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We use time-resolved measurement and modeling to study the spin-torque induced motion of a domain wall
in perpendicular anisotropy magnets. We show that the most important factor governing domain wall dynamics
is the energy difference between a wall at the center of the disk with either a Bloch-type configuration or the
Néel-type configuration; this energy difference strongly depends on the disk diameter. When between 70 and
100 nm, the wall drifts across the disk with pronounced back-and-forth oscillations that arise because the wall
moves in the Walker regime. Several switching paths occur stochastically and lead to distinct switching durations.
The wall can cross the disk center either in a ballistic manner or with variably marked oscillations before and after
the crossing. The crossing of the center can even occur multiple times if a vertical Bloch line nucleates within the
wall. The wall motion is analyzed using a collective coordinate model parametrized by the wall position q and the
tilt φ of its in-plane magnetization projection. The dynamics results from the stretch field, which describes the
affinity of the wall to reduce its length and the wall stiffness field describing the wall tendency to reduce dipolar
energy by rotating its tilt. The wall oscillations result from the continuous exchange of energy between to the
two degrees of freedom q and φ. The stochasticity of the wall dynamics can be understood from the concept of
the retention pond: a region in the q-φ space in which walls are transiently bound to the disk center. Walls having
trajectories close to the pond must circumvent it and therefore have longer propagation times. The retention pond
disappears for a disk diameter of typically 40 nm: the wall then moves in a ballistic manner irrespective of the
dynamics of its tilt. The propagation time is then robust against fluctuations hence reproducible.
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I. INTRODUCTION

The understanding of magnetization reversal in nanostruc-
tures is a vast and long-standing field of research that is of
considerable application interest. The magnetization reversal
can be induced by a plethora of stimuli, from the classical
magnetic fields to the various torques that emerge from the
coupling of the magnetization with the crystal lattice [1], with
the electric field [2], with light [3], or with the electric cur-
rent [4]. Among these torques, the spin-transfer torque (STT)
is particularly relevant for ultrathin magnets with perpendicu-
lar magnetic anisotropy (PMA). The manner in which STT
switches the magnetization depends largely on the system
size. When the lateral size of an ultrathin magnet is com-
parable or smaller that the domain wall width the reversal
happens in a quasicoherent manner [5,6]. At larger sizes, the
reversal implies the nucleation and the subsequent propaga-
tion of domain walls [7,8]. The switching dynamics in the
coherent regime is well understood [9] even in the presence
of thermal fluctuations [10–12] but it is seldom observed in
practical systems [13–15]. The domain-wall-based switching
regime is comparatively more complex as it implies at least
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a nucleation event which is influenced by the geometry, the
materials microstructure, the detail of its properties [16] and
the thermal fluctuations. The bottleneck character of the nu-
cleation step [17,18] has prevented an exhaustive study of
the subsequent wall propagation. In elongated nanostructures,
the STT-induced wall motion was found [19] to happen in
the precessional Walker regime with back-and-forth oscil-
lation. In circular disks, single-shot time-resolved electrical
measurements evidenced that the propagation time scales
inversely with the spin-torque amplitude [15,20] and approx-
imately linearly with the disk diameter [21] with a strong
event-to-event variability even in the deep sub-100 nm size
regime [14,15,22]. The understanding of the speed of magne-
tization reversal and the variability thereof is still incomplete
in PMA nanostructures.

In this paper, we study part of this problem: we let aside
the nucleation phenomenon and focus on the subsequent dy-
namics of a domain wall placed in a circular magnet and then
submitted to STT. We expand a recent study [23] where we
evidenced that stochastic processes in wall motion were in-
ducing counterintuitive temporal pinning of the wall near the
disk center with a strong oscillatory character. These features
were also reported independently in a modeling paper [24].
The present paper deepens our understanding of the domain
wall motion by first reporting more extensive time-resolved
single-shot electrical measurements, and then by further
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developing the analytical models and benchmarking them
with micromagnetics. We introduce in particular two new
concepts: the domain wall “stretch fields” linked to the nano-
magnet’s geometry, and the “retention pond” of the domain
wall when near the disk center. The model is finally used to
design strategies applicable to reduce the variability of the
domain wall propagation dynamics.

The paper is organized as follows. We start with the ex-
perimental results (Sec. II). Section III then describes the
domain wall dynamics when computed using micromagnet-
ics. Section IV is devoted to a collective coordinate model in
which the dynamics is simplified and aggregated in only two
degrees of freedom: the position q of the wall and the tilt φ of
the in-plane component of the magnetization within the wall.
The physical meaning of the model is described in Sec. V. It
is compared to micromagnetics in Sec. VI and discussed in
Sec. VIII, before concluding.

II. ELECTRICAL SIGNATURES OF SWITCHING

A. Materials and experimental methods

In this first section, our objective is to identify the key
features of the dynamics of a domain wall responding to
STT. We use time-resolved conductance measurements in a
magnetic tunnel junction (MTJ). We have selected supersoft
samples [25], i.e., optimized for very easy domain wall prop-
agation. The primary requirement on the free layer (FL) is to
avoid nonuniformities that would perturb the wall dynamics.
The structural nonuniformities—-inducing pinning sites—are
best avoided when the FL growth can be optimized with a
total freedom on the material buffer. This is possible only for
top-pinned MTJs. The nonuniformities can also arise from
the (unavoidably nonuniform [26]) stray field that emanate
from the reference layers of the MTJ. To minimize the in-
fluence of the stray field, we work with FL possessing a
low moment as well as large thickness, with the detailed
stack composition described in Ref. [27]. These requirements
prevent the use of the state-of-the-art material systems op-
timized for memory applications; our MTJs exhibit modest
transport properties [28], with a magneto-resistance of 80%
for a resistance-area product of RA = 9.6 �μm2. Besides,
the stability of the reference layer is somewhat insufficient in
the presence of current, such that we can only study the high
resistance to low resistance switching transition.

The MTJs are patterned into elongated as well as disk-
shaped devices. The first devices are rectangles of size 80 ×
280 nm2; the corners are rounded with a radius of curvature
of 20 nm: these samples illustrate the model case of the wall
propagation in a long stripe. The disks have diameters in the
70–100 nm interval, i.e., a region in which domain-wall based
reversal is expected [6]. The quoted diameters are given by
the ratio of the RA by the device resistance R: it is the area in
which the FL is metallic. The magnetic diameter in which the
FL has good magnetic properties might be smaller.

The measurement setup aims at applying fast rising voltage
steps with maximally flat voltage plateaus. It monitors the
time-resolved device conductance under constant voltage with
a bandwidth of 15 GHz. The switching in rectangular devices
and in disk-shaped devices are illustrated in Figs. 1 and 2.

�

�

FIG. 1. Conductance signatures of various spin-torque induced
switching events as a result of voltage pulses of (a) 500 and (b) 440
mV all measured on the same rectangular device of size of ≈80 ×
280 nm2 in ambiant temperature conditions. In (b), the applied volt-
age is close to the quasistatic switching threshold and 85% of the
voltage steps did not yet induce a switching after 250 ns.

In the first 5 ns after the pulse onset, the conductance of
the antiparallel states (initial states) rises asymptotically in a
reproducible manner. This arises mainly from the imperfect
flatness of the applied voltage plateau and from the slight
voltage dependence of the conductance. This first 5 ns period
is also the one during which the MTJs heats up by Joule
effect; we will assume that the subsequent evolution of the
conductance reflects purely the magnetic moment 〈mz〉 of the
free layer in a proportional manner, at constant voltage and
temperature.

