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Majorana multipole response: General theory and application to wallpaper groups
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Whereas identification of Cooper-pair symmetry is the first and crucial step in the investigation of un-
conventional superconductors, only a few have been established so far because of their own difficulties. To
solve this problem, we develop a theory for identification of pairing symmetry using knowledge of topological
superconductivity. Establishing the multipole theory of emergent Majorana fermions in time-reversal-invariant
topological superconductors, we discover a one-to-one correspondence between the electromagnetic response
of Majorana fermions and Cooper-pair symmetry. The emergent Majorana fermions host magnetic structures
that share the same irreducible representation with Cooper pairs under crystalline symmetry. We furthermore
reveal that Majorana fermions in high-spin or nonsymmorphic superconductors may exhibit magnetic octupole
responses, which give a direct evidence of these exotic superconducting states. Electric responses of multiple
Majorana Kramers pairs are also clarified. Our theory provides the fundamentals for identification of unconven-
tional Cooper pairings through surface-spin-sensitive measurements as well as that for manipulation of Majorana
fermions by external electromagnetic fields.
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I. INTRODUCTION

Over the past decade, tremendous progress has been made
in understanding of topological phases of matter. Compre-
hensive classifications based on the K theory [1–17] and
the symmetry indicator [18–23] have been pushed forward
to search for new topological phases enabled by crystalline
symmetry. In particular, by incorporating the first-principle
calculations and material databases, the symmetry-indicator
method has uncovered several thousands of topologically non-
trivial materials [24–29].

While these classifications can be extended to topological
superconductors (TSCs) [30–35], the search for TSCs faces its
own difficulties which do not exist in other topological materi-
als: whereas the classifications rely on Cooper-pair symmetry,
the identification of the latter is very difficult. In fact, in spite
of a lot of effort, the exact Cooper-pair symmetry has yet
to be determined in many unconventional superconductors,
with a few exceptions such as high-Tc cuprates. Because the
typical energy scale of unconventional superconducting gaps
is much smaller than that of insulating gaps, the experimental
means to identify the pairing symmetry is limited. For in-
stance, the angle-resolved photoemission spectroscopy, which
is commonly used to identify topological materials, is not
available because its resolution has not reached the energy
scale of the superconducting gap. Moreover, there is no estab-
lished theory for the prediction of Cooper-pair symmetry. The
first-principle calculation, which is powerful for the prediction
of topological insulators, has not been reliable yet for the
calculation of unconventional pairing states. Therefore, a new
principle to identify the pairing symmetry is highly desired.

In this paper, we show that Cooper-pair symmetry in
time-reversal-invariant TSCs is directly measured by elec-
tromagnetic responses of Majorana fermions (MFs) on their
surfaces. The emergent MFs appear as surface zero-energy
Andreev bound states [36–49] and have been paid the most
attention as a potential candidate for fault-tolerant qubits
for topological quantum computation [50]. The increased
interest in the emergent MFs offers proposals of versa-
tile time-reversal-invariant TSCs, such as superconducting
doped topological insulators [51–58] and Dirac semimetals
[59–66]. The MFs in time-reversal-invariant TSCs commonly
form Kramers pairs at zero energy, which we dub Majorana
Kramers pairs (MKPs). They host the spin degrees of freedom
ensured by time-reversal symmetry (TRS), which constitutes
electromagnetic structures unique to the emergent MFs. The
existence of electromagnetic structures provides possibility
of electromagnetic responses even though the emergent MFs
are electrically neutral. In addition, TSCs often host topolog-
ical invariants protected by crystalline symmetry [5–7,9,67],
and MKPs receive an additional constraint from them. The
electromagnetic structures associated with MKPs turn out to
acquire versatile structures and realize an anisotropic mag-
netic response [47,68–79]. Such magnetic anisotropy is a
salient feature of the emergent MFs since neither electric
nor magnetic responses are possible for elementary Majorana
particles [80–82].

To prove the relation between electromagnetic structures
and Cooper-pair symmetry, we establish a general theory of
electromagnetic structures of MKPs. Then, using the general
theory, we exhaustively classify the electromagnetic structures
under crystalline symmetry. We consider all possible minimal
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set of MFs located at any of the highest-symmetry points on
surface Brillouin zones (BZs). Our theory depends only on
the irreducible representations (irreps) of MKPs and Cooper
pairs, and it can calculate responses of MKPs protected by
Z and Z2 invariants [76,77,79] in a unified way. The results
show that the one-to-one correspondence between irreps of
magnetic couplings and those of Cooper pairs always holds
whenever only a single MKP exists. The irreps of magnetic
structures are manifest in possible electromagnetic multipole
responses. The emergent MFs show magnetic dipole order,
but they also exhibit magnetic octupole one in special situ-
ations. There are two types of mechanisms for the magnetic
octupole: (i) spin- 3

2 symmetry-induced magnetic octupole and
(ii) nonsymmorphic symmetry-induced magnetic octupole.
Whereas the former one was partially discussed in our pre-
vious study [76], we here generalize it to all surface MFs
with wallpaper groups. We also discover the latter mechanism
of the magnetic ocutupole order, which is realized by MKPs
protected by glide symmetry. These results indicate that the
magnetic octupole responses provide a direct evidence of
the exotic superconductivity in high-spin or nonsymmorphic
superconductors.

The above one-to-one correspondence does not hold when
multiple MKPs exist on a surface. Even in this case, how-
ever, we can determine the pairing symmetry through the
responses of MFs. In addition to the magnetic responses,
the multiplicity of MFs enables the electric responses. One
may specify Cooper-pair symmetry by combining these two
responses.

This paper is organized as follows. In Sec. III, we de-
velop a general theory of electromagnetic responses of MFs
in time-reversal-invariant TSCs. First, we summarize relevant
symmetries in Sec. III A. Then, in Sec. III B, we introduce
the topological invariants for surface MFs by combining the
group-theoretical method with the K-theory classification. In
Sec. III C, we count the minimal degeneracy of surface MFs
required by crystalline symmetry. In most cases, the mini-
mal degeneracy is the Kramers one imposed by time-reversal
symmetry (TRS), but the fourfold degeneracy is required at
the M̄ point for pgg and p4g. We evaluate quantum operators
of MFs and determine the leading electromagnetic couplings
of MFs in Secs. III D and III E. In particular, we prove that
a nonzero quantum operator of a single MKP must be a
magnetic operator and shares the same irrep with the gap
function [see Eq. (52)]. In Secs. IV and VI, we apply the
general theory to MFs protected by the wallpaper groups. Our
results for a single MKP are summarized in Tables II and
III. We also discuss magnetic octupole responses in high-spin
and nonsymmorphic superconductors in Secs. IV B and IV C,
respectively. In Sec V, we illustrate the magnetic octupole
responses by using concrete models. In Sec. VI, we clarify
electromagnetic structures of double MKPs realized at the M̄
point of pgg and p4g, where the additional multiplicity enables
electric structures. We first point out that MFs belong to short
representations for particle-hole symmetry (PHS) or chiral
symmetry (CS), because of the self-antiparticle nature of MFs.
Then, by constructing the short representation explicitly, we
evaluate the electromagnetic responses of the double MKPs,
which are summarized in Table V. In Sec. VII, we provide a
summary and discuss the experimental relevance.

II. SUMMARY OF RESULTS

Our main technical accomplishment is a multipole the-
ory of MKPs, which allows us to determine electromagnetic
structure of MKPs from only crystalline symmetry and
Cooper-pair symmetry in bulk superconductors. As elaborated
in Sec. III D, the formulas for determining the electromagnetic
structures of MKPs are given by Eqs. (40) and (55): χ�

g is
the character of representations on MKPs for a given group
g ∈ G0 and χ�±

g is the character of representations decom-
posed into electric (+) and magnetic (−) structures. Before
going into the technical details, we summarize the main re-
sults of the multipole theory and connections to physical
systems.

Electromagnetic structures of MKPs. Applying the for-
mulas (40) and (55) to the wallpaper groups which are
space-group symmetry preserved on a surface and focusing
on a minimal MKP lying at a high-symmetry point on the
surface BZ, the electromagnetic structures of MKPs are ex-
haustively classified in Tables II and III. The key findings are
summarized as follows.

(i) For a single MKP, only a magnetic structure is allowed,
and it shares the same irrep with the Cooper pair under crys-
talline symmetry, i.e., χ�

g = χ�−
g = ηg [Eq. (52)], with ηg in

Eq. (4).
(ii) A large majority of a single MKP have a magnetic

dipole; namely, the response function is given by a linear
function of a magnetic field f (B) ∼ B · n with n being spec-
ified by crystalline symmetry (see Tables II and III). Systems
showing the magnetic dipole response include 3He-B phase
[47,69–73], superconducting doped topological insulators and
semimetals [45,48,49], and nodal superconductors with crys-
talline symmetry-protected Majorana flat bands [83–87].

(iii) A single MKP exhibits a magnetic octupole response
if the surface symmetry is p6, p3m1, p31m, or p6m and its
spin is 3

2 ; see Fig. 1. The response function is of the order
of O(|B|3) since the linear terms are prohibited by the crys-
talline symmetry. Material candidates realizing the magnetic
octupole response are high-spin superconductors such as half-
Hausler compounds [88–94] and antiperovskite Dirac metals
[63,64]; topological superconducting states realize MFs with
spin 3

2 . The magnetic octupole response in the half-Hausler
compound YPtBi has been demonstrated in Ref. [76].

(iv) A single MKP shows another magnetic octupole
response if the surface symmetry is pmg or pgg
(nonsymmorphic) and the MKP emerges at a high-symmetry
point on the surface BZ boundary; see Fig. 2. The magnetic
response is again of the order of O(|B|3), but the expression
of the response function is different from the previous one;
see Secs. IV B and IV C for more discussions. The candidates
are glide symmetry-protected topological superconductors
such as UCoGe [95,96].

(v) A single MKP is forbidden and double MKPs are real-
ized if the surface symmetry is pgg or p4g and the MF appears
at the M̄ point on the surface BZ. The response function
of the double MKPs consists of a mixture of several irreps,
including electric response; see Sec. VI and Table V for more
details. Our multipole theory is applicable to multiple MFs
and enables us to distinguish electric structures from magnetic
ones in a systematic way.
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Connection to physical observables. The electromagnetic
structure of MKPs represents internal degrees of freedom
of MFs such as spin and orbital and thus can be measured
through the coupling to external fields such as magnetic fields,
strains, and so on; see Sec. III E for more discussions. In
particular, a single MKP hosts only a magnetic structure,
whose irrep one-to-one corresponds to that of Cooper pairs.
Thus, we can determine bulk pairing symmetries from surface
magnetic responses; the magnetic structures can be probed via
surface-spin-sensitive measurements such as spin-resolved
tunneling spectroscopy [97,98], spin-relaxation rate [69], spin
susceptibility [70], thermal conductivity [99–101] under mag-
netic fields, and so on. For instance, the spin susceptibility
is enhanced in a particular direction due to the anisotropic
spin structures of the MKP [70,84]. The anisotropy is di-
rectly linked to Cooper-pair symmetry under crystalline
symmetry.

III. GENERAL THEORY

A. Symmetries

Three-dimensional (3D) time-reversal-invariant TSCs host
helical Majorana fermions on their surfaces, which are en-
sured by the so-called 3D winding number [1,39,102,103].
While the 3D winding number is defined only for fully gapped
TSC, its parity can be defined even for nodal superconductors
[53] and ensures the existence of an odd number of MKPs.
In this paper, we focus our attention on how MKPs respond
to external electromagnetic fields. Obviously, electric fields
only extract moderate responses from a MKP as they maintain
TRS. On the other hand, magnetic fields substantially affect
MKPs because the 3D winding number and its parity are ill
defined under TRS breaking external fields. However, this
does not imply that MKPs are unstable under any magnetic
field. In real systems, MKPs are also protected by crystalline
symmetry when they are located at a high-symmetry point
or line in the surface BZ. In fact, crystalline symmetry pro-
vides an additional topological invariant that stabilizes MKPs.
Therefore, even if the 3D winding number and its parity are ill
defined, MKPs cannot respond to magnetic fields so much as
long as the crystalline symmetry for the additional topological
invariant is maintained. Namely, only magnetic fields that
break the crystalline symmetry may destabilize MKPs.

