak link. It is known that the
presence of 0 − π phase transitions in the critical supercurrent
may imply nontrivial critical temperature behavior and even
the reentrance of Tc in the S/TI junction as in common S/F
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FIG. 1. (a) Schematic of a 3D topological insulator (TI)-superconductor (S) junction with a proximity-induced helical magnetization
pattern. The magnetization vector is given by h(y) = h0(cos Qy, sin Qy, 0) (b) and h(x) = h0(cos Qx, sin Qx, 0) (c). The junction resides in the
x − y plane, and the S/TI interface lies in the y direction at x = 0. dn and ds are the thicknesses of TI and S layers, respectively, while Wf is
the width of the junction.

bilayers [6,57,58]. Therefore the study of the Tc in the hybrids
with both spin-orbit coupling and helical magnetization is
essential for further understanding of superconductivity in the
vicinity of the S/TI interface. Furthermore, the problem under
consideration can be significant for engineering spin valves
and other devices in superconducting nanoelectronics.

In the present work we aim to provide quantitative re-
search of the critical temperature in the S/TI hybrid structure
as a function of its parameters employing the quasiclassical
Green’s function approach. The helical magnetization pattern
under consideration is similar to those previously studied in
S/F bilayers with nonuniform spiral magnets [57–59]. Such
hybrid systems consisting of superconducting layers and spi-
ral magnets are important for spintronic applications, since
reorientation of the spiral direction can be used as a method of
spin-valve control [60–62]. However, the nature of the effects
in the structure considered is different, since they are caused
not only by an in-plane helical magnetization pattern but also
by the spin-orbit coupling.

The paper is organized as follows. In Sec. II we discuss the
theoretical model and basic equations for the cases when the
helical magnetization evolves along or perpendicular to the
S/TI interface. In Sec. III we present the results of the critical
temperature calculations using the single-mode approxima-
tion. Finally, we point out concluding remarks in Sec. IV.

II. MODEL

In this work we consider the 2D nanostructure, which is
depicted in the Fig. 1. It consists of superconductor S of
thickness ds and topological insulator (TI) of thickness dn with
proximity-induced helical magnetization patterns. The surface
states of the TI layer are described by the Hamiltonian

Ĥ (r) = α( p̂ × êz ) · σ̂ + h(r) · σ̂ − μ. (1)

Here α is the Fermi velocity, p̂ is the momentum operator,
êz is the unity vector along the z axis, h(r) is the magnetization
pattern, σ̂ is a vector comprised of the Pauli matrices acting
on the spin degree of freedom, and μ is the chemical potential
in the system. We consider the following types of helical
magnetization patterns:

h(y) = h0(cos Qy, sin Qy, 0), (2)

h(x) = h0(cos Qx, sin Qx, 0), (3)

where Q = 2π/λ, and λ determines the actual pattern of heli-
cal magnetization. It is important to note that we consider the
variations of the magnetization h in the x − y plane. Similar
helical patterns with a period λ ≈ 10 nm was observed ex-
perimentally in manganese on a tungsten substrate [63]. The
orientation of the structure is along the x direction. In order to
observe the inverse proximity effect, the superconductor must
be two-dimensional. Such disordered homogeneous supercon-
ducting 2D films can be obtained with the help of modern
deposition techniques [64].

To calculate the critical temperature Tc(dn) of this struc-
ture, we assume the diffusive limit, when the elastic scattering
length � is much smaller than the coherence length [65],
and use the framework of the linearized Usadel equations for
the S and TI layers in Matsubara representation [66,67]. We
perform the calculations in the low-proximity limit, expanding
the Green’s function around the bulk solution,

ĝ =
(

sgnωn f
− f ∗ −sgnωn

)
, (4)

where f ∗ is the complex conjugation of the function f . Such
a limit is experimentally feasible and can be easily achieved
in the vicinity of the superconducting critical temperature Tc

or in a hybrid structure with low transparent interfaces.