B. Dynamics in rectangular elongated devices

The switching in the rectangular devices is reported in
Fig. 1. At 500 mV, i.e., a couple of dBs above the quasi-static
switching threshold (400 mV), the switching proceeds in the
usual [15,29,30] two steps [Fig. 1(a)]. The magnetization
seems first quiet during a stochastically varying incubation
delay. Then the conductance grows in ramplike manner, on
which strong oscillations are superimposed most of the time,
until it saturates to the conductance of the final state. Note
despite their clear event-to-event variability, the conductance
oscillations are real, i.e., way above the noise level of the
experiment. This oscillatory behavior was formerly inter-
preted [19,21] as the signature that the wall propagation was
occurring in the regime above the Walker breakdown, i.e., the
domain wall advances in average but through a perpetual back
and forth cyclic motion. We will confirm this assertion in the
next sections.

When the voltage is reduced to near the quasistatic thresh-
old [Fig. 1(b)], the switching probability and its rate both
decrease. The conductance oscillations are still present and
still exhibit a large variability. However the system shows
now a propensity to oscillate a longer time at intermediate
conductance levels distributed in the region where −0.2 �
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FIG. 2. Conductance signatures of various spin-torque induced switching events as a result of voltage pulses of (a) 630, (b) 560, and
[(c)–(g)] 500 mV on a circular device of electrical diameter of ≈ 100 nm. In (b), the arrow (respectively the hashtag) points at a switching
event in which the reversal rate seems to slow down (respectively oscillate) at midway. At the lowest applied voltage, three different signatures
are observed: driftlike one-way crossing of the midway conductance with featureless ramplike shape [gray, (e)], crossing of the midway with
one single pronounced oscillation [red, (f)], and multiple crossing of the midway conductivity [green, (g)]. In (e) and (f), the side curves were
horizontally offset by ±4 ns to avoid overlaps. The different classes of switching events have transition durations whose histogram is depicted
in (d).

〈mz〉 � 0.55, where mz is the out-of-plane component of the
magnetization. We emphasize that this oscillatory character,
as well as the propensity to oscillate a longer time at in the
midway region, are both very sensitive to the out-of-plane
field Hz that is applied to the rectangular devices. The switch-
ing curves become featureless ramps (not shown) if a field
of 15 mT is added is either direction away from the center
of the R(Hz ) minor loop. Previous time-resolved studies may
have missed to observe this oscillatory character because of
its extreme sensitivity to the field.

C. Dynamics in disk-shaped devices

We now move to circular devices. We focus on a represen-
tative device of diameter 100 nm, but a very similar behavior
is found in the investigated interval of sizes (70–100 nm)
where 9 devices were studied in detail. At large voltage [630
mV, i.e., 1.4 times the quasi-static switching threshold of 440
mV, Fig. 2(a)], the magnetization switches after an average
incubation delay 〈t0〉 of 5.6 ns, within an average transition
time 〈τ 〉 of 2.5 ns. At this large voltage, the conductance
waveforms are featureless ramps that can be reasonably well
fitted by erf[(t − t0)/τ ] functions to extract t0 and τ .

When reducing the voltage, both the incubation delay and
the transition time increase on average. A careful examina-
tion of the switching curves indicates that their variability
is enhanced when the conductance is near the conductance
midway point (i.e., near 〈mz〉 ≈ 0): some slowing down of the

rate can sometimes be observed [see the arrow in Fig. 2(b)].
An oscillation can also occasionally be observed (see the
purple hashtag). Finally, an apparent acceleration is some-
times evidenced [see the two green curves that overtake other
curves within Fig. 2(b)]. At the two highest voltages, we never
perceived more than one clear oscillation in the time-resolved
curves. There might either never be more than one oscillation,
or most probably the tiniest oscillations are hidden by the
instrumental noise, which is comparatively larger because less
current is flowing in circular devices than in the elongated
devices that had a thrice larger surface.

Finally, the time-resolved conductance curves change
qualitatively when the voltage is reduced to 10% above the
quasistatic switching threshold Fig. 2(c)]: at 500 mV, one
can clearly identify three categories of switching events with
differing shapes and transition times. There is no correlation
between the incubation delays and the transition times. (i)
The most occurring events correspond to featureless ramps
of the conductance waveforms, with transition times between
typically 1 and 3 ns [Fig. 2(e)]; they shall be referred as
the “ballistic events.” (ii) For a substantial minority of events
(20% probability), a single strong oscillation is observed when
the conductance is at midway between the initial and final
states. The conductance first passes above the midway value,
then it reduces for 1.3 ± 0.1 ns until it finally rises again
till saturation, such that the transition time is now typically
between 4 and 6 ns. These events shall be referred as the
“central oscillation” events. (iii) Finally, in rare occasions
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(≈ 2% probability) the conductance crosses the midway value
multiple times [Fig. 2(g)] and the transition time can then
exceed 7 ns. These events shall be referred as the “multiple
swing” events. They skew the distribution of transition times
to the higher values [Fig. 2(d)].

Before starting the theoretical part of this paper, let us
summarize our experimental findings. In elongated devices,
the conductance waveforms exhibit a clear oscillatory charac-
ter that suggests a reversal using a domain wall that sweeps
through the sample in a regime above the Walker breakdown.
In disk-shaped devices submitted to high voltages, the con-
ductance waveforms are monotonic with fluctuations of both
the incubation delay and the transition time. When reducing
the voltage, the waveforms gain an increasing complexity,
particularly when the conductance is at midway between the
initial and final states. This complexity culminates when the
applied voltage is slightly above the switching threshold, with
three identified behaviors. In most switching events, the con-
ductances evolves monotonically, as if the domain wall was
sweeping in a regular manner through the device. In 20% of
the cases, the conductance exhibits a pronounced oscillation at
midway. We will see that this happens when the wall performs
one oscillation about the disk center. In rare occasions, the
conductance oscillates more than once in the midway value;
We will see that this happens when a vertical Bloch line [31]
nucleates within the wall.

III. STT-INDUCED DOMAIN WALL MOTION WITHIN A
DISK IN THE MICROMAGNETISM THEORY

A. Geometry and material parameters

We consider a thin disk with perpendicular magnetic
anisotropy. We shall study the domain wall dynamics within
this disk at zero temperature in the absence of applied field, as
resulting from a Slonczewski-like STT induced by a current
carrying a spin polarization P directed along the magnetic
easy axis (z) of the disk. This situation is meant to mimic
the evolution of a DW placed in a CoFeB/MgO/CoFeB-
based MTJ that is biased by a constant and uniform voltage,
as in experiments. The Landau-Lifshitz-Gilbert-Slonczewski
(LLGS) equation is solved using the micromagnetic solver
MUMAX3 [32]. We assume: a film thickness d = 2 nm, a mag-
netization Ms = 1.2 MA/m, a magnetocrystalline anisotropy
field Hk = 1.566 MA/m, a damping parameter α = 0.01, and
an exchange stiffness of Aex = 20 pJ/m.

The STT is implemented using the torque-to-voltage cor-
respondence described in Ref. [6]. We will see that there is no
obvious characteristic voltage to be defined in the dynamics
of wall motion. However, it will be insightful to compare the
strength of our applied STT to the voltage Vc:

Vc = 2αeAR⊥dμ0MsHdisc
k,eff

Ph̄
, (1)

which is the voltage that would be needed to destabilize a
uniformly magnetized state at zero temperature [6]; Vc is thus
closely related to the voltage needed to initiate the magnetiza-
tion reversal and to potentially nucleate a domain wall within
the disk [7]. In Eq. (1), AR⊥ is the resistance-area product
of the MTJ when the magnetization is perpendicular to the

spin-polarization axis and Hdisc
k,eff is the effective anisotropy

field of the disk.
In the theory parts of this paper, we focus on two specific

disk diameters: 2R = 40 nm or 2R = 80 nm that appear to
be well suited to reveal the wealth of the wall dynamics. The
largest size will be qualitatively compared to the experimental
data. In micromagnetics, the complexity of the wall dynamics
grows substantially for 2R > 80 nm [6] and will not be re-
ported in detail here. For instance, the magnetization within
the wall gets substantially nonuniform for 2R = 150 nm,

while for 2R � 200 nm, a nucleation event occurs at a po-
sition in the still unreversed domain before the wall reaches
that same position. Except in the supplementary material, we
study the domain wall dynamics at applied voltages equal to
the respective instability thresholds.