First, we summarize symmetries considered in this paper.
We consider space groups that are compatible with surfaces
hosting MKPs. The corresponding space groups are wallpaper
groups, which consist of 17 groups: p1, p2, pm, pg, cm, pmm,
pmg, pgg, cmm, p4, p4m, p4g, p3, p3m1, p31m, p6, and p6m.
In addition, we take into account TRS T , PHS C, and their
combination, CS � = −iTC. These symmetries form a group
G, which is decomposed into

G = G0 + T G0 + CG0 + �G0, (1)

where G0 is a wallpaper group. The group G acts on the
Bogoliubov–de Gennes (BdG) Hamiltonian

H (k) =
(

h(k) �(k)
�†(k) −hT (−k)

)
, (2)

where h(k) and �(k) are a normal Hamiltonian and a gap
function, respectively. For g ∈ G0, the action for the BdG

Hamiltonian reads as

Uk
g H (k)Uk†

g = H (gk), Uk
g =

(
U k

g

ηgU −k∗
g

)
, (3)

where U k
g is a unitary operator obeying

U k
g h(k)U k†

g = h(gk), U k
g �(k)U −kT

g = ηg�(gk), (4)

with a U (1) factor ηg determined by the pairing symmetry of
the gap function. (ηg must be ±1 when the gap function has
TRS.) For TRS T and PHS C, we have

UT H∗(k)U†
T = H (−k), UT =

(
UT

U ∗
T

)
,

(5)

UCH∗(k)U†
C = −H (−k), UC =

(
1

1

)
,

where UT is a unitary operator for TRS on the normal Hamil-
tonian with UT U ∗

T = −1. Using the complex-conjugation
operator K , we can also write Eq. (5) as

T H (k)T −1 = H (−k), CH (k)C−1 = −H (−k), (6)

with T = UT K and C = UCK .
The unitary operator Uk

g for g ∈ G provides a projective
representation of G,

zghk
g,h U

k
gk =

{
Uhk

g Uk
h if g is unitary,

Uhk
g (Uk

h )∗ if g is antiunitary,
(7)

where zk
g,h is a U (1) phase called factor system. The factor

system is given as follows: Let g = {p|ap} be an element of
G0, where p is a point-group operation and ap is a trans-
lation: {p|ap}, x �→ px + ap. The product of g = {p|ap} and
g′ = {p′|ap′ } reads as

{p|ap}{p′|ap′ } = {pp′|pap′ + ap}
= {e|pap′ + ap − app′ }{pp′|app′ }, (8)

where ε is the identity operator. Correspondingly, the factor
system for g, g′ ∈ G0 is given by

zk
g,g′ = zp,p′e−ik·(pap′+ap−app′ ), (9)

where zp,p′ = ±1 originates from the double projective rep-
resentation of spin rotation in p and p′, and the exponential
factor is the Bloch factor of {e|pap′ + ap − app′ }. We also
require that the subscript g of Uk

g obeys the linear represen-
tation of G where T and C commute with any g ∈ G and
obey T 2 = C2 = {e|0}. Here {e|0} is the unit element. By
combining this property with commutation relations in G,
we can determine the factor system for other elements in G
uniquely. For instance, for g = {p|ap} ∈ G0, we have

U−k
g UT = UT

(
Uk

g

)∗
, U−k

g UC = ηgUC
(
Uk

g

)∗
, (10)

which lead to

zk
g,T = zk

T,g, zk
g,C = zk

C,g, (11)

because of Uk
T g = Uk

gT and Uk
Cg = Uk

gC . Furthermore, from
T 2 = −1 and C2 = 1, we have

zk
T,T = −1, zk

C,C = 1, (12)

since UT 2 = UC2 = U{e|0}.
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B. Wigner’s test and 1D topological invariants

When crystalline symmetry is taken into account, the topo-
logical classification is diversely ramified, and crystalline
symmetry-protected topological phases appear [5–7,9,67].
Crystalline symmetry-protected topological invariants defined
in low-dimensional subspaces may protect MKPs. In par-
ticular, MKPs at high-symmetry points on surface BZs are
supported by crystalline symmetry-protected one-dimensional
(1D) topological invariants.

To see this, let us consider a high-symmetry point k of G on
a surface BZ, which is the projection of a high-symmetry line
lk in the bulk BZ, and the little group Gk that keeps the high-
symmetry point k (and the high-symmetry line lk) invariant.
The little group Gk is decomposed into

Gk = Gk
0 + T Gk

0 + CGk
0 + �Gk

0, (13)

where Gk
0 consists of all elements in G0 belonging to Gk. On

the 1D subspace lk, any element in Gk
0 commutes with the

BdG Hamiltonian H (k). Thus, if we take the basis where Uk
g

(g ∈ Gk
0) is decomposed into irreps of Gk

0,

Uk
g = ⊕α

(
U α

g
ηg(U α

g )∗

)
, (14)

where α labels the irreps, then H (k) on lk is also decomposed
into subsectors,

H (k) = ⊕αHα (k), (15)

where Hα (k) is a Hamiltonian belonging to the irrep α.
The set of 1D Hamiltonians Hα (k) on lk defines crystalline
symmetry-protected 1D topological invariants.

To identify the 1D topological invariant of Hα (k), we em-
ploy the Wigner test [104–109]. The Wigner test specifies an
Altland-Zirnbauer (AZ) symmetry class of Hα (k), which we
call emergent AZ (EAZ) class, and determines a possible 1D
topological invariant of Hα (k). For the Wigner test of Hα (k),
we calculate three indices (W T ,W C,W � ) defined as follows:

W T
α ≡ 1∣∣Gk

0

∣∣ ∑
g∈Gk

0

zk
T g,T gtr

[
U α

(T g)2

] = ±1, 0, (16)

W C
α ≡ 1∣∣Gk

0

∣∣ ∑
g∈Gk

0

zk
Cg,Cgtr

[
U α

(Cg)2

] = ±1, 0, (17)

W �
α ≡ 1∣∣Gk

0

∣∣ ∑
g∈Gk

0

zk
�,�−1g�

zk
g,�

tr
[
U α

�−1g�

]∗
tr
[
U α

g

] = 1, 0, (18)

where |Gk
0| represents the number of elements in Gk

0, and U αk
g

is the irrep α of Uk
g . The indices (W T

α ,W C
α ,W �

α ) indicate the
presence and/or absence of TRS, PHS, and CS in Hα (k) and
identify the EAZ class, as shown in Table I. Then, regarding
Hα (k) on lk as a 1D system in the EAZ class, we can specify
the possible 1D topological invariant. See Appendix E also.

For instance, consider one of the highest-symmetry points
of p2. At the highest-symmetry point, Gk

0 is p2 itself,
i.e., Gk

0 = p2 = {{e|0}, {2z|0}}, where 2z is twofold rota-
tion around the z axis. The irreps of Uk

g (g ∈ Gk
0) are the

double-valued representations iĒ (i = 1, 2), each of which
corresponds to spin-up and -down states, respectively (we

TABLE I. EAZ classes (W T
α ,W C

α ,W �
α ) and associated 1D topo-

logical invariants.

W T
α W C

α W �
α EAZ class 1D

0 0 0 A 0

0 0 1 AIII Z

1 0 0 AI 0

1 1 1 BDI Z

0 1 0 D Z2

−1 1 1 DIII Z2

−1 0 0 AII 0

−1 −1 1 CII 2Z

0 −1 0 C 0

1 −1 1 CI 0

adopt the notation of irreps in the Bilbao Crystallographic
Server [110]). TRS satisfies [{2z|0}, T ] = 0 and T 2 = −{e|0},
so it follows from Eq. (16) that

W T
iĒ = 1

2

( − tr
[
U

iĒ
{e|0}2

] + tr
[
U

iĒ
{2z |0}2

])
= 1

2 (−1 + 1) = 0. (19)

Similarly, we can calculate Eq. (17). It is necessary to pay
attention to the commutation relation between C and {2z|0},
which depends on the irrep of the gap function. The gap func-
tion is a single-valued representation of p2, which is either
A (η{2z |0} = 1) or B (η{2z |0} = −1). For the A gap function,
Eq. (10) implies [C, {2z|0}] = 0, while for the B gap function,
it implies {C, {2z|0}} = 0. Thus, Eq. (17) becomes

W C
iĒ = 1

2

(
tr
[
U

iĒ
{e|0}2

] − η{2z |0}tr
[
U

iĒ
{2z |0}2

])
= 1

2
(1 − η{2z |0}) =

{
0 for A gap function,

1 for B gap function.
(20)

From � = −iCT , Eq. (18) is similarly obtained as

W �
i Ē = 1

2

(∣∣tr[U iĒ
{e|0}

]∣∣2 + η{2z |0}
∣∣tr[U iĒ

{2z |0}
]∣∣2)

= 1

2
(1 + η{2z |0}) =

{
1 for A gap function,

0 for B gap function.
(21)

Therefore, the EAZ class is AIII for the A gap function and D
for the B gap function, respectively.

These results are understood as follows. Because 1Ē and
2Ē are the +i and −i eigensectors of U{2z |0}, respectively, their
bases are the eigenstates |+〉 and |−〉 defined by U{2z |0}|±〉 =
±i|±〉. For the A gap function, both T and C commute with
U{2z |0} at the highest-symmetry point. Therefore, we have

U{2z |0}T |±〉 = ∓iT |±〉, U{2z |0}C|±〉 = ∓iC|±〉, (22)

which implies that TRS and PHS exchange the eigensectors.
Hence, neither H

1Ē (k) nor H
2Ē (k) keep these symmetries,

and they only retain the combination of T and C, namely,
CS. Thus, they belong to class AIII, as was shown by the
Wigner test above. A similar argument works for the B gap
function. In this case, C anticommutes with U{2z |0} at the
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highest-symmetry point, while T commutes with U{2z |0}. As
a result, H

1Ē (k) and H
2Ē (k) have PHS, and thus they belong

to class D.

C. Degeneracy

Because of TRS with T 2 = −1, Majorana fermions at
high-symmetry points form Kramers pairs. For instance, in the
above p2 case, 1Ē and 2Ē are related to each other by TRS,
and thus once H

1Ē (k) becomes topologically nontrivial, so is
H

2Ē (k). Therefore, the resulting Majorana modes appear in a
pair. In general, for a given irrep α at a high-symmetry point,
there are three possible realizations of a MKP: (i) a MKP
formed with a different irrep ᾱ, (ii) a MKP formed within α,
and (iii) a MKP formed with another α. In the case (i), the
EAZ class of α does not have TRS, while in the latter two
cases (ii) and (iii), it hosts TRS. Moreover, in the case (ii),
TRS of the EAZ class is bosonic, while in the case (iii), TRS
of the EAZ class is fermionic. For instance, the EAZ class at
the X̄ point of pg with A gap function is DIII. (See Table II.)
Thus, a MKP at the X̄ ≡ (π, 0) point is formed between two
identical irreps (Xi, Xi ) (i = 1, 2) (see Table VI).

The above result implies that if the irrep α in cases (i) and
(iii) is two dimensional, MFs at the high-symmetry point ex-
hibit fourfold degeneracy. As we will see later, such additional
degeneracy occurs at the M̄ ≡ (π, π ) point of pgg and p4g.

D. Majorana operators

To study electromagnetic structures of MFs, we consider a
general local quantum operator Ô defined by

Ô(x) ≡
∑

i j

ĉ†
i (x)Oi j ĉ j (x)

= 1

2

̂†(x)O
̂(x)

= 1

2

̂T (x)UCO
̂(x) (23)

with 
̂T
i (x) = (ĉi(x), ĉ†

i (x)) and

O =
(

O 0
0 −Ot

)
, (24)

where the Hermiticity of O implies {C,O} = 0. For instance,
for O = si with the Pauli matrices si, Eq. (23) represents a
magnetic dipole momentum of electrons. Below, we show that
nonzero Ô’s for MKPs are subject to crystalline symmetry,
and they determine electromagnetic responses of MKPs.

We first perform the mode expansion to extract the con-
tribution to Ô from MKPs at a high-symmetry point k on a
surface BZ. We decompose the quantum field 
̂(x) into MFs
|u(a)

0 (x)〉 at k and others:


̂(x) =
∑

a

γ̂a|u(a)
0 (x)〉 + · · ·, (25)

where a labels MFs, and γ̂a are Majorana operators. Here γ̂a

satisfies

γ̂ †
a =

∑
b

γ̂b(Cγ )∗ba, {γa, γb} = (Cγ )ab, (26)

with (Cγ )ba ≡ 〈u(b)
0 |Cu(a)

0 〉 (see Appendix A). Note that
Eq. (26) reduces to the well-known Majorana condition γ †

a =

γa if we impose the additional constraint |Cu(a)
0 〉 = |u(a)

0 〉. Sub-
stituting Eq. (25) into Eq. (23), we have

ÔMF(x) = 1

2

∑
a,b

γ̂aγ̂b tr
[
O

∣∣u(b)
0 (x)

〉〈
Cu(a)

0 (x)
∣∣], (27)

then we separate symmetric and antisymmetric parts of Ma-
jorana operators in Eq. (27). Since {γa, γb} = (Cγ )ab is a
constant, the symmetric part does not give a coupling between
MFs and external fields, and thus only the antisymmetric part
contributes to the coupling:

ÔMF(x) = −1

8

∑
a,b

[γ̂a, γ̂b] tr
[
Oρ (ab)(x)

]
, (28)

where ρ (ab) is given by

ρ (ab)(x) ≡ ∣∣u(a)
0 (x)

〉〈
Cu(b)

0 (x)
∣∣ − ∣∣u(b)

0 (x)
〉〈
Cu(a)

0 (x)
∣∣. (29)

Equation (28) is our main formula to examine electromagnetic
structures of MKPs.