A. Helical magnetization h(y)

In this section we establish the equations for the magne-
tization pattern evolving along the S/TI interface indicated
in Eq. (2), i.e., in y direction. Since the low-proximity limit
is assumed, near Tc the normal Green’s function in a super-
conductor is gs = sgnωn, and the Usadel equation for the
anomalous Green’s function fs takes the following form. In
the S layers (0 < x < ds) it reads

ξ 2
s πTcs

(
∂2

∂x2
+ ∂2

∂y2

)
fs − |ωn| fs + 
 = 0. (5)

In the TI layer we consider the Usadel equation derived in
Ref. [56], where fT is the anomalous Green’s function in the
TI layer,(

∂

∂x
− 2i

α
hy(y)

)2

fT +
(

∂

∂y
+ 2i

α
hx(y)

)2

fT = |ωn|
ξ 2

n πTcs
fT .

(6)
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Since we consider the dirty limit, the spinless Green’s
function matrix ĝs is used in our calculations, whereas the spin
texture is contained in the matrix ǧ(nF ) = ĝ(1 + η̂ · nF )/2,
where nF = pF /pF , η̂ = (−σ2, σ1), and σi are the Pauli matri-
ces. The spin-momentum locking effect can be seen from the
spin matrix ǧ, so that spin and momentum are always fixed
at the right angle. Finally, the self-consistency equation reads
[66]


 ln
Tcs

T
= πT

∑
ωn

(



|ωn| − fs

)
. (7)

In Eqs. (5)–(7) ξs = √
Ds/2πTcs, ξn = √

Dn/2πTcs, ωn =
2πT (n + 1

2 ), where n = 0,±1,±2, . . . are the Matsubara fre-
quencies, Tcs is the critical temperature of the superconductor
S, and fs(T ) denotes the singlet components of the anomalous
Green’s function in the S(TI) region (we assume h̄ = kB = 1).

As long as our 2D system is periodic in y direction and
large values of the helical magnetization parameter Q are
considered such that λ � Wf , we can expand the anomalous
Green’s functions using the Fourier series. The function fT

can then be written as

fT (x, y) =
+∞∑

p=−∞
f (p)
T (x)eipQy. (8)

The Usadel equation in the TI layer for the amplitudes f (p)
T

then takes the following form:(
∂

∂x
− 2i

α
hy(y)

)2

f (p)
T − p2Q2 f (p)

T − 4pQhx (y)

α
f (p)
T

=
( |ωn|

ξ 2
n πTcs

+ 4h2
x (y)

α2
− 2ih′

x(y)

α

)
f (p)
T , (9)

where h′
x(y) is a derivative of hx along the y direction. In the S

layer the singlet function fs as well as 
 can be also expanded
into the Fourier series,

fs(x, y) =
+∞∑

p=−∞
f (p)
s (x)eipQy, (10)


(x, y) =
+∞∑

p=−∞

(p)(x)eipQy. (11)

The amplitudes f (p)
s obey the following equation:

ξ 2
s

(
∂2 f (p)

s

∂x2
− p2Q2 f (p)

s − |ωn|
ξ 2

s πTcs
f (p)
s

)
+ 
(p)

πTcs
= 0. (12)

The self-consistency equation for the Fourier amplitudes in
the superconductor can be written as


(p) ln
Tcs

T
= πT

∑
ωn

(

(p)

|ωn| − f (p)
s

)
. (13)

From the equations above, it is clear that the amplitudes
of the Fourier series are decoupled in the vicinity of the
critical temperature. Therefore each Fourier component p sat-
isfies certain Usadel equations and the boundary conditions.
Moreover, every single Fourier harmonic p of the anomalous
Green’s function f (p)

s and pair amplitude 
(p) determines par-
ticular Tc through the corresponding gap equation. However,

the physical solution is the one which gives the highest critical
temperature Tc, i.e., the solution is energetically favorable.

We also need to supplement the equations above with
proper boundary conditions to solve the problem [56,68]. We
assume a low transparency limit of the interface between the
topological insulator (TI) and superconducting layer (S). It is
also assumed that spin is conserved when the electrons tunnel
across the interface, whereas momentum is not conserved.
For the Fourier harmonics of the solution f (p) that we have
introduced above and taking all the simple transformations
into account, the boundary conditions at x = 0 take the form

γBξn

(
∂

∂x
− 2ihy(y)

α

)
fT (0) = fs(0) − fT (0), (14)

γ ξn

(
∂

∂x
− 2ihy(y)

α

)
fT (0) = ξs

∂ fs(0)

∂x
. (15)

Here we omitted the component index p. The parameter
γB = Rbσn/ξn is the transparency parameter, which is the ratio
of resistance per unit area of the surface of the tunneling
barrier to the resistivity of the TI layer and describes the effect
of the interface barrier [68,69]. In (15) the dimensionless pa-
rameter γ = ξsσn/ξnσs determines the strength of suppression
of superconductivity in the S layers near the S/TI interface
compared to the bulk (inverse proximity effect). No suppres-
sion occurs for γ = 0, while strong suppression takes place
for γ � 1. Here σs(n) is the normal-state conductivity of the
S(TI) layer.