B. Initialization of the magnetization states: straight
or curved domain walls

We study the dynamics of a wall placed within the disk in
an ad hoc manner. This dynamics depends on the initial state
of the wall. Note that our experiments were performed at room
temperature; unfortunately in the experiments, we had strictly
no handle on the wall state when nucleated. To extract now the
main essence of the domain wall dynamics, we now focus on
two numerical ways of preparing the wall: an initially straight
wall and an initially curved wall whose lower energy [8] leads
to a simpler dynamics.

We first consider the dynamics of an initially straight wall
having a magnetization profile that matches with the static
case [33], i.e., with a width π� where � = √

Aex/Keff with
Keff the effective anisotropy energy of the film. The in-plane
projection of the magnetization is set to have a uniform tilt
φ(x, y) = φ0. The supplementary material shows that when
initialized with a straight shape, the wall bents immediately.
The bending breathes substantially at the beginning of the
simulation. An adequate procedure (see Ref. [27]) lets the
bending relax in order to prepare an optimally bent wall to
be used as a starting micromagnetic state (first insets in panels
(a) of Figs. 3 and 4]). This suppresses empirically the transient
breathing dynamics of the wall while preserving the other
dynamical features. The breathing dynamics seems indepen-
dent from the other degrees of freedom of the wall, and will
therefore be commented on only in Ref. [27]. In the optimally
bent wall, the magnetization tilt φ along the wall length is
no longer strictly uniform. In this case, we simply define the
wall tilt φ as the tilt at center of the wall length. We also
redefine the wall “position” q, by assimilating it to the position
q of a fictitiously straight wall that would yield the same total
magnetic moment 〈mz〉 as that of the curved wall.

C. Domain wall dynamics within a disk of diameter of 80 nm

Figure 3(a) illustrates the motion of a wall with an optimal
initial curvature and an initial tilt φ0 = 30◦ within a disk of
diameter 80 nm at the applied voltage Vc. Animations can be
found in Ref. [27]. The wall sweeps through the disk, acquires
a straight shape when at the disk center and then bents again.
The magnetic moment 〈mz〉 reverses in a few ns [Fig. 3(b)].
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FIG. 3. Micromagnetic simulations of the DW dynamics within a 80 nm disk for walls with optimal initial curvatures. (a) Snapshots of the
initial magnetization state with {φ0, q0} = {30◦, 10 nm} and its subsequent evolution under a voltage equal to Vc. (b) Resulting evolution of
the spatial average of the mz component of the magnetization. The micromagnetic snapshots are taken at the extrema of 〈mz〉. They illustrate the
Néel (respectively Bloch) character of the wall when the DW velocity changes from negative to positive (respectively positive to negative). The
panels (c) and (d) present similar plots calculated for different initial states in which in the initial tilts were rotated by respectively �φ0 = +10◦

and then by �φ0 = +90◦. The dashed areas help to better reveal the resulting changes in switching duration. Inset in (d): the nonuniformity of
the magnetization tilt within the wall (seen by a multicolored wall with the label “Bloch line”) correlates with the occurrence of a switching
scenario in which the DW performs multiple crossing of the disk center in a swinglike manner.

Several points are worth noticing in addition to this global
drift of the DW.

1. Overall motion: domain wall drift and superimposed
oscillations

The first important point is that the wall velocity and the
magnetization tilt φ(t ) [i.e., the color in Fig. 3(a)] are coupled:

φ(t ) increases monotonously during the DW motion towards
the disk center and this modulates the wall velocity. The wall
switches periodically from the Bloch state (φ = π

2 [π ]) to the
Néel state (φ = π [π ]). For 80 nm diameter discs, the DW
advances (i.e., q̇ > 0) when near the Néel state and moves
backward when near the Bloch state [see the lower snapshots
in Fig. 3(b)], at the noticeable exception of when the wall
crosses the center of the disk. This back-and-forth motion
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FIG. 4. Micromagnetic simulations of the DW dynamics within
a 40 nm disk for a wall with optimal initial curvature. (a) Snapshots
of an initial magnetization state with {φ0, q0} = {40◦, 10 nm} and
its subsequent evolution under an applied voltage equal to Vc. b)
Resulting evolution of the spatial average of the mz component of
the magnetization for the same simulation and for one with an initial
tilt angle incremented by 90◦.

of the DW is superimposed on the global drift of the DW
that sweeps through the disk. The oscillation has a more pro-
nounced amplitude when the wall approaches the disk center
(when 〈mz〉 ≈ 0). As this same position the oscillation of the
moment and the rate of change φ̇(t ) of the tilt slow down (see
the videos in Ref. [27]).

2. Sensitivity to the initial conditions

The second noticeable point is the large sensitivity of the
dynamics to the initial conditions [Figs. 3(b)–3(d)]: minute
changes of either the chosen initial DW position (q0, not
shown), of the initial tilt angle (φ0) alter substantially the
dynamics when the wall later arrives in the center of the disk.
We believe that this strong sensitivity to initial conditions
contributes to the fluctuations of the transition time observed
in room temperature experiments.

We have identified three scenarios in these micromag-
netic simulations: a driftlike one-way “ballistic” crossing, a
one-way crossing with pre- and post-crossing pauses and a
swinglike crossing with multiple attempts. Most initial condi-
tions {q0, φ0} lead to a driftlike one-way ballistic crossing: the
wall sweeps through the center without stopping there. The
time-resolved magnetic moment is nearly linear [Fig. 3(b)].
For some specific other initial conditions, the wall stops on
either sides of the disk diameter before and after crossing
the center [Fig. 3(c)], providing the impression of a central
oscillation. In both scenarios the DW crosses the center while
being essentially in a Bloch-type configuration. Note that this
holds for a disk diameter of 80 nm but shall no longer hold
for the smaller disk diameter. Occasionally, the DW swings
several times back-and-forth in the vicinity of the disk diame-
ter and crosses the center multiple times before finally leaving
the center [Fig. 3(d)]. In this last scenario, the tilt φ of the
magnetization within the wall gets substantially nonuniform
when the wall is in the vicinity of the disk center: a partial
Bloch line is created within the wall [inset in Fig. 3(d)]. These
three micromagnetic scenarios recall to the three categories of
electrical signatures of the transition observed experimentally

voltages just above the switching threshold in the 70–100 nm
samples [Figs. 2(e)–2(g)].

3. Minor features of the domain wall dynamics

In addition to its gradual drift, its fast position oscillation
and the pronounced or absent breathing of its curvature, the
DW also rotates around the center of the disk [Fig. 3(a)].
The gyration speed is minimal when φ is quasi-uniform;
the gyration speed seems to increase coincidently with the
nonuniformity of the tilt. This gyration of the wall re-
calls the gyration of nontrivial magnetic textures (vortices,
skyrmions,...). Unfortunately the details of the gyration of the
wall depend on how the (ideally perfectly circular) disk is
deformed by mapping it on the square simulation grid of the
micromagnetic solver. Staircase artefacts prevent an objective
analysis of the gyration dynamics.

D. Domain wall dynamics within a disk of diameter of 40 nm

Let us now consider smaller discs. Figure 4 gathers the
main features of the DW dynamics within a smaller disk of
diameter 40 nm when the wall is initialized with an optimal
curvature. The main qualitative features of the dynamics for-
merly observed in the larger disk are preserved: there is still
a gradual drift of the DW on which a fast position oscillation
is superimposed. However the reduction of the diameter in-
duces quantitative differences on the dynamics. In the 40 nm
disk, the oscillatory character of the domain wall velocity is
much less pronounced and can hardly be noticed [Fig. 4(b)],
especially near the disk center where the curves look very
linear. Among the three scenarios previously identified on the
80 nm disk, only the driftlike one-way “ballistic” crossing is
still observed when the diameter is 40 nm. Another difference
is that the initialization conditions {φ0, q0} of the DW do no
longer have a strong impact on the dynamics of the total
moment. In 40 nm discs, the walls cross the disk center in
a manner that does not depend much on their Néel of Bloch
character.