For further analysis, we employ a group-theoretical ap-
proach. As we will show shortly, ρ (ab) is a single-valued
representation of Gk

0 under the action ρ (ab) �→ Uk
g ρ (ab)Uk†

g for
g ∈ Gk

0. It is decomposed into irreps as

ρ (ab) =
∑

Ai

ρ
(A)
i , (30)

where ρ (A) is a single-valued irrep of Gk
0 with the transforma-

tion law

Uk
g ρ

(A)
i Uk†

g =
∑

j

ρ
(A)
j

[
DA

g

]
ji. (31)

Here DA
g is a real orthogonal matrix. We can also decompose

O as

O =
∑

Ai

O(A)
i , (32)

where O(A)
i is an operator belonging to a single-valued irrep

of Gk
0,

Uk
gO

(A)
i Uk†

g =
∑

j

O(A)
j

[
DA

g

]
ji
. (33)

By substituting Eqs. (30) and (32) into Eq. (28), the trace part
is recast into∑

A,B

tr
[
O(A)

i ρ
(B)
j

]

= 1∣∣Gk
0

∣∣ ∑
A,B,g∈Gk

0

tr
[
Uk

gO
(A)
i Uk†

g Uk
g ρ

(B)
j Uk†

g

]

= 1∣∣Gk
0

∣∣ ∑
A,B,k,l,g∈Gk

0

tr
[
O(A)

k ρ
(B)
l

][
DA

g

]
ki

[
DB

g

]
l j

=
∑
A,B,l

1

dA
tr
[
O(A)

l ρ
(B)
l

]
δi jδAB, (34)

where we have used the orthogonality of irreps:

∑
g∈Gk

0

[
DA

g

]
ki

[
DB

g

]
l j

=
∣∣Gk

0

∣∣
dA

δABδi jδkl , (35)
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with dA the dimension of DA
g . Therefore, ÔMF in Eq. (28) is

nonzero only when O shares the same irrep as ρ (ab). In other
words, the representation of ρ (ab) determines possible O for
MKPs.

Now, we explain how to identify the representation of ρ (ab).
A MF |u(a)

0 〉 at a high-symmetry point k is a zero mode of H (k)
on the 1D subspace lk. [More specifically, |u(a)

0 〉 is a zero mode
of Hα (k) on lk.] Since Uk

g (g ∈ Gk
0) commutes with H (k) on

lk, Uk
g |u(a)

0 〉 is also a zero mode, which implies the relation

Uk
g

∣∣u(a)
0

〉 =
∑

b

∣∣u(b)
0

〉
[Ug,γ ]ba, (36)

with [Ug,γ ]ab ≡ 〈u(a)
0 |Uk

g |u(b)
0 〉. Here Ug,γ obeys the same mul-

tiplication law as Uk
g , and thus it is a double-valued projective

representation of Gk
0 with the same factor system as Uk

g . Sim-

ilarly, the group action on |Cu(a)
0 〉 is given by

Uk
g

∣∣Cu(a)
0

〉 = ηgCUk
g

∣∣u(a)
0

〉
=

∑
b

ηg

∣∣Cu(b)
0

〉
(Ug,γ )∗ba, (37)

where we have used the relation Uk
gUC = ηgUC (U−k

g )∗ with
Uk

g = U−k
g at a high-symmetry point k. Therefore, ρ (ab) is

transformed as an antisymmetric product representation of Gk
0

under the action ρ (ab) �→ Uk
g ρ (ab)Uk†

g for g ∈ Gk
0,

Uk
g ρ (ab)Uk†

g =
∑
c,d

ρ (cd )ηg[Ug,γ ]ca[Ug,γ ]db

≡
∑
c,d

ρ (cd )[�g](cd )(ab), (38)

where �g is given by

[�g](cd )(ab) = ηg

2
([Ug,γ ]ca[Ug,γ ]db − [Ug,γ ]da[Ug,γ ]cb). (39)

Since the left-hand side of Eq. (38) does not change the sign
when Uk

g �→ −Uk
g , the antisymmetric product representation

is a single-valued representation of Gk
0.

On the basis of the standard group theory, we can perform
the irreducible decomposition of ρ (ab) by calculating the char-
acter of �g. By taking the trace of �g, the character of the
product representation is given by

χ�
g = ηg

2
((tr[Ug,γ ])2 − tr[(Ug,γ )2]). (40)

The right-hand side of Eq. (40) is evaluated as follows. In
general, MFs at k consist of a set of irreps; when a MF |u(a)

0 〉
originates from Hα (k) on lk, it is the same irrep α as Hα (k).
Correspondingly, Ug,γ is decomposed into

Ug,γ = ⊕αU α
g , (41)

and thus we have

χ�
g = ηg

2

[(∑
α

tr
[
U α

g

])2

−
∑

α

tr
[(

U α
g

)2]]
. (42)

The right-hand side of Eq. (42) can be easily calculated by
the character table of irrep α, without referring to the explicit
form of Ug,γ . Finally, comparing χ�

g with the characters of the

single-valued irreps of Gk
0, we obtain the irreducible decom-

position of ρ (ab). In Sec. IV, we apply this method to MKPs at
the highest-symmetry points of all the wallpaper groups.

The distinction between electric and magnetic structures
of MKPs can be done by TRS. Using TRS, O and ρ (ab) are
decomposed as

O ≡ O+ + O−, ρ (ab) ≡ ρ
(ab)
+ + ρ

(ab)
− , (43)

with

O± = O ± T O†T −1

2
, ρ

(ab)
± = ρ (ab) ± T ρ (ab)†T −1

2
, (44)

where O± and ρ
(ab)
± satisfy

T O†
±T −1 = ±O±, T ρ

(ab)†
± T −1 = ±ρ

(ab)
± . (45)

Since O is Hermitian, the O± component of O is nothing but
the even- or odd-parity component of O under TRS. For TRS,
it holds that

tr[Oρ (ab)] = tr[T (Oρ (ab) )†T −1]

= tr[T ρ (ab)†T −1T O†T −1]

= tr[T O†T −1T ρ (ab)†T −1], (46)

and thus we obtain

tr[O+ρ
(ab)
− ] = tr[O−ρ

(ab)
+ ] = 0. (47)

Therefore, the trace part of Eq. (28) is given by

tr[Oρ (ab)] = tr[O+ρ
(ab)
+ ] + tr[O−ρ

(ab)
− ]. (48)

As we will show in Sec. III E, the O+ (O−) component gives
the primary coupling to electric (magnetic) fields because an
electric (magnetic) field is even (odd) under TRS. Hence,
Eq. (48) means that the leading coupling of MKPs to electric
(magnetic) fields is determined by ρ

(ab)
+ (ρ (ab)

− ).
When the system hosts only a single MKP, we have addi-

tional simplification on ρ (ab). In this case, ρ (ab) consists of a
single component ρ (12) since only two Majorana zero modes
exist. We find that this single component satisfies

T ρ (12)†T = −ρ (12), (49)

as is shown in the following. Because the two Majorana zero
modes |u(a)

0 〉 (a = 1, 2) are related by TRS, we can rewrite
ρ (12) as

ρ (12) = ∣∣u(1)
0

〉〈
CT u(1)

0

∣∣ − ∣∣T u(1)
0

〉〈
Cu(1)

0

∣∣, (50)

which leads to

T ρ (12)†T −1 = −∣∣Cu(1)
0

〉〈
T u(1)

0

∣∣ + ∣∣T Cu(1)
0

〉〈
u(1)

0

∣∣. (51)

Furthermore, when |u(1)
0 〉 is protected by Z2 (Z), we have

|Cu(1)
0 〉 = |u(1)

0 〉 (�|u(1)
0 〉 = λ|u(1)

0 〉 with � = −iT C and λ =
±1). In either case, these relations give the right-hand side of
Eq. (51) as −ρ (12), and thus we obtain Eq. (49). Equation (49)
implies that ρ (12) = ρ

(12)
− and thus only O− can couple to a

single MKP. Thus, a magnetic field gives the primary coupling
to a MKP (see also Sec. III E). We also find that the single
component ρ (12) and the gap function share the same irrep in
this case. This property follows from that Ug,γ for a single
MKP is given by a rotation matrix of a spin-J/2 fermion.
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Since the antisymmetric product of spin-J/2 fermions is spin
singlet, χ�

g in Eq. (40) is readily calculated as

χ�
g = ηg. (52)

We also confirm this relation for all single MKP cases in
Tables II and III in Sec. IV. Equation (52) implies that the
representation of ρ (12) coincides with that of the gap function.

If the system hosts more than a single MKP, both ρ
(ab)
+ and

ρ
(ab)
− can be nonzero and they can have more different irreps

than the gap function. As is shown in Appendix B, ρ
(ab)
± is

transformed as

Uk
g ρ

(ab)
± Uk†

g ≡
∑
cd

ρ
(cd )
± [�±

g ](cd )(ab), (53)

where �±
g is given by

[�±
g ](cd )(ab)

= ηg

4
([Ug,γ ]ca[Ug,γ ]db − [Ug,γ ]da[Ug,γ ]cb)

± ηg

4
([�γUg,γ ]ca[�γUg,γ ]db − [�γUg,γ ]da[�γUg,γ ]cb)

(54)

with [�γ ]ab ≡ 〈u(a)
0 |�|u(b)

0 〉. By taking the trace of �±
g , the

character of the representation reads as

χ�±
g = ηg

4
(tr[(Ug,γ )]2 − tr[(Ug,γ )2])

± ηg

4
((tr[�γUg,γ ])2 − tr[(�γUg,γ )2]). (55)

From χ�±
g , we can identify the irreps of ρ

(ab)
± .

E. Electric and magnetic couplings of MKPs

The presence of electric or magnetic fields may in-
duce low-energy couplings between these external fields and
MKPs. Here we will explain how to determine such couplings
by symmetry.

First, we consider possible magnetic couplings of MKPs
induced by a magnetic field B. A magnetic field B induces an
effective coupling Ĥm between the quantum field 
(x) and B.
In the low-energy limit, Ĥm does not contain any derivatives of

(x) and B in the low-energy limit, and thus it can be written
as

Ĥm =
∫

dx g(B)Ô(x), (56)

where g(B) is a real function of B, and Ô is a local quantum
operator in the form of Eq. (23).1 Hence, the coupling between
MKPs and the magnetic field is given by

Ĥm =
∫

dx g(B)ÔMF(x), (57)

with ÔMF in Eq. (28).
Possible g(B) and ÔMF are subject to symmetry. In gen-

eral, a magnetic field breaks (a part of) symmetry of the

1Here g(B) and Ô can be multicomponents, and the summation of
the multicomponent indices is implicit.

system. However, if one applies the symmetry operation to
the magnetic field as well as the quantum operator 
̂, the
whole system recovers the symmetry, and thus Ĥm should be
invariant under this symmetry operation.

Under TRS, g(B) and ÔMF are transformed as

g(B) → g(−B), (58)

and

ÔMF → −1

8

∑
a,b

[γ̂a, γ̂b]tr[U†
T ρ (ab)UTO∗]

= −1

8

∑
a,b

[γ̂a, γ̂b]tr[ρ (ab)T OT −1]. (59)

Therefore, if we decompose g(B) and ÔMF as

g(B) = g+(B) + g−(B),
(60)

ÔMF = ÔMF+ + ÔMF−,

where g+(B) [g−(B)] is an even (odd) function of B, and
ÔMF± is given by

ÔMF± = −1

8

∑
a,b

[γ̂a, γ̂b]tr[ρ (ab)
± O±], (61)

then TRS leads to

g+(B)ÔMF− = g−(B)ÔMF+ = 0. (62)

Thus, we have

Ĥm =
∫

dx(g+(B)ÔMF+(x) + g−(B)ÔMF−(x)). (63)

A further constraint is obtained by crystalline symmetry.
For g = {p|ap} ∈ Gk

0, g±(B) and ÔMF± are transformed as

g±(B) → g±((detp)pB), (64)

ÔMF± → −1

8

∑
a,b

[γ̂a, γ̂b]tr[Uk†
g ρ

(ab)
± Uk

gO±]. (65)

In order that Ĥm is invariant under Gk
0, g+(B) [g−(B)] and

ÔMF+ (ÔMF−) should be the same irrep under the transforma-
tion in Eqs. (64) and (65).

In a similar manner, we can obtain possible electric cou-
plings of MKPs induced by an electric (polarization) field
E. TRS requires that the electric couplings should have the
following form:

Ĥe =
∫

dx f (E )ÔMF+(x) (66)

since E is invariant under TRS. Furthermore, g(E ) and
ÔMF+(x) should be the same irrep under crystalline symmetry
defined by f (E ) → f (pE ) and Eq. (65). We note that though
applying an electric field to superconductors is difficult, elec-
tric responses can be observed via a distortion of the crystal.