These boundary conditions should also be supplemented
with vacuum conditions at the edges (x = −dn and x = +ds),

∂ fs(ds)

∂x
= 0,

(
∂

∂x
− 2ihy(y)

α

)
fT (−dn) = 0. (16)

The solution of Eq. (9) can be found in the form

f (p)
T = C(ωn) cosh [κp,y(x + dn)] exp

[
2ihy(y)

α
(x + dn)

]
,

(17)
where

kp,y =
√

|ωn|
ξ 2

n πTcs
+ 4

α2
h2

x (y) − 2ih′
x(y)

α
+ Qp,

Qp = p2Q2 + 4pQhx (y)

α
. (18)

Here C(ωn) is a coefficient found from the boundary con-
ditions, and the wave vector acquires an additional imaginary
term due to fast oscillations of the anomalous Green’s function
along the y direction compared to the case of uniform mag-
netization (Q = 0). The introduced solution to the equation
automatically satisfies the vacuum boundary conditions (16).

As long as 
 is assumed to be real valued function, we
write our equations for the anomalous Green’s functions in the
real form. Also, we consider only positive Matsubara frequen-
cies ωn. Following the standard procedure we obtain a final set
of equations sufficient to calculate the critical temperature as
a function of dn.

Using the boundary conditions (14) and (15), we would
like to write the problem in a closed form with respect to the
Green’s function fs. At x = 0 the boundary conditions can be
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written as

ξs
∂ fs(0)

∂x
= γ

γb + ApT (ωn)
fs(0), (19)

where

ApT (ωn) = 1

kp,y
coth (kp,ydn).

The boundary condition (19) is complex. In order to rewrite
it in the real form, we use the following relation:

f ± = f (ωn) ± f (−ωn). (20)

According to the Usadel equation (5), there is a symmetry
relation f (−ωn) = f ∗(ωn) which implies that f + is a real
while f − is a purely imaginary function. Then we rewrite
the Usadel equation in the S layer in terms of f +

s and f −
s

utilizing symmetry relation (20). Since the pair potential 
 is
considered to be real valued function, we can find the solution
analytically in the Usadel equation for the imaginary function
f −
s . Using the solution found analytically, it is possible to

derive the complex boundary condition (19) in the real form
for the function f +

s ,

ξs
∂ f +

s (0)

∂x
= W (p)(ωn) f +

s (0), (21)

where we used the notations

W (p)(ωn) = γ
Aps(γb + ReApT ) + γ

Aps|γb + ApT |2 + γ (γb + ReApT )
,

Aps = κps tanh (κpsds), κps =
√

Q2 p2 + |ωn|
ξ 2

s πTcs
,

ApT (ωn) = 1

kp,y
coth (kp,ydn). (22)

In the same way we rewrite the self-consistency equation for

 in terms of the symmetric function f +

s considering only
positive Matsubara frequencies,


(p) ln
Tcs

T
= πT

∑
ωn>0

(
2
(p)

ωn
− f (p)+

s

)
, (23)

as well as the Usadel equation in the superconducting layer,

ξ 2
s

(
∂2 f (p)+

s

∂x2
− κ2

ps f (p)+
s

)
+ 2
(p)

πTcs
= 0. (24)

To calculate the critical temperature in the considered system,
we use Eqs. (21)–(24), together with the vacuum boundary
condition (16) for the Fourier components f (p)+

s .