So far we have described the DW dynamics by solv-
ing numerically the LLGS equations and by comparing
the switching scenarios to the electrical signatures of time-
resolved switching. The aim of the remainder of this paper is
to develop models that provide physical insight on the DW
dynamics. The major simplification is to describe the wall by
collective coordinates.

IV. COLLECTIVE COORDINATE MODEL

A. Choosing the collective coordinates

From the micromagnetic simulations, we can infer that
the dynamics comprises mainly the translation motion of a
wall of fixed width but whose internal magnetization has a
variable tilt. It is thus natural to choose the wall position q
as the main reaction coordinate along the reversal path. We
assume for the sake of simplicity that the wall stays straight
and of constant width. We thus first adapt the popular {q, φ}
model [34] to the disk geometry and use the tilt φ of the
in-plane magnetization as the conjugate coordinate of the wall
position q. In all calculations, we will consider that the tilt is
uniform (i.e., ∂φ

∂y = 0 along the wall length). The validity of
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this assumption will be discussed in section VII E. We fix a
wall profile inducing a magnetization orientation with a polar
angle being:

θ (x, t ) = 2 tan−1

[
exp

(
x − q(t )

�

)]
. (2)

The wall dynamics can then be conveniently described in
Lagrangian formalism.

B. Equations of the domain wall motion within a disc

The Lagrangian L = LB − Utot of the system is the differ-
ence between the kinetic term

LB = Ms

γ

∫
disc

φ̇(1 − cos θ ) d3r (3)

and the total energy

Utot =
∫

disc
uμmag d3r. (4)

The total energy density uμmag includes the dipole-
dipole interactions, the anisotropy energy density uanis =
1
2μ0HkMs sin2 θ , the exchange energy density uex = Aex( dθ

dx )2

and the Zeeman energy density uZ = −μ0HzMs cos θ of the
external field Hz. The dissipation function WG includes the
effect of the damping α and the STT:

WG = 1

2
α

Ms

γ

∫
disc

(θ̇2 + φ̇2 sin2 θ ) d3r − σ j
Ms

γ

×
∫

disc
φ̇ sin2 θ d3r, (5)

where σ j is the STT expressed [6] as

σ j = γ P
V

AR⊥

h̄

2eMstmag
. (6)

The correspondence is σ j = 1.1 GHz for 0.85 V.
The wall dynamics is obtained from the Euler-Lagrange

equations for X = q, φ:

d

dt

∂L

∂Ẋ
− ∂L

∂X
+ ∂WG

∂Ẋ
= 0. (7)

Using the wall profile [Eq. (2)] and writing the volume in-
tegrals over the disk as

∫
disc d3r = 2d

∫ R
−R dx

√
R2 − x2, the

Euler-Lagrange equations can be simplified to the two follow-
ing coupled differential equations:

−φ̇ + α
q̇

�
= − γ

2Msd

�

SDW(q)

∂Utot

∂q
, (8)

q̇

�
+ αφ̇ = − γ

2Msd

1

SDW(q)

∂Utot

∂φ
+ σ j, (9)

where SDW(q) has the dimension of a surface and reads

SDW(q) =
∫ R

−R
dx sech2

(x − q

�

)√
R2 − x2. (10)

SDW(q) can be viewed as the effective surface of the DW, as
it corresponds to the integral over the disk of sin2(θ ), the in-
plane projection of the magnetization. It can be reasonably
approximated [Fig. 7(b)] by the product of the wall width �

by the chord length, yielding

SDW(q) ≈ 2�
√

R2 − (R − q)2. (11)

C. Exact energy landscape for a disk geometry

The main complication in Eqs. (8)and (9) resides in the
evaluation of the energy Utot because it includes the dipole-
dipole interactions that are nonlocal. To circumvent this
difficulty, a first option is to use micromagnetic simulations to
get Utot (q, φ) for all tilts and all DW positions inside the disk.
Since the half domain wall width π�/2 is 13 nm, we restrict
to wall positions at least 10 nm away from the edge. The
energy landscapes (Fig. 5) have saddle shapes with curvatures
for the q-φ degrees of freedom of the DW. The energy is max-
imum when the wall is at the center of the disk and when the
wall adopts in addition a Néel configuration (φ = 0 [π ]). This
energy difference between Néel and Bloch configurations is
much stronger for the largest diameter.

Before detailing the complicated situation of the disk,
it is useful to recall the well-known DW dynamics in
stripe [19,35,36]. Indeed in a stripe the wall position is not
tightened to the wall length (which is constant). The dynamics
is much simpler but will shed light onto the forthcoming more
complicated case of the disk.

D. Domain wall motion in a stripe

In an infinitely thin stripe of width w, the dipolar
energy can be described as a local quantity comprising
two contributions. The demagnetizing field oriented in the
out-of-plane direction can be grouped with the magneto-
crystalline anisotropy into an effective anisotropy energy
density Keff sin2 θ , or an effective anisotropy field H eff

k =
Hk − Ms. The contribution from the in-plane components of
the demagnetizing fields that appear within the wall can be
described as a DW anisotropy energy density uDW [37] which
reflects the fact that Néel-type DWs have volume magnetic
charges (i.e., we have �∇. �M 
= 0 within the entire volume of
the wall) while Bloch-type DW have surface charges only at
the two edges of the stripe. The DW anisotropy energy density
reads uDW = KDW sin2 φ cos2 θ where KDW = μ0

HN↔BMs
2 with

the DW stiffness field HN↔B being the in-plane field that
one needs to apply to transform a Bloch DW into a Néel
DW. (Note that HN↔B was written HDW in some previous
papers [19]).

The DW stiffness field can be written [37] from effective
demagnetizing factors of the DW: HN↔B = Ms

2 (Ny − Nx ). If
w � d and w � π� the demagnetizing factors are

Nx ≈ d

d + w
and Ny ≈ d

d + π�
. (12)

For example, a width w = 80 nm and a thickness d = 2 nm
yields a stiffness field of μ0HN↔B = 34 mT.

With these local expressions of the energy terms, and using
the volume integrals of the stripe

∫
stripe d3r instead of that of

the disk in the different terms of the Lagrangian, the equa-
tions of motion [Eqs. (8) and (9)] in a stripe become very
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FIG. 5. Energy landscapes Utot extracted from micromagnetic simulations for all positions q and tilt angles φ for a straight domain wall in
perpendicularly-magnetized disks of diameters (a) 80 and (b) 40 nm. A constant offset was added to the energy landscape to have the energy
maximum be zero.

simple:

−φ̇ + α
q̇

�
= −γ0Hz, (13)

q̇

�
+ αφ̇ = γ0

HN↔B

2
sin 2φ + σ j. (14)

The nature of the DW motion depends on [36] the rela-
tive strengths of the applied field Hz and the Walker field
HWalker = α HN↔B

2 . If |Hz| � HWalker (i.e., at very small fields,
typically less than 0.3 mT), the DW moves at constant velocity
and constant tilt. In the alternative case the wall is in the
precessional regime: q and φ undergo coupled oscillations
but in average the DW advances in the direction favored by
the applied stimuli [Fig. 6(b)]. It can be shown that (1) the
mean DW drift velocity is ¯̇q = �(σ j − αγ0Hz ), (2) the tilt
rotates at a rate ωφ = γ0Hz + ασ j, (3) the frequency of the
position oscillations is ωq = 2|ωφ|, and (4) the amplitude of
the back-and-forth position oscillation is Dosc ≈ �HN↔B

2Hz
.

We will see that the Walker field is much smaller that the
effective fields to be at play in a disk (Fig. 7): the precessional
regime of wall propagation will be the only one occurring in
disk and the above dynamical features will be preserved to
some extent.