As discussed in Sec. III D, for a single MKP, only ÔMF− is
nonzero. Therefore, a single MKP may host only the magnetic
coupling. This result is consistent with the fact that TRS
protects a single MKP and a time-reversal breaking magnetic
field is necessary to gap it out. We need more than a single
MKP to obtain the electric coupling.
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TABLE II. EAZ symmetry classes, irreps of ρ
(ab)
− , and magnetic responses for single MKPs for 2D point groups. The first row in each table

shows the wallpaper groups, irreps of MFs, and the effective spin of MFs, where groups in parentheses represent the Schoenfies notations.
For each table, the first, second, third, fourth, and fifth columns show irreps of gap functions, the emergent Altland-Zirnbauer classes, the 1D
invariants, irreps of ρ

(ab)
− , and the leading term of g−, respectively. Here, “IR” stands for irreps and we adopt the notation of irreps in the Bilbao

Crystallographic Server [110]. Note that irreps of MFs are double-valued irreps and irreps of � and O are single-valued irreps.

p1 (C1), Ā, spin 1/2 p2 (C2), (1Ē ,2 Ē ), spin 1/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A DIII Z2 A Bx , By, Bz A AIII Z A Bz

B D Z2 B Bx , By

p3 (C3), (1Ē ,2 Ē ), spin 1/2 p3 (C3), Ē , spin 3/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A AIII Z A Bz A DIII Z2 A Bz

p4 (C4), (1Ē1,
2 Ē1) or (1Ē2,

2 Ē2), spin 1/2 or 3/2 p6 (C6), (1Ē2,
2 Ē2) or (1Ē3,

2 Ē3), spin 1/2 or 5/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A AIII Z A Bz A AIII Z A Bz

B A 0 B A 0

p6 (C6), (1Ē1,
2 Ē1), spin 3/2 pm (Cs), (1Ē ,2 Ē ), spin 1/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A AIII Z A Bz A AIII Z A Bz

B D Z2 B B2
x − 3BxB2

y , B3
y − 3ByB2

x B D Z2 B Bx , By

pmm (C2v), Ē , spin 1/2 p31m, p3m1 (C3v), Ē1, spin 1/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A1 CI 0 A1 CI 0
A2 BDI Z A2 Bz A2 BDI Z A2 Bz

B1 BDI Z B1 By

B2 BDI Z B2 Bx

p31m, p3m1 (C3v), Ē , spin 3/2 p4m (C4v), Ē1 or Ē2, spin 1/2 or 3/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A1 AIII Z A1 B3
x − 3BxB2

y A1 CI 0
A2 D Z2 A2 Bz A2 BDI Z A2 Bz

B1 AI 0
B2 AI 0

p6m (C6v), Ē1 or Ē2, spin 1/2 or 5/2 p6m (C6v), Ē3, spin 3/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A1 CI 0 A1 CI 0
A2 BDI Z A2 Bz A2 BDI Z A2 Bz

B1 AI 0 B1 BDI Z B1 B3
y − 3ByB2

x

B2 AI 0 B2 BDI Z B2 B3
x − 3BxB2

y

IV. APPLICATION TO THE WALLPAPER GROUPS

A. Majorana multipole response

We now apply the general theory developed in the previous
section to MKPs protected by wallpaper groups. We consider
the minimal set of MKPs positioned at each of the highest-
symmetry points in the surface BZ where the little group Gk

0
is G0 itself. The minimal MKPs are systematically determined
from the Wigner’s test for TRS. As discussed in Sec. III C,
when W T

α = 1 (−1), a Kramers pair is formed in a single (a
pair of) α, while when W T

α = 0, a Kramers pair is formed
between different irreps [105]. The resultant minimal MKPs
are listed in Tables II and III. In most cases, the minimal set
is a single MKP, and thus ρ (ab) consists of a single component

ρ
(12)
− . As is shown in Sec. III D, the irrep of ρ

(12)
− coincides

with that of the gap function. For instance, let us consider
p2 = {{e|0}, {2z|0}}. In this case, Ug,γ is given by

U{E |0},γ =
(

1 0
0 1

)
, U{2z |0},γ =

(
i 0
0 −i

)
. (67)

Substituting Eq. (67) into Eq. (40), we find

χ�
{e|0} = 1, χ�

{2z |0} = η{2z |0}, (68)

which reproduces Eq. (52). We summarize the obtained irreps
of ρ (ab) in Tables II and III. We note that the minimal set is
double MKPs when MFs are positioned at the M̄ point of pgg
or p4g. As explained in Sec. III C, the double MKPs originate
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TABLE III. EAZ symmetry classes, irreps of ρ
(ab)
− , and magnetic responses for single MKPs for other wall-

paper groups including nonsymmorphic ones. Those SGs are explicitly defined by pg = {{e|0}, {σy|τx}}, cm =
{{e|0}, {σ(010)|0}, {e|τx}}, pmg = {{e|0}, {2z|0}, {σ(010)|τx}, {σ(100)|τx}}, pgg = {{e|0}, {2z|0}, {σ(010)|τx + τy}, {σ(100)|τx + τy}}, cmm =
{{e|0}, {2z|0}, {σ(010)|0}, {σ(100)|0}, {e|τx + τy}}, p4g = {{e|0}, {2z|0}, {4z|0}, {σ(010)|τx + τy}, {σ(100)|τx + τy}, {σ(110)|τx + τy}, {σ(11̄0)|τx +
τy}}, where τ i is a half-translation along the i direction, nz an n-fold rotation around the z axis, σ(hkl ) a mirror reflection in terms of the (hkl)
plane. �̄, X̄ , and M̄ label (0, 0), (π, 0), and (π, π ) points in the surface BZ. We use the notation of irreps in the Bilbao Crystallographic Server
[110] when irreps are similar to those in symmorphic groups. On the other hand, irreps of nonsymmorphic groups at the BZ boundary, Xi and
X ′

i , are given in Table VI.

pg (Cs) �̄ point, (1Ē ,2 Ē ), spin 1/2 pg (C2) X̄ point, (X1, X1) or (X2, X2), spin 1/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A AIII Z A Bz A DIII Z2 A Bz

B D Z2 B Bx , By B AII 0

cm (Cs) �̄ point, (1Ē ,2 Ē ), spin 1/2 pmg (C2v) �̄ point, Ē , spin 1/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A AIII Z A Bz A1 CI 0
B D Z2 B Bx , By A2 BDI Z A2 Bz

B1 BDI Z B1 By

B2 BDI Z B2 Bx

pmg (C2v) X̄ point, (X ′
1, X ′

2) or (X ′
3, X ′

4), spin 1/2 cmm (C2v) �̄ point, Ē , spin 1/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A1 AIII Z A1 BxByBz A1 CI 0
A2 A 0 A2 BDI Z A2 Bz

B1 D Z2 B1 By B1 BDI Z B1 By

B2 A 0 B2 BDI Z B2 Bx

pgg (C2v) �̄ point, Ē , spin 1/2 pgg (C2v) X̄ point, (X ′
1, X ′

2) or (X ′
3, X ′

4), spin 1/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g− IR of � EAZ 1D IR of ρ

(12)
− Magnetic multipole g−

A1 CI 0 A1 AIII Z A1 BxByBz

A2 BDI Z A2 Bz A2 A 0
B1 BDI Z B1 By B1 D Z2 B1 By

B2 BDI Z B2 Bx B2 A 0

p4g (C4v) �̄ point, Ē1 or Ē2, spin 1/2 or 3/2

IR of � EAZ 1D IR of ρ
(12)
− Magnetic multipole g−

A1 CI 0
A2 BDI Z A2 Bz

B1 AI 0
B2 AI 0

from a crystalline symmetry-enforced fourfold degeneracy. In
the following, we focus on magnetic responses in the single
MKP cases. The electromagnetic responses for double MKPs
will be discussed in Sec. VI.

For a single MKP, a nonzero ÔMF is always odd under TRS
(see arguments in Sec. III D). Hence, the magnetic coupling is
given by

Ĥm =
∫

dx g−(B)ÔMF−(x), (69)

where

g−(B) =
∑

i

c1,iBi +
∑
i jk

c3,i jkBiB jBk + · · · . (70)

Here, c1,i and c3,i jk are material-dependent parameters subject
to constraints from crystalline symmetry. The symmetry-
adopted forms of g−(B) are listed in Table VII, where the first,
third, fifth, and seventh orders of magnetic fields correspond

to a magnetic dipole, octupole, 32-pole, and 128-pole, respec-
tively. As argued in Sec. III E, g−(B) should be the same irrep
as ρ

(12)
− .

For instance, let us consider p2. When the irrep of the gap
function is A, the irrep of ρ

(12)
− is also A. Thus, an allowed O

satisfies

U{2z |0}OA
p2−U†

{2z |0} = OA
p2−, T OA

p2−T −1 = −OA
p2−, (71)

and g−(B) is given by

gA
p2−(B) = c1Bz (72)

since a magnetic field is transformed as (Bx, By, Bz ) →
(−Bx,−By, Bz ) under {2z|0}. Hence, Ĥm reads as

Ĥm = c1

∫
dx BzÔA

MF p2−, (73)
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where ÔA
MF p2− is defined by Eq. (28) with O = OA

p2−. This
term provides the magnetic dipole response of the MKP along
the rotation axis. Such a magnetic response has been known
for superfluid 3He-B phase [47,69,70,72], and the E1u state of
UPt3 [73]. On the other hand, for the B gap function, O for
the MKP satisfies

U{2z |0}OB
p2−U†

{22|0} = −OB
p2−. (74)

Thus, the lowest order of g−(B) is given by

gB
p2−(B) = c1,1Bx + c1,2By, (75)

resulting in the magnetic dipole response parallel to the sur-
face. The direction of the dipole response depends on the
material-dependent parameters c1,i (i = 1, 2).

In this manner, we can determine possible magnetic re-
sponses of a single MKP protected by all wallpaper groups,
which are summarized in Tables II and III. We find that a
single MKP shows magnetic dipole responses in most cases:
In addition to the 3He-B phase and the E1u state of UPt3
mentioned in the above, the A1u state of the superconduct-
ing doped topological insulator [52] also shows the magnetic
dipole response. For the (111) surface of the doped topological
insulator, which is normal to the z direction, there exists a
single MKP at the �̄ point of the surface BZ. Because the
(111) surface hosts C3v symmetry, and the A1u gap function
is the A2 irrep for C3v , from Table II, we find that the surface
MKP has the magnetic dipole parallel to the z direction.

Interestingly, our result shows that magnetic octupole re-
sponses are also possible. The rest of this section focuses on
the magnetic octupole responses, which are realized in spin- 3

2
TSCs and nonsymmorphic TSCs.

B. Magnetic octupole response of spin- 3
2 MFs

The spin of MKPs is effectively given by 1
2 , 3

2 , and 5
2 , each

of which forms different irreps. There exist magnetic struc-
tures allowed only for the spin- 3

2 MFs when the wallpaper
group includes the threefold rotation symmetry.

For example, let us consider the case with p3m1 =
{{e|0}, {3z|0}, {σ(100)|0}} and the A1 gap function. Here {3z|0}
is a threefold rotation about the z axis and {σ(100)|0} is a mirror
reflection with respect to the (100) plane. From Table II, the
irrep of ρ (12) is A1. Thus, O− coupled to the spin- 3

2 MKP
satisfies

U{3z |0}OA1
p3m1−U

†
{3z |0} = OA1

p3m1−, (76a)

U{σ(100)|0}OA1
p3m1−U

†
{σ(100)|0} = OA1

p3m1−. (76b)

The magnetic field changes as {3z|0} : (B+, B−, Bz ) →
(e

i2π
3 B+, e− i2π

3 B−, Bz ) and {σ(100)|0} : (Bx, By, Bz ) →
(Bx,−By,−Bz ) under the operations of p3m1, where
B+ ≡ Bx + iBy, B+ ≡ Bx − iBy. Since the irrep of g−(B)
has to be A1, it is of the form

gA1
p3m1−(B) = c3

(
B3

x − 3BxB2
y

)
, (77)

which gives the magnetic octupole response as a leading con-
tribution. It should be noted here that the threefold rotation
symmetry forbids the first-order term of Bi. In a similar man-
ner, the magnetic octupole response appears for p6m when the

spin of MKPs is 3
2 and the irrep of the gap functions is the B1

or B2 gap function. The g−(B)’s in the lowest order are

gB1
p6m−(B) = c3

(
B3

y − 3ByB2
x

)
, (78)

gB2
p6m−(B) = c3

(
B3

x − 3BxB2
y

)
. (79)

In the previous study [76], we pointed out that the magnteic
octupole response is realized in the half-Hausler supercon-
ductors [88–94] with the A1 gap function of Td in the (111)
surface. On the surface, the A1 irrep of Td is compatible with
the A1 irrep of C3v (p31m or p3m1 in the wallpaper groups).
The similar compatible relation is met in the A2u irrep of
Oh. Hence, the antiperovskite Dirac metals [63,64] with the
A2u gap function of Oh are also a possible candidate for this
response.

In p6 symmetric TSCs with the B gap function, we have a
slightly different magnetic octupole response. As is the case
with p3m1, the spin- 3

2 state is necessary, but the MKP is
stabilized by a Z2 invariant. O− for the MKP only respects

U{6z |0}OB
p6−U†

{6z |0} = −OB
p6−. (80)

Therefore, the magnetic octupole response is described by

gB
p6−(B) = c3,1

(
B3

x − 3BxB2
y

) + c3,2
(
B3

y − 3ByB2
x

)
. (81)

In the polar coordinate (Bx, By) = B(cos φ, sin φ), it is rewrit-
ten as

gB
p6−(B) = c3,1B3 cos(3φ + θρ ), (82)

where tan θρ = c3,2/c3,1. Since the magnetic response pre-
serves only the sixfold rotation symmetry, it can be tilted by
the material-dependent angle θρ . Interestingly, this type of the
magnetic octupole response is realized in fully gapped TSCs
as we will show in Sec. V A.

C. Magnetic octupole response by nonsymmorphic symmetry

We show another mechanism realizing the magnetic oc-
tupole response. The key ingredient is the glide symmetry,
which appears in pg, pmg, pgg, and p4g.