B. Helical magnetization h(x)

Here we consider the system consisting of a supercon-
ductor and topological insulator with helical magnetization
pattern presented in Eq. (3). In this case the Usadel equation
should be rewritten in terms of magnetization h(x). We as-
sume that the anomalous Green’s function does not depend on
the y coordinate, and thus the corresponding derivatives are
neglected. The Usadel equation in the TI layer then takes the

following form:(
∂

∂x
− 2ihy(x)

α

)2

fT − 4h2
x (x)

α2
fT = |ωn|

ξ 2
n πTcs

fT . (25)

In order to rewrite Eq. (25) in real form we introduce the
following ansatz:

fT (x) = fL(x) exp

[
−i

2h0

αQ
cos Qx

]
. (26)

Inserting this substitution into Eq. (25), we obtain an equation
for the real valued function in the TI layer,

∂2 fL

∂x2
=

( |ωn|
ξ 2

n πTcs
+ 4h2

0 cos2 Qx

α2

)
fL. (27)

For this system we utilize the same boundary conditions as
in the previous section and express them in the real form
using the symmetry relation (20). After the substitutions the
boundary conditions take the form

γBξn
∂ fL(0)

∂x
= C0 f +

s (0) − fL(0), (28)

γ ξn
∂ fL(0)

∂x
= ξsC0

∂ f +
s (0)

∂x
, (29)

where C0 = cos(2h0/αQ). Finally, the boundary conditions at
the free edges at x = ds and x = −dn are

∂ fs(ds)

∂x
= 0,

∂ fL(−dn)

∂x
= 0. (30)

Similarly, we introduce the self-consistency equation for 


in terms of the symmetric function f +
s , treating only positive

Matsubara frequencies,


 ln
Tcs

T
= πT

∑
ωn>0

(
2


ωn
− f +

s

)
, (31)

and the Usadel equation in the S layer,

ξ 2
s πTcs

∂2 f +
s

∂x2
− ωn f +

s + 2
 = 0. (32)

Since Eq. (25) cannot be solved analytically, to obtain the
critical temperature Tc the whole set of equations (27)–(32)
must be calculated numerically.

C. Single-mode approximation

In this section we present the single-mode approximation
method. The solution of the problems (21)–(24) and (27)–(32)
can be searched in the form of the following ansatz:

f +
s (x, ωn) = f (ωn) cos

(
�

x − ds

ξs

)
, (33a)


(x) = δ cos

(
�

x − ds

ξs

)
, (33b)

where δ and � do not depend on ωn. The above solution
automatically satisfies the boundary condition (16) at x = ds.
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FIG. 2. Tc(Q) dependencies for two harmonic solutions at
ξnh0/α = 0.1. The behavior realized physically is the one which
gives the highest Tc. The parameters used in the calculations: γB =
0.1, Wf = 100ξn.

1. Case of h(y)

Substituting the expression (33) into (24) we obtain

f (ωn) = 2δ

�2πTcs + πTcsξ 2
s Q2 p2

. (34)

To determine the critical temperature Tc we have to substitute
Eqs. (33) and (34) into the self-consistency equation (23) at
T = Tc. Then it is possible to rewrite the self-consistency
equation in the following form:

ln
Tcs

Tc
= ψ

(
1

2
+ �2 + Q2 p2

2

Tcs

Tc

)
− ψ

(
1

2

)
, (35)

where ψ is the digamma function,

ψ (z) ≡ d

dz
ln �(z), �(z) =

∫ ∞

0
ηz−1e−ηdη. (36)

Boundary condition (21) at x = 0 yields the following equa-
tion for �:

� tan

(
�

ds

ξs

)
= W (p)(ωn). (37)

Generally, in order to calculate the critical temperature Tc, the
problem is put on the grid with finite number of the Fourier
harmonics N and the following condition should be used:

Tc = max
(
T (p)

c

)
p = 0, 1, 2...N. (38)

The critical temperature behavior is found from the solu-
tion of the transcendental equations (35) and (37), as well
as Eq. (38). Thus the solution that gives the highest critical
temperature Tc is the only one which is realized physically.
However, we find that to calculate the critical temperature it
is sufficient to use the zeroth (p = 0) harmonic of the full
Fourier solution for a wide parameter range. In Fig. 2 we
demonstrate the situation when the Tc calculation requires
consideration of only the p = 0 Fourier component. It is
possible due to rapid decay of the p > 0 components of the
solution as functions of Q. From the figure it can be seen
that for Qξn > 0.5 the critical temperature for p = 1 is not
only lower than Tc for p = 0 but rapidly drops to zero at
Qξn ≈ 0.52.