The result of this model calculation –rigid wall in an in-
finitely long stripe at zero temperature– bears some similarity
with the experimental behavior in the elongated rectangles at
large stimulus [Fig. 1(a)] and at room temperature. The above
itemized points shed light onto some of the experimental find-
ings. For instance, small applied fields increase the frequency
of the oscillation and reduce its amplitude, which explains
why in experiments the oscillations can easily be hidden by
the noise as soon as some field is applied.

However this model calculation is not able to describe
the behavior at small stimulus, with the propensity of mak-
ing sometimes many oscillations at distributed intermediate
conductance levels [Fig. 1(b)]. Understanding this feature re-
quires to grab the behavior of a more realistic wall by taking
into account the possibility of nonuniform tilt and presence of
a partial Bloch line. This will be done in Sec. VII E.

V. APPROXIMATE ANALYTICAL FIELD MODEL OF THE
STT-INDUCED DW MOTION WITHIN A DISC

We now return to case of the disk, with the objective of
obtaining didactic expressions describing the dynamics.

A. Approximate analytical formulation of the forces acting on a
straight wall in the collective coordinate model

It is possible (but cumbersome) to integrate directly the en-
ergies to get the generalized forces ∂Utot

∂q and ∂Utot
∂φ

and simplify
the equations of motion [Eqs. (8) and (9)] to more didac-
tic ones. However, in order to shed light onto the different
physical effects at play, we prefer to derive the equations of

FIG. 6. Dynamics of a domain wall in an infinitely long stripe in
the q − φ model. (a) Geometry: a straight wall (yellow) of width π�

and of tilt φ is at a position q within a stripe of width w. (b) Domain
wall position as a function of time for a spin-torque σ j = 0.5 GHz,
an applied field μ0Hz = 50 mT and material parameters modeling a
CoFeB free layer with perpendicular anisotropy.
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FIG. 7. (a) Sketch of the geometry and main definitions. (b) Ef-
fective surface SDW (q) of a straight domain wall in an 80 nm disk
as computed exactly using Eq. (10) and as approximated using the
product of the length of the chord by �. (c) Elastic part of the stretch
field [Eq. (23) and its large diameter approximation when confusing
the wall length and the disk chord, as performed in Eq. (26)] and
stray field Hd (q) of the two domains versus DW position in an 80 nm
disk. (d) Domain wall stiffness field HN↔B(q) vs DW position in an
80 nm disk.

motion from an equivalent but more intuitive way by formally
splitting the total energy in its Zeeman and stray field part UZ ,
its part originating from the domain wall length Uelastic and its
part Uφ,NB originating from the in-plane demagnetizing fields
of the DW.

The Zeeman energy UZ is simply evaluated by the surface
in which the magnetization has changed by −2Ms. Noticing
that wall ≡ SDW(q)/� is the wall effective length when at
position q, the Zeeman energy can be written as

UZ (q) = −μ0dMsHz

(
πR2 − 2

∫ q

0

SDW (x)

�
dx

)

such that the Zeeman pressure acting on the wall is

∂UZ

∂q
= 2μ0dMs

SDW (q)

�
Hz. (15)

In analogy, the two domains at x � q and x � q create a
dipole field Hd (q) which is along z at the wall position. The
calculation of the dipole field is done in the supplementary
material. Hd (q) thus simply adds to Hz in Eq. (15).

As long as the wall is constrained to keep its native profile
[Eq. (2)], the effective anisotropy energy and the exchange
energy can simply be accounted for by multiplying the DW
surface energy density 4

√
AexKeff by the wall cross-sectional

area dwall to get Uel = 4d
√

AexKeff (SDW(q)/�). The elastic
force acting on the wall is thus

∂Uel

∂q
= 4d

√
AexKeff

∂SDW(q)

∂q
. (16)

Finally, the energy arising from the in-plane demagnetizing
fields of the wall can simply be written as the product of the
effective volume in which there are volume charges 2dSDW

and its uniaxial Néel-Bloch anisotropy field HN↔B, i.e.,

Uφ,NB = 1
2μ0HN↔BMs cos2(φ) × (2d SDW(q)). (17)

For simplicity we assume that HN↔B is independent from q.
This approximation is of minor importance [see Fig. 7(d)].
The somewhat nonintuitive factor of 2 in the effective volume
2dSDW of the magnetic charge distribution of a Néel wall was
obtained in the exact derivation of Uφ,NB and arises from the
integration of the hyperbolic secante (not shown). This energy
term yields two forces. The first force favors the Néel to Bloch
transition and reads

∂Uφ,NB

∂φ
= −μ0HN↔BMsd SDW(q) sin(2φ). (18)

The second force favors the domain wall motion only when
the wall has a Néel component (i.e., when φ 
= π/2 [π ]) and
reads

∂Uφ,NB

∂q
= μ0HN↔BMsd

∂SDW(q)

∂q
cos2(φ). (19)

Summing all energies, the equations of motion become

−φ̇ + α
q̇

�
= −γ0[Hz + Hd(q) + Hstr (q, φ)], (20)

q̇

�
+ αφ̇ = γ0

HN↔B

2
sin 2φ + σ j, (21)

where we have defined the domain wall stretch field Hstr (q, φ)
whose physical meaning is discussed in the following section.

B. Main driving force: the stretch field

The stretch field Hstr (q, φ) contains two contributions: an
elasticity part Hstr,el(q) that solely depends on the wall posi-
tion, and a dipolar part Hstr, NB(q, φ) that depends on both q
and φ and that is related to the Néel or Bloch (NB) nature of
the domain wall.

The elasticity part of the stretch field reads

Hstr, el (q) ≡ 2
√

AexKeff

μ0Ms

1

SDW(q)

∂SDW(q)

∂q
(22)
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or equivalently

Hstr, el (q) = H eff
k

�

SDW(q)

∂SDW(q)

∂q
. (23)

The elasticity part of the stretch field simply illustrates that
while moving within the disk, the length of the wall varies
and this costs or provides energy. Hstr,el plays the same role
as an out-of-plane external field: it applies a pressure on the
wall.

The other part of the stretch field depends both on the wall
position q and on the wall configuration φ (Néel or Bloch,
NB). This Hstr,NB accounts for the fact that when a Néel DW
is displaced, this induces a change of the volume in which this
Néel wall induces volume magnetic charges. It reads

Hstr,NB(q, φ) ≡ HN↔B

2

�

SDW(q)

∂SDW(q)

∂q
cos2 φ. (24)

From Eqs. (23) and (24), it is clear that the spatial variations of
the two parts of the stretch field are identical. However, they
have very different magnitudes, with ratio

Hstr,NB

Hstr,el
� HN↔B

2H eff
k

(25)

so that the dipole-dipole part of the stretch field is typically a
tenth of the elasticity part.

For large disks with R � �, the stretch field can be written
in a simpler manner as

Hstr (q, φ, R � �) ≈
(

H eff
k + 1

2
HN↔B cos2 φ

)
�(R − q)

q(2R − q)
.

(26)

Note that near the disk center, the part of the curvature
of the total energy that is related to the stretch field follows
∂Hstr
∂q ∝ − �

R2 . This quadratic decrease with the inverse diameter
indicates that the stretch field at the center of the disk is a
relevant parameter only for relatively small discs.

As a side remark, we mention that the concept of stretch
field is not restricted to our specific geometry. If a straight wall
was hypothetically moving in a funnel of angular opening 2ψ

[see Fig. 7(a)], the stretch field could be rewritten as

Hstr (q, φ) = (2Hk,eff + HN↔B cos2(φ))
�

wall(q)
tan(ψ (q)),

(27)

where wall ≡ SDW(q)/� would still be the wall length. The
tan[ψ (q)] term in Eq. (27) makes the stretch field very sen-
sitive to the exact shape of the device at the location of the
wall. This is particularly critical at the center of the device.
For instance if the nominally rectangular devices (i.e., ��)
are distorted because of some miscorrection of the lithography
proximity effect, the device shape might either be stadiumlike
(i.e., ⊂⊃), leading to a maximum of energy at the center,
either bowtielike (i.e., ��) leading to a secondary minimum of
energy. The sign of the stretch field is reversed between these
two situations. In the bowtielike distorsion, the wall oscilla-
tions can be bound to the center of the device, as commonly
practiced to get artificial wall pinning at notches along stripes.