For example, we consider the case with pmg =
{{e|0}, {2z|0}, {σ(010)|τx}} and the A1 gap function. The
irrep of O for the MKP at �̄ point is different from that at
X̄ point since the factor system for glide {σ(010)|τx} has an
additional phase at the X̄ point. From Table III, we have a Z
invariant at the X̄ point while there is no topological invariant
at the �̄ point. When the irrep of O− is A1, it satisfies

U{2z |0}OA1
pmg−U†

{2z |0} = OA1
pmg−, (83a)

U{σy|τx}OA1
pmg−U†

{σy|τx} = OA1
pmg−. (83b)

On the other hand, the magnetic field changes as

{2z|0} : (Bx, By, Bz ) → (−Bx,−By, Bz ), (84a)

{σy|τx} : (Bx, By, Bz ) → (−Bx, By,−Bz ). (84b)

As g−(B) for the magnetic coupling should be the same irrep
as O−, it is given by

gA1
pmg−(B) = c3BxByBz, (85)

which represents the magnetic octupole response.
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V. MAJORANA OCTUPOLE RESPONSES
IN TIGHT-BINDING MODELS

In this section, using concrete models, we demonstrate
magnetic octupole responses in p6 and pmg, which have been
overlooked so far.

A. Model with p6 symmetry

We consider a tight-binding model with space group P622
(SG# 177), which is built on the triangular lattice with px,
py, and pz orbitals on each site. The normal Hamiltonian is
given by

hp6(k) = h0(k) + hsoc(k), (86)

with

h0(k) = m0 + m1λ8 + tz cos kz

+ txy

{
cos kx + 2 cos

(
kx

2

)
cos

(√
3ky

2

)}
, (87a)

hsoc(k) = α cos kz(λ5sy − λ7sx ) + β sin kz(λ4sx + λ6sy)

+ γ (sin kxsx + sin kysy), (87b)

where λi (i = 1–8) are the Gell-Mann matrices acting on the
(px, py, pz ) orbitals, and si are the Pauli matrices in the spin
space. m0 and m1 are onsite potentials, tz and txy are hopping
terms, and α, β, and γ represent spin-orbital interactions.
The normal Hamiltonian hosts TRS and the P662 symmetry
below:

U{6z |0}hp6(k)U †
{6z |0} = hp6(6zk), (88a)

U{2y|0}hp6(k)U †
{2y|0} = hp6(2yk), (88b)

U{2x |0}hp6(k)U †
{2x |0} = hp6(2xk), (88c)

with

U{6z |0} = Rz

(
2π

6

)
exp

(
−isz

π

6

)
, (89a)

U{2y|0} = Ry(π )(−isy), (89b)

U{2x |0} = Rx(π )(−isx ), (89c)

where Ri(θ ) is a 3 × 3 rotation matrix in the basis (px, py, pz )
and represents the θ rotation about the i axis. The band struc-
ture of Eq. (86) is shown in Fig. 1(a). When β = γ = 0,
the normal Hamiltonian recovers the spatial inversion, giv-
ing three doubly degenerate bands: One band is effectively
described by spin- 3

2 electrons, whereas the other bands are
described by spin- 1

2 electrons. When β �= 0 and γ �= 0, the
doubly degenerate bands are split due to the breaking of
spatial inversion. In the following, we choose the chemical
potential such that the spin- 3

2 band forms the Fermi surface
around the � point. For the superconducting state, we consider
the B1 and B2 gap functions:

�B1 (k) = �0[η1 sin kz(λ1sx + λ3sy) + η2 fx(k)λ2](isy),
(90a)

�B2 (k) = �0[η′
1 sin kz(λ1sy − λ3sx ) + η′

2 fy(k)λ2](isy),
(90b)

0
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FIG. 1. (a) The band structure of Eq. (86) with parameters
(m0, m1, txy, tz, α, β, γ ) = (2.2, 5, −1.3, −2.5, 6, 0.5, 1). (b) The
(001) surface state in the fully gapped superconducting states. Here,
we choose the chemical potential and the amplitude of the gap
funcion as μ = 0 and �0 = 1 and the B1 and B2 gap functions
coexist such that η1 = η2 = η′

1 = η′
2 = 0.5. (c) Applying the Zeeman

magnetic field hZ = gB · s, the energy gap of the MKP is illustrated
as a function of B: (c1) �B1 only, (c2) �B2 only, and (c3) the mixture
of �B1 and �B2 .

where fx(k) = [sin kx − 2 sin( kx
2 ) cos(

√
3ky

2 )] and fy(k) =
[sin ky − 2 sin( ky

2 ) cos(
√

3kx
2 )], and η1, η2, η′

1, and η′
2 are real

parameters. When the gap function is �B1 (�B2 ), there appear
point nodes in the ky axis (the kx axis), which are protected
by {2y|0} ({2x|0}) rotation symmetry. On the (001) plane, the
zero-energy flat-band states connecting the point nodes appear
because a 2D Z2 invariant becomes nontrivial between the
point nodes.

We here focus on the MKP at the �̄ point (kx = ky = 0).
Since B1 and B2 in P622 are compatible with B in p6 on
the surface. Hence, our theory predicts the magnetic octupole
response there. To demonstrate this, we add the Zeeman
magnetic field hZ = gB · s in the normal Hamiltonian and
numerically calculate the energy gap of the MKP as a function
of B. See Figs. 1(c1) and 1(c2). The magnetic responses keep
sixfold rotation symmetry and behaves like Eq. (77). The
magnetic octupole response is unique to the spin- 3

2 electrons
because a point node appears at kx = ky = 0 if the chemical
potential lies on the spin- 1

2 electrons [109].
Furthermore, if the P622 symmetry is broken to the P6

symmetry, the �B1 and �B2 gap functions can coexist, and
the BdG Hamiltonian realizes a fully gap TSC. A MKP exists
at kx = ky = 0 [see Fig. 1(b)], which shows a tilted magnetic
octupole response as shown in Fig. 1(c3). The magnetic re-
sponse respects the sixfold rotation symmetry, but zeros of
the energy gap appear according to Eq. (81) with nonzero θρ .

B. Model with pmg symmetry

So far, we consider surface MFs in 3D topological
superconductors, but our theory also works for MFs in lower-
dimensional systems. Here we consider a 2D model with pmg
symmetry, which hosts a single MKP showing a magnetic
octupole response.
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Let us consider the 2D square lattice with Pma2 (SG#
28) [77,111]. In the unit cell, we have two atoms located at
(0, 0,−z) and ( 1

2 , 0, z). Provided that only the s orbital exists
on each site, the tight-binding model is

hpmg(k) = h0(k) + hsoc(k), (91)

with

h0(k) = m0 + t1 cos kx + t2 cos ky + t3 cos

(
kx

2

)
σx(kx ),

(92a)

hsoc(k) = (α sin kysx + β sin kxsy)σz

+ γ

[
sin

(
kx

2

)
σx(kx )sz + cos

(
kx

2

)
σy(kx )sx

]
,

(92b)

where si and σi (i = x, y, z) are Pauli matrices describing the
spin and the sublattice degrees of freedom, and σx(kx ) and
σy(kx ) are modified Pauli matrices:

σx(kx ) ≡
(

0 eikx/2

e−ikx/2 0

)
, (93a)

σy(kx ) ≡
(

0 −ieikx/2

ie−ikx/2 0

)
. (93b)

m0 is an onsite potential, t1 and t2 are in-plane hopping terms,
t3 represents a hopping between the different atoms, α and β

are in-plane spin-orbit interactions, and γ is spin-orbit inter-
actions between the different atoms. Equation (91) respects
TRS and the following crystal symmetries:

U{2y|0}hpmg(k)U †
{2y|0} = hpmg(2yk), (94a)

U{σ(001)|τx}hpmg(k)U †
{σ(001)|τx} = hpmg(σ(001)k), (94b)

U{σ(100)|τx}hpmg(k)U †
{σ(100)|τx} = hpmg(σ(100)k), (94c)

with

U{2y|0} = −iσxsy, (95a)

U{σ(001)|τx} =
(

0 eikx

1 0

)
(isz ), (95b)

U{σ(100)|τx} =
(

eikx 0
0 1

)
(isx ). (95c)

We show the band structure of Eq. (91) in Fig. 2(a), where the
glide symmetry-protected band crossing appears on the lines
�-X and Y -M. For the superconducting state, we consider the
A1 gap function:

�A1 = �0

[
η1 sin kyσzsx + η2 sin

(
kx

2

)
σx(kx )sz

]
(isy). (96)

Numerically diagonalizing the BdG Hamiltonian with the
open boundary condition in the y direction, we obtain a single
MKP at kx = π as shown in Fig. 2(b). Whereas the open
boundary condition breaks the twofold rotation symmetry in
Eq. (94a), it keeps pmg symmetry generated by Eqs. (94b)
and (94c). Then, regarding the kx = π point as the X̄ point
(and exchanging the y and the z directions in Table III), we
can use the result in Table III, which predicts the magnetic

E
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Y M

0

0.03
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0.01
By

Bx

Bz

By

Bz

ByBx

(c1) (c2) (c3)

FIG. 2. (a) The band structure of Eq. (91) with parameters
(m0, t1, t2, t3, α, β, γ ) = (−1, 0.1, 2.5, 0.25, −1, 0.3, 2). (b) The
(01) surface state in the superconducting state with μ = 1, �0 = 1,
η1 = 0.5, and η2 = 0.1. (c) The energy gap of the MKP as a function
of B under the Zeeman magnetic field hZ = gB · s: The view from
(c1) [001], (c2) [100], and (c3) [111] directions.

octupole response in the form of Eq. (85). In Fig. 2(c), we
show the magnetic response obtained by adding the Zeeman
magnetic term hZ = gB · s in the normal Hamiltonian. This
result is consistent with Eq. (85).

VI. MKPs AT M̄ POINT IN pgg AND p4g

So far, we have considered magnetic responses of a single
MKP, which is valid except for the wallpaper groups pgg and
p4g. For the pgg and p4g symmetries at the M̄ point, TRS
and crystalline symmetry ensure a fourfold-degenerate band
crossing on surfaces, realizing two MKPs. In the following,
we discuss electromagnetic structures arising from those two
MKPs.

When there are two MKPs, both ρ
(ab)
+ and ρ

(ab)
− are

nonzero, and thus both electric and magnetic couplings are
possible. Using Eq. (55), we determine the electric and mag-
netic couplings.

A. Short representation

In the present cases, Eq. (52) is not available. To evaluate
Eq. (55), we explicitly construct the representation Ug,γ , Tγ ,
Cγ , and �γ defined below:

Uk
g

∣∣u(a)
0

〉 =
∑

b

∣∣u(b)
0

〉
[Ug,γ ]ba,

T
∣∣u(a)

0

〉 =
∑

b

∣∣u(b)
0

〉
[Tγ ]ba,

C
∣∣u(a)

0

〉 =
∑

b

∣∣u(b)
0

〉
[Cγ ]ba,

�
∣∣u(a)

0

〉 =
∑

b

∣∣u(b)
0

〉
[�γ ]ba. (97)

Here �γ = −iTγC∗
γ since � = −iT C. Whereas Ug,γ , Tγ , Cγ ,

and �γ obey the same multiplication law as Uk
g , T , C, and
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TABLE IV. Short representation of double MKPs at the M̄ point for pgg and p4g. Matrix representations of other elements in p4g are given
by the product of them, e.g., U{σ(110)|τx+τy},γ = U{σ(100)|τx+τy},γU{4z |0},γ .

pgg M̄ point

IR of � U{e|0},γ U{2z |0},γ U{σ(010)|τx+τy},γ U{σ(100)|τx+τy},γ Tγ Cγ �γ

A1 σ0s0 iσys0 σxs0 σzs0 iσ0sy σ0s0 σ0sy

A2 σ0s0 iσzs0 σys0 σxs0 iσxsy σysy σzs0

B1 σ0s0 iσxs0 σzs0 σys0 iσzsy σ0s0 σzsy

B2 σ0s0 iσxs0 σys0 σzs0 iσzsy σ0s0 σzsy

p4g M̄ point

IR of � U{e|0},γ U{4z |0},γ U{2z |0},γ U{σ(100)|τx+τy},γ Tγ Cγ �γ

A1 σ0s0 eiπ (2σ0sz+σzsz )/4 −iσzsz σxs0 iσ0sy σ0sx σ0sz

A2 σ0s0 eiπ (2σ0sz+σzsz )/4 −iσzsz σxs0 iσ0sy σzsx σzsz

B1 σ0s0 eiπ (2σ0sz+σzsz )/4 −iσzsz σxs0 iσ0sy σxs0 σxsy

�, the dimension of the representation becomes half, as ex-
plained shortly.

Let us start with a zero mode |u(a)
0 〉 belonging to an irrep

α of Gk
0. Using the Wigner test W T

α , we can obtain a corep-
resentation of Gk

0 + T Gk
0 from the irrep α, in the standard

manner. However, to obtain a representation of Gk = Gk
0 +

T Gk
0 + CGk

0 + �Gk
0, we also need to take into account either

PHS or CS. If either PHS or CS is taken into account, another
one is automatically included, because � = −iT C.

To include these antisymmetries, we refer to the EAZ class
of α. The zero mode |u(a)

0 〉 can exist in the irrep α when the
EAZ class has a nontrivial topological invariant Z or Z2. If
the topological invariant is Z, the irrep α keeps CS, and the
zero mode can be an eigenstate of �, say �|u(a)

0 〉 = |u(a)
0 〉, in

a proper basis. On the other hand, if the topological invariant
is Z2, the irrep α keeps PHS, and the zero mode can satisfy
C|u(a)

0 〉 = |u(a)
0 〉 in a proper basis. In this manner, the action

of CS or PHS to the zero mode is determined by referring to
the EAZ class. Using the relation {�, T } = 0 and [C, T ] = 0,
we can also generalize this argument to the corepresentation
obtained from α, which provides a representation of Gk.