Such behavior of the components with p > 0 allows us to
calculate the critical temperature by taking the appropriately
large Q, when the p = 0 harmonic is sufficient for the Tc

calculation of the S/TI bilayer. Since in this case the func-
tion Tc(y) quickly oscillates (Qξn 	 1), we also perform the
averaging of the critical temperature along the y direction.

2. Case of h(x)

Since the solution of Eq. (27) cannot be found in analytical
form, we calculate the function fL numerically and solve the
problem of Eqs. (27)–(32) in the single-mode approximation
(33).

III. RESULTS AND DISCUSSION

In this section we present the results of the critical tem-
perature calculations using the single-mode approximation.
Some of the parameters are set to the certain values and are
not changed throughout the paper, otherwise it is indicated.
Such parameters are γ = 0.2, ξs = ξn and the width of the
junction Wf = 20ξn.

A. Case of h(y)

In Fig. 3(a) the critical temperature dependencies are plot-
ted for different values of the transparency parameter γB. The
helical magnetization parameter ξnh0/α = 0.25 and λ = ξn

(λ = 2π/Q). We normalize Tc by its maximum value Tcs in
the absence of the proximitized TI layer and the TI thickness
dn by the coherence length ξn. As expected, for a perfectly
transparent S/TI interface (blue solid line) the critical temper-
ature decreases significantly, showing nonmonotonic behavior
with a minimum at dn ≈ ξn, and eventually saturates at Tc ≈
0.15Tcs. For larger values of γB or at moderate and high resis-
tances of the interface, Tc(dn) saturates at larger temperatures
and the position of the Tc minimum shifts towards smaller val-
ues of dn. Unlike Tc(dn) dependencies in ordinary S/F systems
with uniform as well as out-of-plane spiral magnetization,
here the critical temperature does not demonstrate completely
reentrant behavior, i.e., Tc does not vanish in a certain interval
of dn.

The impact of different λ on the critical temperature behav-
ior is depicted in Fig. 3(b). Here we took γB = 0.1, ξnh0/α =
0.25, and ds = 1.2ξs. From the plot one can notice that Tc

becomes more suppressed for smaller values of spatial period
λ (which is expressed in terms of Q as λ = 2π/Q), which
means that λ acts as an additional cause of the supercon-
ducting correlation depairing. It is worth mentioning that a
rather opposite effect has been observed in the S/F hybrid
bilayers with out-of-plane spiral magnetization [58], where Tc

experienced enhancement as Q increased.

B. Uniform and helical magnetizations

In this section we compare the Tc(dn) behavior in S/TI
bilayers with the uniform and helical magnetization induced
on the TI surface. In Fig. 4 the comparison between S/TI with
uniform h and with h(y) is shown. From the figure one can
see that there is a significant difference in the Tc(dn) depen-
dence for both cases. First, let us discuss the origin of the Tc
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(a)

(b)

FIG. 3. The behavior of the critical temperature Tc as a function
of dn. (a) Each plot corresponds to particular value of the trans-
parency parameter γB: blue solid line to γB = 0, red dashed line to
γB = 0.1, black dash-dotted line to γB = 0.2, and dotted line to γB =
0.3. (b) Effect of λ on Tc(dn) dependence. Each curve corresponds to
a particular value of λ: blue solid line to λ = 0.9ξn, red dashed line
to λ = 1.5ξn, and black dash-dotted line to λ = 2ξn. The parameters
used in the calculations: ξnh0/α = 0.25, Q = 2π/λ, λ = ξn (for plot
a), ds = 1.2ξs.

suppression in the case of a uniformly magnetized TI surface.
The wave vector of the pair correlations in the topological
insulator can be written as

κ0 =
√

2ωn

D
+ 4

α2
h2

x , (39)

where hx is the magnetization component along the x
direction. Here hx is responsible for depairing of the supercon-
ducting correlations and suppresses the critical temperature
Tc with the decay length ξ = 1/κ ≈ min[

√
2ωn/D, α/2hx].