C. Amplitudes of the different disk-specific effective fields

The numerical evaluations of the effective fields are re-
ported in Figs. 7(c) and 7(d), and further detailed in the
supplementary material. The stretch field is by far the largest
relevant field during the DW motion. For instance for the disk
with 2R = 80 nm [Fig. 7(c)], the elastic part of the stretch
field reaches ±150 mT when the DW is near the edges. Its
[smaller, see Eq. (25)] demagnetizing part does not exceed
35 mT [Fig. 7(d)].

The stray field Hd(q) acting on the DW depends on the
wall position and needs to be evaluated by micromagnetics.
This field is zero when the two domains are of equal size.
It is maximum when the wall is at an edge. The stray field
in a 80 nm disk [Fig. 7(c)] is typically 5 times smaller and
of opposite sign than the stretch field. It has a shape that
resembles very much that of the elasticity part of the stretch
field. This shape similarity is discussed in Ref. [27].

VI. COMPARISON OF THE PREDICTIONS OF THE
DIFFERENT MODELS

We have described so far the exact dynamics of a wall
as well as a simplified formalism by assuming that the mi-
cromagnetic state can be described by the sole wall position
and tilt. This collective coordinate model can either be solved
exactly based on the numerical evaluation of the total energy
(model to be quoted as the q-φ-Utot model, Eqs. (8) and (9) or
it can be solved using the approximate analytical expressions
of the effective fields [hereafter quoted as the q-φ-Hstr model,
Eqs. (20) and (21), Sec. V]. The goal of this section is to assess
the level of accuracy of the collective coordinate models.

A. Comparison of the qualitative features predicted by the
different models

Figure 8 compares the time-resolved magnetic moments
deduced from the three models. Figure 9 focuses on the
metrics of the oscillatory part of the dynamics. Figure 10
illustrates the sensitivity to the initial conditions within the
q-φ-Hstr model.

The main features formerly identified in the micromagnetic
model—the DW drift motion, its superimposed oscillation
that get more pronounced and slower when the DW is near the
disk center—are qualitatively reproduced in the q-φ models.
The exact and the approximate q-φ models yields very similar
domain wall dynamics within a 80 nm disk; the sensitivity to
the initial conditions is also reproduced. For a 40 nm diameter,
there is a good agreement between the micromagnetic model
and the q-φ-Utot model but the approximate q-φ-Hstretch model
is not as satisfactory, which reveals the limits of our analytical
approximations at small disk diameters.

These main qualitative features can be understood from
the equations of motion of the q − φ − Hstr model [Eqs. (20)
and (21)] because they resemble that of the stripe, except that
the field part of the DW driving force Htot (q) = Hz + Hstr +
Hd is now position dependent. Except in a very small position
interval which is at the center of the disk when Hz = 0, this
total field exceeds the Walker field such that the wall motion
is still occurring in the precessional regime. In analogy with
the stripe, the drift part of the DW motion can be written from
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FIG. 8. Comparison between the micromagnetic simulation of
the dynamics of a wall with initial optimal curvature (red curves), the
collective coordinate model with the exact energy landscape ({q, φ}
model with exact Utot, black curves), and with the approximate effec-
tive fields (blue curves). (a) Mean value of the z component of the
magnetization evolution during the DW motion for a disk of 80 nm
diameter. The initial conditions are for q0 = 10 nm and φ0 = 70◦.
(b) Idem for a diameter of 40 nm.

an average velocity:

¯̇q ≈ �[σ j − αγ0Htot (q)], provided Htot (q) 
= 0. (28)

FIG. 9. Absolute value of the frequency of the oscillatory part
of the domain wall motion in a disk of diameter 80 nm. Relation
between the inverse of the wall oscillation period and the mean
wall position during this period as predicted by micromagnetics (red
symbols) and by the q-φ-Utot model (black symbols). The blue line is
frequency inferred by analogy with the infinite stripe [Eq. (30)]. The
frequencies change sign at the middle of the disk.

We expect oscillations of the DW position being

Dosc ≈ �

∣∣∣∣ HN↔B

2Htot (q)

∣∣∣∣, provided Htot (q) 
= 0. (29)

Still in the same analogy, the tilt is also expected to rotate at
the rate

ωφ ≈ γ0Htot (q) + ασ j, provided Htot (q) 
= 0. (30)

B. Quantitative comparison of the domain wall drift velocity
and oscillation periods within of the different models

From the comparisons done in Figs. 8 and 9, we conclude
that q-φ models predict correctly the DW drift velocities while
they are much less accurate to account for the oscillatory
part of the motion. This can be understood with the help of
Eqs. (28) and (30). Indeed σ j is a constant number (≈ 1 GHz)
during the wall motion. The term γ0Htot (q) is larger and posi-
tion dependent. It varies between −25 and 25 GHz from one
edge to the other in a 80 nm disk [Fig. 7(c)].

Having in mind the typical values of γ0Htot (q) and σ j, we
find that the term ασ j is almost everywhere much smaller
than γ0Htot (q), such that the dynamics of the tilt [Eq. (30)]
is resulting from the sole effective fields. Since the effective
fields depend on the exact wall shape and exact tilt state,
their accuracy is directly endangered by the approximation
of a straight wall with uniform tilt; the frequency mismatch
between the predictions of micromagnetics and of the q-φ
models can thus be interpreted as a failure to account precisely
enough for the stretch field.

The situation is reversed for the DW drift velocity: the
term αγ0Htot (q) amounts at best to a minor fraction (e.g..
circa 25% when 2R = 80 nm) of σ j. The drift velocity pre-
diction [Eq. (28)] is thus little affected by potential errors in
the stretch field. Besides, the term σ j is independent of the
wall fine structure, hence it is reliable despite our straight
wall and uniform tilt approximations. This explains why the
predictions of the DW drift dynamics are satisfactory. Let us
thus now use the collective coordinate models to discuss the
sensitivity of the wall dynamics to the initial conditions.

VII. ORIGIN OF THE SENSITIVITY OF THE DYNAMICS
TO INITIAL CONDITIONS FOR LARGE DISCS

The sensitivity of the wall dynamics to the initial con-
ditions for the largest disk, and the absence thereof for the
smallest disk is best understood when analyzing the DW
trajectories in the (q, φ) space [Fig. 10(b)]. A convenient
preliminary step is to discuss a gedanken experiment: What
would happen if a Néel wall was placed at the center of the
disk?

A. Preamble: evolution of an hypothetical central Néel wall

Let’s thus place a straight Néel wall at {q0, φ0} = {R, 0},
i.e., in the absolute maximum of the energy landscape. Some
work of nonconservative torques is needed for the wall to
move away from this energy maximum. In the {q, φ} space,
the resulting trajectories are outgoing spirals: the wall first
swings about the center with an increasingly large amplitude.
In this transient process, there is a back-and-forth transfer of
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FIG. 10. Domain wall dynamics within a disk of 80 nm diameter under STT in the collective coordinate model with approximate effective
fields. (a) Time dependence of the position of the DW, for two different initial tilt angles being 48◦ and 91◦ and the same initial positions
q0 = 10 nm. (b) Description of the possible trajectories of the DW in the space of the collective coordinates. φ = 0 corresponds to a Néel DW
and φ = π/2 to a Bloch DW and the landscape is π periodic in the φ direction. The colored trajectories correspond to the bold-colored parts
of the trajectories of panel (a). The contour between the labels 1, 2, 3, and 4 of the red trajectory is very close to the retention pond frontier ∂P .

energy between the position degree of freedom of the wall and
the Néel/Bloch degree of freedom of the wall: Uel and UNB,φ

act as communicating vessels.
This zone of the {q, φ} space in which the wall is tran-

siently stuck is a “retention pond” [23], written P and
illustrated as the red contour from labels 1 to 4 in Fig. 10(b).
As a side remark, let us note that this concept of “retention
pond” is also implicitly present in the independent study pre-
sented in the Fig. 4 of Ref. [24]. Within the q − φ model, all
trajectories crossing the frontier ∂P are outgoing trajectories.
In the absence of STT, P is centered on {q = R, φ = 0 [π ]}.
It is distorted for strong values of the STT (see Ref. [27]). As
a result a DW that exits from P will subsequently cross the
disk center but it never performs so while being in a Néel con-
figuration, in line with the conclusions of the micromagnetics
study for this diameter of 80 nm (Sec. III). Note that for disks
smaller than a threshold to be determined later [Eq. (33)],
HN↔B is negative and P is then centered about the Bloch
configuration instead of the Néel one. Extrapolation of our
arguments to that case is trivial.