For instance, let us consider MKPs at the M̄ point of pgg.
We also assume that the irrep of the gap function is A1. As a
fermion, MFs belong to a double-valued representation, which
is uniquely given by the M irrep in Table VI. The M irrep is
two dimensional and obeys

U 2
{2z |0},γ = −1,

U 2
{σ(010)|τx+τy},γ = 1, (98)

U 2
{σ(100)|τx+τy},γ = 1,

together with the other standard commutation relations be-
tween the generators. When the gap function belongs to the A1

irrep, these generators also commute with PHS C. As shown
in Table III, the Wigner test indicates that the EAZ class is
DIII, of which topological invariant is Z2. Thus, we can take
the basis satisfying the condition C|u(a)

0 〉 = |u(a)
0 〉. Because

U{σ(100)|τx+τy},γ commutes with C and has real eigenvalues ±1,
the eigenbasis of U{σ(010)|τx+τy},γ satisfies the above condition.
Moreover, to take into account TRS, we add another M irrep
of MFs according to the Wigner test of TRS. Consequently,

we obtain

U{2z |0},γ = iσys0, U{σ(010)|τx+τy},γ = σxs0,

U{σ(100)|τx+τy},γ = σzs0, Cγ = σ0s0, Tγ = iσ0sy. (99)

It should be noted here that PHS and CS do not increase the
dimension of the representation. This is in sharp contrast to
the representation for ordinary electron systems. For ordinary
systems, PHS and CS transform an electron to a hole, and
thus to realize these symmetries, we need to consider the cor-
responding holes at the same time, which doubles the degrees
of freedom. In contrast, in the case of MFs, we do not need
to double the degrees of freedom since MFs are their own
antiparticles. These antisymmetries map MFs to themselves.
As a result, MFs provide a representation shorter than that
for ordinary electrons. The short representation is a central
property of MFs, which is a group-theoretical manifestation
of the self-conjugate property of MFs. In a different context, a
similar short representation has been known for the BPS states
in supersymmetric theories [112]. In Table IV, we summarize
the short representation of MKPs at the M̄ point for pgg and
p4g.

B. Electric and magnetic responses

Using Eq. (55), we can determine possible electric and
magnetic couplings of the double MKPs at the M̄ point for
pgg and p4g. For instance, let us consider pgg and the A1

gap function. From the short representation in Table IV, χ�±
g

reads as

χ�+
{e|0} = 2, χ�−

{e|0} = 4,

χ�+
{2z |0} = 2, χ�−

{2z |0} = 0,

χ�+
{σ(010)|τx+τy} = −2, χ�−

{σ(010)|τx+τy} = 0,

χ�+
{σ(100)|τx+τy} = −2, χ�−

{σ(100)|τx+τy} = 0. (100)

Then, using the standard group-theoretical method, we per-
form the irreducible decomposition of ρ

(ab)
± in terms of the

single-valued irreps of C2v ,

ρ
(ab)
+ = 2A2, ρ

(ab)
− = A1 + A2 + B1 + B2. (101)

224504-13



KOBAYASHI, YAMAZAKI, YAMAKAGE, AND SATO PHYSICAL REVIEW B 103, 224504 (2021)

TABLE V. EAZ symmetry classes, irreps of ρ
(ab)
± , and electric and magnetic responses of the double MKPs at the M̄ point for pgg and p4g.

pgg (C2v ) M̄ point, (M, M )

IR of � IR of ρ
(ab)
+ IR of ρ

(ab)
− Electric multipole f Electric multipole g+ Magnetic multipole g−

A1 2A2 A1+A2+B1+B2 ExEy BxBy Bx , By, Bz, BxByBz

A2 B1+B2 3A1+A2 Ex , Ey BxBz, ByBz Bz, BxByBz

B1 A2+B2 A1+B1+2B2 Ey, ExEy BxBy, ByBz Bx , By, BxByBz

B2 A2+B1 A1+2B1+B2 Ex , ExEy BxBy, BxBz Bx , By, BxByBz

p4g (C4v ) M̄ point, (M1, M2)

IR of � IR of ρ
(ab)
+ IR of ρ

(ab)
− Electric multipole f Electric multipole g+ Magnetic multipole g−

A1 2B2 A1+A2+E ExEy BxBy Bz, {Bx, By}, BxByBz(B2
x − B2

y )
A2 E A1+A2+2B1 {Ex, Ey} {BxBz, ByBz} Bz, BxByBz, BxByBz(B2

x − B2
y )

B1 A2+B2 A2+B1+E ExEy, ExEy(E 2
x − E 2

y ) BxBy, BxBy(B2
x − B2

y ) Bz, {Bx, By}, BxByBz

B2

Because ρ
(ab)
+ �= 0, in contrast to a single MKP, the double

MKPs may host an electric response. We find that the electric
response is quadrupole. As explained in Sec. III E, f (E ) in
Eq. (66) shares the same irrep with ρ

(ab)
+ . Thus, referring to

irrpes of f (E ) in Table VIII, we find

f A2
pgg(E ) = c2ExEy, (102)

with a constant c2, which is quadrupole. We can also evaluate
the magnetic response of the double MKPs. Since g+(B) and
g−(B) in Eq. (63) are possible, their leading terms are given
by

gA2
pgg+(B) = c2+BxBy,

gA1
pgg−(B) = c3−BxByBz,

gA2
pgg−(B) = c1,1−Bz, (103)

gB1
pgg−(B) = c1,2−By,

gB2
pgg−(B) = c1,3−Bx,

where c2+ c3−, and c1,i− are material-dependent parameters.
This result implies that the leading magnetic response of the
double MKPs is a mixture of dipole and quadrupole.

In a similar manner, we calculate χ�±
g for all possible dou-

ble MKPs at the M̄ point in pgg and p4g, and evaluate possible
electric and magnetic responses. The obtained electric and
magnetic responses are summarized in Table V.

Before closing this section, we comment on the case of
p4g, which also realizes a unique electromagnetic response at
the M̄ point. Although different irreps coexist in the magnetic
response, one of them exhibits a magnetic response with high
mutipolarity. If the irrep of O− is A1 or B1, g−(B) is of the
form

gA1
p4g−(B) = c5−BxByBz

(
B2

x − B2
y

)
, (104)

gB1
p4g−(B) = c3−BxByBz, (105)

which indicate the magnetic 32-pole and octupole responses,
respectively. Similarly, when the irrep of O+ is A2, one of
electric responses exhibits a 16-pole response,

f A2
p4g(E ) = c4ExEy

(
E2

x − E2
y

)
, (106)

gA2
p4g+(B) = c4+BxBy

(
B2

x − B2
y

)
. (107)

VII. SUMMARY

Applying the Wigner’s test to the identification of 1D
topological invariants and establishing the multipole theory
for MKPs, we classified the possible magnetic structures for
MKPs under the wallpaper groups. For a single MKP, irreps of
magnetic structures are classified into the magnetic dipole or
octupole and one-to-one correspond to those of gap functions
in TSCs. Although almost magnetic structures belong to the
magnetic dipole, the magnetic octupole response is realized
in two ways: One is the threefold-rotation symmetry-induced
magnetic octupole in spin- 3

2 TSCs, which is realized for p6,
p3m1, p31m, and p6m. The magnetic response preserves
the sixfold rotation symmetry as shown in Fig. 1(c) and its
shape is described by Eq. (77) or (81). The other is the
glide-symmetry-induced magnetic octupole in nonsymmor-
phic TSCs, which is realized for pmg and pgg at the BZ
boundary. The shape of the magnetic response is given by
Eq. (85) as shown in Fig. 2(c). In addition, we found that two
MKPs arise at the M̄ point when the surface BZ preserves pgg
or p4g. The two MKPs potentially exhibit electric multipole
responses, which will be discussed elsewhere.

Finally, we comment on the possible experimental method
for detecting the magnetic structures of a single MKP. Our re-
sults predict that the spin structure of the MKPs is anisotropic,
so we are able to measure the anisotropy through surface-
spin-sensitive measurements, such as spin-resolved tunneling
spectroscopy [97,98], spin-relaxation rate [69], spin suscep-
tibility [70], thermal conductivity [99–101] under magnetic
fields, and so on. As an example, we discuss the behavior of
tunneling conductance under a magnetic field or with a mag-
net attached, where we assume that only the Zeeman magnetic
field affects the MKP. We note that the orbital magnetization
is also useful to measure the topological surface states on
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TSCs [113–118]. Tunnel conductance detects the MKP as a
zero-bias conductance peak [43]. When the magnetic field
is turned on, the MKP shifts from the zero energy, resulting
in broadening or splitting of the zero-bias conductance peak.
When the magnetic structure is the dipole type, such sup-
pression of the zero-bias conductance peak can be observed
when applying the magnetic field in a specific direction, e.g.,
a rotation symmetry axis. On the other hand, when the mag-
netic structure is the octupole type, the suppression occurs
in different three directions due to three or sixfold rotation
symmetry. Thus, if we apply the in-plane rotating magnetic
field, the recovery of the peak may appear along with sixfold
periodicity according to Eq. (77) or (81).
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APPENDIX A: DERIVATION OF EQ. (26)

Here we show the derivation of Eq. (26). We start with
Eq. (25), which can be rewritten as

γ̂a =
∫

dx
〈
u(a)

0 (x)
∣∣
̂(x)

=
∫

dx
∑

iτ

(u(x)(a)∗
0 )iτ 
̂(x)iτ , (A1)

where i and τ describe internal degrees of freedom for elec-
trons and the Nambu space and the wave function satisfies
the commutation relation {
̂(x)iτ , 
̂

†(x′) jτ ′ } = δττ ′δi jδ(x −
x′) and the PHS C
̂(x) = 
̂(x). Similarly, γ̂ †

a is given by

γ̂ †
a =

∫
dx 〈u(a)∗

0 (x)|
̂(x)†. (A2)

Then, the commutation relation between γ̂a and γ̂
†
b is calcu-

lated as{
γa, γ

†
b

} =
∫

dx dx′{〈u(a)
0 (x)

∣∣
̂(x), 〈u(b)∗
0 (x′)

∣∣
̂(x′)†
}

=
∫

dx dx′ ∑
i j

∑
ττ ′

(
u(x)(a)∗

0

)
iτ

(
u(x′)(b)

0

)
jτ ′

× {
̂(x)iτ , 
̂(x′)†
jτ ′ }

=
∫

dx
∑

iτ

(
u(x)(a)∗

0

)
iτ

(
u(x)(b)

0

)
iτ

= δab. (A3)

Also, from Eq. (A2), we find the relation between γa and γ †
a :

γ †
a =

∫
dx

〈
u(a)∗

0 (x)
∣∣τxτx
̂(x)†

=
∫

dx
〈
Cu(a)

0 (x)
∣∣
̂(x)

=
∑

b

γbC
∗
ba, (A4)

where we define a unitary matrix Cba = 〈u(b)
0 |Cu(a)

0 〉 = Cab.
Using Eqs. (A3) and (A4), Eq. (A3) is recast into{

γa, γ
†
b

} = {γa, γc}C∗
cb

= δab, (A5)

where Cab satisfies

C−1
ab = C†

ab = C∗
ba = C∗

ab, (A6)

so we obtain

{γa, γb} = Cab. (A7)

APPENDIX B: DERIVATION OF EQ. (53)

In this Appendix, we derive Eq. (53). First, we show the
relation

T ρ (ab)†T −1 = −�ρ (ab)�†, � = −iCT . (B1)

To show this, we rewrite the left-hand side of the above equa-
tion as follows:

T ρ (ab)†T −1 = UT
{[∣∣u(a)

0

〉〈
Cu(b)

0

∣∣ − ∣∣u(b)
0

〉〈
Cu(a)

0

∣∣]†
}∗U†

T

= UT
[∣∣Cu(b)

0

〉〈
u(a)

0

∣∣ − ∣∣Cu(a)
0

〉〈
u(b)

0

∣∣]∗U†
T

= ∣∣T Cu(b)
0

〉〈
T u(a)

0

∣∣ − ∣∣T Cu(a)
0

〉〈
T u(b)

0

∣∣
= ∣∣T Cu(b)

0

〉〈
T CCu(a)

0

∣∣ − ∣∣T Cu(a)
0

〉〈
T CCu(b)

0

∣∣.
(B2)

Then, using T C|u(a)
0 〉 = i�|u(a)

0 〉 and T CC|u(a)
0 〉 = i�|Cu(a)

0 〉,
we obtain Eq. (B1).