However, the hy component of the magnetization does not
play a role in the suppression of superconducting correlations
but introduces a phase shift in the wave function, which has
no quantitative effect on Tc. Thus, in Fig. 4 the critical tem-
perature in the case of uniform magnetization (red solid lines)
expresses monotonic decay due to the hx component.

Other types of behavior appear when large enough values
of Q are considered in the system. In this case the wave vector
acquires additional imaginary terms of the form (18) and for

(a)

(c)

(b)

(d)

FIG. 4. Comparison of the critical temperature behavior between
the S/TI bilayer with uniform magnetization and S/TI bilayer with
helical magnetization pattern introduced in Eq. (2). The curves
were calculated for different values of h0/α: plot (a) corresponds to
ξnh0/α = 0.1, plot (b) to ξnh0/α = 0.2, plot (c) to ξnh0/α = 0.3, and
plot (d) to ξnh0/α = 0.4. The parameters γ and the coherence lengths
are set to the identical values mentioned above. The transparency
parameter for both systems γB = 0.1.

the zeroth harmonic (p = 0) can be written as

k0,y =
√

|ωn|
ξ 2

n πTcs
+ 4h2

0

α2
cos2 Qy + 2iQh0

α
sin Qy. (40)

Now the decay length becomes inverse propor-
tional to

√
Q for sufficiently large Q, as ξ = 1/κ ≈

min[
√

2ωn/D, α/2h0,
√

α/2h0Q].
In fact, the critical temperature Tc demonstrates nonmono-

tonic behavior due to fast oscillations of helical magnetization
along the y axis. This behavior is indicated by black dashed
lines (Fig. 4), and it can be seen that Tc(dn) loses its non-
monotonicity as h0/ξn grows from clearly pronounced (plots a
and b) to hardly recognizable minimum (plots c and d) in the
dependence.

C. Case of h(x)

Now we turn to the case of an S/TI hybrid structure with
the TI layer magnetized along the x axis [Fig. 1(c)]. In Fig. 5
the critical temperature dependencies as functions of the TI
layer thickness dn are shown. The effect of varying magneti-
zation strength h0 with the parameter Q fixed to Q = 2.0 is
shown in the upper plot [Fig. 5(a)]. From the plot we can dis-
tinguish three types of Tc behavior. For small values of h0/α

the critical temperature demonstrates slightly nonmonotonic
behavior with a kink at dn ≈ ξn and eventual saturation (a
black dotted line). This nonmonotonic feature becomes more
pronounced as h0/α is increased (a blue solid line). However,
for certain values of magnetization strength h0 the critical
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(a)

(b)

FIG. 5. The Tc(dn) dependencies for the configuration of helical
magnetization introduced in Eq. (3). (a) Each curve corresponds to a
particular value of h0/α with fixed helical magnetization parameter
Q = 2. Black dotted line corresponds to ξnh0/α = 0.9, blue solid
line to ξnh0/α = 1.1, red dashed line to ξnh0/α = 1.2, and black
dash-dotted line to ξnh0/α = 1.3. (b) The dependencies correspond
to certain values of λ and fixed ξnh0/α = 1.4. Blue solid line λ =
0.8ξn, red dashed line λ = 1.1ξn, black dotted line λ = 1.6ξn, and
dash-dotted line λ = 3.1ξn. The rest of the parameters used in the
calculations are γB = 0, ds = 1.2ξs.

temperature drops to zero gradually (a red dashed line). Fi-
nally, at relatively large h0 the critical temperature drops
sharply down to zero without any bend (a black dash-dotted
line).

The origin of such Tc(dn) curves is a coupling of helical
magnetization and momentum of the quasiparticles. However,
unlike the magnetization pattern h(y), here the topological
insulator TI is magnetized by h(x) along the direction of dn.
Hence the effects on the critical temperature are more explicit
and clearer to understand. As it was discussed above, the hy

component has no quantitative impact on the magnitude of
Tc; therefore, the observed effects are purely due to variation
of hx and, namely, because of its periodicity. Obviously, the
number of kinks demonstrated in Fig. 5(a), where we observed
just one, depends on magnetization parameter Q = 2π/λ. In
Fig. 5(b) the critical temperature behavior for different Q is
shown. It can be seen that the smaller the spatial magnetiza-
tion period λ, the more kinks are produced in the Tc.