B. Sensitivity of the dynamics to the initial conditions within
{q − φ} model

Let us return back to our case study which is the wall
dynamics after an hypothetical nucleation of a DW near the
disk edge, i.e., out of the retention pond. The sensitivity of
the dynamics to the initial conditions can be understood as
follows. The DW progressive drift and the superimposed DW
oscillations are rather independent phenomena such that when
wall heads to the center of the disk, it can either approach
close to the retention pond P or pass at a large distance from
it. If the wall avoids the vicinity of P , it crosses the disk center
and performs a one-way, single attempt (ballistic) crossing. If
in contrast the wall happens to approach the retention pond,

it will have to circumvent it which leads to a more complex
trajectory.

These two scenarios are illustrated in Fig. 10. Along green
trajectory (φ0 = 48 deg.), the wall crosses the disk center
with a quasi-Bloch configuration, far from the retention pond.
This trajectory is archetypal of the ballistic crossing and
most probably corresponds in experiments to the featureless
and ramplike conductance waveforms [Fig. 2(e)]. If adding
�φ0 ≈ π/4 to the initial tilt (red curve in Fig. 10), one obtains
the antonym case: the DW trajectory arrives in a tangent
manner to (but outside) P . The wall performs a single turn
about P thereby making a considerable back-and-forth motion
with two pauses at either sides at the disk center. This most
probably corresponds to the experimental waveforms that ex-
hibited a pronounced oscillation near the midway conductance
[Fig. 2(f)].

In short, the {q-φ} models can explain some sensitivity to
the initial conditions as depending {q0, φ0}, the crossing will
be either of the type driftlike one-way “ballistic” crossing,
or will entail pre- and post-crossing pauses and a central
oscillation. However the (more rarely occurring) swinglike
crossings with multiple attempts [simulations of Fig. 3(d),
likely corresponding to the experiments of Fig. 2(g)] cannot
be obtained in the framework of the {q-φ} models. We will
discuss this case later in Sec. VII E.

C. Size of the retention pond verus disk diameter

The probabilities of occurrence of the ballistic crossing and
the one-way crossing with pre- and post-crossing pauses are
correlated with the size of P . If one aims at a reproducible
DW propagation duration while not being able to control to
the initial wall position and tilt (or if the thermal noise is large
enough to let q and φ diffuse with time), it is important to
determine the size of P . We define δqP the half width of the
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retention pond in the q direction [see Fig. 10(b)] and derive it
in the conservative limit. δqP can be evaluated by comparing
the energy of the saddle point of Utot with that of a Néel wall
δqP away from the center [these two states are close to labels
2 and 1 in Fig. 10(b)]:

(Uφ,NB + Uel + Ud )

∣∣∣∣φ=π

q=R−δqP

= (Uφ,NB + Uel + Ud )

∣∣∣∣φ= π
2

q=R

.

(31)

If we approximate wall as the length of the disk chord and if
we neglect the dipole energy Ud , The half-size of the retention
pond is

δqP ≈ R

√
HN↔B

Hk,eff
. (32)

This leads δqP ≈ 11 nm for a disk of diameter 80 nm, in
agreement with the numerical result in the absence of spin
torque (Fig. S3, Ref. [27]) as well as at the levels of spin
torque used for switching [Fig. 10(b)].

D. Disk diameter for optimal reproducibility of the duration of
the domain wall propagation

Let us determine the diameter d�P for which the retention
pond disappears. This situation happens when a wall placed at
the center of the disk has the same energy when either in the
Néel or in the Bloch state, i.e., when

Uφ,NB(q = R, φ = 0) = Uφ,NB

(
q = R, φ = π

2

)
(33)

or equivalently when HN↔B = 0. An estimation of d�P from
the approximate demagnetizing factors of the wall [Eq. (12)]
is unfortunately bound to fail as these expressions do not hold
in the obtained diameter range. Micromagnetics must be used
to find the disk diameter leading to the degeneracy of centered
Bloch and Néel walls. With our material parameters the pond
reduces to a single point when d�P = 40 nm, which was to
be anticipating from the vanishing curvature ∂2Utot

∂φ2 at q = R at
this specific diameter [see Fig. 5(b)]. The disk diameter d�P
is particularly interesting. Indeed it ensures that all the DW
trajectories pass through the disk center in a ballistic way:
the walls cross the center directly and almost independently
from their Bloch or Néel character (see Fig. S4 in Ref. [27]
for an exhaustive description of all the trajectories). This
recalls the conclusions of micromagnetics [Fig. 4(b)] when
the DW dynamics in a 40 nm disk was almost insensitive to
the initial tilt. This also correlates with the linear aspect of
the time-resolved magnetization curves at the crossing of the
disk center for this diameter. We can expect to maximize the
reproducibility of the time needed for a wall to sweep across a
disk, a feature that is of great interest for spin-transfer-torque
magnetic random access memories (STT-MRAM).

As a side remark, we mention that for diameters 2R < d�P ,
we have HN↔B < 0. As a consequence, while the retention
pond formerly centered about the Néel state has disappeared,
another one emerges from the central Bloch situation. How-
ever this new pond has little practical relevance with our
material parameters. Indeed the energy difference between

the Bloch and Néel states of a central wall for 2R < d�P
stays very small, of the same order as the thermal energy
kBT ≈ 4 zJ (25 meV) at room temperature. For comparison,
the energy difference between the Bloch and Néel states for a
central wall at 2R = 80 nm was 44 zJ (275 meV).

E. Domain wall dynamics beyond the {q − φ} models

Let us come back to the 80 nm disks in which the micro-
magnetic simulations evidenced reversal paths that included
multiple crossing of the disk center [Fig. 3(d)]. These switch-
ing paths cannot be described within the q-φ model; their
understanding requires to take into account additional degrees
of freedom. For these events, the micromagnetic configura-
tions indicates that there is coincidence of two phenomena:
the onset of a strong nonuniformity of the tilt ( ∂φ

∂y 
= 0) and
the trapping of the oscillating wall within the central part of
the disk. Qualitatively, when the tilt is strongly nonuniform,
different parts of the wall may want to move in opposite
directions [see Eq. (14)], such that the wall ceases to advance
but gyrates instead.