Since � anticommutes with the BdG Hamiltonian, if |u(a)
0 〉

is a zero mode, �|u(a)
0 〉 is also a zero mode. Thus, it can be

written as

�
∣∣u(a)

0

〉 =
∑

b

∣∣u(b)
0

〉
[�γ ]ba (B3)

with [�γ ]ba = 〈u(b)
0 |�|u(a)

0 〉. From {�, C} = 0, we also have

�
∣∣Cu(a)

0

〉 = −
∑

b

∣∣Cu(b)
0

〉
[�γ ]∗ba. (B4)

Therefore, the right-hand side of Eq. (B1) is recast into

−�ρ (ab)�† =
∑
cd

ρ (cd )[�γ ]ca[�γ ]db. (B5)

Thus, ρ
(ab)
± in Eq. (44) is rewritten as

ρ
(ab)
± = 1

2
(ρ (ab) ∓ �ρ (ab)�†)

=
∑
cd

ρ (cd )P±
(cd )(ab), (B6)

where P±
(cd )(ab) is defined by

P±
(cd )(ab) = 1

2 (δcaδdb ± [�γ ]ca[�γ ]db). (B7)

Here we find that P±
(cd )(ab) is a projection; it obeys

P+
(cd )(ab) + P−

(cd )(ab) = δcaδdb,∑
cd

P±
(e f )(cd )P

±
(cd )(ab) = P±

(e f )(ab). (B8)
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TABLE VI. Double-valued irreps of nonsymmorphic wallpaper
groups at the BZ boundary. In p4g, only a minimal set of symmetry
operators is shown.

pg X̄ point

{e|0} {σ(010)|τx}
X1 1 1
X2 1 −1

pmg X̄ point

{e|0} {2z|0} {σ(010)|τx} {σ(100)|τx}
X ′

1 1 −i 1 −i
X ′

2 1 i 1 i
X ′

3 1 i −1 −i
X ′

4 1 −i −1 i
pgg M̄ point

{e|0} {2z|0} {σ(010)|τx + τy} {σ(100)|τx + τy}
M σ0 −iσy σx σz

p4g M̄ pointa

{e|0} {4z|0} {2z|0} {σ(100)|τx + τy}
M1 σ0 e

iπ
4 (2σ0+σz ) −iσz σx

M2 σ0 e− iπ
4 (2σ0+σz ) iσz σx

aNote that the basis used here is slightly different from that shown
in the Bilbao Crystallographic Server [110], P4bm (SG# 100), for a
sake of convenience. The two bases are transformed to each other
under a unitary transformation.

Thus, we also have

ρ
(ab)
± =

∑
cd

ρ
(cd )
± P±

(cd )(ab). (B9)

Now, we derive Eq. (53). Using the relation Uk
g � = ηg�Uk

g
and Eqs. (B1) and (38), we find

Uk
g ρ

(ab)
± Uk†

g = 1

2

(
Uk

g ρ (ab)Uk†
g ± �Uk

g ρ (ab)Uk†
g �†

)
=

∑
cd

1

2
(ρ (cd ) ∓ �ρ (cd )�†)[�g](cd )(ab)

=
∑
cd

ρ
(cd )
± [�g](cd )(ab). (B10)

From Eq. (B9), the above equation is recast into

Uk
g ρ

(ab)
± Uk†

g =
∑
e f

ρ
(e f )
± P±

(e f )(cd )[�g](cd )(ab), (B11)

which is nothing but Eq, (53) because it holds that∑
cd

P±
(e f )(cd )[�g](cd )(ab) = [�±

g ](e f )(ab). (B12)

APPENDIX C: DOUBLE-VALUED REPRESENTATION
OF NONSYMMORPHIC WALLPAPER GROUPS

AT THE BZ BOUNDARY

The double-valued representation of nonsymmorphic wall-
paper groups is listed in Table VI.

TABLE VII. g−(B) for 2D point groups, and multipole orders.
For Cn and Cnv , we choose the rotation axis as the z axis. For Cs, the
mirror plane is normal to the z axis.

G0 IR g−(B) Multipole order

C2 A Bz Dipole
B Bx , By Dipole

C3 A Bz Dipole
E {Bx, By} Dipole

C4 A Bz Dipole
B Bz(B2

x − B2
y ), ByByBz Octupole

E {Bx , By} Dipole
C6 A Bz Dipole

B B3
x − 3BxB2

y , B3
y − 3ByB2

x Octupole
E1 {Bz(B2

x − B2
y ), ByByBz} Octupole

E2 {Bx, By} Dipole
Cs A Bz Dipole

B Bx , By Dipole
C2v A1 BxByBz Octupole

A2 Bz Dipole
B1 By Dipole
B2 Bx Dipole

C3v A1 B3
x − 3BxB2

y Octupole
A2 Bz Dipole
E {Bx, By} Dipole

C4v A1 BxByBz(B2
x − B2

y ) 32-pole
A2 Bz Dipole
B1 BxByBz Octupole
B2 Bz(B2

x − B2
y ) Octupole

E {Bx, By} Dipole
C6v A1 Bz(B3

x − 3BxB2
y )(B3

y − 3ByB2
x ) 128-pole

A2 Bz Dipole
B1 B3

y − 3ByB2
x Octupole

B2 B3
x − 3BxB2

y Octupole
E1 {Bx, By} Dipole
E2 {Bz(B2

x − B2
y ), ByByBz} Octupole

APPENDIX D: REPRESENTATION OF f±(B) AND g(E )

Symmetry-adopted f±(B) and g(E ) are summarized in
Tables VII, VIII, and IX.

TABLE VIII. f (E ) for C2v and C4v , and multipole orders. We
choose the rotation axis as the z axis.

G0 IR f (E ) Multipole order

C2v A1 Ez Dipole
A2 ExEy Quadrupole
B1 Ex Dipole
B2 Ey Dipole

C4v A1 Ez Dipole
A2 ExEy(E 2

x − E 2
y ) 16-pole

B1 E 2
x − E 2

y Quadrupole
B2 ExEy Quadrupole
E (Ex, Ey ) Dipole
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TABLE IX. g+(B) for C2v and C4v , and multipole orders. We
choose the rotation axis as the z axis.

G0 IR g+(B) Multipole order

C2v A1 B2
x , B2

y , B2
z Quadrupole

A2 BxBy Quadrupole
B1 BxBz Quadrupole
B2 ByBz Quadrupole

C4v A1 B2
z , B2

x + B2
y Quadrupole

A2 BxBy(B2
x − B2

y ) 16-pole
B1 B2

x − B2
y Quadrupole

B2 BxBy Quadrupole
E (BxBz, ByBz ) Quadrupole

APPENDIX E: TOPOLOGICAL INVARIANTS

We here summarize topological invariants associated with
the EAZ class. On a high-symmetry point k (a high-symmetry
line lk), (anti)unitary operators and the BdG Hamiltonian are
decomposed into irreps of Gk

0 as Eqs. (14) and (15). Then,
each subsector of the BdG Hamiltonian belongs to the EAZ
class and the corresponding topological invariants are defined
by using PHS, TRS, and CS projected onto the subsectors.
In the following, we define all crystalline symmetry-protected
1D topological invariants explicitly.

1. n-fold rotation symmetry-protected 1D winding number

First, we define the 1D winding number associated with
n-fold rotation symmetry (n = 2, 3, 4, 6). To see this, we
assume that the BdG Hamiltonian is invariant under U{nz |0}
that satisfies Un

{nz |0} = −1 and [U{nz |0}, T ] = [U{nz |0}, C] = 0.
In this case, the BdG Hamiltonian in the subsectors of U{nz |0}
belongs to the class AIII; namely, we have an emergent CS �α

within the subsectors. Thus, using Hα (k) and �α , the n-fold
rotation symmetry-protected 1D winding number is defined
as [7,72,74,119,120]

wα
nR ≡ i

4π

∫ π

−π

dktr[�αHα (k)−1∂kHα (k)], (E1)

where α labels the subsectors of U{nz |0}. Equation (E1) appears
in the wallpaper groups: p2, p3, p4, p6, pmm, p31m, p3m1,
p4m, p6m, pg, pmg, cmm, and p4g. At the M̄ point in the
surface BZ, the fourfold rotation symmetry in p4g leads to
w

α0
4R = −w

α1
4R = w

α2
4R = −w

α3
4R for the A1 gap functions and

w
α0
4R = −w

α1
4R = −w

α2
4R = w

α3
4R for the A2 gap functions due to

TRS and the glide symmetry, where αm = exp[iπ (2m + 1)/4]
is an eigenvalue of U{4z |0}. Therefore, Majorana zero modes
appear as a quartet consisting of two MKPs.

2. Mirror-reflection-symmetry-protected 1D winding number

Second, we define the 1D winding number associated with
mirror-reflection symmetry {σ |0}, which is defined in a simi-
lar way to the n-fold rotation-symmetry-protected 1D winding
number. When U{σ |0} commutes with the BdG Hamiltonian,
PHS, and TRS, the EAZ class of BdG Hamiltonain is in
class AIII. Hence the mirror-reflection symmetry-protected

1D winding number is described as

wα
σ ≡ i

4π

∫ π

−π

dk tr[�αHα (k)−1∂kHα (k)], (E2)

where α is an eigenvalue of U{σ |0}. The 1D winding number
appears in the wallpaper groups: pm, pmm, p31m, p3m1,
p6m, pg, cm, pmg, cmm, and pgg.

3. n-fold rotation symmetry-protected 1D Z2 invariant

Third, we find n-fold rotation symmetry-protected 1D Z2

invariant in the wallpaper groups: p2, p3, p6, and p4g. We
define them case by case. For p2, the EAZ class of the sub-
sectors of U{2z |0} is D when the irrep of gap functions is B.
We have an emergent PHS within the subsectors and a 1D Z2

invariant associated with the emergent PHS. Using the Berry
connection in terms of eigenstates of Hα (k), |uα

n,k〉, the 1D Z2

invariant is defined by

να
2R ≡ 1

π

∫ π

−π

dk Aα (k) mod 2, (E3)

with

Aα (k) = −i
∑

n∈occ

〈
uα

n,k

∣∣∂k

∣∣uα
n,k

〉
, (E4)

where α is an eigenvalue of U{2z |0} and the summation is taken
over the occupied state with a fixed α. να

2R = −ν−α
2R is satisfied

due to TRS.
For p3 and p6, a 1D Z2 invariant exists only when the

spin of electrons is 3
2 . The threefold rotation operator U{3z |0}

has a real eigenvalue and always commutes with T and C, so
that the subsector of U{3z |0} belongs to class DIII. The 1D Z2

invariant να
3R is defined by

να
3R = 1

2π

∫ π

−π

dk Aα (k) mod 2, (E5)

where the basis of Aα is an eigenstate of U{3z |0} and the gauge-
fixing condition T |uα

2n−1,k〉 = |uα
2n,−k〉 is imposed. Similarly,

the sixfold rotation operator U{6z |0} satisfies U2
{6z |0} = −1 and

{U{6z |0}, C} = 0, when the spin of electrons is 3
2 and the irrep

of gap function is B. Thus, the subsectors of U{6z |0} belong to
class D, so the 1D Z2 invariant να

6R is defined by Eq. (E3),
where α is an eigenvalue of U{6z |0}.

On the other hand, for p4g, a glide symmetry plays an
important role. A 1D Z2 invariant is defined at the M̄ point of
p4g when the irrep of the gap function is B1. Here p4g consists
of the fourfold rotation operator {4z|0} and the glide operator
{σ(010)|τx + τy}. For the B1 gap function, the PH operator
satisfies {U{4z |0}, C} = [U{σ(010)|τx+τy}, C] = 0. Thus, there is an
emergent PHS operator C ′ = CU{σ(010)|τx+τy} with (C ′)2 = 1 for
each subsector of {4z|0}, resulting in that the EAZ class is
D. Therefore, the 1D Z2 invariant να

4R is defined in a similar
manner to Eq. (E3), where the basis of Aα is an eigenstate
of U{4z |0}. Moreover, TRS and the other SG operators impose
additional constraints on να

4R, which leads to ν
α0
4R = ν

α1
4R =

−ν
α2
4R = −ν

α3
4R, i.e., two MKPs appear.
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4. Mirror-reflection symmetry-protected 1D Z2 invariant

Fourth, we find a 1D Z2 invariant associated with mirror-
reflection symmetry {σ |0}, which is defined in a similar
way to the n-fold rotation symmetry-protected 1D Z2 invari-
ant. When U{σ |0} anticommutes with PHS, the EAZ class of
the subsectors becomes class D. That is to say, the mirror-
reflection symmetry-protected 1D Z2 invariant να

σ is given by
Eq. (E3) in terms of Aα (k) in the subsectors of U{σ |0}. The 1D
Z2 appears in the wallpaper groups: pm, p31m, p3m1, pg, cm,
and pmg.

5. Glide symmetry-protected 1D Z2 invariant

Finally, we define the glide symmetry-protected 1D
Z2 invariant [9,111]. To show this, we consider pg =
{{e|0}, {σ(010)|τx}}, where σ(010) is the mirror reflection with
respect to the (010) plane and τx is a half-translation in the x
direction. At the X̄ point or the M̄ point in the surface BZ, a
nontrivial factor system arises as z{σ(010)|τx},{σ(010)|τx} = 1, so the
glide operator satisfies U2

{σ(010)|τx} = 1 and its eigenvalue is real.
When the BdG Hamiltonian is invariant under U{σ(010)|τx} and
the irrep of the gap function is A, we can define the follow-
ing 1D topological invariant at kx = π : As [U{σ(010)|τx}, C] =
[U{σ(010)|τx}, T ] = 0, PHS and TRS are retained in the subsec-
tor of U{σ(010)|τx} and thus the EAZ class is DIII. The glide
symmetry-protected 1D Z2 invariant is defined as

να
G = 1

2π

∫ π

−π

dk Aα (k) mod 2, (E6)

where |uα
n,k〉± is an eigenstate of U{σy|τx} and the gauge-fixing

condition T |uα
2n−1,k〉± = |uα

2n,−k〉± is imposed. The Z2 invari-
ant in Eq. (E6) appears in the wallpaper groups: pg and pgg.
For the M̄ point of pgg, we have an additional SG operator
anticommuting with the glide operator, which yields να

G1D =
ν−α

G1D and thus two MKPs appear there.