In the calculations above we assumed that the magnetiza-
tion pattern h(x) at x = 0 reduces to h(0) = h0(1, 0, 0), which

(a)

(b)

FIG. 6. Influence of the arbitrary initial phase φ0 in the mag-
netization pattern h(x) = h0[cos(Qx + φ0 ), sin(Qx + φ0), 0]. Each
curve corresponds to a particular value of φ0: red dotted line to φ0 =
0, blue solid line to φ0 = π/4, and black dashed line to φ0 = π/2.
(a) Tc(dn) dependencies calculated for ξnh0/α = 1.4 and λ = ξn. The
inset plot shows Tc behavior as a function of phase φ0 for fixed thick-
ness dn = 2ξn and two different values of ξnh0/α = 1, 1.4. (b) Tc(Q)
curves calculated for dn = ξn and ξnh0/α = 1.2. The parameters used
in the calculations are γB = 0, ξnh0/α = 0.25, and ds = 1.2ξs.

implies that the initial “phase” is 0. In practice, it may be
possible to have an arbitrary initial phase in the experimental
samples. It is very important to consider such a possibility,
since Tc decays significantly in our system as a function of
the TI thickness dn. We can take into account φ0 simply by
rewriting the magnetization pattern (3) as

h(x) = h0[cos(Qx + φ0), sin(Qx + φ0), 0]. (41)

In Fig. 6(a) the effect of various initial φ0 on Tc(dn) for
fixed h0/α = 1.4 and λ = ξn is illustrated. From the plot we
observe that while φ0 = 0 and φ0 = π/4 contribute to faster
decay of Tc as a function of dn (red dotted and blue solid line),
the critical temperature has higher values at almost every dn

for φ0 = π/2 (black dashed line). The inset shows Tc as a
function of φ0 for fixed dn = 2ξn.

Another interesting result can be noticed in Fig. 6(b)
illustrating Tc(Q) dependencies for the same values of φ0

and fixed TI layer thickness dn = ξn. One can recognize
that depending on φ0 the critical temperature behaves differ-
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ently as Q changes. For φ0 = 0 (red dotted line) there is no
superconductivity in the Qξn interval [0, 1.5], since Tc is
completely suppressed by slowly evolving near extremum hx

magnetization component at the vicinity of the S/TI interface.
However, for φ0 = π/4 (blue solid line) Tc decays rapidly
and vanishes at Qξn ≈ 1 but eventually restores at Qξn ≈ 2.4.
Finally, in the case of φ0 = π/2 (black dashed line) the critical
temperature is almost not suppressed at small values of Q but
decays gradually as Q is further increased.

IV. CONCLUSION

In this work we have formulated a theoretical approach
and presented the results of a quantitative investigation of
the superconducting critical temperature in the S/TI hybrid
structure where an in-plane helical magnetization is induced at
the TI surface. The calculations are based on the quasiclassical
Usadel equations, taking into account spin-orbit coupling at
the surface of the topological insulator. We have assumed
superconducting s-wave pairing symmetry in our calculations.
which is justified in the dirty limit. The reason is that in the
diffusive regime all anisotropic components of the supercon-
ducting order parameter are fully suppressed.

We have found that in the case of in-plane helical mag-
netization h(y) evolving along the interface, the calculations
reveal nonmonotonic behavior of the critical temperature as
a function of the TI layer thickness with a well-pronounced
minimum, the effect of which is absent in the case of uni-

form magnetization. Despite the fact that in conventional
S/F bilayers with out-of-plane spiral magnetization quite
similar behavior of Tc as a function of the F layer thickness dn

has been observed, we find rather opposite critical temperature
behavior depending on the magnetization parameter Q. The
question of Tc(dn) behavior in the exact same configuration
without SOC, i.e., in 2D S/F bilayers with an in-plane rotating
magnetization, requires separate investigation.

In the case of helical magnetization evolving perpendicular
to the interface h(x), the critical temperature demonstrates
highly nonmonotonic behavior as well. However, this depen-
dence has been shown to be qualitatively different from the
case of h(y), showing the number of kinks, which depends on
helical magnetization parameters. The results are important
for further understanding of the underlying physics and poten-
tial future applications of superconductor-TI hybrid systems.
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