The time-resolved system energy (not shown) indicates
that during these swinglike scenarios the system systemat-
ically reaches a higher energy compared to when in the
single crossing scenarios. For instance during the scenario of
Fig. 3(d), the system energy rises 130 zJ (810 meV) above the
maximum energy reached in Fig. 3(a). This extra energy cost
can be understood from the theoretical energy [42] of a full
vertical Bloch line: UB-line = 8Aexd√

Hk/Ms
≈ 280 zJ (1.75 eV). Note

that the expected size of a Bloch line (π
√

2A
μ0M2

s
≈ 15 nm)

makes it small enough to easily fit within a centered wall.
To anticipate whether the tilt is likely to stay quasi-uniform

during the DW motion, UB-line should be compared to the
“DW energy barrier” �Edw(q0, φ0) that an (already nucle-
ated) DW with uniform tilt needs to acquire to climb up to
the saddle point in the energy landscape (i.e., the height of
Fig. 5). Since �Edw depends on the subjectively chosen initial
conditions {q0, φ0}, only its order of magnitude is meaningful.
For 40 nm discs, the STT has to supply typically �Edw ≈
120 zJ (0.75 eV) to jump over the barrier [Fig. 5(b)]. This
is much below UB-line. With these energy scales in mind, we
can understand why at diameters of 40 nm, the tilt is staying
essentially uniform whatever the initial conditions {q0, φ0}.
Indeed it seems unlikely that minor changes in the reversal
paths would permit a fourfold increase of the work supplied by
the STT with the whole of it fed into the ∂φ

∂y degree of freedom.
This is why at diameters of 40 nm the q-φ model succeeds in
describing the full wealth of the domain wall propagation: the
energy cost of a strongly nonuniform φ is just out of reach.

Conversely for larger discs, the work supplied by the STT
is substantially larger (e.g., Edw ≈ 450 zJ (2.8 eV) for a di-
ameter of 80 nm and q0 = 10 nm). Minor changes in the
reversal path and thus in the work supplied by the spin-torque
may transfer a sizable part of this work in the ∂φ

∂y degree of
freedom of the wall. This can induce a swinglike scenario if
the wall stays long enough at the disk center for a partial Bloch
line to develop. In the case of the elongated rectangles, such
swinglike scenario are considerably more probable. When in
experiments, the wall seems to stop drifting during 3–4 oscil-
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lations [Fig. 1(b)], it is likely to result from the nucleation of
vertical Bloch lines, that could enter the wall from the device
edge at any random wall position.

VIII. DISCUSSION

In this last section, we discuss briefly some practical con-
sequences that result directly from our modeling.

A. Expected influence of an external field

Let us first examine the influence of an external out-of-
plane field Hz as this situation is frequently encountered in
STT-MRAM applications in which offset fields emanating
from other magnetic layers reach the free layer. These offset
fields are generally below 20 mT, i.e., smaller [26] than the
typical value of the stretch field in discs; as a result they do
not radically change the wall dynamics. An external field adds
a gradient to the total energy Utot in the q direction, and thus
displaces the wall position q for which the total effective field
Hz + Hstr (q) + Hd(q) vanishes. Using Eq. (26) with q ≈ R
and neglecting Hd against Hstretch, we find that small applied
fields lead to the displacement of the retention pond in the q
direction by approximately:

Hz

H eff
k

× R2

�
. (34)

Some exact trajectories are reported in Fig. S4 of Ref. [27]. An
offset field of 30 mT displaces the retention pond by 10 nm in
disk of 80 nm of diameter, in agreement with Eq. (34). Apart
from this shift in the q direction and a deformation of P , the
trajectories in the {q, φ} space are not qualitatively altered at
this level of applied fields and all our previous considerations
on the wall motion still hold.

B. Domain wall dynamics at different voltages

So far we have modeled the DW motion at the sole current
corresponding to the macrospin critical switching voltage Vc.
Changing the voltage will affect linearly the domain wall drift
velocity ¯̇q [Eq. (28)] and thus change the transition time in
an approximate linear manner, as indeed observed experi-
mentally [15,21]. However it will also affect the oscillatory
part of the domain wall motion by affecting the tilt dynamics
[Eq. (30)]. Figure S4 of Ref. [27] shows how a change of the
STT alters the trajectories in the {q, φ} space for a 80 nm disk.

The most striking effects are a shift of the pond P in the
φ direction, as well as a reduction of its overall size when in-
creasing the magnitude of the STT. The shift in the φ direction
can be understood from Eq. (9) because φ̇ has to vanish at the
pond center. Therefore σ j has to compensate the term ∂U

∂φ
. To

first order in STT, the φ shift is thus σ j
γ0HN↔B

. As a result of the
shrinking of P , the proportion of DW trajectories with marked
pauses before and after the crossing of the disk center should
be reduced by increasing the spin-torque: the reproducibility
of the wall propagation time is thus expected to improve with
the magnitude of the STT. This is in line with the decrease
of the complexity of the transition observed experimentally at
applied voltages [Figs. 2(e)–2(g)].

In the same line, very large spin-torque amplitudes, i.e.,
with

σ j > 1
2γ0HN↔B (35)

like in the example of [Fig. S4(f)] entirely suppress the
retention pond so that the wall passes the disk center bal-
listically whatever its tilt state. At these amplitudes of STT,
the domain wall dynamics resembles that observed in 40 nm
disks (Fig. 4). With our material parameters, this always
ballistic situation is encountered or all disk diameter in
the 20–100 nm interval provided the applied spin torque
exceeds ≈3Vc.

IX. CONCLUSION

Our conclusions are summarized in Fig. 11. We have
studied how spin-torque induces the propagation of a wall
across thin disks with perpendicular anisotropy. Micromag-
netics were used to identify the wall motion scenarios for
two representative disk diameters, 40 and 80 nm. The results
were confronted with experiments for the largest devices, with
a qualitative agreement. At small disk diameters, the wall
sweeps across the device in an almost monotonous manner;
the wall dynamics is essentially independent from the manner
in which the magnetization is initialized. Conversely at larger
diameters, the wall performs small range back-and-forth os-
cillations superimposed on the gradual drift. Depending on
the initialization state of the wall, it crosses the disk center
either in a “ballistic” direct manner or with variably marked
pauses before and after the crossing of the center. Some
specific initializing conditions of the wall can even result in
the wall swinging across the disk center several times, which
correlates with the growth of a strong nonuniformity of the
wall tilt as well as a gyration of the overall magnetic texture.
In experiments, these scenarios correspond respectively to
ramplike, featureless time-resolved conductance curves, or to
curves with a pronounced oscillation of the conductance when
at midway, or finally to conductance waveforms with multiple
oscillations at midway.

We have then adapted a collective coordinate model
in which the wall is described by its position q and the
magnetization tilt φ within the wall. We introduced the
concept of the stretch field, whose elastic part [Eq. (23)]
describes to the affinity of the wall to reduce its length,
and whose demagnetizing part [Eq. (24)] describes the affin-
ity of the wall to the reduce its dipolar energy by rotating
its tilt, generally away from the Néel configuration. During
the motion of the wall, part of the system’s energy flows
back and forth between the energy reservoirs [Eqs. (17)
and (16)] associated to the two components of the stretch
field; the wall velocity [Eq. (28), quantitative] and its oscil-
lation [Eq. (30), indicative only] can be understood from this
picture.

In experiments, the transition time needed for the wall
to sweep through the device varies stochastically. This can
be understood from the concept of the retention pond P : a
region in the q-φ space in which walls of proper tilt are
transiently bound to the disk center. Walls having trajectories
tangent to the pond make two pauses before and after cross-
ing the disk center, thereby yielding switching times longer
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FIG. 11. Summarized description of the main features of the domain wall dynamics induced by spin-torque in perpendicularly magnetized
discs. The disk diameter d�P is the one for which the position degree of freedom and the tilt degree of freedom of the domain wall get
maximally independent when the wall crosses the disk center. The numerical values are for the material parameters of the theoretical sections.
The conclusions of Ref. [6] are also included. For the effect of DMI interaction see Refs. [27,38–41].

than average. The size of the retention pond [Eq. (32)] is
correlated with the energy difference between Bloch and Néel
walls when at the disk center. There exists a single “magic”
disk diameter [Eq. (33)], the DEVice OptimaL DiametER
(DEVOLDER) for which the retention pond disappears. For
this specific diameter, we predict that the wall shall cross
the disk center in a ballistic manner independently of its
tilt such that the time needed for a domain wall to sweep
through the disk will get largely independent from its tilt [23].
This is expected to maximize the reproducibility of the wall

dynamics, which is of great interest for magnetic memory
applications.
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