APPENDIX F: ENHANCEMENT
OF ROTATIONAL SYMMETRY

We show here the enhancement of rotational symmetry. We
start with a time-reversal-invariant effective Hamiltonian for
spin- jz electrons. Because of TRS, the Hamiltonian minimally
consists of spin-± jz electrons, and thus it is given by a 2 × 2
matrix

H (k) = a0(k)s0 + ax(k)sx + ay(k)sy + az(k)sz

= a0(k)s0 + a−(k)s+ + a+(k)s− + az(k)sz, (F1)

where si are the Pauli matrices acting on the spin space
(| jz〉, | − jz〉), ai(k) are real functions of k, and a± = ax ± iay

and s± = (sx ± isy)/2.
Then, let us assume that the Hamiltonian in Eq. (F1) is

invariant under the n-fold rotation {nz|0} with respect to the
z axis:

U{nz |0}H (k)U †
{nz |0} = H ({nz|0}k), (F2)

where {nz|0}k = (ei2π/nk+, e−i2π/nk−, kz ) and U{nz |0} is of the
form

U{nz |0} = diag
(
e−i 2π

n jz , ei 2π
n jz

)
. (F3)

In order for Eq. (F1) to satisfy Eq. (F2), each coefficient in
Eq. (F1) should satisfy

a0(k) = a0({nz|0}k), (F4a)

e−i 4π
n jz a−(k) = a−({nz|0}k), (F4b)

ei 4π
n jz a+(k) = a+({nz|0}k), (F4c)

az(k) = az({nz|0}k). (F4d)

Thus, if ei4π jz/n �= 1, a+ and a− vanish at the high-symmetry
line (0, 0, kz ). This implies that at the high-symmetry line,
the n-fold rotation symmetry becomes the continuous rotation
one, and the Hamiltonian is invariant under any rotation with
respect to the z direction,

UθH (0, 0, kz )U †
θ = H (0, 0, kz ), (F5)

where Uθ = diag(e−iθ jz , eiθ jz ) (0 � θ < 2π ). For jz = 1
2 and

jz = 5
2 , the condition ei4π jz/n �= 1 is met for any n = 2, 3, 4, 6,

and thus the enhancement of rotation symmetry in the above
always occurs. On the other hand, for jz = 3

2 , the condition is
met only for n = 2, 4, 6. The enhancement of rotation sym-
metry does not occur for jz = 3

2 with n = 3.
The enhancement of rotation symmetry may provide an

additional protection for MKPs. For instance, let us consider
a topological superconductor hosting a MKP on a surface
with threefold rotation symmetry. In the presence of a finite
magnetic field parallel to the surface, the threefold rotation
symmetry is explicitly broken, but if the system consists of
jz = 1

2 or jz = 5
2 electrons, we may retain an additional sym-

metry: By combining twofold rotation symmetry obtained by
the symmetry enhancement with TRS, the system supports
magnetic twofold rotation symmetry. The magnetic rotation
symmetry may stabilize the surface MKP [72]. Such sta-
bilization is expected for a MKP on the (111) surface of
superconducting topological insulator CuxBi2Se3 with the A1u

gap function [52].

APPENDIX G: SUPERCONDUCTING NODES
AND MAJORANA MULTIPOLE RESPONSE

In our theory, we implicitly assume that there is no node
on the high-symmetry line lk in the bulk BZ where the 1D
topological invariant is defined. In the following, we show the
topological classification for superconducting nodes, which
is performed in a similar manner to the topological classi-
fication of 1D topological invariants, and discuss when this
assumption is satisfied. In topological arguments, a stable
node on lk is classified by a zero-dimensional (0D) topological
invariant. The possible 0D topological invariant is specified
by the Wigner’s test in Eqs. (16), (17), and (18), where only
symmetries that keep a position of the node are taken into
account.

In the following, we classify possible nodes on the high-
symmetry line for systems (i) without and (ii) with spatial
inversion symmetry, respectively. The results are summarized
in Table X, where possible 0D topological invariants under
the wallpaper groups are classified in superconductors without
spatial inversion symmetry, even-parity superconductors, and
odd-parity superconductors.
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TABLE X. Classification of point nodes under the wallpaper groups. For each table, the first, second, third, and fourth columns show
irreps of gap functions, emergent Altland-Zirnbauer classes for systems without spatial inversion symmetry, with even-parity pairings, and
with odd-parity pairings, respectively. Here, numbers in parentheses represent 0D topological invariants.

p1 (C1), spin 1/2 p2 (C2), spin 1/2 p3 (C3), spin 1/2

IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity
A AIII(0) DIII(0) CII(0) A AIII(0) AIII(0) AIII(0) A AIII(0) AIII(0) AIII(0)

B A(Z) D(Z2) C(0)

p3 (C3), spin 3/2 p4 (C4), spin 1/2 or 3/2 p6 (C6), spin 1/2 or 5/2

IR of� w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity
A AIII(0) DIII(0) CII(0) A AIII(0) AIII(0) AIII(0) A AIII(0) AIII(0) AIII(0)

B A(Z) A(Z) A(Z) B A(Z) A(Z) A(Z)

p6 (C6), spin 3/2 pm (Cs), spin 1/2 pmm (C2v), spin 1/2

IR of � w/o IS Even parity Odd parity IR of� w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity
A AIII(0) AIII(0) AIII(0) A AIII(0) AIII(0) AIII(0) A1 AIII(0) CI(0) BDI(Z2)
B A(Z) D(Z2) C(0) B A(Z) D(Z2) C(0) A2 AIII(0) BDI(Z2) CI(0)

B1 AIII(0) BDI(Z2) CI(0)
B2 AIII(0) BDI(Z2) CI(0)

p31m, p3m1 (C3v), spin 1/2 p31m, p3m1 (C3v), spin 3/2 p4m (C4v), spin 1/2 or 3/2

IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity
A1 AIII(0) CI(0) BDI(Z2) A1 AIII(0) AIII(0) AIII(0) A1 AIII(0) CI(0) BDI(Z2)
A2 AIII(0) BDI(Z2) CI(0) A2 A(Z) D(Z2) C(0) A2 AIII(0) BDI(Z2) CI(0)

B1 A(Z) AI(Z) AI(Z)
B2 A(Z) AI(Z) AI(Z)

p6m (C6v), spin 1/2 or 5/2 p6m (C6v), spin 3/2 pg (Cs) X̄ point

IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity
A1 AIII(0) CI(0) BDI(Z2) A1 AIII(0) CI(0) BDI(Z2) A AIII(0) AIII(0) AIII(0)
A2 AIII(0) BDI(Z2) CI(0) A2 AIII(0) BDI(Z2) CI(0) B A(Z) D(Z2) C(0)
B1 A(Z) AI(Z) AI(Z) B1 AIII(0) BDI(Z2) CI(0)
B2 A(Z) AI(Z) AI(Z) B2 AIII(0) BDI(Z2) CI(0)

pmg (C2v) X̄ point pgg (C2v) M̄ point p4g (C4v) M̄ point

IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity IR of � w/o IS Even parity Odd parity
A1 AIII(0) AIII(0) AIII(0) A1 AIII(0) DIII(0) CII(0) A1 AIII(0) AIII(0) AIII(0)
A2 A(Z) A(Z) A(Z) A2 AIII(0) CII(0) DIII(0) A2 AIII(0) AIII(0) AIII(0)
B1 A(Z) A(Z) A(Z) B1 AIII(0) DIII(0) CII(0) B1 A(Z) D(Z2) C(0)
B2 A(Z) D(Z2) C(0) B2 AIII(0) DIII(0) CII(0) B2 A(Z) C(0) D(Z2)

(i) Systems without inversion symmetry. In addition to Gk
0,

we need to consider CS, both of which keep any point on lk
invariant. The total group we consider is

Gk
0 + �Gk

0, (G1)

which implies that the Wigner’s test is determined solely by
W �

α in Eq. (18). By forgetting W T
α and W C

α , the emergent AIII,
BDI, DIII, CI, and CII classes in Tables II and III change to
the emergent AIII class. In these cases, no 0D topological
invariant exists, and thus the system on lk is fully gapped in
general. On the other hand, the emergent A, AI, AII, D, and
C classes in Tables II and III change to the A class. As the
A class hosts a 0D topological invariant, the latter emergent
classes may have a stable node on lk. Among these emergent
classes, only the D class has a 1D topological invariant at the
same time.

(ii) Systems with inversion symmetry. Next, we take into
account spatial inversion {I|0}. Combining TRS and PHS

with space inversion, we have C ≡ {I|0}C and T ≡ {I|0}T ,
respectively, both of which keep any point on lk invariant. The
total group relevant to the node stability is

Gk
0 + TGk

0 + CGk
0 + �Gk

0, (G2)

and the Wigner’s test for T and C is given by [109]

W T
α ≡ 1

|G0|
∑
g∈G0

zTg,Tgχ
[
U α

(Tg)2

] = ±1, 0, (G3)

W C
α ≡ 1

|G0|
∑
g∈G0

zCg,Cgχ
[
U α

(Cg)2

] = ±1, 0, (G4)

where T2 = zT,T = −1, C2 = zC,C = ηI , and ηI = 1 (−1) in-
dicates an even- (odd-) parity gap function. First, we apply
the Wigner’s test in Eqs. (G3), (G4), and (18) to symmorphic
wallpaper groups. In these cases, the Wigner’s test reads as(

W T
α ,W C

α ,W �
α

) = (
W T

α , ηIW
C
α ,W �

α

)
, (G5)
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which determines the EAZ classes for the nodal structure
on lk. Note that the EAZ classes are different from those in
Tables II and VI only for the odd-parity superconductors.

From this result, we find that the 1D topological invariants
on lk is generally well defined for odd-parity superconductors:
The 1D topological invariants can be nonzero when the EAZ
in Tables II and III is AIII, BDI, D, DIII, or CII classes, and
from Eq. (G5), these classes correspond to AIII, CI, C, CII,
and DIII, respectively. Because the latter EAZ classes do not
have 0D topological invariants, no stable node appear on lk.
On the other hand, for even-parity superconductors, the emer-
gent BDI class has both 1D and 0D topological invariants.
In this case, we need to avoid stable nodes to define the 1D
topological invariant.

For nonsymmorphic groups, we need to perform the
Wigner’s test case by case. First, we consider pg at the X̄
point, which is given by {{e|0}, {σ(010)|τx}}. We obtain

(
W T

α ,W C
α ,W �

α

) =
(

0,
ηI

2
(1 − ησ(010) ),

1

2
(1 + ησ(010) )

)
.

(G6)

The system has a nontrivial 1D topological invariant for the
A gap function (ησ(010) = 1) (see Table VI). The corresponding
EAZ for the node structure is AIII, irrespective of ηI . Thus, no
point node appears.

For pmg = {{e|0}, {2z|0}, {σ(010)|τx}, {σ(100)|τx}} at the X̄
point, the Wigner’s test becomes(

W T
α ,W C

α ,W �
α

) =
(

0,
ηI

2
(1 − η2z − ησ(010) + ησ(100) ),

1

4
(1 + η2z + ησ(010) + ησ(100) )

)
. (G7)

In this case, the system has a nontrivial 1D topological in-
variant for the A1 gap function (η2z = ησ(010) = ησ(100) = 1) or

the B1 gap function (−η2z = ησ(010) = −ησ(100) = 1). The EAZ
class for the node structure is AIII (A) for the A1 (B1) gap
function, regardless of ηI , and thus a stable node appears for
the B1 gap function, which should be avoided to define the 1D
topological invariant on lk. A similar node appears for pgg and
p4g at the X̄ point.

For pgg = {{e|0}, {2z|0}, {σ(010)|τx + τy}, {σ(100)|τx + τy}}
at the M̄ point, we have

(
W T

α ,W C
α ,W �

α

) =
(
−1,

ηI

2
(1 − η2z + ησ(010) + ησ(100) ), 1

)
.

(G8)

For any gap function, the EAZ class for the node structure is
DIII or CII, and thus no 0D topological invariant exists.

Finally, we consider p4g at the M̄ point, which is generated
by {{2z|0}, {4+

z |0}, {σ(010)|τx + τy}, {σ(110)|τx + τy}}.

The Wigner’s test is

(
W T

α ,W C
α ,W �

α

)
=

(
0,

ηI

4
(1 − η2z + 2ησ(010) − 2ησ(110) ),

1

8
(4 + 4η4+

z
)

)
.

(G9)

We have a nontrivial 1D topological invariant for the
A1 (η4+

z
= η2z = ησ(010) = ησ(110) = 1), the A2 (η4+

z
=

η2z = −ησ(010) = −ησ(110) = 1), and the B1 gap functions
(−η4+

z
= η2z = ησ(010) = −ησ(110) = 1). For the A1 and A2 gap

functions, the EAZ class for the node structure is AIII, and
there is no point node. On the other hand, for the B1 gap
function, the EAZ class is D for ηI = 1 and C for ηI = −1.
Therefore, we can avoid a point node when the parity of the
gap function is odd.
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